

ACTIVATED PLATELETS AND PLATELET-DERIVED MICROPARTICLES AS POTENT STIMULATORS OF NEUTROPHIL EXTRACELLULAR TRAPs FORMATION

Iraklis C. Moschonas, Styliani Papadaki, Sofia Sidiropoulou, Alexandros D. Tselepis

Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece

Brinkmann V et al. Science 2004; 303: 1532-5 and Nahrendorf N et al. Science 2015; 349: 237-9

Slightly modified from Moschonas IC et al. Atherosclerosis 2019; submitted

Moschonas IC et al. Atherosclerosis 2019; submitted

Materials and methods I

• Isolation of neutrophils with double-ficoll gradient, followed by resuspension with RPMI 1640 medium, supplemented with 2% HI human serum

- Preparation of platelet-rich plasma (PRP; 250,000 platelets/ μ L)
- Addition of neutrophils (200,000) to 24-well plates, in which poly-L-lysine coverslips were pre-placed
- \bullet Pre-activation of PRP with 20 μM ADP in an aggregometer for 5 min under stirring conditions (1,200 RPM)
- Addition of PRP to neutrophils at a physiological platelet/neutrophil number ratio, incubation at 37°C and 5% CO_2
- Alternatively, addition of PRP to neutrophils at a physiological platelet/neutrophil number ratio, then activation of PRP with 50 μ M ADP *in situ*, incubation at 37°C and 5% CO₂

Materials and methods II

• Preparation of washed platelets $(250,000/\mu L)$

 \bullet Stimulation with 0.2 U/mL thrombin for 30 min, under stirring conditions (500-600 RPM)

• Centrifugation at $1,000 \times g$ for 15 min at RT

• Overlay of PMPs-rich supernatant on 20% sucrose, followed by centrifugation at $2,000 \times g$ for 10 min at RT

- Ultracentrifugation at 100,000 × g for 2 h at 4°C
- Resuspension with 10 mM PBS
- Quantitative determination of the PMPs protein content using the BCA assay
- Qualitative determination using annexin V-FITC, anti-CD62P-PE and anti-CD61-PerCP

• Addition of 1-60 $\mu g/mL$ PMPs to neutrophils (200,000) attached to poly-L-lysine coverslips, incubation for 3.5 h at 37°C and CO_2

Materials and methods III

• Fixation of neutrophils using 4% paraformaldehyde, permeabilization with 0.5% Triton X-100

• Immunofluorescence protocol, using anti-myeloperoxidase (MPO) antibody and DAPI for DNA staining

• Visualization of neutrophils and NETs using confocal microscopy (magnification 63×), calculation of percentage of NETosis in 5 representative optical fields

Results I: platelets pre-activated with ADP induce NETosis

Results II: platelets activated with ADP in situ induce NETosis

Results III: representative confocal microscopy images of NETosis induced by pre-activated platelets or platelets activated in situ, with ADP

Results III: representative confocal microscopy images of NETosis induced by pre-activated platelets or platelets activated in situ, with ADP

Results IV: PMPs induce NETosis in a concentration-dependent manner

Results V: representative confocal microscopy images of NETosis induced by PMPs, at the threshold concentration of 10 µg/mL

Conclusions

• ADP-stimulated platelets, either pre-activated, or activated *in situ*, induce the formation of NETs.

• PMPs, derived from thrombin-activated platelets, induce the formation of NETs in a concentration-dependent manner.

• Considering the implication of NETs in a vast number of pathophysiological conditions, including atherothrombosis, the aforementioned data provide evidence that platelets contribute to these diseases not only directly, but also indirectly, via the formation of NETs

Thank you very much for your attention!

State of the

ACKNOWLEDGMENTS

•We thank the Atherothrombosis Research Centre of the University of Ioannina for providing access to laboratory facilities.

•The present research has been co-financed by the Operational Program "Human Resources Development, Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds.

Ευρωπαϊκή Ένωση European Social Fund

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

