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Abstract: Alcoholic liver disease (ALD) as a consequence of ethanol chronic consumption could lead
to hepatic cirrhosis that is linked to high morbidity and mortality. Disease diagnosis is still very
challenging and usually clear findings are obtained in the later stage of ALD. The profound effect of
ethanol on metabolism can be depicted using metabolomics; thus, the discovery of novel biomarkers
could shed light on the initiation and the progression of the ALD, serving diagnostic purposes.
In the present study, Hydrophilic Interaction Liquid Chromatography tandem Mass Spectrometry
HILIC-MS/MS based metabolomics analyisis of urine and fecal samples of C57BL/6 mice of both sexes
at two sampling time points was performed, monitoring the effect of eight-week ethanol consumption.
The altered hepatic metabolism caused by ethanol consumption induces extensive biochemical
perturbations and changes in gut microbiota population on a great scale. Fecal samples were proven
to be a suitable specimen for studying ALD since it was more vulnerable to the metabolic changes in
comparison to urine samples. The metabolome of male mice was affected on a greater scale than
the female metabolome due to ethanol exposure. Precursor small molecules of essential pathways
of energy production responded to ethanol exposure. A meaningful correlation between the two
studied specimens demonstrated the impact of ethanol in endogenous and symbiome metabolism.
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1. Introduction

Chronic consumption of ethanol is a leading cause of alcohol liver disease (ALD). As this
implication is the far end of intermediate and reversible stages characterized by hepatic steatosis,
which is caused by lipid metabolism dysregulation mechanisms triggered by ethanol, early diagnosis
of detrimental ethanol consumption is of high significance. Unfortunately, the diagnosis of ALD
can be clinically challenging as there is no single test that confirms the presence of the disease and
patients may not always provide clear information concerning their alcohol consumption patterns.
Also, clinical findings may be absent or negligible in early ALD, such as simple steatosis and mild
steatohepatitis, which generally have no obvious clinical symptoms [1].

Typical diagnostic tests would include serum transaminases and aspartate transaminase (AST)
or in unclear cases, liver imaging and biopsy. Thus, the development of noninvasive tests based
on metabolic markers indicative of early stage ALD could augment the power of regular tests,
improving the potential for early detection of ethanol toxic effects and promoting measures toward
disease prevention [2,3].
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Metabolomics can provide insight about the changes in small-molecule intermediary products
(i.e., metabolites) of the organism exposed to drugs or other stimuli and has been proven to be a
powerful tool for biomarker discovery [4,5]. Undoubtedly, alcohol consumption has a great impact
on the metabolome, inducing a biochemical reaction cascade. In addition to the highly affected lipid
metabolism, alcohol intake leads to profound effects in other essential biochemical pathways [6].
Metabolomics can therefore promote the understanding of the profound metabolic perturbations
induced by ethanol consumption which finally lead to liver inflammation and necrosis. Hence, it can
pave the way from early diagnosis to prognosis and monitoring the progression of ALD.

Ethanol-related alterations that act as a trigger to induce associated diseases have been mainly
found in organs that are recognized as the targets of ethanol toxicity, such as the liver and brain.
However, the key aim of the biomarker discovery field is the use of easily accessible and noninvasive
samples such as urine and fecal samples. Several metabolic profiling studies have been conducted
for ethanol toxicity in various sample matrices [7] such as the liver [8,9], brain [9], blood [10],
urine [11–13] or fecal samples [13,14] in patients and especially in animal models. The preferred
biological matrix in these studies is mainly the blood; however, urine, as well as fecal samples (especially
in combination) can provide a very informative picture of the organism’s physiology in a noninvasive
way. Moreover, fecal samples can offer the potential of revealing ethanol toxicity effects in the very
early stages, as ethanol-induced gut microbiota alterations are able to affect the whole organism
through their signaling molecules. It has been shown that ethanol consumption can lead to a leaky gut
barrier and dysbiosis, which is associated with ALD manifestation [15,16]. Fecal metabolites are the
products of the microbiome, some of which are absorbed into the circulation and eventually, after being
metabolized by the host (co-metabolism), they are excreted in urine. Due to this, a complementary
picture of the fecal and urine metabolome can provide new knowledge on the mechanisms involved
and the role of the gut microbiome–host interaction in ALD.

Interesting findings from metabolic profiling studies on urine or fecal samples have been
published. Gao et al. [17] have reported a different impact on the urine metabolome between different
strains of rats under ethanol treatment, namely Sprague–Dawley (SD) and Wistar, while NMR-based
metabolomics analysis of C57BL/6J urine samples have revealed taurine depletion and an excess
of lactate, n-acetylglutamine and n-acetylglycine [8]. Shi et al. [18] have suggested N-acetyltaurine
as a urine biomarker of ethanol toxicity (which is derived from taurine and acetate abundance).
However, reports of ethanol impact on the fecal metabolome are limited; only recently there have
been studies that show alterations of the microbiome and metabolome of the gut [3,6,14,19–23].
Xie et al. [6] analyzed the content of the gastrointestinal (GI) tract from stomach to rectum of SD rats
exposed to ethanol for eight weeks, indicating the profound impact of ethanol. They used Ultra-high
performance liquid chromatography tandem mass spectrometry UHPLC-MS analysis of volunteered
and enforced ethanol drinking BALC/c mice [24], elucidating perturbations of bile acid metabolism and
neurotransmitter metabolism, while histopathological analysis demonstrated liver and colon damage.
The latter findings confirm that the liver, gut and brain are metabolically connected to each other, as gut
microbiota-associated metabolites transfer positive or negative messages that are even able to cross the
blood–brain barrier, explaining why gut microbiome attract scientific interest.

In the present study, targeted metabolic profiling of urine and fecal samples from ethanol dependent
C57BL/6 mice of both sexes was carried out for two time (sampling) points. The study attempts to
enrich our limited knowledge on fecal samples, compared to results of other matrices [3,6,7,14,22].
The interaction and cross-talk effects between the liver and gut is a hot topic of investigation,
as recent studies have clarified the important role played by the gut symbiome in mammalian health
maintenance [25]. Correlation of the findings in the two samples can provide information on the
metabolism involved in ALD and can offer a combinatorial metabolic fingerprint that is valuable for
early diagnosis. Further to this, although the differences in ethanol metabolism between the two sexes
in mammals are well-known [26–30], this is to the best of our knowledge the first metabolomics-based
study investigating the metabolic impact of ethanol consumption in the two sexes.
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2. Results

This study aimed to investigate the effect of ethanol on the metabolic content of urine and fecal
samples in a mouse model simulating chronic exposure to ethanol. The intention was to highlight
patterns of alteration in the metabolic phenotype of these samples indicative of a toxic ethanol effect.
The applied protocol lasted for a period of eight weeks, however, urine and fecal samples presented in
this work were collected up until the 20th day of exposure. At the end of the experiment, based on the
histopathology findings, it was concluded that ethanol treatment induced mild steatohepatitis, but no
liver fibrosis. Thus, it could be considered that the protocol may provide early stage biomarkers of
steatohepatitis in the first period of the experiment, where the two sampling points were performed.
This is of high importance, as the metabolic phenotype in the early stage of a reversible implication
caused by the hepatotoxic effect of ethanol seems even more meaningful.

Monitoring the health condition of mice during the experiment revealed an average weight loss
of 15% and 10% for male and female animals, respectively. In addition, high mortality rates were
observed in the female population mainly the first 10 days; thus, a smaller number of samples could
be collected. The higher susceptibility of females to ethanol is well documented [31–34]. It has been
attributed to the increased activation of Kupffer cells via enhanced CD14 expression, which activates
NF-κB, leading to an increase in TNF-α mRNA expression in the liver and thus a more severe and
rapidly developing liver injury in female mice. Our observation can therefore be explained by existing
data and provides awareness of the different levels of disease progression between the two genders.

The analysis of samples by the applied method provided the detection of 80 and 66 low
molecular weight metabolites in urine and fecal samples, respectively. These comprised amino
acids, carbohydrates, organic acids, vitamins, nucleotides and amines. Data analysis was based on
peak areas and included data quality assessment with the implementation of a Quality Control QC
sample. QC data indicated precise analytical measurements.

A comparative study between urine and fecal samples of the same animals indicated in total
60 common metabolites in the two matrices (data are provided in Supplementary Figure S1).
The commonly detected metabolites were correlated between the urine and fecal samples for the
control mice and for those undergoing ethanol treatment. Pearson correlation heatmaps, as shown in
Figure 1a,b, indicate alterations in the correlation patterns between the two specimens after treatment
with ethanol, suggesting that ethanol interferes in the balance of gut microbial metabolism and host
interaction. The linear relationship between metabolites of urine and fecal samples is disrupted or
in extreme cases, their correlation is reversed with ethanol treatment. As an example, fecal choline
and lactate have a positive correlation with all urinal metabolites in control mice, while they have a
negative correlation in ethanol treated mice. Similar findings are also observed for other key molecules
such as pyruvate and glucose, highlighting the strong metabolic impact of ethanol exposure.

Based on multivariate statistical analysis, alterations in the hydrophilic metabolite content after
ethanol treatment was exhibited. Orthogonal Partial Least Square-Discriminant Analysis OPLS DA
score plots indicated distinct differences between samples from control and ethanol treated mice.
The differentiation of metabolite content with ethanol treatment was observed in both matrices and for
both time points. The score plots of OPLS DA analysis are presented in Figure 2a,b for fecal samples at
the two time points and in Figure 2c,d for urine samples at the two time points. The p value of cross
validated ANOVA analysis (CV analysis) was <0.05 in most cases, indicating the statistical significance
of the investigated models (with the exception of urine samples at the first time point, where the
p value was slightly increased (p = 0.09)). Further statistical analysis was also performed for this
dataset. Statistics from all models are summarized in Table 1. From these data, it can be concluded
that the effect of ethanol on the fecal metabolome was more profound when compared to the urine
metabolome, and this was even more noticeable in male mice.

Furthermore, Receiver Operating Characteristic ROC curves of the constructed models for the
urine and fecal samples provided an indication of the robustness of the models with calculated Area
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Under the Curve AUC values ranging from 0.90 for urine samples at the first time point to 1.0 for fecal
samples at the second time point. Overlay ROC curves for the models are illustrated in Figure 2e.
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Figure 1. Pearson correlation heatmaps for the commonly detected metabolites in urine (U) and fecal
(F) samples exhibiting the correlation pattern between the urinary and the fecal metabolome in (a) the
control mice and in (b) the ethanol treated mice.

Data from the multivariate and univariate analysis demonstrated the ability of these modeling
procedures to distinguish the two groups of mice (control vs. ethanol treated) based on the dysregulated
metabolites. Several metabolites that were significantly affected by ethanol treatment based on the
criterion of p < 0.05 were revealed by a two-paired t-test. More specifically, in the fecal metabolic
profile, 19 metabolites were found to be altered in ethanol treated mice samples at the first time point,
from which 15 were continued to be altered in the second time point. However, different trends were
observed over the two sampling periods for the 15 metabolites that continued to be altered. For some
metabolites (e.g., amino acids), an increasing trend was observed, while for others (e.g., amines),
a decrease was observed in the earlier time point followed by an increase in the second time point.
At the second time point, 16 additional metabolites were also found to be dysregulated in ethanol
treated mice. The metabolites and their trends, as well as the metabolic pathways that are involved,
are summarized in Supplementary Table S2.

As mentioned above, by comparing fecal and urine samples, it was observed that the metabolic
profile of urine samples was less affected by ethanol treatment. More precisely, in urine, 12 metabolites
were found to be significantly changed at the first time point and 13 metabolites were found to be
significantly different at the second time point. From the 12 metabolites altered in the first time point,
half of them continued to be altered in the second time point, as shown in Supplementary Table S3.
The majority of these metabolites show an increasing trend from the first time point to the second
time point, with the exception of trimethylamine. Graphically, the trends of the metabolites that were
found significantly altered are shown as box plots in Figure 3 for fecal samples and in Figure 4 for
urine samples.

With regard to the impact of ethanol on the urine and fecal metabolome in relation to sex,
differences can be observed. Multivariate statistical analysis of samples collected at the first time point
showed significant differentiations between control and ethanol treated male mice in both matrices,
while for female mice, this was observed only in fecal samples. At the second time point, control and
ethanol treated male mice preserved their differences based only on the fecal samples, while female
mice showed statistically significant differences in urine. OPLS DA score plots of these models are
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provided in Supplementary Figure S2, whereas statistical data of the constructed OPLS DA models are
included in Table 1. Altered metabolites with p < 0.05 of the corresponding male and female models
are presented as bar plots of log2 fold change in Supplementary Figure S3. The metabolites found to
be altered in male were not the same as those that were altered in female mice.
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Figure 2. OPLS DA score plots constructed based on metabolic profiles acquired from fecal samples at
(a) sampling time point 1 and (b) time point 2 and the corresponding score plots constructed based
on metabolic profiles of urine samples at (c) sampling time point 1 and (d) time point 2, (x-axis:
first principal component to [1]; y-axis: the first component to [1]), while in (e) overlay ROC curves for
the models are shown.
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Table 1. Data statistics from all constructed OPLS DA models.

Model
Statistics of the Model Predictive Ability

Apred Aorth R2Y R2X Q2YCV p (CV ANOVA) Sensitivity Specificity Accuracy AUC

Fecal samples Control vs. Ethanol TP 1 1 2 0.942 0.567 0.942 2.84 × 10−8 1 1 100% 1

Fecal samples Control vs. Ethanol TP 1 (Male) 1 2 0.998 0.768 0.967 7.60 × 10−5 1 1 100% 1

Fecal samples Control vs. Ethanol TP 1 (Female) 1 2 0.955 0.583 0.836 9.92 × 10−5 1 1 100% 1

Fecal samples Control vs. Ethanol TP 2 1 2 0.925 0.481 0.925 3.00 × 10−4 1 0.92 96% 0.99

Fecal samples Control vs. Ethanol TP 2 (Male) 1 4 0.982 0.57 0.8 1.00 × 10−2 1 1 100% 1

Fecal samples Control vs. Ethanol TP 2 (Female) - - - - - >1 - - - -

Urine samples Control vs. Ethanol TP 1 1 2 0.791 0.671 0.791 9.70 × 10−2 0.76 0.88 81% 0.9

Urine samples Control vs. Ethanol TP 1 (Male) 1 2 0.998 0.657 0.796 1.00 × 10−2 1 1 100% 1

Urine samples Control vs. Ethanol TP 1 (Female) - - - - - >1 - - - -

Urine samples Control vs. Ethanol TP 2 1 1 0.877 0.625 0.877 4.93 × 10−6 1 0.93 96% 0.99

Urine samples Control vs. Ethanol TP 2 (Male) - - - - - >1 - - - -

Urine samples Control vs. Ethanol TP 2 (Female) 1 1 0.822 0.633 0.708 9.00 × 10−3 1 1 100% 1

TP, time point; Apred, number of Y-predictive components; Aorth, number of Y-orthogonal components; R2X, explained variance of X; R2Y, explained variance of Y; Q2YCV, predicted variance
of Y estimated using cross-validation. R2X and R2Y show how well the model explains the variation in X and Y, respectively. Q2Y represents the quality and predictive power of the model.
Sensitivity (specificity) measures the proportion of actual positives (negatives) that are correctly predicted with the model. Accuracy (ACC) is the proportion of true results (both true
positives and true negatives) in all results. The area under the curve (AUROC) is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a
randomly chosen negative one.
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3. Discussion

Alcoholic liver disease (ALD) remains an issue of great concern since it is intensely associated
with high morbidity and mortality through induced hepatic cirrhosis triggered by chronic ethanol
consumption [35]. State-of-the-art technologies provide the ability to carry out a detailed and reliable
metabolic fingerprinting that is able to find the metabolic traces of the impact of ethanol and the
induced hepatotoxicity [7].

The applied targeted method managed to reveal ethanol derived metabolic changes in both
analyzed biological specimens, with the strongest impact on the fecal metabolome in comparison to
urine. The effects of ethanol exposure on male mice demonstrated a greater impact in contrast to
female mice, as evidenced by the altered metabolites. On the other hand, despite the smaller number
of differentiated metabolites, female mice were more vulnerable to ethanol consumption, since many
losses were observed in the female population. The evaluation of the fecal metabolome resulted in
differences for both sexes and time points. The major factors responsible for the differentiations are the
sex-dependent mammalian metabolism of ethanol and the gut microbiome population.

The selection of an experimental animal model was of great concern. Previous publications were a
determining factor for the selection of the mice strain [36] regarding volunteered ethanol consumption.
However, the implementation of the study elucidates some limitations that are unforeseeable in
pilot experiments related to the small sample size, the vulnerability of mice and difficulties in
developing steatosis.

The fecal metabolome of ethanol treated mice was dramatically changed compared to control mice.
Metabolic perturbations derived from ethanol consumption were observed at a great scale for both
studied time points. It is remarkable that in the first time point, 12 out of 66 differentiated metabolites
were increased. In contrast, only seven metabolites were found to be decreased. Interestingly, in the
second time point, 29 and two differentiated metabolites were also found to be increased and decreased,
respectively. From the altered metabolites in the second time point, 15 were already altered in the
first time point, while L-acetylcarnitine, putrescine and tryptamine demonstrated an adverse trend
between the two time points. It could be hypothesized that the adverse trend reflects a progressively
enhanced metabolic stress derived from prolonged ethanol exposure and the inability and difficulty of
the mice to overcome such a severe metabolic imbalance. Similar adverse trends have been observed
in the past by our group in a similar study comparing blood and urine, where samples were collected
in the second and fourth week of exposure [37]

The biochemical pathways of major precursors that are essential for energy generation were
significantly affected by ethanol consumption. Nitrogen metabolism, ammonia recycling and the urea
cycle, which are fundamental processes for cellular nitrogen utilization, were found to be perturbed
at both sampling time points. The liver, the main target of ethanol toxicity, is responsible for the
utilization of amino acids to induce protein synthesis, pyrimidine and purine synthesis, ketogenesis,
carbohydrate formation and de novo synthesis of non-essential amino acids [38].

Precursor molecules related to the aforementioned processes such as cytosine, hypoxanthine,
thiamine, uracil and uridine were significantly altered, and their perturbed values are associated with
a hepatic inflammatory condition [39,40].

A noticeable impact of ethanol consumption on amino acid metabolism was observed, since the
metabolism of alanine–aspartate–glutamate, glycine–serine–threonine, valine–leucine–isoleucine,
phenylalanine and tyrosine were disturbed.

A characteristic reduction in amino acid levels follows chronic ethanol consumption due to
enhanced liver blood protein synthesis. Protein accumulation, in parallel with lipids, leads to water
influx which consequently affects the hepatic architecture.

Severe hepatic damage, as a consequence of progressive alcohol consumption, could result in
cirrhotic conditions accompanied with aromatic amino acids and methionine increase and glutathione
decrease in blood [41]. Fixing the widespread dysmetabolism of hepatic cells caused by alcohol
consumption is not an easy task due to the absence of major cellular feedback mechanisms [42].
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However, in the present study, the observed increase in some amino acid levels (phenylalanine, tyrosine,
valine, leucine) can be attributed to the perturbation of gut microbiota populations. The metabolic
connection of the gut and the ALD suffering liver through the circulation [22] explains the qualitative
and quantitative effect of ethanol intake on the gut microbiome, described by “dysbiosis” and bacterial
overgrowth, respectively [43]. Both physiological and metabolic alteration of ethanol induced gut
microbiota is reflected in the fecal metabolome. The statistically significant metabolites and the trend of
their behavior are due to the combined effect of the mammalian gut microbiome and their symbiome
metabolic alterations. The exact mechanism of ethanol induced symbiotic dysmetabolism is still
unspecified [22]. For example, lysine could follow two fates; either ammonia production or supplying
the route from acetyl-CoA to butyric acid.

Among the hallmarks of ethanol toxicity in hepatic cells is the inhibition of glycolysis and
gluconeogenesis, the Krebs cycle, fatty acid oxidation and the induction of ketogenesis due to the
remarkable reduction of NAD–NADH via ethanol dehydrogenase activity [44]. Ethanol presents
the unique ability among other toxins to change almost all biochemical processes of hepatic
lipid metabolism. The ethanol derived lipid over-accumulation induces liver steatosis with mild
inflammation in long-term consumption [45]. Altered β-oxidation was also evident by the effected
acetyl-L-carnitine. Molecules that supply the Krebs cycle were disturbed by ethanol consumption,
altering the metabolism towards an enhanced production of lactic acid, causing lactic acidosis and
secondly ketogenesis, as evidenced by lactic acid alterations. Long-term ethanol consumption is also
very harmful for mitochondria, leading to the consequent inhibition of electron transport and oxidative
phosphorylation [21]. As ethanol is metabolized, the formation of acetaldehyde and free radicals is
inevitable. The ingested non-metabolized ethanol irreversibly damages the liver via inflammation
triggered mechanisms [46–48].

In a very interesting study, decreased levels of glucose, lactate, and alanine were seen in rat
livers and serum, while increased levels of liver and serum acetate and serum acetoacetate were
found regardless of the ethanol exposure dose. The authors concluded that the depletion of alanine,
acting with feedback-inhibition regulation activated pyruvate kinase, induced a perpetual cycle that
removes phosphoenolpyruvate from gluconeogenesis, explaining the “empty calorie” phenomenon of
ethanol [9].

In contrary to previous findings, Bradford et al. [8] observed elevated hepatic glucose and lactate
levels in mice that were attributed to increased glycolysis and hypoxic effects, respectively. They also
found that the levels of tyrosine and precursor molecules associated with blood coagulation factors
were elevated.

Upregulation of lactic acid and downregulation of purine catabolism attributed to an unbalanced
hepatic redox system triggered by ethanol-induced NAD+ depletion were found using NMR-based
metabolomics of acute ethanol exposure in the volunteer population [11].

Hepatic nonpolar metabolites of ethanol exposed rats and mice such as fatty acyls/acids/ethyl
esters, glycerolipids and phosphatidylethanol homologues were extracted using high mass accuracy
multi stage Mass Spectrometry MSn analysis and evidenced in the extensive metabolic response
to ethanol. Remarkably, unique markers were revealed for both species, underlying the metabolic
differences [49] in the disturbed lipid metabolism.

In the present study, mice urine samples demonstrated milder metabolic changes compared to
the extracted fecal metabolic alterations. In the analyzed urine samples, 12 and 13 metabolites were
found altered in the first and second sampling time point, respectively. From the above differentiated
metabolites, six were found to be in common, namely hydroxyphenyllactic acid, indolelactic acid,
D-ribose, (S)-3 hydroxyisobutyric acid and L-isoleucine/L-isoleucine. They presented with similar
trends for both time points. Trimethylamine was the only exception that presented with adverse effects
between the two time points. Biochemical pathways mainly associated with the metabolism of amino
acids and their derivatives, carbohydrates, fatty acids, and nucleotides were changed in response to
ethanol consumption. Furthermore, in accordance with the related studies, previously demonstrated
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ethanol consumption biomarkers were confirmed based on the obtained results. Hydroxyphenyllactic
acid and indolelactic acid, related to tyrosine and tryptophan metabolism, are considered to be
metabolomics-based hallmarks of ethanol consumption. Chronic ethanol exposure leads to significant
upregulation of tryptophan metabolism, while tyrosine, phenylalanine and lysine metabolism were
also affected, as demonstrated in similar studies [2,8,50]. Tryptophan, phenylalanine and tyrosine
metabolism were also altered on a great scale in analyzed fecal samples from the ethanol treated mice.
These specific biochemical pathways dominate in the gut microbiome metabolome. Basic precursors
are metabolized by the bacteria in order to fully cover the energetic demands for intestinal epithelium
mucosal maintenance and the development of the microbial community. The exact origin of the
alterations of urine metabolites is difficult to attribute to either host or symbiome metabolism due to
the similarity of the biochemical routes and only speculations can be made.

Overall, more metabolites were observed from fecal metabolome profiling with an adverse trend
over the period of exposure, compared to urine. Obviously, the reason for this is the strong effect
of ethanol toxicity on the gut microbiome, while the urine metabolome responded primarily to the
decline in energy homeostasis triggered by the strong stimulus of chronic ethanol exposure. All the
precursors involved in each related biochemical pathway should be monitored in order to precisely
explain the direction of the metabolism of the significantly altered metabolites. At a more accurate
level, biochemical interpretation should take into account the hepatic enzymatic activity of ethanol,
which is also dependent on specific factors (e.g., sex) and how this could reflect in the fecal and urine
metabolome. In addition, cross-talk effect phenomena should be considered when the biochemical fate
of key molecules is investigated.

Finally, it should be noted that the present study expands the already confirmed diagnostic
panel of biomarkers proposing that the combination of the two studied matrices could enhance the
diagnostic value. Metabolites found to be perturbed in both specimens could constitute biomarkers
with high specificity.

4. Materials and Methods

4.1. Chemicals and Reagents

The solvents acetonitrile and methanol of LC/MS grade as well as ammonium formate and formic
acid (mobile phase additives) were purchased from Sigma Aldrich, St. Louis, MO, USA and Merck,
Darmstadt, Germany. Ultrapure Water (18.2 MΩ cm) was obtained from a Milli-Q purification system
(Merck, Darmstadt, Germany). Saline solution (NaCl 0.9%) was purchased from VIOSER S.A.

4.2. In vivo Study

The chronic ethanol exposure in vivo experiment was performed for a period of 8 weeks in the
Animal Physiology Facility of the Veterinary Medicine School of Aristotle University of Thessaloniki
with 38 C57BL/6 mice at 8–10 weeks of age. Fecal and urine samples were collected on the same days at
two time points (10 days and 20 days from the beginning of ethanol exposure) and were immediately
frozen. At the end of the experiment, animals were sacrificed by cervical dislocation and tissues were
collected for further studies.

Animals of both sexes, 21 males and 17 females, were divided in two groups and treated with
either an ethanol liquid diet or control diet (11 males ethanol-treated vs. 10 controls and 9 females
ethanol-treated vs. 8 controls). The protocol by Bertola et al. [1] was adapted and the animals were
fed ad libitum with the Lieber–DeCarli ethanol diet, containing 5% extra pure ethanol. Caloric intake
for ethanol treated mice and controls was balanced by adding an appropriate amount of maltose
dextrin to the control diet. An acclimatization period to the liquid diet was carried out for 7 days.
Preparation of the liquid diet was performed daily in accordance to supplier’s instructions and the
estimated consumption from each mouse was circa 25 mL.
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The animals were housed in groups of four in cages under a regulated 12h light/12h dark cycle
and controlled temperature (22–25 ◦C) and relative humidity (50%) conditions. Their weight and
health status were recorded weekly.

All procedures were in accordance to the current national (N. 2015/1992, Π∆ 56/2013) and European
legislation (European guideline 2010/63).

4.3. Sample Preparation of Fecal and Urine Samples

Urine samples, after thawing at room temperature (RT), were vortexed and aliquots of 50 µL
were diluted with 150 µL of acetonitrile. Next, the diluted samples were vortexed again, centrifuged
at 12,000 g for 10 min and the clear supernatant was transferred to LC-MS vials and then to the
autosampler at 4 ◦C for analysis.

Fecal samples were weighed and then homogenized by the addition of saline solution (NaCl 0.9%)
in such a volume to obtain a sample weight to saline volume ratio of 1:9 (w/v) [51]. Homogenation was
aided by vortex-mixing and sonication for 10 min. After centrifugation at 12,000 g for 20 min, 100 µL of
the obtained fecal saline volume was taken and 300 µL of MeOH:H2O at a ratio of 1:1 (v/v) was added.
After vortexing and centrifugation, 150 µL of the clear supernatant was collected and evaporated until
dryness using a Speed Vac Eppendorf AG (Hamburg, Germany). Prior to the analysis, the dried extract
was reconstituted with 150 µL of mixture of MeCN:H2O:MeOH at a volume ratio of 70:15:15 (v/v/v).

4.4. LC-MS/MS analysis

The analysis was performed by a targeted hydrophilic interaction liquid chromatography tandem
mass spectrometry (HILIC-MS/MS) method which has been previously developed from our group [52]
for such studies [53–55] targeting more than 100 hydrophilic endogenous metabolites. The analysis
was performed on an ACQUITY UPLC H-Class chromatography system combined with a Xevo TQD
mass spectrometer (Waters Corporation, Millford, MA, USA) operating in both positive and negative
mode, with an Acquity BEH Amide Column (Waters Ltd., Elstree, UK). The mobile phase consisted of
MeCN:H2O, 95:5 (v/v) and MeCN:H2O, 30:70 (v/v), both containing 10 mM ammonium formate, pH 6.

The samples were analyzed in a randomized order in two separate batches for each specimen
and 5 µL was injected into the system. For the quality assessment of the data, a quality control (QC)
sample was prepared for urine or fecal extracts according to published protocols [56] and analyzed
every 10 samples within the analytical batch.

4.5. Data Analysis

The obtained LC-MS/MS data were collected using MassLynx®(Waters, Milford, MA, USA),
while peak identification and integration were accomplished by TargetLynx®(v4.1). Exclusion criteria
were either the absence of metabolite in ≥20% of the analyzed samples or metabolite relative standard
deviation (RSD) >30% in the QC samples. Metabolites that did not follow the above criteria were
excluded from the final dataset.

Univariate statistical analysis using a two-tailed t-test with unequal variance algorithm (a threshold
of p-value was set at 0.05) was performed to check the impact of each metabolite on the tested
hypothesis. Multiple multivariate statistical algorithms (VIP (variable importance for the projection)
plots, PCA (principal component analysis) and OPLS-DA (orthogonal partial least squares discriminant
analysis) in UV scaling were performed by SIMCA 13.0 (Umetrics, Umea, Sweden) for biomarker
discovery and metabolite cross-interaction investigation. The validity of the constructed models was
evaluated based on permutation plots and CV-ANOVA value. To check and visualize the performance
of the potential biomarkers the area under the curve-receiver operating characteristic (AUC-ROC)
curve analysis was performed and the results were illustrated using ROC curves and box-plots graphs.

Evaluation of the models was also performed by additional calculation of AUC values from the
ROC curve analysis using the YpredCV value of each model. The quality of the models was determined
by the goodness of fit in the X (R2X) and Y (R2Y) variables and the predictability based on the fraction
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correctly predicted in one-seventh cross-validation (Q2YCV). To calculate the area under the ROC
curve (AUROC), specificity, sensitivity and accuracy at the optimum cut-off level during the 7-fold
cross validation (Y-predcv, predictive Y variables; SIMCA-P+ software) was performed using the GNU
R ROCR package. Biochemical interpretation of differentiated metabolites and the investigation of
their metabolic origin “pathway annotation” were performed on MetaboAnalyst 4.0 [57,58].

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/10/232/s1,
Figure S1: Metabolites detected in urine and fecal samples of control and ethanol treated mice showing the
commonly detected metabolites; Figure S2: OPLS DA score plots of the models constructed for male and female
mice samples separately; Figure S3: Bar plots of log2 fold change showing the altered metabolites (p < 0.05) based
on the models constructed separately for male and female mice separately; Table S1: List of metabolites found
to be significantly affected in fecal extracts with their trend and metabolic pathway that they are involved in;
Table S2: List of metabolites found to be significantly affected in urine with their trend and metabolic pathway
that they are involved in.

Author Contributions: Conceptualization, H.G.G.; methodology, C.V.; software, C.V.; validation, C.V.;
formal analysis, C.V., O.D. and A.O.; investigation, O.D.; resources, H.G.G.; data curation, C.V.; writing—original
draft preparation, O.D.; writing—review and editing, H.G.G.; visualization, C.V.; supervision, H.G.G.;
project administration, H.G.G.; funding acquisition, H.G.G.

Funding: This research is carried out/funded in the context of the project “Study of alcohol toxicity at chronic and
acute alcohol consumption, discovery and evaluation of biomarkers by applying metabolomics based methods”
(5005029) under the call for proposals “Supporting researchers with emphasis on new researchers” (EDULLL 34).
The project is co-financed by Greece and the European Union (European Social Fund (ESF)) by the Operational
Programme Human Resources Development, Education and Lifelong Learning 2014–2020.

Acknowledgments: We are grateful to Ian D. Wilson for the inspiration and guidance during the realization of
the research project. Special acknowledgments to Ioannis Taitzoglou for allowing access to the Veterinary School
animal facility and the valuable help and cooperation in the animal experimentation. We also acknowledge Dora
Sparopoulou for the technical help in animal experimentation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Farooq, M.O.; Bataller, R. Pathogenesis and Management of Alcoholic Liver Disease. DDI 2016, 34, 347–355.
[CrossRef] [PubMed]

2. Manna, S.K.; Patterson, A.D.; Yang, Q.; Krausz, K.W.; Li, H.; Idle, J.R.; Fornace, A.J.; Gonzalez, F.J.
Identification of noninvasive biomarkers for alcohol-induced liver disease using urinary metabolomics and
the Ppara-null mouse. J. Proteome Res. 2010, 9, 4176–4188. [CrossRef] [PubMed]

3. Shi, X.; Wei, X.; Yin, X.; Wang, Y.; Zhang, M.; Zhao, C.; Zhao, H.; McClain, C.J.; Feng, W.; Zhang, X.
Hepatic and Fecal Metabolomic Analysis of the Effects of Lactobacillus rhamnosus GG on Alcoholic Fatty
Liver Disease in Mice. J. Proteome Res. 2015, 14, 1174–1182. [CrossRef] [PubMed]

4. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms.
Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [CrossRef]

5. Theodoridis, G.; Gika, H.G.; Wilson, I.D. Mass spectrometry-based holistic analytical approaches for
metabolite profiling in systems biology studies. Mass Spectrom. Rev. 2011, 30, 884–906. [CrossRef]

6. Xie, G.; Zhong, W.; Zheng, X.; Li, Q.; Qiu, Y.; Li, H.; Chen, H.; Zhou, Z.; Jia, W. Chronic Ethanol Consumption
Alters Mammalian Gastrointestinal Content Metabolites. J. Proteome Res. 2013, 12, 3297–3306. [CrossRef]

7. Gika, H.G.; Wilson, I.D. Global metabolic profiling for the study of alcohol-related disorders. Bioanalysis 2014,
6, 59–77. [CrossRef]

8. Bradford, B.U.; O’Connell, T.M.; Han, J.; Kosyk, O.; Shymonyak, S.; Ross, P.K.; Winnike, J.; Kono, H.; Rusyn, I.
Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new
markers of disease. Toxicol. Appl. Pharmacol. 2008, 232, 236–243. [CrossRef]

9. Nicholas, P.C.; Kim, D.; Crews, F.T.; Macdonald, J.M. 1H NMR-Based Metabolomic Analysis of Liver, Serum,
and Brain Following Ethanol Administration in Rats. Chem. Res. Toxicol. 2008, 21, 408–420. [CrossRef]

10. Rachakonda, V.; Gabbert, C.; Raina, A.; Bell, L.N.; Cooper, S.; Malik, S.; Behari, J. Serum Metabolomic
Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways. PLoS ONE 2014, 9, e113860.
[CrossRef]

http://www.mdpi.com/2218-1989/9/10/232/s1
http://dx.doi.org/10.1159/000444545
http://www.ncbi.nlm.nih.gov/pubmed/27170388
http://dx.doi.org/10.1021/pr100452b
http://www.ncbi.nlm.nih.gov/pubmed/20540569
http://dx.doi.org/10.1021/pr501121c
http://www.ncbi.nlm.nih.gov/pubmed/25592873
http://dx.doi.org/10.1038/nrm.2016.25
http://dx.doi.org/10.1002/mas.20306
http://dx.doi.org/10.1021/pr400362z
http://dx.doi.org/10.4155/bio.13.301
http://dx.doi.org/10.1016/j.taap.2008.06.022
http://dx.doi.org/10.1021/tx700324t
http://dx.doi.org/10.1371/journal.pone.0113860


Metabolites 2019, 9, 232 14 of 16

11. Irwin, C.; van Reenen, M.; Mason, S.; Mienie, L.J.; Wevers, R.A.; Westerhuis, J.A.; Reinecke, C.J.
The 1H-NMR-based metabolite profile of acute alcohol consumption: A metabolomics intervention study.
PLoS ONE 2018, 13, e0196850. [CrossRef] [PubMed]

12. Liang, Q.; Wang, C.; Li, B.; Zhang, A. Metabolomics of alcoholic liver disease: A clinical discovery study.
RSC Adv. 2015, 5, 80381–80387. [CrossRef]

13. Jain, A.; Li, X.H.; Chen, W.N. An untargeted fecal and urine metabolomics analysis of the interplay between
the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci. Rep. 2019, 9, 9191.
[CrossRef] [PubMed]

14. Couch, R.D.; Dailey, A.; Zaidi, F.; Navarro, K.; Forsyth, C.B.; Mutlu, E.; Engen, P.A.; Keshavarzian, A.
Alcohol Induced Alterations to the Human Fecal VOC Metabolome. PLoS ONE 2015, 10, e0119362. [CrossRef]
[PubMed]

15. Hartmann, P.; Seebauer, C.T.; Schnabl, B. Alcoholic Liver Disease: The Gut Microbiome and Liver Cross Talk.
Alcohol. Clin. Exp. Res. 2015, 39, 763–775. [CrossRef] [PubMed]

16. Mutlu, E.; Keshavarzian, A.; Engen, P.; Forsyth, C.B.; Sikaroodi, M.; Gillevet, P. Intestinal dysbiosis: A possible
mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol. Clin. Exp. Res.
2009, 33, 1836–1846. [CrossRef] [PubMed]

17. Gao, X.; Zhao, A.; Zhou, M.; Lin, J.; Qiu, Y.; Su, M.; Jia, W. GC/MS-based urinary metabolomics reveals
systematic differences in metabolism and ethanol response between Sprague–Dawley and Wistar rats.
Metabolomics 2011, 7, 363–374. [CrossRef]

18. Shi, X.; Yao, D.; Chen, C. Identification of N-Acetyltaurine as a Novel Metabolite of Ethanol through
Metabolomics-guided Biochemical Analysis. J. Biol. Chem. 2012, 287, 6336–6349. [CrossRef]

19. Leclercq, S.; Matamoros, S.; Cani, P.D.; Neyrinck, A.M.; Jamar, F.; Stärkel, P.; Windey, K.; Tremaroli, V.;
Bäckhed, F.; Verbeke, K.; et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of
alcohol-dependence severity. Proc. Natl. Acad. Sci. USA 2014, 111, E4485–E4493. [CrossRef]

20. Engen, P.A.; Green, S.J.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. The Gastrointestinal Microbiome.
Alcohol Res. 2015, 37, 223–236.

21. Cassard, A.-M.; Ciocan, D. Microbiota, a key player in alcoholic liver disease. Clin. Mol. Hepatol. 2018,
24, 100–107. [CrossRef] [PubMed]

22. Kirpich, I.A.; Petrosino, J.; Ajami, N.; Feng, W.; Wang, Y.; Liu, Y.; Beier, J.I.; Barve, S.S.; Yin, X.; Wei, X.;
et al. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut
Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. Am. J. Pathol. 2016, 186, 765–776.
[CrossRef] [PubMed]

23. Zhong, W.; Zhou, Z. Alterations of the gut microbiome and metabolome in alcoholic liver disease. World J.
Gastrointest. Pathophysiol. 2014, 5, 514–522. [CrossRef] [PubMed]

24. Wang, G.; Liu, Q.; Guo, L.; Zeng, H.; Ding, C.; Zhang, W.; Xu, D.; Wang, X.; Qiu, J.; Dong, Q.; et al.
Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice. Front. Microbiol. 2018, 9.
[CrossRef] [PubMed]

25. Tripathi, A.; Debelius, J.; Brenner, D.A.; Karin, M.; Loomba, R.; Schnabl, B.; Knight, R. The gut-liver axis and
the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 397–411. [CrossRef]

26. Rachamin, G.; Macdonald, J.A.; Wahid, S.; Clapp, J.J.; Khanna, J.M.; Israel, Y. Modulation of alcohol
dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat. Effect of
chronic ethanol administration. Biochem. J. 1980, 186, 483–490. [CrossRef]

27. Eriksson, K.; Malmström, K.K. Sex differencds in consumption and elimination of alcohol in albino rats.
Ann. Med. Exp. Biol. Fenn. 1967, 45, 389–392.

28. Duan, J.; Esberg, L.B.; Ye, G.; Borgerding, A.J.; Ren, B.H.; Aberle, N.S.; Epstein, P.N.; Ren, J. Influence of
gender on ethanol-induced ventricular myocyte contractile depression in transgenic mice with cardiac
overexpression of alcohol dehydrogenase. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003,
134, 607–614. [CrossRef]

29. Middaugh, L.D.; Frackelton, W.F.; Boggan, W.O.; Onofrio, A.; Shepherd, C.L. Gender differences in the effects
of ethanol on C57BL/6 mice. Alcohol 1992, 9, 257–260. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0196850
http://www.ncbi.nlm.nih.gov/pubmed/29746531
http://dx.doi.org/10.1039/C5RA13417J
http://dx.doi.org/10.1038/s41598-019-45640-y
http://www.ncbi.nlm.nih.gov/pubmed/31235863
http://dx.doi.org/10.1371/journal.pone.0119362
http://www.ncbi.nlm.nih.gov/pubmed/25751150
http://dx.doi.org/10.1111/acer.12704
http://www.ncbi.nlm.nih.gov/pubmed/25872593
http://dx.doi.org/10.1111/j.1530-0277.2009.01022.x
http://www.ncbi.nlm.nih.gov/pubmed/19645728
http://dx.doi.org/10.1007/s11306-010-0252-5
http://dx.doi.org/10.1074/jbc.M111.312199
http://dx.doi.org/10.1073/pnas.1415174111
http://dx.doi.org/10.3350/cmh.2017.0067
http://www.ncbi.nlm.nih.gov/pubmed/29268595
http://dx.doi.org/10.1016/j.ajpath.2015.11.017
http://www.ncbi.nlm.nih.gov/pubmed/27012191
http://dx.doi.org/10.4291/wjgp.v5.i4.514
http://www.ncbi.nlm.nih.gov/pubmed/25400995
http://dx.doi.org/10.3389/fmicb.2018.01874
http://www.ncbi.nlm.nih.gov/pubmed/30158912
http://dx.doi.org/10.1038/s41575-018-0011-z
http://dx.doi.org/10.1042/bj1860483
http://dx.doi.org/10.1016/S1095-6433(02)00347-1
http://dx.doi.org/10.1016/0741-8329(92)90062-F


Metabolites 2019, 9, 232 15 of 16

30. Thomasson, H.R. Gender Differences in Alcohol Metabolism. In Recent Developments in Alcoholism:
Alcoholism and Women; Galanter, M., Begleiter, H., Deitrich, R., Gallant, D., Goodwin, D., Gottheil, E.,
Paredes, A., Rothschild, M., Van Thiel, D., Edwards, H., Eds.; Recent Developments in Alcoholism;
Springer: Boston, MA, USA, 1995; pp. 163–179.

31. Kono, H.; Wheeler, M.D.; Rusyn, I.; Lin, M.; Seabra, V.; Rivera, C.A.; Bradford, B.U.; Forman, D.T.;
Thurman, R.G. Gender differences in early alcohol-induced liver injury: Role of CD14, NF-kappaB,
and TNF-alpha. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 278, G652–G661. [CrossRef]

32. Nanji, A.A.; Jokelainen, K.; Fotouhinia, M.; Rahemtulla, A.; Thomas, P.; Tipoe, G.L.; Su, G.L.; Dannenberg, A.J.
Increased severity of alcoholic liver injury in female rats: Role of oxidative stress, endotoxin, and chemokines.
Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G1348–G1356. [CrossRef] [PubMed]

33. Bertola, A.; Mathews, S.; Ki, S.H.; Wang, H.; Gao, B. Mouse model of chronic and binge ethanol feeding (the
NIAAA model). Nat. Protoc. 2013, 8, 627–637. [CrossRef] [PubMed]

34. Ki, S.H.; Park, O.; Zheng, M.; Morales-Ibanez, O.; Kolls, J.K.; Bataller, R.; Gao, B. Interleukin-22 treatment
ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal
transducer and activator of transcription 3. Hepatology 2010, 52, 1291–1300. [CrossRef] [PubMed]

35. Frazier, T.H.; Stocker, A.M.; Kershner, N.A.; Marsano, L.S.; McClain, C.J. Treatment of alcoholic liver disease.
Ther. Adv. Gastroenterol. 2011, 4, 63–81. [CrossRef]

36. Becker, H.C.; Ron, D. Animal models of excessive alcohol consumption: Recent advances and future
challenges. Alcohol 2014, 48, 205–208. [CrossRef]

37. Gika, H.G.; Ji, C.; Theodoridis, G.A.; Michopoulos, F.; Kaplowitz, N.; Wilson, I.D. Investigation of chronic
alcohol consumption in rodents via ultra-high-performance liquid chromatography-mass spectrometry
based metabolite profiling. J. Chromatogr. A 2012, 1259, 128–137. [CrossRef]

38. Liu, X.; Wang, H.; Liang, X.; Roberts, M.S. Chapter 30—Hepatic Metabolism in Liver Health and Disease.
In Liver Pathophysiology; Muriel, P., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 391–400.

39. Yamamoto, T.; Moriwaki, Y.; Takahashi, S. Effect of ethanol on metabolism of purine bases (hypoxanthine,
xanthine, and uric acid). Clin. Chim. Acta 2005, 356, 35–57. [CrossRef]

40. Afzali, A.; Weiss, N.S.; Boyko, E.J.; Ioannou, G.N. Association between serum uric acid level and chronic
liver disease in the United States. Hepatology 2010, 52, 578–589. [CrossRef]

41. Loguercio, C.; Blanco, F.D.; De Girolamo, V.; Disalvo, D.; Nardi, G.; Parente, A.; Blanco, C.D.
Ethanol consumption, amino acid and glutathione blood levels in patients with and without chronic
liver disease. Alcohol. Clin. Exp. Res. 1999, 23, 1780–1784. [CrossRef]

42. Cederbaum, A.I. ALCOHOL METABOLISM. Clin. Liver Dis. 2012, 16, 667–685. [CrossRef]
43. Malaguarnera, G.; Giordano, M.; Nunnari, G.; Bertino, G.; Malaguarnera, M. Gut microbiota in alcoholic

liver disease: Pathogenetic role and therapeutic perspectives. World J. Gastroenterol. 2014, 20, 16639–16648.
[CrossRef] [PubMed]

44. Thurman, R.G. Hepatic alcohol oxidation and its metabolic liability. Fed. Proc. 1977, 36, 1640–1646. [PubMed]
45. Fernando, H.; Bhopale, K.K.; Kondraganti, S.; Kaphalia, B.S.; Ansari, G.A.S. Lipidomic Changes in Rat Liver

after Long-Term Exposure to Ethanol. Toxicol Appl. Pharmacol. 2011, 255, 127–137. [CrossRef] [PubMed]
46. Hoek, J.B.; Cahill, A.; Pastorino, J.G. Alcohol and Mitochondria: A Dysfunctional Relationship.

Gastroenterology 2002, 122, 2049–2063. [CrossRef]
47. Lieberman, M.; Peet, A. Mark’s Basic Medical Biochemistry, 4th ed.; North American edition; Wolters Kluwer:

Alphen aan den Rijn, The Netherlands, 2012.
48. Seitz, H.K.; Gärtner, U.; Egerer, G.; Simanowski, U.A. Ethanol metabolism in the gastrointestinal tract and its

possible consequences. Alcohol Alcohol. Suppl. 1994, 2, 157–162.
49. Loftus, N.; Barnes, A.; Ashton, S.; Michopoulos, F.; Theodoridis, G.; Wilson, I.; Ji, C.; Kaplowitz, N.

Metabonomic Investigation of Liver Profiles of Nonpolar Metabolites Obtained from Alcohol-Dosed Rats
and Mice Using High Mass Accuracy MSn Analysis. J. Proteome Res. 2011, 10, 705–713. [CrossRef]

50. Manna, S.K.; Patterson, A.D.; Yang, Q.; Krausz, K.W.; Idle, J.R.; Fornace, A.J.; Gonzalez, F.J. UPLC–MS-based
Urine Metabolomics Reveals Indole-3-lactic Acid and Phenyllactic Acid as Conserved Biomarkers for
Alcohol-induced Liver Disease in the Ppara-null Mouse Model. J. Proteome Res. 2011, 10, 4120–4133.
[CrossRef]

http://dx.doi.org/10.1152/ajpgi.2000.278.4.G652
http://dx.doi.org/10.1152/ajpgi.2001.281.6.G1348
http://www.ncbi.nlm.nih.gov/pubmed/11705739
http://dx.doi.org/10.1038/nprot.2013.032
http://www.ncbi.nlm.nih.gov/pubmed/23449255
http://dx.doi.org/10.1002/hep.23837
http://www.ncbi.nlm.nih.gov/pubmed/20842630
http://dx.doi.org/10.1177/1756283X10378925
http://dx.doi.org/10.1016/j.alcohol.2014.04.001
http://dx.doi.org/10.1016/j.chroma.2012.02.053
http://dx.doi.org/10.1016/j.cccn.2005.01.024
http://dx.doi.org/10.1002/hep.23717
http://dx.doi.org/10.1111/j.1530-0277.1999.tb04073.x
http://dx.doi.org/10.1016/j.cld.2012.08.002
http://dx.doi.org/10.3748/wjg.v20.i44.16639
http://www.ncbi.nlm.nih.gov/pubmed/25469033
http://www.ncbi.nlm.nih.gov/pubmed/191295
http://dx.doi.org/10.1016/j.taap.2011.05.022
http://www.ncbi.nlm.nih.gov/pubmed/21736892
http://dx.doi.org/10.1053/gast.2002.33613
http://dx.doi.org/10.1021/pr100885w
http://dx.doi.org/10.1021/pr200310s


Metabolites 2019, 9, 232 16 of 16

51. Jiménez-Girón, A.; Ibáñez, C.; Cifuentes, A.; Simó, C.; Muñoz-González, I.; Martín-Álvarez, P.J.; Bartolomé, B.;
Moreno-Arribas, M.V. Faecal metabolomic fingerprint after moderate consumption of red wine by healthy
subjects. J. Proteome Res. 2015, 14, 897–905. [CrossRef]

52. Virgiliou, C.; Sampsonidis, I.; Gika, H.G.; Raikos, N.; Theodoridis, G.A. Development and validation of
a HILIC-MS/MS multitargeted method for metabolomics applications. Electrophoresis 2015, 36, 2215–2225.
[CrossRef]

53. Deda, O.; Gika, H.; Panagoulis, T.; Taitzoglou, I.; Raikos, N.; Theodoridis, G. Impact of exercise on fecal and
cecal metabolome over aging: A longitudinal study in rats. Bioanalysis 2017, 9, 21–36. [CrossRef]

54. Begou, O.; Deda, O.; Agapiou, A.; Taitzoglou, I.; Gika, H.; Theodoridis, G. Urine and fecal samples targeted
metabolomics of carobs treated rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1114, 76–85.
[CrossRef] [PubMed]

55. Spyrelli, E.D.; Kyriazou, A.V.; Virgiliou, C.; Nakas, A.; Deda, O.; Papageorgiou, V.P.; Assimopoulou, A.N.;
Gika, H.G. Metabolic profiling study of shikonin’s cytotoxic activity in the Huh7 human hepatoma cell line.
Mol. Biosyst. 2017, 13, 841–851. [CrossRef]

56. Gika, H.G.; Zisi, C.; Theodoridis, G.; Wilson, I.D. Protocol for quality control in metabolic profiling of
biological fluids by U(H)PLC-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1008, 15–25.
[CrossRef] [PubMed]

57. Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0:
Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494.
[CrossRef] [PubMed]

58. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful.
Nucleic Acids Res. 2015, 43, W251–W257. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/pr500960g
http://dx.doi.org/10.1002/elps.201500208
http://dx.doi.org/10.4155/bio-2016-0222
http://dx.doi.org/10.1016/j.jchromb.2019.03.028
http://www.ncbi.nlm.nih.gov/pubmed/30933879
http://dx.doi.org/10.1039/C6MB00830E
http://dx.doi.org/10.1016/j.jchromb.2015.10.045
http://www.ncbi.nlm.nih.gov/pubmed/26610079
http://dx.doi.org/10.1093/nar/gky310
http://www.ncbi.nlm.nih.gov/pubmed/29762782
http://dx.doi.org/10.1093/nar/gkv380
http://www.ncbi.nlm.nih.gov/pubmed/25897128
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Chemicals and Reagents 
	In vivo Study 
	Sample Preparation of Fecal and Urine Samples 
	LC-MS/MS analysis 
	Data Analysis 

	References

