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We consider a general Einstein–scalar–Gauss-Bonnet theory with a coupling function
f(ϕ) between the scalar field and the quadratic gravitational Gauss-Bonnet term. We
show that the existing no-hair theorems are easily evaded, and therefore black holes

may emerge in the context of this theory. Indeed, we demonstrate that, under mild only
assumptions for f(ϕ), asymptotic solutions describing either a regular black-hole horizon
or an asymptotically-flat solution always emerge. We then show, through numerical
integration, that the field equations allow for the smooth connection of these asymptotic

solutions, and thus for the construction of a complete, regular black-hole solution with
non-trivial scalar hair. We present and discuss the physical characteristics of a large
number of such solutions for a plethora of coupling functions f(ϕ). Finally, we investigate
whether pure scalar-Gauss-Bonnet black holes may arise in the context of our theory

when the Ricci scalar may be altogether ignored.
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1. Introduction

The General Theory of Relativity is a beautiful mathematical theory that predicts

a variety of gravitational solutions, with the black holes being the most fascinating

example. In the context of General Relativity, the black-hole solutions have been

uniquely determined and classified according to their properties (mass, charge and

angular-momentum). No-Hair theorems, that forbid the association of a black hole

with any other “charge” or field, were formulated quite early on. The existence of

black-hole solutions associated with a non-trivial scalar field in the region outside

the black-hole horizon has also been intensively studied. The old no-hair theo-

rem1 was formulated in the seventies, and excluded static black holes with a scalar

field. However, this was outdated by the discovery of black holes with Yang-Mills2,

Skyrme fields3 or conformally-coupled scalar fields4. Twenty years later, the novel

no-hair theorem5 was formulated (for more recent analyses, see6–8) but this was also
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shown to be evaded in the context of the Einstein-Dilaton-Gauss-Bonnet theory9

and in shift-symmetric Galileon theories10,11.

In fact, the black-hole solutions9–11 were derived in the context of the so-called

generalised gravitational theories, where additional fields and higher gravitational

terms may be present. These theories comprise a popular test-bed for the for-

mulation of the ultimate theory of gravity beyond Einstein’s General Theory of

Relativity, and are under intense research activity. In this work, we will consider

a wide class of gravitational theories where a scalar field ϕ has a general coupling

function f(ϕ) to the quadratic gravitational Gauss-Bonnet (GB) term. Choosing

the coupling function to be of an exponential or a linear form, one recovers the

two novel black-hole solutions with non-trivial scalar hair9,11, respectively. In12

we demonstrated that, in fact, this class of theories with an arbitrary f(ϕ) always

evades the existing no-hair theorems and allow for the emergence of novel black-hole

solutions, with a regular horizon and an asymptotically-flat limit. Here, we review

these results and discuss the characteristics of these solutions. We also investigate

whether solutions arise in the context of the pure scalar-Gauss-Bonnet theory where

the Ricci scalar may be ignored.

2. The Einstein-Scalar-Gauss-Bonnet theory

We will therefore consider the following generalised gravitational theory

S =
1

16π

∫
d4x

√
−g

[
R− 1

2
∂µϕ∂µϕ+ f(ϕ)R2

GB

]
, (1)

where the GB term is defined as R2
GB = RµνρσR

µνρσ − 4RµνR
µν +R2. By varying

the above action with respect to the metric tensor and scalar field, we obtain the

following gravitational field equations and the equation for the scalar field:

Gµν = Tµν , ∇2ϕ+ ḟ(ϕ)R2
GB = 0 , (2)

respectively, where a dot denotes the derivative with respect to the scalar field. The

energy-momentum tensor has the form

Tµν = −1

4
gµν∂ρϕ∂

ρϕ+
1

2
∂µϕ∂νϕ− 1

2
(gρµgλν + gλµgρν)η

κλαβR̃ργ
αβ∇γ∂κf. (3)

In the above, R̃ργ
αβ = ηργστRσταβ = ϵργστRσταβ/

√
−g. In the context of the above

theory, we will look for regular, static, spherically-symmetric and asymptotically-

flat black-hole solutions described by the line-element

ds2 = −eA(r)dt2 + eB(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (4)

Using the above expression, the Einstein’s equations take the following explicit form

4eB(eB + rB′ − 1) = ϕ′2[r2eB + 16f̈(eB − 1)
]

−8ḟ
[
B′ϕ′(eB − 3)− 2ϕ′′(eB − 1)

]
, (5)

4eB(eB − rA′ − 1) = −ϕ′2r2eB + 8
(
eB − 3

)
ḟA′ϕ′, (6)
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eB
[
rA′2 − 2B′ +A′(2− rB′) + 2rA′′] = −ϕ′2reB

+8ϕ′2f̈A′ + 4ḟ [ϕ′(A′2 + 2A′′) +A′(2ϕ′′ − 3B′ϕ′)], (7)

while the scalar equation reads

2rϕ′′ + (4 + rA′ − rB′)ϕ′ +
4ḟ e−B

r

[
(eB − 3)A′B′ − (eB − 1)(2A′′ +A′2)

]
= 0. (8)

In the above, we have assumed that the scalar field depends only on the radial

coordinate, and thus the prime denotes differentiation with respect to r.

The unknown quantities, that we seek to determine through the solution of the

system of Eqs. (5)-(8), are the scalar field ϕ and the metric functions A and B. Of

these, the metric function B may be easily determined in terms of (ϕ,A) through

Eq. (6). Then, the remaining field equations lead to a system of two independent,

ordinary differential equations of second order for the functions A and ϕ:

A′′ =
P

S
, ϕ′′ =

Q

S
. (9)

The functions P , Q and S are rather complicated expressions of (r, ϕ′, A′, ḟ , f̈) and

may be found in12.

For a regular horizon to form, we demand that eA → 0 in Eq. (4), while ϕ, ϕ′

and ϕ′′ remain finite, as r → rh. Then, the 2nd of Eqs. (9) yields the constraint

ϕ′
h =

rh

4ḟh

−1±

√
1−

96ḟ2
h

r4h

 . (10)

The quantity under the square-root should be positive which results in the additional

bound ḟ2
h < r4h/96. Using the above in the 1st of Eqs. (9), we may uniquely

determine the form of A′ near the horizon. Putting everything together, the near-

horizon solution reads

eA = a1(r − rh) + ... , e−B = b1(r − rh) + ... ,

ϕ = ϕh + ϕ′
h(r − rh) + ϕ′′

h(r − rh)
2 + ... . (11)

On the other hand, at asymptotic infinity, we assume power-law expressions for the

metric functions and scalar field as customary. Substituting these expressions into

the field equations, we obtain

eA = 1− 2M

r
+

MD2

12r3
+ ... , eB = 1 +

2M

r
+

16M2 −D2

4r2
+ ... ,

ϕ = ϕ∞ +
D

r
+

MD

r2
+

32M2D −D3

24r3
+ ... . (12)

The above asymptotic behaviour is characterised by the ADM mass M and scalar

charge D of the black hole. We may therefore conclude that the scalar-tensor theory
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(1) with a general coupling function f(ϕ) is always compatible with either a regular

horizon or an asymptotically-flat limit.

However, no complete black-hole solution may be constructed unless the afore-

mentioned asymptotic solutions are smoothly matched. To investigate whether

this is in principle possible, we turn to the novel no-hair theorem5 and examine

its requirements under which it may forbid the existence of such a solution. This

theorem assumes first that, at asymptotic infinity, the T r
r component of the energy-

momentum tensor is positive and decreasing. Indeed, we find that this has the form

T r
r =

e−Bϕ′

4

[
ϕ′ −

8e−B
(
eB − 3

)
ḟA′

r2

]
≃ ϕ′2

4
∼ O(

1

r4
). (13)

In the near-horizon regime, T r
r should be negative and increasing according to5;

however, employing the asymptotic solution (11), we find that in our case

T r
r = −2e−B

r2
A′ϕ′ḟ +O(r − rh) . (14)

This expression is always positive-definite since, close to the horizon, A′ > 0, and

ḟ ϕ′ < 0 according to Eq. (10) for a regular horizon. Also, we find that T r
r is always

decreasing close to rh and as a result, the novel no-hair theorem is non-applicable

in our theory.

The above result opens the way for the construction of novel black-hole solutions

in the context of the general theory (1). We have therefore numerically solved the

system of equations (9), and determined a large number of black-hole solutions with

scalar hair for a variety of forms of the coupling function f(ϕ): exponential, odd

and even power-law, odd and even inverse-power-law. Once the form of f(ϕ) was

chosen, the input values (ϕh, ϕ
′
h), with ϕ′

h being given by Eq. (10), always led to a

regular black-hole solution with scalar hair. The scalar field and profile of T r
r for

those solutions are depicted in Figs. 1(a,b).

Some of the characteristics of the black-hole solutions we found12 are represented

in Figs. 2(a,b), where we depict the indicative case of f(ϕ) = α/ϕ. The scalar charge

D is a function of the black-hole mass and thus a dependent quantity; this renders
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Fig. 1. The scalar field ϕ (left plot) and the T r
r component (right plot) for different coupling

functions f(ϕ), for a = 0.01 and ϕh = 1.
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Fig. 2. The scalar charge D (left plot), and the ratios Ah/ASch and Sh/SSch (right plot, lower

and upper curve respectively) in terms of the mass M , for f(ϕ) = α/ϕ.

the scalar hair secondary. For a large mass, the scalar charge vanishes and our

black-hole solutions match the Schwarzschild solution. The horizon area is always

smaller than the one of the Schwarzschild solution exhibiting also a lower value

beyond which the black hole ceases to exist — the latter feature is due to the

additional bound emerging from the positivity of the quantity under the square-

root in Eq. (10). Its entropy is larger than that of the Schwarzschild case and thus

thermodynamically more stable.

3. The pure scalar-Gauss-Bonnet theory

We will now investigate whether a regular black-hole solution can arise in the context

of a pure scalar-GB theory, i.e. in the absence of the linear Ricci term. By ignoring

all terms in the field equations related to the Ricci term, these are simplified — but

can we construct again a regular horizon? If we assume as before that, as r → rh,

ϕ′ remains finite while A′ diverges, Eq. (6) now yields: eB ≃ 3 + O(1/A′); but

this does not describe a black hole. We may alternatively demand that eB → ∞
instead, as r → rh; then, Eq. (6) gives: A

′ ≃ r2ϕ′/8ḟ +O(e−B). In this case, A(r)

is the dependent quantity, and Eqs. (5) and (7) form a system of two differential

equations for B and ϕ. In the limit r → rh, we find the results12

B′ = −2

r
eB +O

(
e−B

)
, ϕ′′ = −eB

r
ϕ′ +O

(
e−B

)
. (15)

Upon integration, the first equation leads to the solution e−B = 2 ln (r/rh), which

does resemble a horizon, but the second one reveals that this horizon is not regular

unless ϕ′(rh) = 0, an assumption that trivialises the contribution of the GB term.

Alternative ansatzes for the form of the spacetime around the sought-for black hole

have also failed to lead to a regular horizon in the absence of the Ricci scalar15.

4. Conclusions

In the context of a general Einstein-scalar-GB theory, we have demonstrated that

the emergence of regular black-hole solutions is a generic feature. For an arbitrary
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coupling function f(ϕ), we were always able to construct a regular black-hole hori-

zon as well as an asymptotically-flat solution at infinity, and to explicitly show that

the novel no-hair theorem is then easily evaded. Our numerical analysis has subse-

quently led to a large number of regular black-hole solutions for different choices of

f(ϕ), all characterised by a non-trivial scalar hair (for similar black-hole solutions,

see also13,14). The study of the pure scalar-GB theory, and the failure to obtain

a regular horizon, clearly demonstrates that the presence of the GB term in the

theory is a necessary condition for the emergence of novel black holes but not a

sufficient one as it must be supplemented by the presence of the linear Ricci term.
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