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SUMMARY
The progressive automation framework allows the seamless transition of a robot
from kinesthetic guidance to autonomous operation mode during programming by
demonstration of discrete motion tasks. This is achieved by the synergetic action
of Dynamic Movement Primitives, virtual fixtures and variable impedance control.
The proposed Dynamic Movement Primitives encode the demonstrated trajectory and
synchronize with the current demonstration from the user so that the reference generated
motion follows the human’s demonstration. The proposed virtual fixtures assist the user
in repeating the learned kinematic behavior but allow penetration so that the user can
make modifications to the learned trajectory if needed. The tracking error in combination
with the interaction forces and torques are used by a variable stiffness strategy to adjust
the progressive automation level and transition the leading role between the human and
the robot. An energy tank approach is utilized to apply the designed controller and to
prove the passivity of the overall control method. An experimental evaluation of the
proposed framework is presented for a pick and place task and results show that the
transition to autonomous mode is achieved in few demonstrations.

KEYWORDS: physical human-robot interaction; programming by demonstration;
dynamic movement primitives; virtual fixtures.

1. Introduction
Robot programming by demonstration (PbD) aims to reduce the programming time
compared to conventional methods which involve time-consuming procedures from expert
personnel and, therefore, significant financial burden. Utilizing kinesthetic guidance a
human can quickly demonstrate the task to the robot, outperforming conventional offline
programming techniques, that may require up to many hours for a simple task that lasts
only a few seconds to execute.1 The benefit of developing effective and practical methods
for PbD, can eventually render collaborative robots viable for small and medium-sized
enterprises, where changes in the production line are frequent.

Progressive automation is a method for seamless PbD, introduced in ref. [2]. It allows a
human to easily program a repetitive robotic motion task kinesthetically and it actively
assists the user while the robot learns to execute the task autonomously. The robot
starts fully compliant and after few demonstrations, it gradually becomes autonomous,
without requiring prior knowledge, pre-programming of the task sequence or interaction
of the user with graphical interfaces. During the demonstrations the user is able to make
adjustments and refinements to the learned trajectory. A variable stiffness controller
transitions the leading role among the robot and the human partner, based on the forces
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2 Progressive Automation

applied by the human and the correspondence between consecutive demonstrations.
The time and effort required in the learning procedure from the human teacher to
the robot learner, depends on the quality of communication between them. To improve
the quality of communication in progressive automation, the robot-learner provides the
human-teacher with real-time feedback of its current knowledge to make the learning
process transparent.3 This feedback is provided by the robot through haptic means and
in particular via the utilization of virtual fixtures that induce virtual forces around the
learned kinematic behavior.

In this paper we propose novel features in the progressive automation framework,2

which are able to increase the speed and effectiveness of teaching by demonstration
in repetitive tasks. Dynamic Movement Primitives (DMP) are utilized for motion
generation, that are synchronized with the human in the current demonstration.
Moreover, assistive virtual fixtures are imposed around the generated trajectory for
providing the user with haptic feedback of the already learned kinematic behavior; virtual
fixtures are penetrable to allow the human to modify the trajectory if needed. Specifically,
in this work we propose the following significant extensions compared to our previous
work:2,4, 5r The conceptual framework originally presented in ref. [2], considered only the

position of the robot during the demonstration, while the representation of the
robot’s orientation was introduced in ref. [4]. However, none of these works provided
any theoretical justification on the stability and passivity of the control system
under the external interaction forces. Moreover, synchronization of the DMP
generated motion with the current demonstration was not addressed.r The works in ref. [5, 6], achieved synchronization of the generated motion via
the adaptation of the temporal scaling of the DMP based only on position error;
here the synchronization is based on both the position and the orientation error.
Furthermore, we introduce virtual fixtures that produce assistive forces and torques
towards the learned trajectory. A rigorous proof of the passivity of the overall
control system is provided.

The rest of the paper is structured as follows. In Sec. 2 an overview of the proposed
progressive automation framework is initially provided. In Sec. 2.1 the proposed motion
synchronization of the DMP and in Sec. 2.2 the assistive virtual fixtures are presented.
The variable stiffness strategy for role allocation is presented in Sec. 2.3, while the
controller and its stability proof are presented in Sec. 2.4 and 2.5 respectively. An
experimental evaluation of the proposed framework is presented in Sec. 3.

1.1. Related work
Programming by Demonstration lies within the concept of robot learning from humans7

aiming to autonomous execution of a task by the robot. The learning procedure usually
involves shared control, where the robot actively participates in the task through the
exertion of forces in parallel with the human. The degree of the robot’s leading role in
shared control is defined as the level of automation.8 In ref. [9] an adaptable control
scheme was proposed for on-line allocation of the leading role between the two agents,
the human and the robot, based solely on the measurements of interaction forces. The
utilization of variable impedance control for implementing role allocation was examined in
the literature.10,11 In ref. [10] a complex human-robot cooperative transportation scenario
was considered, in which the robot identified the intention and allowed the proactive
behavior of the human when needed, by switching among predefined constant impedance
parameters. In ref. [11] an incremental learning method was proposed, involving the fusion
of data from consecutive demonstrations and the gradual increase of the robot’s stiffness
in each demonstration up to a maximum level, without, however, taking into account the
tracking error or the interaction forces. Saveriano et al.12 proposed an iterative learning
method, in which the human could kinesthetically teach tasks related to the end-effector,
as well as secondary tasks in the null-space. In ref. [13], Jarrasse et al. revealed the
necessity of a continuous dynamic role assignment policy, as compared to the case of pre-
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defining a constant role assignment. Although employing a variable impedance controller
can resolve the problem of role allocation, it can also lead to loss of passivity.14 To resolve
this problem, energy tanks can be utilized15 by virtually storing the dissipated energy
and reusing it only when it is necessary, guaranteeing in this way the passivity of the
system.16

Dynamical systems are widely used to encode kinematic behaviors demonstrated
by a human-teacher either kinesthetically or by utilizing other sensorial inputs (e.g.
robotic vision to capture the human’s motion). The dynamical systems can be adapted
or modified (e.g. for obstacle avoidance) and are also robust to perturbations of the
target and initial conditions. Two commonly used dynamical systems for encoding
kinematic behaviors are the autonomous Dynamical Systems (DS), e.g., the ones utilizing
Gaussian Mixture Models,17 and the Dynamic Movement Primitives (DMP). The DMP
are appropriate for encoding a trajectory-based representation, e.g. to encode both spatial
and temporal properties of a single kinematic behavior. Despite their time dependency,
DMP learning is possible with one demonstrated trajectory. In contrast, autonomous DS
are more appropriate for state-space representations of complex attractor landscapes and
require many demonstrations to cover the whole state-space.18

For the online adaptation of the DMP evolution to external disturbances, both the
adaptation of its temporal evolution, such as the “phase stopping”, and the reshaping
of its spatial evolution are proposed in the literature, utilizing coupling terms related
either to the measurement of external forces or the tracking error.19 In this direction,
phase estimation was proposed to temporally align trajectories for tackling the problem
of cooperative agent coordination,20 as well as for learning from a set of demonstrations
with different time scaling.21 However, phase adjustment cannot tackle the problem of
temporal synchronization (speeding up or slowing down of the motion), as it affects only
the non-linear part of the DMP. A promising solution towards achieving synchronization
with the human’s motion, is proposed for rhythmic kinematic behaviors, via the
adaptation of the DMP’s main frequency.22 Similarly, for the synchronization of discrete
kinematic behaviors, the adaptation of the temporal scaling factor is proposed in ref.
[23], in the context of a moving target. However, the adaptation is based on a model
for predicting the total motion duration, making the method not applicable in cases of
arbitrary trajectory modifications for kinesthetic teaching. In the case of autonomous DS,
even though they do not have a time dependency, they would require appropriate scaling
of their output velocity in order to remain synchronized with the user’s demonstration.

During the kinesthetic guidance, virtual fixtures can improve the performance of the
human in following a desired path.24 Particularly when multiple demonstrations are
required, the enforcement of virtual fixtures around the learned trajectory can improve
precision and reduce the mental workload of the human. Virtual fixtures were firstly
introduced in ref. [25] for tele-robotics and have been utilized in many robotic tasks.26,27

To discourage the motion close to constraints during kinesthetic guidance, Bettini et al.28

proposed the introduction of an anisotropic damping in an admittance control law, which
considers a parametric analytic expression of the reference path. The energy redirection
was proposed in ref. [29] as a form of virtual fixtures for increased task accuracy, by
introducing a dissipative control scheme. For kinesthetic teaching, the motion refinement
tube approach was proposed in ref. [30], in which virtual fixtures were placed around the
nominal path depending on the magnitude of the tracking error to prevent the human
from guiding the robot too far from the nominal path during demonstrations. Restrepo
et al.31 programmed virtual fixtures iteratively by demonstration with the use of splines.
Here we introduce assistive virtual fixtures with variable magnitude depending on the
progressive automation level, that can also be penetrated and re-entered by the user.
The fixtures are computationally efficient since they are constructed as a hypersphere
around the tracking error between the robot’s pose and the synchronized motion from
the DMP.
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2. The Proposed Progressive Automation Framework
Progressive automation consists of a variable stiffness controller for role allocation,
assistive penetrable virtual fixtures around the already learned kinematic behavior and
an online motion generation system based on DMP that is synchronized with the user,
encodes and reproduces the demonstrated trajectory, as shown in the block diagram
of Fig. 1. A task cycle is demonstrated kinesthetically and consists of discrete motion
segments between cues. The cues are provided by the user to signal start/stop of the
demonstration as well as intermediate actions. In case a gripper is attached to the robot
for object handling, the cues also determine actions of the gripper for opening/closing
the fingers.

Our aim is to design a controller for progressive automation which provides the user
with haptic feedback of the currently learned kinematic behavior and smoothly transition
into autonomous execution. The role of the robot is modified online by utilizing a
variable stiffness strategy, based on the tracking error between demonstrations and the
external forces and torques. The haptic feedback is provided by assistive penetrable
virtual fixtures, which smoothly vanish as the role of the robot becomes more active.
The virtual fixtures aim at the operator’s assistance during demonstration and act in
a complementary way to the variable stiffness of the impedance controller. When the
robot is guided kinesthetically, the target stiffness of the impedance increases slowly
during the course of multiple demonstrations. While the stiffness is low, the advantage
of using virtual fixtures is in assisting the user track accurately the learned behavior and
thus achieve faster progressive automation. A drawback is that the fixtures can increase
the force required by the user to initiate modifications because of the fixture’s potential.

At the initial demonstration of a task, the robot has zero stiffness and the human is
the leader of the movement. Since there is no currently learned kinematic behavior,
no assistive feedback is provided. After each motion segment is demonstrated, it is
encoded with DMP. Let ri(t) = [pT QT ]T ∈ T be the task coordinates of the robot
that are recorded in the ith demonstration of a complete task cycle. T , R3 × S3 is
the special Euclidean space SE(3) expressed as the combination of position p ∈ R3

and unit quaternion Q = [η εT ]T ∈ S3 (S3 is a unit sphere in R4), with η ∈ R being
the scalar part and ε = vect(Q) ∈ R3 being the vector part of Q. On completion of the
first demonstration, the second one starts and, simultaneously, the desired trajectory
rd(t) = [pTd QT

d ]T ∈ T , vd(t) = [ṗTd ω
T
d ]T ∈ R6, starts being produced by the DMP and is

provided to a variable impedance controller. During the learning procedure, the DMP
evolution is synchronized with the user, while penetrable virtual fixtures are utilized
to provide haptic feedback to the user to remain close to the DMP evolution; if no
corrections are desired by the user, the stiffness increases while the effect of virtual
fixtures smoothly decreases to zero. The user can apply forces to penetrate the virtual
fixtures and re-demonstrate or modify a segment of the task. In this case, the stiffness
decreases and the effect of the fixtures increases, to provide the user with the ability to
easily return to the previously learned path if it is desired. When target stiffness reaches
the maximum value, the user can stop interacting with the robot and the latter can
continue moving autonomously according to the learned trajectory rd. In the following
subsections, each block of the proposed method in Fig. 1 is presented in detail.

2.1. Dynamical Movement Primitives with motion synchronization
The use of DMP32 for encoding the demonstrated task coordinates in the progressive
automation framework offers the benefit of a compact and computationally efficient
representation. It also offers temporal and spatial scaling of the reproduced motion that
is useful for adaptability and generalization. For a segment of a discrete motion task, a
DMP is required which consists of separate transformation systems for each coordinate
and a common canonical system. Let g ∈ R3 be the position and Qg ∈ S3 the orientation
goal of a task segment expressed as a unit quaternion. The transformation systems for
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Fig. 1. Block diagram of the overall proposed system.

the generation of the reference position are:32

τ ż = αy (βy (g − pd)− z) + fp(x), (1)

τ ṗd = z, (2)

and for the orientation are:33

τ ω̇s = αy
(
βy2log

(
Qg ∗Q−1d

)
− ωs

)
+ fo(x), (3)

τQ̇d =
1

2
JQ(Qd)ωs, (4)

where “∗” denotes the quaternion product, ωs = τωd is the scaled angular velocity
reference and:

JQ(Qd) =

[
−εTd

ηdI3 − S(εd)

]
∈ R4×3, (5)

with S(εd) : R3 → R3×3 being the skew-symmetric matrix corresponding to vector εd.
Constants αy, βy are design parameters while the forcing terms fp, fo are given in the
Appendix A. The common canonical system is:

τ ẋ = −αxx, x(0) = 1 (6)

where αx is a time constant and τ is the temporal scaling factor.
By adapting τ , the DMP evolution can speed up or slow down appropriately to remain

synchronized with the current demonstration. To this aim the temporal scaling term τ
was adapted in ref. [5] based only on the position error. In this work the proposed
temporal synchronization method considers the aggregated position and orientation error
via the following temporal scaling adaptation law:

τ̇ =

{
aτ
(
τs
ξ+δ
− τ

)
, if ξ > 0

aτ
(
τs
δ
− τ

)
, if ξ ≤ 0

, τ(0) = τs, (7)

ξ = 1 + nyx̃
TMvd, (8)

where ny is a positive control parameter to scale the intensity of synchronization, aτ is
a positive control constant, δ is a positive small number to avoid dividing by zero when



6 Progressive Automation

ξ = 0, τs ∈ R+ is the duration of the demonstrated segment used for DMP training,
M ∈ R6 a positive definite diagonal constant matrix and x̃ is the tracking error defined
as follows:

x̃(r, rd) =

[
p̃
εe

]
∈ R6, (9)

with p̃ = p− pd and εe the vector part of the unit quaternion difference34 Qe ∈ S3 given
by:

Qe , Q ∗Q−1d =

[
ηe
εe

]
, (10)

where ηe ∈ R is the scalar part of Qe. The values of ηe and εe can be computed as follows:

ηe = QTQd,

εe = JTQ(Qd)Q.
(11)

The adaptation law of Eq. (7) ensures that τ tracks the value of τs/(ξ + δ), which
reflects the temporal scaling corresponding to the current speed of the demonstration.
The second term of (8) is the inner product of the normalized tracking error Mx̃ with
the velocity vd produced by the DMP, which implicitly combines the position and the
orientation dot products according to the matrix M and is proportional to the cosine of
angle φ between them, as shown in Fig. 2. A positive product indicates that the robot
is ahead of the DMP and a negative one indicates that the robot is behind. When the
product is zero, the addition of one as the first term in (8) ensures that ξ −→ 1 and the
equilibrium point for (7) equals to τs. With the proposed temporal scaling, the DMP
synchronizes with the position and orientation of the robot while it is guided by the
human, even in the case when a modification of the learned trajectory is demonstrated,
as shown in Fig. 2. Combining position and orientation errors is necessary to correctly
synchronize in tasks where the position and orientation are coupled, like the case of
an oriented path. Notice that the tunable values of the weight matrix M in (8) allow
us to modify the importance of translation and orientation errors for synchronization
in such tasks. For the combined synchronization proposed here, two main situations
may occur during teaching: i) the dot products of the position and orientation errors
with the respective desired velocities have the same sign. Hence both the position and
orientation are either ahead of the DMP (positive signs) or behind (negative signs) and
synchronization is correctly performed by speeding up or slowing down respectively, ii)
the dot products have opposite signs. The worst case in this situation is when the two dot
products cancel out each other; then, ξ=1 and the DMP is executed with τs, i.e. there is
no synchronization. This is a case that may appear at some instant but cannot persist
during the demonstration. When the human guides the robot in the same direction with
the DMP (φ ≤ π/2), the desired pose rd in Fig. 2 remains synchronized to the current
robot pose r. However, if the human guides the robot normal to or in the opposite
direction of the velocity vector vd, then the DMP evolution is paused until the robot is
guided in the same direction again. When either the desired translational (ṗd) or desired
rotational (ωd) velocity component equals 0, then the dot product of this component will
be 0 and will not affect the temporal scaling. In such case, synchronization will be based
solely on the error of the component with the non-zero desired velocity. If both are zero,
i.e., ‖vd‖ = 0, for a time interval, the DMP will evolve with the nominal value of time
scaling (τs) and the synchronization will be deactivated during this interval. Nevertheless,
any error in the position or orientation that develops while the corresponding desired
velocity is zero, will affect the stiffness variation and will be taken into consideration in
the temporal scaling as soon as the respective desired velocity takes non-zero values.

In this paper, the latest demonstration is used for training the DMP that generates
the reference pose trajectory in the next demonstration, while the joining of consecutive
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Fig. 2. Illustration of the variables for temporal synchronization during a modification of the learned
trajectory.

DMP is used to reproduce the entire task cycle. The completion of a motion segment
-and therefore the start of the next one- can be assessed by the DMP convergence to the
goal. The velocity of the robot when the goal of a segment is reached, is assumed to be
zero.

2.2. Penetrable assistive virtual fixtures
To assist the user in following the already learned path that is generated by the DMP
and at the same time allow modifications during a new demonstration, we propose
the use of spherical penetrable virtual fixtures for the end-effector pose r around
the synchronized DMP evolution rd in SE(3). Let r > 0 and ϑ ∈ (0, π) be constant
parameters representing the pre-specified (user defined) bounds of fixture’s effective area
in position and orientation respectively. For the construction of the virtual fixture spheres,
the metric of the weighted generalized distance in SE(3) ζ(r, rd), is

ζ(r, rd) =
‖p̃‖2

r2
+

1− ηe
1− cos ϑ

2

(12)

given by (A2) in Appendix B, utilizing

f(p,pd) , ‖p̃‖2

g(Q,Qd) , 1− cos

(
θe(Q,Qd)

2

)
= 1− ηe,

αζ ,
1

r2
,

βζ ,
1

1− cos ϑ
2

,

(13)

with θe(Q,Qd) being the angle between the orientations corresponding to Q and Qd, as
defined in Appendix B. Let us now define the ball centered at rd, utilizing the generalized
distance ζ(r, rd), as

Ω(rd) = {r ∈ T : ζ(r, rd) < 1}, (14)

and its boundary ∂Ω(rd) = {r ∈ T : ζ(r, rd) = 1}. Notice that for all r ∈ Ω(rd), it holds

0 ≤ ‖p̃‖2

r2
< 1,

0 ≤ 1−cos( θe
2

)

1−cos(ϑ
2
)

< 1,
(15)
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which implies

‖p̃‖ < r,

|θe(Q,Qd)| < ϑ.
(16)

Let us further denote the complement of Ω as Ω{ = T \ Ω, which is the region outside

the sphere. Notice that ∂Ω ⊂ Ω{. Further notice that setting the initial state of the DMP
to that of the actual robot then rd and r coincide at t = 0.

The control signal drives the user towards the DMP evolution rd(t) when the end-
effector’s pose lies within Ω(rd), while allowing to penetrate the boundary ∂Ω(rd) and
freely guide the robot during the corrections by exerting, initially, a relatively higher
force. In that direction, the following artificial potential U(ζ(r, rd)) ∈ R≥0 is proposed:

U(ζ(r, rd)) ,

{
10ζ3 − 15ζ4 + 6ζ5, 0 ≤ ζ(r, rd) ≤ 1

1, otherwise
. (17)

Let us also define:

JU(ζ(r, rd)) ,
∂U(ζ)

∂ζ
∈ R≥0. (18)

The potential (17) and its derivative JU(ζ) are shown in Fig. 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

1

2

Fig. 3. The proposed artificial potential and its gradient.

Notice that U and JU possess the following properties:

1. U(ζ(r, rd)) is increasing w.r.t. ζ within Ω,
2. U(ζ(r, rd)) ≥ 0, ∀r ∈ T and U(ζ(r, rd)) = 0 only at r = rd,

3. U(ζ(r, rd)) < 1, ∀r ∈ Ω and U(ζ(r, rd)) = 1,∀r ∈ Ω{,

4. JU(ζ(r, rd)) ≥ 0,∀r ∈ T and JU(ζ(r, rd)) = 0 only for all r ∈ Ω{ ∪ {rd}.
The following control signal is then proposed to provide haptic feedback during

kinesthetic guidance of a learned kinematic behavior:

Fv , −kvfAT ∂U

∂x̃
, (19)

with kvf ∈ R>0 a tunable control gain and A being the following matrix:

A(x̃) , diag

(
I3,

1

2
(ηeI3 − S(εe))

)
. (20)
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which relates the time derivative of x̃ with the velocity error ṽ = v − v′d, with v =

[ṗT ωT ]T being the generalized velocity of the end-effector and v′d = [pTd ω
′
d
T ]T , with

[0 ω′d
T ]T = Qe ∗ [0 ωTd ]T ∗Q−1e (notice that when there is no orientation error, Qe =

[1 0 0 0]T and ωd = ω′d):

˙̃x = A(x̃)ṽ. (21)

By differentiating U(ζ(x̃)) with respect to x̃, we get ∂U

∂x̃
= ∂U

∂ζ
∂ζ

∂x̃
= JU

∂ζ

∂x̃
. The partial

derivative of ζ for the selection (13) yields:

∂ζ

∂x̃
=

[
2p̃
mp
εe

ηemo

]
, (22)

where mp = r2, mo = 1− cos(ϑ
2
). Substituting (22) to (19), the control signal can be

written as follows:

Fv = −kvfJUM6x̃(r, rd), (23)

with M6 = diag( 2
mp

I3,
1

2m0
I3).

2.3. The variable stiffness strategy
The progressive automation level is based on a variable gain to transition the role of
the robot from passively following the user’s demonstrations to accurately following the
trajectory produced by the DMP. The desired Cartesian stiffness matrix K ∈ R6×6 of the
robot is constructed as:

K = κ(t)

[
kT I3 0

0 kRI3

]
, (24)

with kT , kR ∈ R+ being the maximum desired translational and torsional stiffness
respectively and κ ∈ [0, 1] being a variable gain whose rate of change κr depends on
the external interaction force and on the deviation from the reference path as well as the
current value of κ(t):

κ̇ =

max{κr, 0}, κ = 0
κr, 0 < κ < 1

min{κr, 0}, κ = 1
, with κ(0) = 0, (25)

κr = (
κ

fr
+ fmin)

(
1− 1

λ2

(||FP ||+ γ1||FR||)3 −
1

λ1

(||p̃||+ γ2||εe||)
)
. (26)

where FP ,FR are the external forces and torques respectively applied by the human (i.e.
Fh = [FT

P FT
R]T ∈ R6). The design parameters λ1, λ2 affect the impact of the interaction

force and the tracking error on the stiffness rate of change, fmin is a positive constant to
induce a gain increase when κ=0, and fr, γ1, γ2 are scaling terms.

The variable gain κ increases after the first demonstration and allocates an increasingly
leading role to the robot, while the human demonstrates a path with small tracking error
and the applied forces/torques are relatively low. The transition rate κr also depends on
the current value of κ. This rate is initially slow, requiring the human to conduct a
few demonstrations and allow fine tuning of the reference trajectory. The rate increases
with the increase of κ. When the robot moves autonomously (κ = 1), a high interaction
force or torque quickly reverses the leading role back to the human in order to allow
modifications of the path. The higher the level of automation κ, the slightly higher are
the forces required by the user to initiate an adjustment, but the bigger is the assistance
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to the user. However, while κ = 1, the force required to make an adjustment at any
location along the segment would be equal.

2.4. The proposed robot controller
Consider the dynamic model of a n-dof non-redundant manipulator in the 6-dimensional
operational space with gravity compensation under the kinesthetic guidance of a human
force Fh and the action of a control input Fτ ∈ R6 that is designed to achieve the control
objective for the progressive automation:

Λx(q)v̇ + Cx(q, q̇)v = Fh + Fτ (27)

where

Λx(q) = [J(q)Λ(q)−1J(q)T ]−1 (28)

Cx(q, q̇)v = J(q)−TC(q, q̇)q−Λx(q)J̇(q)q̇ (29)

with q, q̇ ∈ Rn being the robot joint position and velocity, J(q) ∈ R6×n the robot
Jacobian, Λ(q) ∈ Rn×n the manipulator’s inertia matrix, C(q, q̇) ∈ Rn×n the Coriolis
and centripetal matrix. Notice that the task space inertia matrix Λx is positive definite
and the matrix Λ̇x − 2Cx is skew symmetric.

To achieve the target dynamic behavior with the assistive virtual fixtures, the following
control signal is utilized that imposes a desired variable Cartesian stiffness and damping
without shaping the inertia:

Fτ = Λx(q)v̇′d + Cx(q, q̇)v′d −Dṽ − βrKx̃ + (1− κβr)Fv, (30)

where D ∈ R6×6 is the positive definite damping matrix that is selected according to
K,Λx for critically damped behavior, as described in ref. [35]. The last term of (30) is
designed such that the virtual fixtures are gradually vanished, as the system approaches
complete autonomy (κ→ 1), since in complete autonomy their assistance is not further
required. The variable βr ∈ [0, 1] implements the energy tank to keep the system passive,
by further introducing a new auxiliary state xt ∈ R≥0 representing the state of energy
tank (i.e. the tank’s level). Hence, βr is designed such that βr = 1 for values of xt less
than xt and βr = 0 when xt is reached. The smooth transition of βr between 1 and 0
is predefined by the designer (see ref.[5]). More specifically, let the following equation
express the dynamic behavior of xt:

ẋt =
µ(xt)

µc
ṽTDṽ − β(xt, v)v (31)

where µc > 1 is a constant parameter and µ(xt), β(xt, v) are scalar functions which
control the flow of energy between the virtual storage xt and the robot:

µ(xt) =

{
0, if xt ≥ xt
h(xt), otherwise

(32)

β(xt, v) =


0, if xt ≥ xt ∧ v ≤ 0

∨xt = 0 ∧ v ≥ 0

g(xt, v) otherwise

, (33)

with h(xt), g(xt, v) ∈ [0, 1] being selected so that µ(xt), β(xt, v) will be differentiable and

v = −ṽTKx̃− κṽTFv (34)
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being the power related to the variable stiffness gain κ(t).
We are now ready to define βr:

βr(xt, v) : R× R→ [0, 1], such that:

{
βr(xt, v) = β(xt, v), if v ≥ 0

βr(xt, v) ≥ β(xt, v) otherwise
(35)

Notice that by selecting 0 ≤ xt(0) ≤ xt, equations (31), (32) and (33) imply xt ∈ C, ∀t > 0
with C = [0, xt], thus, C is positively invariant with respect to (31). A specific selection
of h(xt), g(xt, v), βr(xt, v) can be found in the Appendix C.

2.5. Stability analysis
Substituting Fτ from (30) in (27) yields the following closed loop robot dynamics:

Λx(q) ˙̃v + (Cx(q, q̇) + D) ṽ + βr(xt, v)Kx̃ = Fh + (1− κβr(xt, v))Fv. (36)

To proceed with the stability analysis, we initially write the closed loop system in state-
space. We define the state vector s = [ṽT x̃T xt]

T ∈ Z with Z = R6 × R6 × C and Fh is
the input. The closed loop system, can be written in the following compact form:

ṡ = H(s,Fh), s0 = s(0) ∈ Z (37)

and

H(s,Fh) =


Λ−1x (− (Cx + D) ṽ + Fh − βr(xt, v)Kx̃ + (1− κβr(xt, v))Fv)

A(x̃)ṽ
µ(xt)

µc
ṽTDṽ − β(xt, v)v

 .
Theorem 1.
The system dynamics (37) is strictly output passive under the exertion of a human

force Fh with respect to the output ṽ, ∀t ∈ [t0,∞).

Proof. Consider the continuously differentiable function:

V =
ṽTΛxṽ

2
+ kvfU + xt (38)

Taking its time derivative while utilizing Λx
˙̃v from (36) and employing the skew-

symmetric property of Λ̇x − 2Cx, V̇ becomes:

V̇ = −ṽTDṽ + ṽTFv + ṽTFh − ṽTβrKx̃− ṽTβr κFv + kvf

(
∂U

∂x̃

)T
˙̃x + ẋt (39)

Using (19) and the mapping of (21), V̇ becomes:

V̇ = −ṽTDṽ + ṽTFh − ṽTβrKx̃− ṽTβr κFv + ẋt (40)

Utilizing ẋt from (31), V̇ becomes:

V̇ = −(1− µ

µc
)ṽTDṽ + ṽTFh − βr(ṽTKx̃ + ṽTκFv)− βv. (41)
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A

B

feeder

container

Fig. 4. The experimental setup showing the repetitive pick and place task of objects from point A
(feeder) to point B (container).

From (34) −ṽTKx̃− ṽTκFv = v. Since (βr − β)v ≤ 0 from (35) and µ ∈ [0, 1]

V̇ ≤ −µc − 1

µc
ṽTDṽ + ṽTFh ≤ −λmin(D)

µc − 1

µc
ṽT ṽ + ṽTFh (42)

where λmin(.) is the minimum eigenvalue of a matrix. Note that µc > 1. Hence, system
(37) is strictly output passive (see Definition 6.3 of ref. [36]). �

3. Experimental evaluation
The proposed method is evaluated experimentally using a KUKA LWR4+ manipulator
with a BH8 hand attached as an end-effector. A human is asked to teach a pick and
place task to a robot by repetitively moving small objects from a feeder (point A) to a
container (point B), as it is shown in Fig. 4. The objective of this task is to seamlessly
transition from kinesthetic teaching into autonomous operation. The task requires placing
of objects into a container with specific orientation and high accuracy. To achieve it,
two segments are required which are divided by the user tapping to an unused finger
of the hand. Apart from segmenting the task, the tapping also changes the status of
the hand (grasp/release). When a demonstration is completed by the user, the second
demonstration starts immediately. Each segment is encoded with DMP right after the
end of the demonstration. The encoding of the latest demonstrated task cycle is used as
a reference for motion generation. To obtain the user’s applied wrench Fh, we use the
estimation provided by the robot.

The control parameters are selected to be M = M6, ny = ατ = 100 and δ = 10−4 for
the synchronization, αy = 10, βy = αy

4
, αx = 1 for the DMP yielding a critically damped

linear part response, r = 0.02m, θ = 10o and kvf = 0.1 for the virtual fixtures, λ1 = 0.02,
λ2 = 10, γ1 = 3, γ2 = 0.1, fr = 4, fmin = 0.01, kR = 100Nm/rad and kT = 2000N/m the
maximum stiffness values, and µc = 20, xt = 10, xt(0) = 0.2, δt = 0.1, δv = 0.5 for the
energy tank. In the DMP temporal scaling, a continuous dead-band function of 8mm
and 5o is utilized for rejecting small values of translation p̃ and orientation θe errors
respectively. A segment is finished and the next one begins when the goal position
is within an accuracy of 10−4m and the orientation error from the target is below
10−3rad. The operation of the gripper switches to autonomous mode and re-encoding
of demonstrations are stopped whenever κ = 1 i.e., max stiffness is reached.

The demonstration of the pick and place task is illustrated in Fig. 5, where the time
evolution of end-effector position p(t), pd(t) ∈ R in the x-axis with the corresponding
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evolution of the phase variable x(t), the time scaling parameter τ(t), the state of energy
tank xt(t), the variable stiffness parameter κ(t), the interaction forces/torques ‖FP‖,
‖FR‖ and the control forces/torques ‖Fv,P‖, ‖Fv,R‖ induced by the virtual fixtures (Fv =
[FT

v,P FT
v,R]T ) are presented. During the initial demonstration, until t = t1 ≈ 12s, the user

freely moves the end-effector, demonstrating the task to the robot. After the end of the
first task cycle (t > t1) the DMP produces the encoded previous path, and the virtual
fixtures assist the user in repeating the demonstration until the robot becomes able to
execute the task autonomously, when κ reaches the value of 1. Full autonomy is achieved
in three demonstrations, as it is shown in Fig. 5e. The relatively increased forces (Fig.
5g,h) that appear approximately at t = 17s and t = 30s do not induce tracking errors
(Fig. 5a) due to the proposed synchronization mechanism. The effect of synchronization
is depicted in the temporal scaling factor that is displayed normalized to the duration
of the previous demonstration τs (Fig. 5c), so that values greater than one means that
the DMP is slowing down and lower than one that is speeding up. The demonstrations
and the final learned path are presented in Fig. 5h, showing a small variance between
the demonstrations achieved by the assistance of the virtual fixtures, which accelerate
the learning procedure.

The modification of a part of a motion segment is presented in Fig. 6a, where the
user interrupts the autonomous execution of the robot at t ≈ 74s by applying relatively
high forces/torques (Fig. 6f). Notice the fast stiffness reduction (Fig. 6e) which allows
the virtual fixture’s introduction, although they are shortly penetrated as shown by the
peak at t ≈ 74s in Fig. 6g and the subsequent zero value during the modification. The
drop of the stiffness causes an increase of the energy tank level (Fig. 6d), which however
remains within the boundaries. At t ≈ 81s, the user returns to the previous trajectory
and completes the demonstration of the task. A second peak at the virtual fixtures at
t ≈ 81s (Fig. 6g) signals the re-entrance of the fixtures. The magnitude of the control
signal Fv in Fig. 6g is representative of the guidance provided to the user as a haptic
feedback during the rest of the demonstration. In Fig. 6b and 6c, the phase variable
x and the temporal scaling factor τ are depicted respectively, where one can see the
adaptation of τ that directly affects the rate of change of x. Due to the adaptation of τ ,
the synchronization of the robot to the user’s motion is achieved even when the virtual
fixtures are penetrated, which allows the user to re-enter the fixture sphere at t ≈ 81s.
The fixtures assist the user in repeating the rest of the previously learned motion, while
no further modifications are applied. After the re-entrance into the fixture sphere, the
progressive automation level starts increasing again (Fig. 6e), due to the relatively small
tracking error and the low forces/torques. On completion of the task cycle at t = 100s,
the DMP is retrained to the modified demonstration.

The effectiveness of the proposed virtual fixtures in assisting the user to quickly achieve
progressive automation, is particularly evident in the experimental comparison of Fig. 7,
where the user demonstrates the same pick and place task but without the feedback of
virtual fixtures. In this case, even though the DMP remains synchronized during learning
(Fig. 7a), the user cannot easily follow the previously demonstrated path, leading to
relatively higher tracking error, as compared to the case in which a virtual fixture is
utilized, and slower increase of the stiffness (Fig. 7b). Without using virtual fixtures, the
robot is able to execute the task autonomously after 6 demonstrations (70s) compared
to 3 demonstrations (40s) that are required with the assistance of fixtures (Fig. 5e).
Moreover, without using virtual fixtures the external forces/torques over time in Fig.
7c are significantly increased compared to Fig. 5f, meaning that more human effort is
required to demonstrate the task.

To illustrate the benefits of the proposed synchronization method, we present in Fig.
8 an additional experiment comparing synchronization that considers both position
and orientation with synchronization that is based only in the position. The task
involves a translational movement, followed by a pure rotational movement and then
followed by a translational again. In Fig. 8, an indicative translational and rotational
coordinate are presented along with the corresponding position and orientation errors,
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Fig. 5. Demonstration of a pick and place task with DMP synchronization and assistive virtual fixtures
that lead to the learning of the task within 3 demonstrations.
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are illustrated.
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Fig. 8. Comparison between the proposed synchronization method with a synchronization that considers
only the position.

the progressive automation level k and the phase variable x. If the orientation is not
considered for synchronization, the orientation of the DMP evolves according to the
learned demonstration and is not synchronized with the current demonstration which
might be faster or slower, leading to higher orientation errors (Fig. 8f,g) and slower
progressive automation (Fig. 8h). By considering both the position and the orientation,
the DMP is synchronized to the demonstration from the human and a small tracking
error is maintained (Fig. 8b,c), achieving faster progressive automation (Fig. 8d).
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4. Conclusions
In this paper we built upon the progressive automation framework by introducing
temporal synchronization of the DMP with the current demonstration, considering both
the translation and the orientation of the robot and by imposing virtual fixtures to assist
the user in following the reference trajectory. In case a modification to the trajectory
is desired, the fixtures can be penetrated but the user can re-enter into them after
the modification. A variable stiffness strategy gradually increases the target stiffness
according to the synchronized tracking error and interaction forces and torques, so that
when maximum stiffness is reached, the robot can autonomously execute the learned
trajectory. To retain passivity of the overall system we use an energy tank approach.
The effectiveness of the framework is demonstrated in an experimental evaluation where
a human demonstrates to the robot a repetitive pick and place task. With the proposed
approach we found that the robot is able to learn the task after three demonstration
which take less than a minute. The importance of incorporating the virtual fixtures in
the methodology is revealed by the fact that for the same task and in the absence of
fixtures, the same user needs six demonstrations. Moreover, in an additional experiment a
segment of the task is significantly modified by the user, while the robot is autonomously
executing a learned task, demonstrating the penetration of the virtual fixtures, the
successful DMP synchronization and the quick role inversion through the variable stiffness
strategy. Hence, it is suggested that the synergic action of these proposed methods result
in an easy to use technique for quick programming of repetitive motion tasks.
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Appendix
A. DMP details
The forcing terms fp, fo of the DMP are given by the weighted sum of N Gaussian kernels:

fp(x) = Dp

∑N
i=1 wi

pψi(x)∑N
i=1 ψi(x)

x, fo(x) = Do

∑N
i=1 wi

oψi(x)∑N
i=1 ψi(x)

x,

where ψi = e(−hi(x−ci)2) with hi being the inverse width and ci the center of the ith
Gaussian kernel. The position and orientation scaling factor are defined as Dp =
diag(g − pd0) and Do = diag(2log(Qg ∗Q−1d0 )) respectively. The terms pd0 ,Qd0 represent
the starting position and orientation of the DMP and wp,wo ∈ R3×N are the weight
matrices of the kernels, which are calculated with Locally Weighted Regression.37

The logarithmic map log(Q) of a quaternion Q =

[
η
ε

]
is defined as:

log(Q) =

{
arccos(η) ε

||ε|| , ε 6= 0

[0, 0, 0]T , ε = 0
.

Integration of (4) is performed using the exponential map that maintains the unit norm
during the integration with step ∆t:

Qd(t+ ∆t) = exp

(
∆t

2

ωs(t)

τ

)
∗Qd(t). (A1)
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B. Distance metric in SE(3)
Let r1 = [pT1 QT

1 ]T , r2 = [pT2 QT
2 ]T ∈ T be two poses, where T , R3 × S3 the special

Euclidean space SE(3) expressed as a combination of Cartesian coordinates p ∈ R3

(for translation) and unit quaternions Q ∈ S3 (for orientation). The following metric
ζ(r1, r2) : T × T → R≥0 is proposed:

ζ(r1, r2) = αζf(p1,p2) + βζg(Q1,Q2), (A2)

representing the weighted generalized distance in SE(3), with αζ , βζ ∈ R>0 being
the weights and f : R3 × R3 → R≥0, g : S3 × S3 → R≥0 being metrics in R3 and S3

respectively. Hence, f, g should have the following properties:r f(p1,p2), g(Q1,Q2) ≥ 0 for all r1, r2 ∈ T ,r f(p1,p2) = 0⇔ p1 = p2 and g(Q1,Q2) = 0⇔ Q1 = Q2,r f(p1,p2) = f(p2,p1) and g(Q1,Q2) = g(Q2,Q1),r f(p1,p2) ≤ f(p1,p3) + f(p2,p3) and g(Q1,Q2) ≤ g(Q1,Q3) + g(Q2,Q3), for any
r3 = [pT3 QT

3 ]T ∈ T .

Common eligible metrics in translation is the Euclidean norm of the difference
f(p1,p2) , ‖p1 − p2‖, or the squared Euclidean distance f(p1,p2) , ‖p1 − p2‖2, while
in orientation some eligible metrics are the geodesic distance g(Q1,Q2) , θe(Q1,Q2) =
2 cos−1(QT

1 Q2), or its transformations g(Q1,Q2) , 1− cos( θe
2

) or g(Q1,Q2) , sin( θe
2

),
considering θe ∈ [0, π] [38].

C. Smooth functions
In ref. [16] one possible choice of the scalar functions h(xt), g(xt, v) and βr(xt, v)
is provided, that satisfy the equations (32), (33) and (35). For defining these scalar
functions, the following smooth step function is used:

z(y;n, n) =


0 if y < n

6c(y)5 − 15c(y)4 + 10c(y)3 if n ≤ y ≤ n
1 if y > n

, (A3)

where c(y) = y−n
n−n . The complement of the smooth step function defines the function

h(xt):

h(xt) = 1− z(xt; (xt − δt), xt), (A4)

The function g(xt, v) is given by:

g(xt, v) =1− z(v;−δv, 0)(1− z(xt; 0, δt))

−(1− z(v; 0, δv))z(xt; (xt − δt), xt)
(A5)

and the function βr(xt, v) by:

βr(xt, v) =(1− z(v;−δv, 0)(1− z(xt; 0, δt)))(1

−z(v;−δv, 0)(1− z(v; 0, δv))z(xt; (xt − δt), xt)
(A6)

where δt > 0 and δv > 0 are parameters regulating the smooth transition.
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