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Abstract—This papers investigates the effective control of elec-
tromagnetic radiation (EMR) in wireless adhoc communication
networks. In particular, we focus on networks with wireless
provision of energy, via the emerging technology of wireless
power transfer (WPT). Our aim is to propose algorithmic
methods towards optimizing the trade-off among the (potentially
high) radiation levels in the network and the efficiency of power
transfer.

After formally defining EMR and relevant performance met-
rics, we critically discuss selected abstract radiation models (such
as a well-studied scalar model) and identify their strengths
and limitations. In particular, we highlight a recent vectorial
representation of wireless power, which allows a very precise
management of radiation, as well as a peer to peer model
of wireless power exchange with negligible radiation levels.
Under these models, we present selected algorithmic methods
and heuristics for effective radiation control, such as adaptive
schemes for charger configuration in highly mobile systems, the
precise phase management of the wireless power waves and
the evaluation and handling of overlaps in the wireless power
transmission.

I. INTRODUCTION

Effective energy management plays a fundamental role in
rapidly evolving, power-critical wireless distributed systems
and ad hoc wireless communication networks. However, the
characteristic constraints and limitations of involved nodes
(in terms of their form, size and cost) makes the efficient
provisioning of energy a quite challenging task, with impor-
tant consequences to crucial operational issues, such as the
network lifetime and fault-tolerance, as well as the quality of
service enjoyed by the network system users. In parallel, the
rapidly evolving Wireless Power Transfer (WPT) technology

offers new opportunities for convenient energy provisioning
in modern wireless systems. Ongoing research and develop-
ment is anticipating novel network models employing such
technologies. In an abstract way, a WPT system includes two
kinds of nodes: one (or more) wireless transmitter(s) equipped
with a large pool of energy that transfers power in the network
area via RF signals, and several receiver nodes equipped with
an antenna that enables the energy harvesting from RF signals
transmitted by the transmitters.

Despite significant technological process, the full potential
and associated critical consequences of WPT in adhoc wireless
communication systems have not been properly explored. A
primary issue of concern is the fact that WPT introduces
additional, potentially very strong sources of electromagnetic
radiation (EMR) on top of several other wireless technologies
that have been used extensively, such as Wi-Fi, Bluetooth,
cellular etc. Uncontrolled exposure to high EMR may have
important impact to human health. Thus, it is critical to un-
derstand and control EMR levels, without however sacrificing
the quality of wireless communications offered to users. In
this respect, our aim is to propose adaptive systems towards
guaranteed, optimized trade-offs among radiation awareness
and energy provisioning.

We address the emerging aspect of effective control of
electromagnetic radiation (EMR) in wireless communication
networks. Particularly, we focus on adhoc communication
networks in which energy is provided by wireless power
transfer (WPT) technology. Our overall aim is to investigate
suitable formal models and to propose efficient methods for
controlling EMR while at the same time achieving satisfactory



QoS levels offered to the users as well as high provisioning of
power to the network. To this end, we first provide rigorous
definitions and key performance metrics for EMR in wireless
communication networks. In particular, we focus on wirelessly
powered adhoc networks and examine the suitability and
effectiveness of different WPT models for EMR control.

For the classic scalar model of wireless power (based on
the well-known Friis equation), we discuss its strengths and
limitations. Under this model, we propose an EMR control
method for high, diverse node mobility, basically employing
a dynamic, online adaptation of the charger’s wireless range,
in contrast to the usual fixed changing range which may incur
unnecessarily high levels of radiation. Also, we present a novel
method of peer-to-peer wireless power exchange among the
network nodes, which does not necessitate any central charger
stations, thus minimizing radiation to negligible levels.

Then we recommend a major modeling shift, via a vectorial
representation of wireless power waves, enabling a much more
precise handling of radiation, by effectively exploiting some
non-trivial phenomena of cumulative as well as cancellative
power reception. Such modelling allows us to provide effective
algorithms which lead to satisfactory trade-offs among the ef-
ficiency of wireless power provision and the incurred radiation
levels. Key ingredients of our algorithmic methods include a
fine-tuned phase-configuration of the wireless signals as well
as methods for modeling and controlling signal overlaps when
studying the problem of choosing a low level radiation path
for a mobile entity traversing the network area.

II. FORMAL DEFINITION OF RADIATION

Consider a Wireless Communication Network N consisting
of m wireless chargers (wireless power transmitters/devices)
that operate within an area A (e.g. A ⊆ R2). Due to the
operation of the wireless chargers, every point inside A is
exposed to Electromagnetic Radiation (EMR), which is loosely
defined as the quantity of “electromagnetic level” it is exposed
to. In this paper, we follow the usual assumption that the
electromagnetic radiation is linearly related to the power at
that point:

Definition II.1. Electromagnetic Radiation (EMR): Let
PN ,x(t) denote the power caused by a network N of wireless
devices to a point x within its area of deployment at time t.
The Electromagnetic Radiation x is exposed to at t is

RN ,x(t)
def
= γ · PN ,x(t), (1)

where γ is a constant that depends on the hardware of the
wireless devices of N and the environment.

Notice that RN ,x(t) (and therefore also PN ,x(t)) is a
function of time. This assumption is crucial for some of the
problems we study in this paper, since radiation is measured
with respect to a moving individual (and thus its relative
distance from power sources changes with time). We also note
that, in the above definition RN ,x(t) refers to the radiation rate
that point x is exposed to; to find the total radiation a point

is exposed to during a time interval [τ1, τ2], we integrate as
follows

RN ,x([τ1, τ2])
def
=

∫ τ2

τ1

RN ,x(t)dt =

∫ τ2

τ1

γPN ,x(t)dt (2)

Path radiation. The above definitions can be extended for
trajectories within A traversed by an individual with constant
speed: let W be a (finite, connected) route within A. Denote
by W[τ1, τ2] the part of W that the individual traverses from
time τ1 and τ2 and let Wt be the location of the individual
at t. The path radiation that the individual walking on W is
exposed to during [τ1, τ2] is

RN ,W([τ1, τ2])
def
=

∫
W[τ1,τ2]

RN ,Wt(t)dt (3)

Observe that, by Definition II.1, in order to get a precise
mathematical formula for RN ,x, a precise mathematical for-
mula for the power PN ,x is necessary. There are two prevalent
approaches in the literature, which roughly correspond to
macroscopic and microscopic study of electromagnetism.

A. The scalar model

In the scalar mode, we assume that the (absolute) power
created by a wireless device u ∈ N at a point x of A at time
t, given that only u operates in N is constant (with respect to
t) and equals

Pu,x(t) =
a · r2u

(1 + dist(u,x))2
, (4)

where ru expresses the (unchanging) operation level of u, a
is a constant determined by the environment and the hardware
settings of u, and dist(u,x) is the Euclidean distance between
the position of u at t and point x. Up to constant multipliers,
equation (4) expresses Frii’s formula for the received power
by a single receiver under the constraint that there are no other
receivers within a certain area. We mention here that, in some
cases studied in the literature, the exponent in the denominator
is allowed to take values other than 2 so that the dependence on
the distance is either emphasized or suppressed. Furthermore,
some authors use a cut-off bound D, meaning that the power
created by u becomes 0 for points further than D from u.

The crucial assumption in the scalar model, which makes
it easier to analyze than others, is that power from different
sources is additive. In particular, for any subset S ⊆ N , the
cumulative power created by S to x at time t is calculated by

PS,x(t) =
∑
u∈S

Pu,x(t). (5)

Consequently, applying Definition II.1, the cumulative elec-
tromagnetic radiation x is exposed to at time t because of N
is

RN ,x(t) =
∑
u∈N

Ru,x(t). (6)

We note that, even though the additive power assumption
above may appear to be naive at first sight, nevertheless it
provides quite good approximations, especially when distances



between wireless devices of the network and points of interest
x are large compared to the wavelength of the electromagnetic
wave generated by each wireless device (alternatively, the
inverse of the frequency of operation of chargers). This is
the reason why the scalar model can be used effectively in
“macroscopic” studies studies of radiation.

B. The vector model

The vector model is a generalization of the single-
dimensional scalar model and Friis’ formula and provides
a more detailed abstraction for the study of electromagnetic
radiation. However, the latter comes at the cost of increased
analytical difficulty compared to that of the scalar model. In
particular, in the vector model, the electric field generated by
a wireless device u, at some point x is a 2-dimensional vector
given by

Eu,x
def
= β · 1

dist(u,x)
· e−j 2π

λ dist(u,x)

= β · 1
d
·
[

cos
(
2π
λ dist(u,x)

)
− sin

(
2π
λ dist(u,x)

) ] , (7)

where 1
λ equals the charger’s frequency of operation, and β

is a parameter that depending on the environment and on the
hardware of the charger.1

The crucial assumption in the vector model, that distin-
guishes it from other, less realistic models, is that the fol-
lowing: the cumulative electric field generated by an entire
wireless network N at some point x is the vector-sum of the
individual electric fields vectors for all chargers in N , that is

EN ,x
def
=
∑
u∈N

Eu,x. (8)

Furthermore, the total available power at x is given by

PN ,x = δ · ‖EN ,x‖2, (9)

where ‖ · ‖ denotes the length (2-norm) of the vector. The
constant δ depends on the hardware of the transmitter and the
RF-to-DC conversion efficiency. Observe that, by the above
formulae, additivity holds for electric fields and, therefore, it
does not hold for power.

It has been proved (both theoretically and experimentally)
that the vector model is able to capture phenomena like the su-
perposition of electromagnetic waves, which was not possible
with other, single dimensional models (including the scalar
model). In particular, cases of constructive (super-additive
effect) and destructive (cancellation effect) interference have
been successfully observed and studied using the vector model
[2]–[4]. A simple example where we can observe the super-
additive and cancellation effects is the following: To avoid
tedious numerical calculations, without loss of generality we

1The detailed formula given in [1] for the electric field is Eu,x
def
=√

Z0GuPu
4πdist(u,x)2 · e

−j 2π
λ

dist(u,x), where Z0 is a physical indicator for the
wave-impendance of a plane wave in free space, Gu denotes gain and Pu is
the the transmitter’s output power. Therefore, the constant β actually depends
on u. Nevertheless, when all wireless devices in N are identical, we can
assume that β is a constant.

will set λ = β = γ = 1. Assume a network consisting of
two wireless chargers C1, C2 placed so that their distance
is 2; say for example that we place them at points 0 and
2 of the 1-dimensional line. We will consider two receivers
R,R′, the first one placed at the mid-point of the line
segment connecting the two chargers (i.e. at point 1) and
the second one placed at point 5/4. When only one of the
two transmitters is operational, the power received by R is
P (C1, R) = P (C2, R) = ‖E(C1, R)‖2 = ‖E(C2, R)‖2 =(

1
dist(C1,R)

)2
= 1. On the other hand, if both transmitters are

operational, the power received by R is given by equation
(8), that is P ({C1, C2}, R) = ‖E(C1, R) + E(C2, R)‖2.
Furthermore, since R is equidistant from either C1 or C2, the
vectors E(C1, R) and E(C2, R) point to the same direction.
Therefore, P ({C1, C2}, R) = 4P (C1, R) = 2(P (C1, R) +
P (C2, R)) = 4, and we have the super-additive effect; in
particular, the power received by R when both transmitters are
operational is larger than the sum of the powers it receives
when only one of the transmitters is operational (the latter
being equal to 2). On the other hand, for receiver R′, we have

E(C1, R
′) = 4

5 ·
[

0
1

]
, and also E(C2, R

′) = 4
3 ·
[

0
−1

]
. By

equation (8), the power received by R′ when both transmitters
are operational is P ({C1, C2}, R′) =

(
8
15

)2 ≈ 0.28, which is
much less than min{P (C1, R

′), P (C2, R
′)} =

(
4
5

)2 ≈ 0.64;
this is the so-called cancellation effect.

An additional deployment constraint. Upon closer inspection
of equation (7), we notice that, the length of the vector
of the electromagnetic field becomes arbitrarily large when
we consider points x very close to u. In the scalar, this
issue was fixed by adding 1 to the denominator, which is
acceptable since (as mentioned before) this model gives a
good approximation provided dist(u,x) is large, and thus
1 + dist(u,x) ∼ dist(u,x). In fact, the two models are
equivalent when N consists of a single wireless transmitter
u and we consider points x far away from u.

The reason behind the above issue is that equation (7)
only holds for points x for which dist(u,x) ≥ λ; more
complex laws apply otherwise. To avoid confusion and to
avoid introducing models that are too complicated to analyse,
we thus assume that the placement of wireless devices and
points of interest satisfies the aforementioned inequality. Mind
that, for most wireless devices, λ does not exceed a few
centimeters, and thus the latter deployment constraints are not
too restrictive.

III. PEER-TO-PEER WIRELESS POWER TRANSFER

Peer to peer wireless power transfer is a recently proposed
method that achieves an almost zero level radiation, emitted
due to the corresponding wireless power transfer. In this
new method, it is no longer required any special network
entity with high energy supplies (i.e. the charger) that is
responsible for recharging the network devices. In contrast,
the network devices themselves, are responsible for charging
each other (in a peer-to-peer manner). This charging takes



place when two devices come to close proximity, and interact
to exchange energy (if required) and also, exchange other
network information. In this model, the devices transfer energy
over very small distances (and at specific direction) and thus,
the corresponding EMR is almost nullified.

In this subsection we will focus on distributed networks
which consist of computationally weak devices that should
distributively form a star network structure and converge to a
targeted energy distribution.

A. Problem

A formal definition of our problem is the following. Assume
two graphs G1 and G2 on the same set of vertices n. We denote
by H(G1, G2) the hamming distance between those graphs
i.e. H(G1, G2)

def
=
∑
e |Ie(G1)− Ie(G2)|, where Ie(G1) and

Ie(G2) are the indicator variables for the existence of edge
e in the corresponding graphs and the summation takes into
account all possible edges of the graphs, i.e.

(
m
2

)
edges.

The structural distance of the state of the network at time t,
denoted as G(t) from the target graph G is defined as follows:

δst (G, G(t))
def
= min

G∼G(t)
H(G, G), (10)

where the minimum is taken over all graphs G that are
isomorphic to G(t).

The definition of the energy distance metric is based on the
well-known Total Variation Distance in stochastic processes
and probability theory [5], [6]. Formally, let us denote by
E the target energy distribution for the set of agents M, by
Eu(t) = Eu(t)∑

u Eu
the relative energy level of agent u ∈ M, by

E(t) the relative energy distribution at time t and by Sm the
permutations of m.

The energy distance of the energy distribution of the net-
work at time t to the targeted energy distribution is defined as
following:

δet (E, E(t))
def
= min

σ∈Sm

1

2

m∑
i=1

|Ei − Eσ(ui)(t)|, (11)

where the minimum value is taken among all possible permu-
tations of agents.

Definition III.1. Energy aware network formation problem.
Consider a network that consists of a set of mobile agentsM.
We denote by G the target graph onM, by E the target energy
distribution and by ε, θ > 0 small constants. At each time t, a
probabilistic scheduler selects two agents to interact according
to an interaction protocol. The problem is to find an interaction
protocol that at a time t ≥ 0 achieves (i) δst (G, G(t)) = 0, (ii)
δet (E, E(t)) ≤ ε and (iii) Eloss =

∑
uEu(0)−

∑
uEu(t) ≤ θ.

As described above, our goal is to construct a star network
where one agent should become the central node and all other
should become peripherals. In addition, all peripheral nodes
should be connected to solely one node, the central one. In star
networks, all information generated by the nodes is forwarded
to the central node and thus, its energy consumption is much

higher. Motivated by this, the proposed energy distribution de-
fines that the targeted energy level of each agent is proportional
to the degree of the agents in the graph. More specifically, at
any time t, the targeted energy level for the central agent is
Etotal(t)

2 while for every peripheral agent is Etotal(t)
2(m−1) .

B. Interaction Protocols

In this subsection we will provide a description of two
interaction protocols that achieve the star network structure
and try to converge to the targeted energy distributions.
These protocols are designed for devices with extremely low
computational power and memory and thus, we minimize the
required power, while maintaining high performance.

In this model, there is a probabilistic scheduler that selects
at each time, a pair of nodes to interact. At each interaction, the
corresponding nodes can update their state (central/peripheral),
modify the values on their registers, add/remove the connec-
tion between them and exchange energy. In both protocols, the
set of possible states of each agent is Q = {c, p}.

Full Transfer Protocol: This protocol assumes that all
agents store in their memory the energy threshold Emin, which
is the amount of energy they keep for their own operation. The
interaction rules depend on the current states of the agents that
interact. The main cases are the following.
• Both agents are centrals: One of them is randomly chosen

to become peripheral and transfer all its energy to the
central (except a small amount Emin). Also, a connection
is established between them.

• Both agents are peripherals: If a connection exists be-
tween them, it is removed.

• One agent is peripheral and the other one is central: If
there is no connection between them, it is established.

Half Transfer Protocol: This protocol assumes that the
agents can store in their memory their own initial energy
levels. Note that although this assumption is weak (since they
use local information only) it achieves to both create the star
and converge to an energy distribution in a quite small number
of steps. The main interaction cases are the following.
• Both agents are centrals: The agent with highest energy

will remain central, and the other will become peripheral.
The peripheral, will keep half of its initial energy and
transmit the rest to the central agent. Also, a connection
is established between them.

• Both agents are peripherals: If a connection exists be-
tween them, it is removed.

• One agent is peripheral and the other one is central: If
there is no connection between them, it is established.

IV. ADAPTIVE WIRELESS POWER TRANSFER

Another method that has been recently proposed in [7],
is to select a different charging range for the charger at
any time, adaptively to network devices characteristics. This
method, aims to reduce the emitted EMR due to wireless
power transfer while maintaining a high quality of service.
This method can be applied in mobile ad hoc networks, where
the mobile devices (called agents) move around the network



(randomly) and the static charger should manage its finite
energy by selecting the appropriate charging range every time.
The decision of the range selection is primarily based on the
energy characteristics of the agents that travel across its range
at the specific time, and on the specific goal it aims to achieve,
i.e. to prolong the network lifetime. However, the general
principle is to keep it as low as possible such that to store
energy for future use (and prolong the network lifetime) and
reduce the emitted radiation while in parallel, the network is
operational with a high QoS.

Prior to this novel charging method, authors in [8] had
studied a variation, where the power of each charger can
be adjusted just once at the beginning of time and it can
be different compared to other chargers. Also, in [9] authors
investigated the low radiation efficient wireless charging prob-
lem as well, but they defined a different charging model that
takes into account hardware constraints for the chargers and
the agents (i.e., the chargers have finite energy supplies and the
agents have battery capacity constraints). Observe that since
the agents are static in both models considered in [8], [9] each
charger adjusts its power only once, at the beginning of the
time horizon. In contrast, in the method that we present here,
the charging power changes constantly over time, adaptively
to the behavior of the mobile agents which is revealed in an
online manner.

A. Model

The network comprises of n mobile agents that move around
in a bounded network area, and a single static charger that
is positioned at the center of the area. The mobile agents
perform a random walk. More specifically, at each round, they
change their positions by randomly selecting a new velocity
and direction. In contrast, the static charger, at each round,
changes its charging power, indicating a different charging
range. Each charging range value defines a circle of radius
equal to charging range, around of the position of the charger.
At each time, all agents that pass through the circle that is
defined based on the current charging range, can get recharged
(if they need to).

Regarding the energy model, agents consume energy for
communication purposes. Following previous work (e.g.,
[10]), the energy consumption follows a Poisson probability
distribution with expected value γi ∈ [γimin, γ

i
max].

In this model, the total available energy is finite, which
necessitates even more its careful management. Regarding
the charging model, each agent receives energy according
to a simplified version of the well-known Friis transmission
equation. In particular, at time t, each agent i receives an
amount of energy equal to:

Eri (t) =
α ·R(t)2 · T in

i (t)

(||pcharger − fi(t)||2 + β)2
, (12)

where α and β are environmental and technological constants,
pcharger is the position of the charger, R(t) is the charging range
at time t, fi(t) is the first position where agent i gets inside

the circle and gets recharged. Finally, T in
i (t) is the time that

agent i spends in range and is estimated as follows:

T in
i (t) =


||fi(t)−`i(t)||2

vi(t)
, if fi(t) 6= `i(t), vi(t) 6= 0

τ, if fi(t) = `i(t), vi(t) = 0

0, otherwise.

where `i(t) is the least position of the agent inside the range
and vi(t) is the selected velocity of agent i at time t.

B. Optimization Problems

In the subsections below we will define two simplified
offline optimization problems with different objective goals.
The hardness of these problems is only indicative of the
hardness of the actual online multi-objective problem.

Maximizing the Number of Charges (MNC): In this
problem, all information about the movement and energy
consumption characteristics of the agents during all rounds
t ∈ [T ] is given as input, where T is a given finite time horizon.
Moreover, the charger has initial energy C and we can choose
its charging range from a set of k distinct values {R1, ..., Rk}
such that 0 ≤ R1 < ... < Rk. All non-fully charged agents
in the specified charging range receive energy according to
equation (12) with α = 1 and β = 0. The goal is to set the
range R(t) of the charger, for every t ∈ [T ], to maximize
the total number of recharges until the charger is left out of
energy.

Maximizing the Network Lifetime (MNL): In this opti-
mization problem the goal is to maximize the network lifetime.
In particular, we are given all movement and energy consump-
tion characteristics of the agents, during a time horizon T .
The charger has initial energy C and its charging range is
selected from a set of k distinct values {R1, ..., Rk} such that
0 ≤ R1 < ... < Rk. All non-fully charged agents in the
specified charging range receive energy according to equation
(12) with α = 1 and β = 0. The goal is to set the range
R(t) of the charger, for every t ∈ [T ], to maximize the total
rounds during which there exists at least one agent with strictly
positive energy.

Theorem 1. The MNC problem and the MNL problem are
NP-hard.

The interested readers may find the proofs of both theorems
in [7] which use reduction from KNAPSACK [11].

C. Adaptive Algorithms

We now present three adaptive algorithms, which differ on
the knowledge they require in order to select the appropriate
charging range during any round t.

Least Distant Agent or Maximum Range (LdMax): At
the beginning of each round t, the LdMax algorithm sets the
range equal to

R(t) := max{Rmin,mini:pi(t)∈CRmax
||pcharger − pi(t)||2}

with some probability q ∈ [0, 1], and R(t) := Rmax otherwise
(with probability 1 − q), where pi(t) is the current position



of agent i, Rmin and Rmax are the minimum and maximum
charging ranges (based on minimum an maximum transmis-
sion power of the charger) and CRmax is the circle of maximum
range. The goal is to capture worst case scenarios, where no
agent get close to charger. This algorithm, requires knowledge
only about the positions of the agents.

Maintain Working Agents (MWA): The MWA algorithm
uses a parameter µ ∈ [n] and, for each round, sets the charging
range appropriately to guarantee that there are at least µ agents
that either have positive energy at the beginning of the round
or get recharged during it, called working agents. To compute
R(t) it first counts the number k1(t) of agents that are in the
circle CRmax and have positive energy at the beginning of the
round. If k1(t) ≥ µ, then R(t) := Rmin. Otherwise, it counts
the number k2(t) of agents with zero energy at the beginning
of the round and either pi(t) ∈ CRmax

or pi(t + 1) ∈ CRmax
.

If k1(t)+ k2(t) < µ, then R(t) := Rmax. Otherwise, it it sets
R(t) := R∗, where R∗ is the smallest range value such that
CR∗ covers at least µ−k1(t) agents. MWA requires knowledge
about the positions of the agents and the energy level of the
agents.

Maximize Charges over Energy Ratio (MCER): Let R
be a set of charging ranges in [Rmin, Rmax]. Let νj(t) be the
number of agents that would get recharged if the charger had
selected a charging range equal to Rj ∈ R during round t,
and let εj(t) be the total given energy in this case. The MCER
algorithm uses a parameter λ ≥ 1 and sets the charging range
as follows:

R(t) := argmax
Rj∈R

νj(t)
λ

εj(t)
.

Note that MCER has to simulate the entire charging process at
each round in order to select the appropriate charging range.

V. MINIMIZING PATH RADIATION

In this section, we wish to briefly highlight the first study
[12] (and the only one so far) for electromagnetic radiation
concept in WPT networks, with respect to vector model. So
far, the use of the vector model has shown significant and
intriguing results. We below provide the problem definition
and the different approaches to address it.

Definition V.1. The Minimum Radiation Path Problem: Given
a set of chargers C and a mobile entity r that wants to move
from point S to point T, find a route P from S to T that
minimizes the radiation exposure of r during its travel with
respect to travel distance.

We assume that the moving entity can travel at least λ
distance from a charger. In a different case, it receives high
level of radiation which does not comply with this model as
it has also been presented in [13].

Hence, two algorithms are presented for this problem. For
the first one (Surf ), the mobile entity interacts with the inside a
communication radius and exchange information regarding the
chargers’ position. The algorithm aims to find the points that
have low radiation levels, and at the same time drive the mobile
entity to the target end point. The second, offline algorithm

(Graph), has a global view of the radiation pattern inside the
area and creates a graph containing low radiation points as
vertices and weighted edges depending on the radiation and
length. Finally, it succeeds in proposing a low radiation route,
by using a shortest path algorithm.

A. Algorithms

Different patterns and intensity of power or radiation can
be formed depending on both the number and the topology
of the chargers. It is evident that there are points close to
the transmitters where power drops due to the destructive
interference, while instead there are points at distance of
transmitters which show high harvested power owing to the
constructive interference. Thus, our algorithm SURF, tries to
catch a “low radiation wave” and drive the mobile agent at his
destination through it.

Surf Algorithm: The algorithm’s main target is to pro-
vide those positions where destructive effects take place and
include them in the mobile agent’s travel. In the case of two
transmitters, these positions have the property that the absolute
difference of their distances to the two transmitters is an odd
multiple of λ/4. That means that they are part of the conic
section of hyperbola. If c is half the distance between two
chargers, n =

⌊
c
λ/2

⌋
is the number of hyperbolas formed

between them. The foci of these hyperbolas are the positions
of the two chargers and their center is in the middle of the line
segment formed by the chargers. The vertices are placed, on
the same line segment, at distance ak from the center equal
to odd multiples of λ/4. That means ak = k · λ/4, where
1 ≤ k ≤ n.

The equation that describes them is as follows:

x2h
a2k
− y2h
b2k

= 1 (13)

xh = (x− xcen) · cos θ + (y − ycen) · sin θ

yh = −(x− xcen) · sin θ + (y − ycen) · cos θ

where θ = atan2((yC2
−yC1

), (xC2
−xC1

)), C1 is the first
charger, C2 is the second charger, cen is the center and θ is the
angle between C1, C2. With xh and yh we apply the rotation
of the hyperbola by angle θ and the center modification. Note
that bk = c2 − ak.

Therefore, we aim to avoid the radiation caused by a couple
of chargers each time. For more than two chargers, these
hyperbolas are few and scattered on the plane as the pattern
begins to have a bigger complexity.

In our algorithm we choose to use only the hyperbolas
closest to the center of each pair of chargers (k = 1), in
order to reduce complexity but also because their radiation is
lower, as the distance from the power sources is higher.

Let x be our current position, which initially is at S. As
long as x is not at the target point T, we iteratively perform
the following. Firstly, we check the number of chargers inside
agent’s communication range at x and add them to a set Cx.



If Cx is empty, we move one step towards T. If there is
only one charger Cj in Cx , we move on the circle with
center the position of Cj and radius equal to a radius threshold
(slightly smaller than the communication range). Then we
check whether the distance of the new point to T is less than
its distance to the center of the circle, and whether T is inside
the circle. If so, we move to T. Lastly, given that the new
point is on a tangent line to the circle that crosses T, and T is
outside the circle, we move out of the circle.

In the case of two or more chargers in Cx , we create
each of the

(
N
2

)
possible pairs of chargers. For every pair,

we calculate the equation of their hyperbola. Then, we find
the projection points of x to the hyperbola and choose the
closest one to x. The distance between x and the chosen
point is calculated (distHypePos). We do the same for T
(distHypeT ). Additionally, we take into consideration the
mean distance of x to the two chargers (distPos ij). The pair
with the smallest sum including these three parameters, that
are multiplied by some weight constants (v, w, u respectively),
is the pair we choose. That means, we select a pair that not
only is near to our position but also traversing its hyperbola
will bring us closer to T than other pairs’ hyperbolas would.
In case both chargers of a pair are over or below the line that
connects x with T and their distance to this line is higher than
z = communication range/2, we ignore them. If no pair is
chosen, we walk one step towards T.

Let p be the selected pair and pold be the previous pair
chosen, providing that there is one. Let also, Hp and Hpold

be their hyperbolas respectively. If we currently are on Hpold

and want to move to Hp, we first check for intersection points
between the two. If there are any, we check if their distance
to the centers of Hpold and Hp is less than d (d is a parameter
depending on the density of the network). If so, we move
on Hpold until we find the closest one to our position. Then
we make a step on Hp. Unless there are intersection points,
we find the closest point, q, to our position on Hp, that is
at distance equal to 1 to Hp’s center (so that we don’t walk
on the pair of chargers). In the case pold is empty, meaning
we are not on a hyperbola, we move to the point q described
above. Lastly, if p equals pold we just make one more step
on Hp towards T. Generally, every time we get onto a new
hyperbola, we have to make enough steps on it, so we get
past the two chargers. Unless that’s true we do not search for
a new pair, given we don’t find new chargers at distance less
than z. In addition, we have to notice that we only move on
the branch of the hyperbola (each one has two branches) that
we chose first.

After any of the described steps, we check whether the
distance of the new point to T is less than 1. If so, we move
straight to T .

Graph Algorithm: This approach aims to create offline a
graph G = (V,E) in the following way. At first we tessellate
the x − y axis plane A into n2 squares. Then, for every
hyperbola Hk of the

⌊
c
λ/2

⌋
(except the ones closest to the

chargers) formed between each pair of chargers, we examine

at which points they intersect with other hyperbolas. The
vertex set V of the graph consists of these intersection points
but also of points where the hyperbolas cross the limits of
the plane. More formally, if Hl is one of the hyperbolas
which intersects with Hk, and Hk(x) = 0, Hl(x) = 0 are
the equations of the two hyperbolas, then the points pint
are the points described above. Given that, the vertex set is
V = {pint = (xint, yint) | ((Hk(xint) = yint) ∩ (Hl(xint) =
yint))∪(xint = startx∪yint = starty∪xint = stopx∪yint =
stopy)}, where startx, starty, stopx and stopy are the limits
of the plane.

For every hyperbola, we connect with edges all the vertices
that belong to it, in order, from end to end, creating this way
the edge set, E. With this method we save memory compared
to other implementations, because the Vertex set contains only
the intersection points between the hyperbolas and not all the
points of the plane.

After the graph is created, the problem can be reduced
to the problem of finding a minimum weight path between
vertices S and T . If S or T are not on a vertex, we use
the closest vertices to them and then move on a straight
line to them. For each edge, we calculate the cumulative
radiation r of the respective hyperbola’s section and its length
d. We use the linear combination of these quantities as edge
weight. We adjust the weights properly in order to satisfy
our constraints about radiation and distance. Then we apply
Dijkstra’s algorithm to find the shortest path.

VI. FUTURE PERSPECTIVES
(PHASE MANAGEMENT OF WIRELESS WAVES)

Vector model enables a wide list of potential approaches
for RF wireless charging research filed. The interest that it
has as a model goes in hand with the inherent difficulty and
complexity that appears when it is applied. Thus, researchers
try to both set configurations and algorithms that make use
of different parameters of the model to further achieve better
performance, that previously was limited by one dimension
approaches. This challenge can be addressed in two different
ways. As you can see, the phase of the charger’s power
formula is affected by the distance parameter d to the receiving
node. Calibrating accordingly either the chargers’ or the nodes’
positions can further improve our objectives. For the second
approach we introduce initial phase, which similarly affects
the phase configuration of the charger. In particular, as it
appears in formula 14 we can move one step further and
include the initial phase parameter since the model describes
electromagnetic waves and follows general laws of physics
science. Therefore, equation 7 can be rewritten as follows:

EφC (C,R)
def
= β·1

d
·e−j 2π

λ d+φC = β·1
d
·
[

cos
(
2π
λ d+ φC

)
− sin

(
2π
λ d+ φC

) ] ,
(14)

where φC corresponds to the initial phase of each charging
device. Now, the non-linear superposition charging effect can
be easily manipulated by configuring different values of φC .
Thus, a more effective radiation management can take place,



and significantly increase power in a set of nodes, while for
some others we can decrease radiation.

The aforementioned approach, concerning initial phase is
currently in an early stage as it is introduced in WPT concept
during the last two years. However, although in [14] the
authors use initial phase in their formulation, it is not mainly
used to solve the fast charging problem. On the other hand,
in [15] we observe an effective but simple use of initial
phase parameter by assigning a configuration alongside with
a scheduling technique that aims to both prolong network
lifetime and minimise charging time.

In general, the idea is that the charging entities can be
coordinated in a such way that benefits specific nodes of
interests. This chargers’ cooperation can be dynamically and
online be implemented so that different tasks can be achieved
in a period of time. That includes either radiation or power
needs, as well as energy balance issues that now seem to be
more realistic to solve. Now, that we are not restricted by
chargers or nodes positions we are closer to address even more
efficiently energy or power balance.

Thus, we seek for more sophisticated solutions by taking
into advantage initial phase parameter in the WPT paradigm.
Such an approach is presented in [16], in which the authors
present mechanisms that provide a near optimal configuration
regarding the initial phase of the chargers. In particular, the
authors consider the vector model for WPT adapted to phase-
shifting, where chargers are initiated at different times. They
present a maximization problem, called PowerShift, for finding
the phase shift configuration that maximizes the total power
fueled in a WPT network at the set of the receivers.

Besides power and charging efficiency that initial phase can
potentially offer, it supports the decoupling of power/radiation
management from previous restrictions. For example, to re-
duce/increase electromagnetic radiation level in a point of
interest either charger should reduce/increase its transmitting
power or change position. Hence, initial phase configuration
feature, further upgrades power management and control, for
a list of WPT applications and problems.

VII. CONCLUSION

We studied the problem of how to efficiently control elec-
tromagnetic radiation in wirelessly powered communication
networks. We provided a diverse set of algorithmic design
approaches to fine-tune the trade-off among the level of radi-
ation in the network area and the efficiency of wireless power
provisioning. Our methods include the dynamic adaptation of
the charging configuration under high mobility, the direct peer
to peer wireless energy transfer, the delicate management of
the phase of wireless waves and the management of wireless
charging overlaps.

A key recommendation we wish to convey is the necessity
to adopt a complementary set of abstract models for wireless
power transfer, with different strengths and weaknesses each.
In particular, we emphasize a recent vectorial model of wire-
less waves, towards a more accurate handling of radiation, and
demonstrate how to best exploit its appealing features.
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