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Abstract—As the field of remote sensing for Earth Observation
is rapidly evolving, there is an increasing demand for developing
suitable methods to store and transmit the massive amounts
of the generated data. At the same time, as multiple sensors
acquire observations with different dimensions, super-resolution
methods come into play to unify the framework for upcoming
statistical inference tasks. In this paper, we employ a tensor-
based structuring of multi-spectral image data and we propose a
low-rank tensor completion scheme for efficient image-content
compression and recovery. To address the problem of low-
resolution imagery, we further provide a robust algorithmic
scheme for super-resolving satellite images, followed by a state-
of-the-art convolutional neural network architecture serving the
classification task of the employed images. Experimental analysis
on real-world observations demonstrates the detrimental effects
of image compression on classification, an issued successfully ad-
dressed by the proposed recovery and super-resolution schemes.

Index Terms—Multi-Spectral Image Classification, Compres-
sion, Tensor Unfoldings, Super Resolution, Alternating Direction
Method of Multipliers

I. INTRODUCTION

Remotely sensed images have been widely used in var-
ious Earth Observation applications, such as environmen-
tal monitoring, resource exploration, and disaster warning.
Specifically, airborne and spaceborne Multispectral (MS) and
Hyperspectral (HS) sensors can observe an extended region of
the electromagnetic spectrum, providing valuable information
that is utilized in order to detect and classify objects on
Earth. Several Machine Learning (ML) algorithms have been
used for land cover classification tasks [1], [2]. Particularly,
Deep Learning (DL) architectures, like Convolutional Neural
Networks (CNNs), train huge multi-layer networks ending up
with impressive classification performance [3], [4].

However, the observed images generally have low-
resolution due to the limitations of spaceborne imaging equip-
ment and communication bandwidth that cannot meet the
requirements of real satellite image analysis. Super-resolution
(SR) techniques can overcome the above limitations, improv-
ing the spatial resolution of the images [5], [6].

In addition, satellite MS images that can be modeled as
high dimensional data structures, known as tensors, introduce
considerable challenges in terms of data storage and data
transfer. Therefore, compression of the acquired MS images

is of paramount importance in order to reduce bandwidth and
increase system lifetime. To achieve higher compression rates,
lossy compression algorithms can be employed, primarily by
mapping input values from a large set to output values in
a smaller set, a process known as quantization. However,
compression affects the subsequent processing of MS imagery,
even at low compression rates, as it is reported in [7], [8].
In order to improve classification accuracy, a tensor recovery
algorithm can be applied. Although numerous algorithms have
been presented for the recovery of the real-valued entries
of a matrix from its quantized measurements [9], [10], no
prior work has been presented for the recovery of a tensor
from multi-level quantized observations, except for the case
of binary measurements where methods based on various
matricizations or tensor decomposition have been presented
[11], [12].

In this paper, we examine the effect of compression and
super-resolution on the classification task of satellite MS
images, using CNNs. Specifically, a DL architecture is used
to learn spatial features, and a Coupled Dictionary Learning
(CDL) approach is proposed to obtain high spatial-resolution
hypercubes from their low resolution acquired versions, using
the Alternating Direction Method of Multipliers (ADMM).
Furthermore, a constraint maximum likelihood estimation is
presented for the recovery of the real-valued MS images from
their quantized and possible corrupted entries. Experimental
results on a recently released MS image dataset demonstrate
that the super-resolution and the recovery of the acquired MS
images are mandatory for an efficient classification, indicating
the efficacy of the proposed method.

II. PROPOSED METHOD

Although classification of pristine high-resolution MS im-
agery is a well-studied problem, quite frequent is the case
when compressed low-resolution MS images arise in practise,
as illustrated in Figure 1.

Since full data transmission introduces considerable chal-
lenges in terms of data storage and data transfer, quantization
plays an important role in the data acquisition pipeline of Re-
mote Sensing (RS) systems. At the same time, super-resolution
aims at tackling a fundamental problem being frequently the



Fig. 1. Proposed pipeline for the classification task of compressed low-
resolution MS images.

case in practice, where a deployed instrument measures image
data in lower resolution than a ML model is trained with.

The naive straightforward approach for the classification
task is to operate directly on the quantized super-resolved
MS images, using a CNN classifier trained with pristine MS
images. However, instead of classifying these images, we
propose to apply a tensor-based recovery algorithm for the
reconstruction of the real-valued images before the subsequent
super-resolution and classification tasks take place. Experi-
mental results on real satellite MS images demonstrate that
direct processing using the quantized measurements, rather
than recovering their real values, ends up with a significantly
higher error, indicating the efficacy of the proposed approach.

A. Multispectral Image Prediction Modelling

The problem at hand can be casted as a classification-
flavoured supervised learning one, tackled by employing
second-order CNNs for efficient spatial feature learning of the
image content. Instead of creating a network from scratch, in
this study we focus our attention on architectures that have
already learned a rich set of features, and behave remarkably
well in practise for a similar task to the problem at hand
(RGB instead of MS image classification). Due to the different
nature of the problem though, fruitful intuition can be gained
by obtaining only their architecture and not their weights as
well. Based on this remark, the architecture of the CNN used
throughout this paper is the one proposed in [13], inspired by
an innovative work in image recognition.

Regarding the chosen residual architecture, we selected the
ResNet-50 model. The network is 50 layers deep, comprising
of about 25.6 million parameters (i.e. weights). In terms of the
training process followed, as long as our intention is to classify
MS images into significantly fewer than 1000 classes (for
which ResNet-50 model is originally trained), we replaced the
classification layers for the new MS image classification task
and trained the network on the available pristine MS dataset.
Assessment of the network’s performance was conducted in
different imagery occurring as test data (e.g. compressed,
super-resolved, etc.).

As far as the optimization process during the training of
the network is concerned, we employed Adagrad with a
learning rate of 0.001. The latter one was selected (instead
of the standard SGD one) due to its adaptive selection of
increasing the learning rate of parameters which have small

or infrequent updates and, conversely, reducing the learning
rate of parameters with high gradients. Since the cross-
entropy can be interpreted as the log-likelihood function of
the training samples, categorical cross-entropy was used as
the loss function, recasting in this way the network’s outputs
as probabilities.

B. Quantized Tensor Recovery

LetM∈ RI1×..×IN be the N -th order tensor that models a
high dimensional signal, like a multispectral image, whereby
the order of the tensor is called the number of its dimensions,
also known as ways or modes. Then, the quantized and
corrupted observations can be modeled as

Yi1...iN = Q(Mi1...iN + εi1...iN ), (1)

where εi1..iN model the uncertainty on each measurement
that follow either the logistic distribution with zero mean and
unit scale, Logistic(0,1), or the standard normal distribution
N (0, 1). The function Q corresponds to a uniform quantizer,
where the set of quantization bin boundaries is known a priori.

In terms of the likelihood of the observations Yi1...iN , the
model in (1) can be written equivalently as

P (Yi1..iN |Mi1..iN ) = Φ(Ui1..iN−Mi1..iN )−Φ(Li1..iN−Mi1..iN ),
(2)

where U ,L contain the upper and lower bin boundaries
of the measurements, and Φ(x) corresponds to an inverse
link function (Φlog(x) = 1

1+e−x for the logistic model and
Φpro(x) =

∫ x

−∞N (s | 0, 1) ds for the probit model).
In order to recover the real values of the low-rank tensor

M from its quantized observations, we unfold the mea-
surement tensor Y along each mode and we obtain the
recovered matrices Z(n), n = 1, ., N applying the following
algorithm. Formally, the mode-n matricization or unfolding
of Y , unfoldn(Y) = Y(n) ∈ RIn×

∏
j 6=n Ij , corresponds to a

matrix with columns being the vectors obtained by fixing all
indices of Y except the n-th index. Then, the recovered tensor
can be estimated as the weighted sum of the folded recovered

matrices, i.e., M ≈
N∑

n=1

an · foldn(Z(n)) with weights an

which depend on the fitting error and satisfy
∑

n an = 1.
The proposed algorithm can be regarded as an extension

of the quantized matrix recovery [10] to the quantized tensor
recovery. In particular, in order to recover the low-rank mode-
n matricization M(n) from its quantized measurements, one
seeks to solve the constrained optimization problem:

minimize M(n)
−
∑
j,k

logP (Y(n)jk
|M(n)jk

)

subject to ‖M(n)‖∗ ≤ λ.
(3)

with respect to the nuclear norm constraint ‖M(n)‖∗ ≤ λ that
promotes low-rankness on M(n).

Starting with an initialization of the estimated matrix Z(n)

as a random matrix with entries between the corresponding
quantization bin boundaries, the algorithm that solves the
problem in (3) performs two steps at each iteration l. Both
steps are repeated until a maximum number of iterations is



reached or the change in Z(n) between consecutive iterations
is below a given threshold.

The first step that aims at reducing the objective function
FY(n)

(Z(n)) of (3), is given by Ẑl+1
(n) ← Zl

(n) −
c√
l
· ∇FY(n)

,
where c is the step-size (clog = 4 and cpro = 1). The gradient
of the objective function of each measurement is given by

[∇FY(n)
]jk =

Φ
′
(L(n)jk

− Z(n)jk
)− Φ

′
(U(n)jk

− Z(n)jk
)

Φ(U(n)jk
− Z(n)jk

)− Φ(L(n)jk
− Z(n)jk

)
,

(4)
where L(n),U(n) are the mode-n matricizations of L and U ,
and the derivative of Φ(x) can be calculated as Φ

′

log(x) =
1

2+e−x+ex or Φ
′

pro(x) = N (x | 0, 1) for each model. The
second step aims to impose low-rankness on Z(n) to make
the solution satisfy the constraint ‖Z(n)‖∗ ≤ λ. In order to
achieve this, we take the SVD of Ẑl+1

(n) of the previous step,
and we hold some of its singular values, depending on the
parameter λ. Specifically, we keep 97% of the information of
the singular values in our experiments.

C. Super-Resolution via Coupled Dictionary Learning

1) Spatial Super-Resolution: The proposed approach syn-
thesizes high-spatial resolution hypercubes from their low res-
olution acquired versions by capitalizing on the Sparse Repre-
sentations learning framework [14]. According to this frame-
work, image examples extracted from multispectral scenes,
can be represented as sparse linear combinations of elements
from learned over-complete dictionaries. Each low resolution
hyper-pixel sl ∈ RP can thus be expressed as a sparse linear
combination of elements from a dictionary matrix, Dl ∈
RP×N , composed of hyper-pixel atoms from low resolution
training data-cubes, according to sl = Dlw, where w ∈ RN .
Recovery of the sparse coding vector w is accomplished by
solving the l1-minimization problem

min
w
||w||1 subject to ||sl −Dlw||22 < ε, (5)

where the constraint of the `1-norm, leads to robust solutions
and efficient optimization.

To obtain the high-resolution signal, the optimal sparse code
w? from (5), is directly mapped onto the high resolution dic-
tionary Dh ∈ RM×N , to synthesize the high resolution image
region, according to sh = Dhw

?. The concatenation of all the
recovered high-spectral resolution hyper-pixels synthesizes the
high-spatial resolution three-dimensional hypercube, as shown
in Fig. 2.

2) ADMM for Coupled Dictionary Learning: CDL refers to
the problem of identifying two dictionary matrices standing for
two different signal representations, for instance high-spectral
and low-spectral resolution hypercubes [6], [15]. In this paper
we propose an interesting perspective towards this challenging
problem. The proposed CDL algorithm relies on generating
coupled dictionaries which jointly encode two coupled feature
spaces, namely, the observation low-resolution Sl ∈ RP×K ,
and the latent high-resolution Sh ∈ RM×K . Formally, the ideal
pair of coupled dictionaries Dl and Dh can be estimated by

Fig. 2. Proposed-Method-Super-Resolution.

solving the following un-constrainted decomposition problem,
using the ADMM [16], as:

argmin
Dh,Wh,D`,W`

||Sh −DhWh||2F + ||S` −D`W`||2F (6)

+ λ`||Q||1 + λh||P||1
subject to P−Wh = 0,Q−W` = 0,Wh −W` = 0,

||Dh(:, i)||22 ≤ 1, ||D`(:, i)||22 ≤ 1

Additionally, we impose the constraint that the two sparse
representations W` and Wh, should be the same, directly
into the optimization. The ADMM scheme relies on the
minimization of the augmented Lagrangian function:

L(Dh,D`,Wh,W`,P,Q, Y1, Y2, Y3) =
1

2
||DhWh − Sh||2F +

1

2
||D`W` − S`||2F + λh||P||1 + λ`||Q||1+ < Y1,P−Wh >

+ < Y2,Q−W` > + < Y3,Wh −W` > +
c1
2
||P−Wh||2F +

c2
2
||Q−W`||2F +

c3
2
||Wh −W`||2F (7)

where Y1, Y2, and Y3 stand for the Lagrange multiplier
matrices, while c1 > 0, c2 > 0, and c3 > 0 denote the step
size parameters. Following the general algorithmic strategy of
the ADMM scheme, we seek for the stationary point solving
iteratively for each one of the variables while keeping the
others fixed. The overall algorithm for learning the coupled
dictionaries can be found in [6].

III. EXPERIMENTAL DATA AND RESULTS

In order to evaluate the proposed scheme, we report on the
EUROSAT MS image dataset [17], [18], comprising Sentinel
2A MS image patches measuring 64 × 64 pixels. Each one
of them corresponds to spatial resolution of 10 meters/pixel,
across 13 different spectral bands (in the 443nm-2190nm
wavelength range), ending up with several thousands of sample
satellite images for each one of the 10 different classes
gathered in total.

Aiming to define two non-overlapping training-test sets for
our study, while at the same time avoiding class imbalance
problems, we employed 20000 MS sample images from the
EUROSAT dataset (assuming that each class consists of 2000



samples). We split each class into 90%-5% training/test sets,
keeping at the same time another 5% of each class for
validation purposes during the training process of the network.
In an attempt to observe how the prediction accuracy changes
by increasing the number of epochs the network is trained for,
training was performed using a constant number of up to 100
epochs.

To quantify the performance of the proposed system from
a ML perspective, we report the obtained Classification Accu-
racy metric. However, in order to further examine the effect
of the quantization on the classification task, we quantized
the test MS image samples (i.e. 100 of each class, 1000
in total) of our dataset to various numbers of bits (lower
than the nominal ones of the original MS images, which
employ 12 bits per pixel). Attempting to evaluate the effects of
super-resolution in the classification process, we further down-
sampled the quantized test MS images by a factor of 2 across
each spatial dimension, and super-resolved them right away
via the proposed method (SR-CDL) as well as the Bicubic
Interpolation (SR-BI) one. Then, we compared the classifica-
tion performance given the pristine, the quantized & super-
resolved and the recovered & super-resolved images-obtained
via the proposed super-resolution and recovery algorithms. The
reconstruction quality is evaluated by computing the Peak-
Signal-to-Noise-Ratio (PSNR) between the pristine and the
estimated MS images.

A. Effect of Super-Resolution on Low-Resolution MS Imagery

In a first set of experiments, we aim at quantifying the effect
of super-resolving low-resolution MS images. To do so, we
employ the proposed SR-CDL method as well as the baseline
SR-BI one, in order to up-sample previously down-sampled
pristine MS images.
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Fig. 3. Mean PSNR w.r.t. different class.

Figure 3 depicts the obtained mean PSNR value for each
class, by super-resolving 100 test samples intended to be used
for testing purposes of the trained CNN. For every class of the
employed dataset, the proposed SR-CDL method outperforms
the conventional SR-BI by a margin of approximately 1 dB,
indicating the efficacy of the followed approach. Based on
this argument, in the rest of this study, super-resolution is
performed via our method in order to assess its contribution
in the context of the classification task described in Fig. 1.

B. Effect of Training Set Size & Super-Resolution on Classi-
fication

In this set of experiments, our objective is to assess the
performance of the employed CNN relative to the size of
the training set, for each of the employed methods for super-
resolution. A random selection of up to 200 training exam-
ples per class was initially considered, a number which was
augmented by 200 at each step until containing all available
training examples of each class (i.e. 2000 per class). The
number of test examples was 100 per class (i.e. 1000 in total),
as mentioned before.
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Fig. 4. Classification accuracy w.r.t. the number of training examples.

Figure 4 illustrates the performance of the CNN as a
function of the number of the training examples. The results
in Fig. 4 demonstrate that increasing the number of training
examples has a positive effect on the generalization capacity
of the CNN, both when tested on pristine MS images or on
super-resolved ones. It should be noted that the CNN classifier
achieves better performance in all cases when applied on
super-resolved MS images via the proposed SR-CDL method
as compared to the conventional SR-BI ones.

C. Effect of Quantization & Super-Resolution on Classifica-
tion

In a third set of experiments, we investigate the destructive
effects of the quantization process on the classification poten-
tial of a DL system, and whether these effects can be alleviated
via super-resolution. For that purpose, the trained CNN model
is evaluated to a test set that has been previously quantized
to a specific number of bits and super-resolved right away
via the proposed SR-CDL method, in order to obtain intuition
about the system response when faced with corrupted image
samples.

Figure 5 shows the performance with respect to the number
of training examples for different quantization bit values im-
posed on the test set image samples, in the case of adopting the
proposed SR-CDL method for super-resolving the quantized
measurements. The results clearly demonstrate that, whatever
the quantization level, the classification performance severely
deteriorates even if the system is trained with the maximum
permitted number of training examples.

D. Effect of Recovery & Super-Resolution on Classification

The objective of this experiment is to further investigate
the enhancing effect that our proposed recovery and super-
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Fig. 5. Classification accuracy w.r.t. the number of training examples,
for several quantization levels, followed by the SR-CDL method for super-
resolution.

resolution processes have in the classification performance
of the system. Towards that goal, the trained CNN model is
evaluated using a recovered by our approach test set (which
was previously quantized to a specific number of bits), which
is super-resolved via the proposed SR-CDL method.
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Fig. 6. Classification accuracy w.r.t. the number of training examples, for
various levels of quantized images subsequently recovered and super-resolved
using the proposed methods.

Figure 6 depicts the system performance as a function of
the number of training examples, for test images quantized
to 2, 4, 6, 8, and 10 bits, subsequently recovered and super-
resolved using our proposed methods. The results show that
our approach clearly ameliorates the classification accuracy of
the system, even when it faces recovered and super-resolved
MS images that were previously quantized to significantly
fewer bits than the nominal ones.

IV. CONCLUSION

In this work, we proposed a DL architecture for the problem
of classifying MS image data, based on residual networks for
learning efficient spatial feature representations. Furthermore,
we designed, tested and evaluated with real-world data two
novel techniques to address the real life scenarios of dealing
with quantized and low-resolution MS imagery. Based on
our experimental findings on a recently released MS image
dataset, we demonstrated that improved classification accuracy
is feasible, even when data observations are quantized to
one-third of their nominal bits-per-pixel, using state-of-the-art
CNNs. Clearly, adopting a tensor recovery algorithm followed
by a super-resolution one proved to be a good strategy for
efficient classification of previously quantized, as well as low-
resolution MS data, demonstrating the efficacy of the proposed
approach.
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