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Computational Analysis of Graphene-Based Periodic Structures
via a Three-Dimensional Field-Flux Eigenmode Finite

Element Formulation
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Abstract—We present a three-dimensional finite element (FEM) field-flux eigenmode formulation,
able to provide accurate modeling of the propagation characteristics of periodic structures featuring
graphene. The proposed formulation leads to a linear eigenmode problem, where the effective refractive
index is a unknown eigenvalue; the electric field intensity and magnetic flux density are the state
variables; and graphene’s contribution is efficiently incorporated via a finite conductivity boundary
condition. The FEM formulation is spurious-mode free and capable of providing accurate dispersion
diagrams and field distributions for arbitrary propagation directions, as opposed to other analytical
or numerical approaches, while also efficiently dealing with graphene’s dispersive nature. The novelty
of the presented approximation is substantiated by computational results for structures incorporating
graphene of random periodicity, both within passbands and bandgap frequencies.

1. INTRODUCTION

In the past decade, graphene, i.e., a two-dimensional carbon allotrope, has attracted significant interest
due to its infinitesimally small thickness and unique characteristics, such as the ability to support
highly confined surface plasmon polariton (SPP) propagation at the far infrared regime [1, 2]. In
particular, there has been significant interest for applications utilizing the plasmonic properties of
graphene, with the most prevalent examples being THz waveguides and antennas. For instance, there
are several applications of graphene in THz detector technology, based on antenna-coupled graphene
field-effect transistors [3], photodetectors [4], plasma-wave based detectors [5], plasmonic nanoparticle
photodetectors [6], etc. On the other hand, several techniques focus on the experimental characterization
of plasmonic effects in graphene, including acoustic or interband plasmons, especially on metal foils [7–
12], where properties such as dispersion and damping can be efficiently measured via electron energy
loss spectroscopy (EELS) techniques or transmission electron microscopy (TEM) [13].

In many cases, structures in THz applications of this kind very often feature some kind of periodicity
on graphene, either in the form of periodically modulated conductivity or in the form of discontinuities
in the graphene surface. Configurations like these have shown great potential in tailoring propagation
characteristics and improving the excitation techniques of the graphene plasmonic modes [14–22]. Most
of these cases that appear in the literature are analyzed using complex analytical techniques that deal
with a periodic modulation of the geometric configuration or material properties of graphene. However,
the analysis of periodic sharp discontinuities or more complex periodic profiles and arrangements
requires a rigorous periodic analysis, which will be able to capture both geometric periodicity and all
electromagnetic wave propagation characteristics, including proper calculation of propagation constant,
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loss modeling, the presence of bandgaps, the modeling of evanescent modes within them, and the
inherent dispersive characteristics of graphene.

In this paper, we propose a general framework and a formulation that deals with all these issues
successfully and provides a reliable numerical tool for an accurate approximation of propagation
characteristics for graphene-based periodic structures, in terms of their complex propagation constant
(eigenvalues) and profiles of the supported eigenmodes (eigenvectors). This is under the assumption of
arbitrary wave propagation direction, for graphene structures of arbitrarily shaped periodic inclusions.
The analysis is also capable of taking into account graphene’s dispersion in a straightforward manner,
since the frequency of operation is introduced as an independent variable, and the eigenvalue analysis
directly provides the complex propagation constants of various modes, or equivalently, their complex
effective refractive indices. The resulting eigenvalue problem is well-conditioned, and its numerical
discretization is performed by proper FEM bases, being therefore free of spurious modes.

2. FIELD-FLUX EIGENMODE FORMULATION FOR PERIODIC GRAPHENE
STRUCTURES

2.1. The Modified Maxwellian System of Equations

The finite element field-flux formulation is based on the system of Maxwell’s equations solved for both
the electric field E and magnetic flux density B, and follows a framework similar to [23]. For the purposes
of scaling and alleviation of ill-conditioning in numerical discretization of the Maxwell’s system, we scale
the magnetic flux density with the vacuum wave velocity as follows:

B̃ = −jc0B. (1)

Introducing the scaled magnetic flux into Maxwell’s equations, we get the scaled system of equations

∇× E = k0B̃, (2)

∇× μ̂−1
r B̃ = k0ε̂rE, (3)

where k0 is the vacuum wavenumber, and ε̂r and μ̂r are the relative dielectric permittivity and magnetic
permeability tensors.

The symmetry of structures featuring periodic variance along the propagation axis allows us to
reduce the computational space to a three-dimensional periodic cell by imposing the Bloch-Floquet
periodic boundary condition on the corresponding ports. In addition, we note that graphene’s
conductivity is a function of frequency, and that the lossy nature of graphene renders the propagation
length a very important part of the dispersion analysis. Therefore, for such a problem it is desirable to
calculate the wavenumber as a function of a given frequency rather than vice versa. To this end, we
assume an arbitrary propagation direction in the form of a known unit vector k̂, and the corresponding
wave vector can be expressed as k = k0neff k̂, where neff is the unknown effective refractive index of the
wave. Restricting the computational space in a unitary cell of the periodic structure allows us to cast
the electric and magnetic field in Bloch form

E = ee−jneffk0k̂·̄r, (4)

B̃ = b̃e−jneffk0k̂·̄r, (5)

where e and b̃ are the vectorial periodic envelopes of the electric and magnetic fields, which constitute
the state variables of the problem. Restating Eqs. (2) and (3) with respect to the Bloch transformation
leads to the modified Maxwellian system

∇× e − jneffk0

(
k̂ × e

)
= k0b̃, (6)

∇× μ̂−1
r b̃− jneffk0

(
k̂ × μ̂−1

r b̃
)

= k0ε̂re. (7)

This system defines a generalized linear eigenvalue problem in terms of neff , for which the known
operating frequency f is inserted as an independent parameter via k0 = 2πf/c0, along with the proper
boundary conditions for the periodic envelopes e and b̃.
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2.2. Weak Formulation of the Modified Maxwellian System

In order to formulate the eigenvalue problem of the modified Maxwellian system in its variational form,
we must first identify the admissible functional spaces of the electric field and magnetic flux density.
It is well established that the electric field belongs to the Sobolev space H(curl,Ω), i.e., the space
of measurable functions, with respect to the L2 norm, with a measureable curl, where Ω denotes the
computational space [24]. On the other hand, the admissible function space of the magnetic flux density
is determined by examination of the de Rham complex [25]. We only need to observe that the magnetic
flux density lies in the range of the curl operator applied to the electric field, and as a result the
corresponding functional space of B is the Sobolev space H(div,Ω), i.e., the space of measurable, with
respect to the L2 norm, functions with a measureable norm.

The weak formulation of the problem is obtained by applying Galerkin’s technique on the modified
Maxwellian system. For this purpose, Equation (6) is weighed with testing functions for the magnetic
flux density while Eq. (7) is weighed with the testing functions for the electric field∫∫∫

Ω

b′ · ∇ × edv − k0

∫∫∫
Ω

b′ · b̃dv − jneffk0

∫∫∫
Ω

b′ · k̂ × edv = 0, (8)

∫∫∫
Ω

(∇× e′) · μ̂−1
r b̃dv+⊂⊃

∫∫
dΩ

e′ · n̂ × μ̂−1
r b̃ds − k0

∫∫∫
Ω

e′ · ε̂redv − jneffk0

∫∫∫
Ω

e′ · k̂× μ̂−1
r b̃dv=0, (9)

where n̂ is the normal unit vector pointing outward from the exterior boundary surface. The formulation
of the problem is completed by imposing the appropriate boundary conditions. In particular, imposition
of impedance boundaries and absorbing boundary conditions (ABCs) are inserted in a straightforward
manner via the surface integral, while the enforcement of periodicity is accomplished simply by imposing
continuity conditions for the vectorial envelopes of e and b̃ at the periodic boundaries.

2.3. Implementation of Graphene

Consistent treatment of graphene is an essential feature of the proposed formulation, due to its extremely
small thickness. Since the thickness of a graphene monolayer is clearly in the sub-nanometer range, it is
not recommended to model it as a bulk material with finite thickness. Such a model would necessitate
the use of extremely fine meshing within the graphene’s width and also lead to extremely flat or “sliver”
finite elements, which in turn can be detrimental to FEM matrix scaling and conditioning.

Instead, we model graphene as an ideal two-dimensional surface of infinitesimal thickness. This
allows interpreting its contribution to the overall electromagnetic system as a surface current density,
or a sheet of finite conductivity that can be readily inserted in the formulation. First, we consider the
graphene sheet as a two-sided exterior boundary S, which lies outside the computational domain. This
is done by considering an exterior boundary surface S+ ∪ S− which closely surrounds graphene from
both sides (Figure 1). The upper part S+ of the surface is at an infinitesimal distance above graphene,
whereas the lower part S− is likewise below it. We can now apply the surface current interface condition

Figure 1. Two-dimensional cut of a graphene sheet of infinitesimal thickness, surrounded by a shrinking
closed surface. The closed surface is considered an outer boundary of the computational domain, i.e.,
all inner volume, including graphene, is excluded from the computational domain.
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on the sheet’s surface
n̂g × μ̂−1

r B+
∣∣
S
− n̂g × μ̂−1

r B−∣∣
S

= Js = σgEt, (10)

where n̂g is the unit vector normal to graphene’s surface; σg is the graphene’s conductivity (in S, since
surface current is in A/m); and Et is the tangential electric field component along graphene. Using
transformations in Eqs. (4) and (5), we get the modified condition

n̂g × μ̂−1
r b̃+

∣∣∣
S
− n̂g × μ̂−1

r b̃−
∣∣∣
S

= −jη0σget, (11)

where η0 is the free space intrinsic impedance. We now consider the part of the surface integral term
in Eq. (9) related to the graphene sheet, which can be written in two parts, considering the upper and
lower parts of the surrounding surface S+ ∪ S−. Since the outward pointing unit vectors normal to S+

and S− are −n̂g and n̂g, respectively, the graphene-related surface integral term of Eq. (9) takes the
form

Ig =
∫∫
S+

e′ · n̂× μ̂−1
r b̃+ds +

∫∫
S−

e′ · n̂× μ̂−1
r b̃−ds = −

∫∫
S

e′ ·
(
n̂g × μ̂−1

r b̃+ − n̂g × μ̂−1
r b̃−

)
ds, (12)

where S+ and S− are assumed to shrink to the graphene surface S, while retaining the discontinuity of
tangential magnetic fields. Finally, considering the interface condition in Eq. (11), the surface integral
term is written in the simple form

Ig = jη0

∫∫
S

e′t·σgetds, (13)

which resembles a standard form of an FEM mass matrix, this time in surface form. It has to be
noted that discretization of this term is straightforward and is done on the facets of the interface,
without the need to consider graphene as a bulk material. Therefore, we avoid the associated volumetric
representation and discretization, which would be meaningless for a single atomic layer material, but
also adverse from the point of view of computational efficiency and consistency.

2.4. The Final Eigenvalue Problem

The last step in configuring the eigenvalue problem is to approximate the weak formulation of Eqs. (8)
and (9) with a finite dimensional problem by discretizing the electric field and magnetic flux density
using finite element spaces. For this purpose, the electric field is expanded in the finite dimensional
subset of the H(curl,Ω) space, consisting of tangentially continuous edge-type basis functions, while the
magnetic flux density is expanded in the finite dimensional subset of H(div,Ω), consisting of normally
continuous facet-type basis functions [26]. The final system represents a mixed finite element eigenvalue
problem and has the matrix form[ −k0TEE + jηTEE

s QEB

QBE −k0TBB

] [
E
B

]
= jneff

[
0 k0PEB

k0PBE 0

] [
E
B

]
. (14)

The submatrices of Eq. (14) are the assembled matrices corresponding to each one of the terms appearing
in Eqs. (8) and (9), with the surface integral term TEE

s calculated as a discretization of Eq. (13).
The pencil matrix of Eq. (14) defines a linear eigenvalue problem that does not require the

application of any computationally costly linearization technique and is spurious-mode free, owing to
the use of appropriate element bases and the avoidance of the curl-curl operators. A further advantage
is that both computed fields are of the same order of approximation, which is also important to avoid
any differentiation in applying post-processing homogenization techniques. Moreover, the choice of neff

as the eigenvalue improves the overall conditioning of the problem, by properly balancing the norms of
the two matrices comprising the pencil matrix and also simplifies the process by reducing the spectral
range. It is noted that the proposed formulation was implemented both as an in-house code and in the
Weak Form of COMSOL Multiphysics R©, resulting in identical results when being solved for identical
meshes and degrees of freedom. Therefore, the proposed technique can also be easily accommodated in a
commercial EM analysis software that facilitates the solution of user defined boundary value problems.
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Finally, it should be emphasized that if the eigenvalue problem were to be treated the other way
around, with the classical β-ω procedure usually followed in the analysis of photonic crystals, the
propagation constant β should be actually the variable to be a priori specified. It would, thus, span the
entire irreducible Brillouin zone 0 ≤ β ≤ π/d, where d is the spatial period, and the frequency ω would
be the unknown eigenvalue. The grave disadvantage of this approach is that modeling of losses cannot
be directly incorporated, with the additional inherent inability to consider graphene’s conductivity as
a function of frequency. In particular, the frequency term at Kubo’s formula lies at the denominator
of the fraction [27], which renders an FEM formulation of this kind practically inapplicable. Moreover,
such an analysis provides no information inside the bandgap. The proposed FEM formulation alleviates
all these issues, and in addition, the propagation length LSPP = 2π/a, which is an essential parameter
to quantify losses of surface plasmons waveguiding structures, is directly evaluated through the readily
available imaginary part of the extracted eigenvalues, i.e., a = Re{γ} = Re{jk0neff} = −jk0Im{neff}.
Therefore, the overall analysis provides a proper computational tool for the extraction of the dispersion
behavior of periodic structures that include graphene.

3. COMPUTATIONAL RESULTS

3.1. Free-Standing Graphene Micro-Ribbon

To validate the proposed formulation, we have examined the well-documented case of a free-standing
graphene ribbon of 5µm width. Graphene’s conductivity was evaluated via the Kubo formula [1] at
room temperature T = 300 K with the energy independent scattering rate Γ equal to 0.1 meV and a
chemical potential of 0.2 eV. The dispersion diagram of the first three modes supported by the graphene
ribbon is depicted in Figure 2(a), whereas the corresponding propagation length LSPP = 2π/a is shown
in Figure 2(b). Furthermore, the analytical results for the dispersion equation and the propagation
length of the infinite graphene layer are also drawn in these figures, with neff =

√
1 − 4/(n0σg)2 as

proven in [28]. Examination of the dispersion of these modes reveals the highly confined nature of
the graphene SPPs, as the higher refractive index is related to the confinement of moving charges.
The distribution of the axial and transverse components (magnitude) of the electric field on a plane
transverse to the propagation axis for the all modes are displayed in Figure 3. In all three cases, the
concentration of the electric field on graphene’s surface is evident. Finally, the dispersion diagram and
the distribution of the electric field are in full agreement with the existing literature [1, 14, 27] and thus
validate the accuracy of the proposed formulation.

3.2. Periodic Arrangement of Graphene Micro-Strips

The capabilities of the 3D field-flux eigenmode formulation were also tested against the more complex
problem of a periodic arrangement of free-standing graphene micro-strips of 5µm width, which can also
be viewed as a graphene ribbon with periodic separation gaps along the axis of propagation. As in the
case of the free-standing graphene micro-ribbon, graphene’s conductivity was evaluated via the Kubo
formula, in order to use the results of the first validation test as a reference. The computational domain
of the problem is the unit cell of the structure in Figure 4, whereas the geometrical parameters of the
structure were selected as g = 0.5µm and R = 10µm.

Based on these aspects, the search for the eigenvalues of this problem is performed for propagation
constants inside the irreducible Brillouin zone, and the extracted dispersion diagram and the
corresponding propagation lengths with respect to frequency are shown in Figure 5. A minor issue
that needs to be addressed is the presence of complex “box” modes, i.e., plane waves reflected from
the exterior boundary conditions and perturbed by the presence of graphene, which are nevertheless
strongly evanescent and can be easily removed. In addition, the electric field distributions of the modes
under examination for the transverse and normal plane of the structure are illustrated in Figure 6
(first mode) and in Figure 7 (second mode). The numbering of the modes in the periodic structure
is equivalent to the numbering of the graphene ribbon modes, linking them by the distribution of the
electric field at the plane transverse to propagation direction.

Examination of the dispersion diagram reveals that the modulation of the graphene micro-ribbon
introduces spectral areas of fast-wave propagation. This becomes more prominent for the higher end
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(a)

(b)

Figure 2. (a) Dispersion curves in terms of the effective refractive index of the first three modes of
a 5µm graphene ribbon compared to the infinite layer. (b) Normalized propagation length of the first
three modes shown together with the infinite layer case.

of the spectrum under consideration and indicates that at those frequencies a configuration of this
form could operate as a diffraction grating or a leaky-wave antenna [29]. The presence of two bandgap
regions is also visible in the frequency ranges of 3 THz to 3.4 THz and 4 THz to 4.4 THz. These bandgaps
owe their existence to the periodic configuration of the structure and can also be distinguished by the
rapid decline of the propagation length. The introduction of gaps further differentiates the two modes
under consideration. In the case of the graphene ribbon, these two modes converge to the dispersion
curve of the infinite graphene layer. However, this behaviour is not evident in the case of the periodic
arrangement of graphene micro-strips as the corresponding dispersion curves in the irreducible Brillouin
zone are almost parallel to each other. It also appears that the second mode of the periodic graphene
structure retains the same cut-off frequency as its graphene ribbon counterpart, and as a result, the
single mode region remains unchanged.

The inspection of the field distributions of the two modes inside the passbands affirms the
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Figure 3. Transverse electric field distribution of a 5 µm wide graphene micro-ribbon SPP: (a) axial
and (b) transverse components of the first mode (1 THz), (c) axial and (d) transverse components of
the second mode (4.5 THz) and (e) axial and (f) transverse components of the third mode (9 THz).

x

y

Figure 4. Periodic arrangement of graphene micro-strips separated by a gap of width, g. The spatial
period of the structure is R and a top-view of the 3D unit cell under examination appears enclosed by
the red frame.
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(a) (b)

Figure 5. (a) Dispersion diagram and (b) propagation length of a periodic arrangement of graphene
micro-strips with respect to frequency.
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Figure 6. Electric field distributions of the first mode of the periodic arrangement of graphene micro-
strips at 2.5 THz: (a) axial and (b) transverse components on the plane transverse to propagation, (c)
normal and (d) tangential component directly above the graphene surface.
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Figure 7. Electric field distributions of the second mode of the periodic arrangement of graphene micro-
strips at 3.5 THz: (a) axial and (b) transverse components on the plane transverse to propagation, (c)
normal and (d) tangential component directly above the graphene surface.

confinement of the electric field to the graphene surface. Both modes of the periodic structure retain
the tangential profile of the corresponding graphene ribbon modes, while the tangential components of
the electric field appear less affected from the introduction of the gaps, than the normal ones.

4. CONCLUSIONS

We have presented a mixed finite element eigenmode solver for periodic structures featuring graphene,
based on a modified Maxwellian formulation that solves the electromagnetic problem in terms of
both the electric field intensity and magnetic flux density simultaneously. Graphene’s contribution
is properly and efficiently modeled as a finite conductivity boundary, i.e., an infinitesimally thin sheet,
and the formulation is capable of acquiring complex propagation constants and field distributions
of complex configurations featuring graphene, both within passbands and bandgaps. The proposed
formulation is validated by results simulating free standing graphene strips and periodically arranged
graphene microstrips and can serve as an efficient tool to study wave propagation in periodic graphene
configurations, with a straightforward generalization to anisotropic graphene and also the potential to
deal with nonlinear graphene problems [30].
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7. Politano, A., H. K. Yu, D. Faŕıas, and G. Chiarello, “Multiple acoustic surface plasmons in
graphene/Cu(111) contacts,” Phys. Rev. B, Vol. 97, 035414, 2018.
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