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Background and Objective: Supervised Machine Learning techniques have shown significant potential in 

medical image analysis. However, the training data that need to be collected for these techniques in the 

field of MRI 1) may not be available, 2) may be available but the size is small, 3) may be available but not 

representative and 4) may be available but with weak labels. The aim of this study was to overcome these 

limitations through advanced MR simulations on a realistic computer model of human anatomy without 

using a real MRI scanner, without scanning patients and without having personnel and the associated 

expenses. 

Methods: The 4D-XCAT model was used with the coreMRI simulation platform for generating artificial 

short-axis MR-images for training a neural-network to automatic delineate the LV endocardium and epi- 

cardium. Its performance was assessed on real MR-images acquired from eight healthy volunteers. The 

neural-network was also trained on real MR-images from a publicly available dataset and its performance 

was assessed on the same volunteers’ data. 

Results: The proposed solution demonstrated a performance of 94% (endocardium) and 90% DICE (epi- 

cardium) in real mid-ventricular slices, whereas a 10% addition of real MR-images in the artificial training 

dataset increased the performance to 97% DICE. The use of artificial MR-images that cover the entire LV 

yielded 85% (endocardium) and 88% DICE (epicardium) when combined with real MR data with an 80%- 

20% mix respectively. 

Conclusions: This study suggests a low-cost solution for constructing artificial training datasets for su- 

pervised learning techniques in the field of MR by using advanced MR simulations without the use of 

a real MRI scanner, without scanning patients and without having to use specialized personnel, such as 

technologists and radiologists. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Machine Learning (ML) has matured and can be used for solv- 

ng several practical problems in medicine. In the field of radiology, 

L has proven to be an effective tool to automate the analysis and 

iagnosis for medical images [1] . Several ML approaches have been 

roposed today, which not only assist in image-based diagnosis but 

lso in disease prognosis and risk assessment [2] . Supervised ML 

echniques have shown significant potential in medical image anal- 
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sis and can potentially reduce the burden on radiologists in daily 

ractice [3–5] . 

However, as for any other system that learns from training 

atasets, the training data that need to be collected for an ade- 

uate generalization is a key issue. This issue becomes even more 

mportant in the field of medical image analysis and particularly 

n radiology since the training data sets 1) may not be available, 

) may be available but of small size (small data sets), 3) may be 

vailable but not representative and 4) may be available but with 

eak labels (non-well-annotated data sets). 

In the past, the availability of large datasets with diagnostic la- 

els has altered the course of research not only in the field of 

isease diagnosis but also in the field of disease prognosis [2] . 
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owever, the availability of only small sized labelled training 

atasets does not often allow the development and improve- 

ent of supervised ML techniques [6] . If large enough training 

atasets are not available, methods such as virtual sample gener- 

tion [7] and data augmentation have previously been proposed 

8] to compensate. 

Other remaining challenges that further hinder the application 

f ML techniques in medical imaging are the existence of a) non- 

epresentative as well as of b) non-annotated training data sets. 

n the first case, supervised ML techniques may achieve high per- 

ormance when both training and test data sets are subgroups of 

he same image distribution, but they will exhibit low performance 

hen the test images have been acquired from a different imag- 

ng protocol (such as different scanner, different imaging center, 

ifferent technologist, different patient population characteristics, 

tc.). In the second case of non-annotated training data, most of 

he supervised ML techniques require the availability of training 

mages where experts have previously designed the necessary con- 

ours and labelled the images. However, performing this task is not 

lways easy since the quality of the available images may not be 

uitable due to various reasons (such as underlying disease, image 

rtifacts, limited spatial and temporal resolution of images, etc.) or 

ecause there is a lack of sufficiently specialized personnel. More- 

ver, even when appropriately trained personnel is available, visual 

ssessment and manual annotation remain subjective and may de- 

iate from reality. 

In the field of Magnetic Resonance Imaging (MRI), the process 

f creating training datasets is considered costly, both in time and 

oney. Creating training datasets requires not only acquisition of 

edical images that cover a broad spectrum of medical parame- 

ers but also manual annotation of the medical images by experts. 

n addition, generating the training dataset requires the use of an 

RI scanner and the availability of personnel (such as technolo- 

ists and radiologists). Moreover, the complexity of the underly- 

ng MRI physics hinders this process even more. Furthermore, im- 

ge acquisition is performed under a specific MRI protocol and 

RI system configuration. While supervised learning techniques 

ave demonstrated good performance on relatively controlled ex- 

eriments with standardized imaging protocols, their performance 

ay deteriorate in cases where images are acquired with a differ- 

nt imaging protocol or on a different MRI system [2] . In addition 

o this, acquisition of data that cover the entire range of param- 

ters that describe the anatomy and physiology of the population 

s impractical. Last, despite that several other approaches have re- 

ently been proposed in the field of MR image synthesis, they may 

e based on a kspace-corruption approach for the generation of 

ynthetic MR data [ 9 , 10 ] that are “not entirely representative” for 

 wide range of real cases, and/or require the availability of thou- 

ands of real MR images [11] . The latter is a quite common ap-

roach in the field of medical image synthesis [12] . 

The specific aim of this study was to propose a solution to these 

imitations encountered today in generating training datasets for 

upervised ML techniques in the field of Magnetic Resonance Imag- 

ng. We hypothesized that this can be achieved without the use of 

 real MRI scanner, without scanning patients and without hav- 

ng personnel (such as technologists and radiologists), but through 

he application of advanced MR simulations on a realistic com- 

uter model of human anatomy. This study is a proof of concept 

hat artificial MR-images can be used as training datasets in su- 

ervised learning approaches in the MR field. For this purpose, an 

xample in myocardial segmentation of end-diastolic images with 

RI and existing neural-networks was utilized. Since this work is 

ot aimed per se at presenting LV segmentation methods and due 

o space considerations, end-systolic examples are not shown. This 

ork is only the initial step to a wide range of potential applica- 

ions (e.g. tissue characterization, image reconstruction, etc.) with 
2 
r without various pathologies that will have to be developed and 

alidated. 

. Materials and methods 

.1. Computer model 

The 4D-XCAT anatomical model [13] was utilized as the main, 

ighly detailed, computer model that represents the whole-body 

uman anatomy. The 4D-XCAT model was modified to become 

ompatible with MR simulations by assigning magnetic properties 

T1, T2 and PD) to all the 78 available tissue types at 1.5T. 

The long axis of the left-ventricle was identified, and eleven 

erpendicular-to-long-axis slices were extracted (from the apex to 

he base of the left ventricle with slice gap = 10 mm). For every 

hort-axis slice, a number of rotated slices was considered, where 

heir angle with the vertical plane ranged from 10 to -10 degrees. 

he tissues located at positions outside the selected slice along its 

ertical direction were then removed and the computer model of 

he slice of interest remained with only the tissues at the selected 

lane. 

Two datasets of 120 slices each were extracted at the end- 

iastole of the cardiac cycle. The first dataset represented a nor- 

al anatomy of myocardial tissue whereas the second dataset rep- 

esented a pathological reduced myocardial thickness at the apex 

f the left ventricle. Regional LV wall thinning may be associated 

ith transmural chronic myocardial infarction and scar tissue. Both 

atasets included the papillary muscles within the blood pool of 

he left ventricle whereas the corresponding maps of the endo- 

ardium and epicardium of the left-ventricle within the slices of 

nterest were extracted automatically from the 4D XCAT model. 

rom the total 120 slices of each dataset, 24 slices were labelled 

s apical, 72 slices were labelled as mid-ventricular and 24 slices 

ere labelled as basal. 

.2. Simulation platform 

The publicly available, cloud-based, coreMRI simulation plat- 

orm ( www.coremri.org ) [14] was utilized for the generation of the 

rtificial MR-images. A single-shot bSSFP pulse sequence [ 15 , 16 ] 

nd the computer models of the slices of interest were uploaded 

o the cloud through the frontend of the coreMRI platform. A more 

etailed description of the simulation platform can be found in the 

iterature [ 14 , 17 , 18 ] and in the Appendix of the current study (Sec-

ion “coreMRI simulation platform”). 

The pulse sequence parameters were the following: the TR/TE 

as 2.72/1.36 ms, the bSSFP readout used a three-lobe 490 μs 

inc-shaped RF pulse with 8 mm slice thickness and 63 ̊ excitation 

ip angle, a half-alpha preparation was used prior to the bSSFP 

eadout, the field of view was 384(FE)x288(PE) mm, the scan ma- 

rix size was 192(FE)x144(PE), the receiver BW was 200 kHz and 

he acquisition was performed on a transversal slice at the isocen- 

er of the virtual MR scanner. The simulated MR-images were gen- 

rated with no noise, with Gaussian distributed noise in I and 

 channels with zero mean and standard deviation equal to 25, 

nd with Gaussian distributed noise in I and Q channels with zero 

ean and standard deviation equal to 40. All images were recon- 

tructed on the Gadgetron reconstruction framework using a sim- 

le 2D Fourier-Transform (FT) MRI reconstruction as it was de- 

cribed by the Gadgetron configuration file default.xml [19] . The 

imulated MR-images were further filtered with a 2-D Gaussian 

moothing kernel with standard deviation of 0.9 whereas the con- 

rast of the output images remained unchanged or was further in- 

reased through the saturation of the bottom 1% and the top 1% 

f all pixel values. The simulations were performed on a p2.xlarge 

nstance type provided by Amazon AWS equipped with 1 GPU 

http://www.coremri.org
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Fig. 1. Simulated short-axis image of a mid-ventricular slice of the anatomical model that represents a normal anatomy of myocardial tissue and the corresponding maps 

for the endocardium and epicardium as being used in the neural network. 

Fig. 2. The pre-processing performed on the artificial MR-images. The initial artificial MR image (192 × 144 pixels) was cropped at a size of 144 × 144 pixels and then 

scaled to three different sizes: 165 × 165, 180 × 180 and 195 × 195 pixels. Last, a square (100 × 100 pixels) center crop of each scaled image was performed to define the 

image that would be utilized as an input to the NN. 
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NVIDIA-K80). The total simulation time was around 40 sec for ev- 

ry slice. 

.3. Neural-network 

A previously developed fully convolutional neural-network 

FCN) [20] was utilized in this study for LV segmentation. The FCN 

onsisted of 15 stacked convolution layers and three layers of over- 

apping max pooling of stride 2. Each convolution layer was fol- 

owed by a Rectified Linear Unit and a Mean-Variance normaliza- 

ion operation. 

The artificial training dataset consisted of the simulated images 

f the slices of interest and the corresponding maps of the en- 

ocardium and epicardium of the left-ventricle within these slices 

 Fig. 1 ). The training dataset was used to train the FCN for LV seg-

entation of the endocardium and epicardium. In cases where real 

R data were used for the training of the neural-network (NN), 

eal MR-images along with the corresponding ground truth con- 

ours of endocardium and epicardium were incorporated in the 

raining dataset. 
3 
Preprocessing was performed on all artificial MR-images that 

ere utilized as inputs to the NN (training, validation and test 

atasets). In particular, the initial artificial MR-images (192 × 144 

ixels) were cropped at 144 × 144 pixels and then scaled to three 

ifferent sizes: 165 × 165, 180 × 180 and 195 × 195 pixels. Last, 

 square (100 × 100 pixels) center crop of each scaled image was 

erformed to define the image that would be utilized as an in- 

ut to the NN. Similar preprocessing was performed on the cor- 

esponding maps of the endocardium and epicardium of the left- 

entricle. Fig. 2 presents the pre-processing that was performed on 

he artificial MR-images. 

The training datasets were further augmented by geometric 

ransformations, such as rotation, translation, scaling, vertical and 

orizontal flipping. Augmentation was performed in all cases (in- 

ivo and artificial MR images) so as to avoid overfitting, to similarly 

mprove the performance of the NN but also to exclude augmen- 

ation as a confounding factor when comparing different meth- 

ds. The number of training epochs used was 40 and the evalu- 

tion metrics used were accuracy, Dice index and Jaccard index. 

he SimpleITK toolkit [21] was utilized for the calculations of these 
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Table 1 

Acquisition parameters of the CINE pulse sequences utilized for the healthy volunteers. TE: Echo Time; 

TR: Repetition Time; FOV: Field Of View; FE: Frequency Encoding; PE: Phase Encoding. 

Volunteer TE (ms) TR (ms) FOV (mm) (FE x PE) Flip Angle (o) Matrix Size (FE x PE) 

1 1.36 2.72 384 × 264 67 192 × 132 

2 1.36 2.72 384 × 228 70 192 × 114 

3 1.36 2.72 384 × 336 69 192 × 168 

4 1.36 2.72 384 × 240 71 192 × 120 

5 1.36 2.72 384 × 228 70 192 × 114 

6 1.36 2.72 384 × 288 63 192 × 144 

7 1.36 2.72 384 × 312 69 192 × 156 

8 1.36 2.72 384 × 324 72 192 × 162 
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etrics. The performance of NN was reported using the Dice index 

nd Hausdorff Distance (HD – computed in pixels). 

.4. Real MR data 

The performance of the NN was evaluated on real cardiac MR 

ata (end-diastolic, short-axis, cardiac MR-images) that were ac- 

uired for eight [8] healthy volunteers with no medical history 

4 men, 4 women, age 26 ±4 years). The study was approved by 

he regional ethics committee and all subjects provided written 

nformed consent (The regional ethics committee, Lund, Sweden. 

thics applications numbers: 541/2004 and 815/2016). All sub- 

ects underwent cardiac MR on a MAGNETOM Aera 1.5T scanner 

Siemens Healthcare, Erlangen, Germany) using an 18-channel coil. 

 segmented CINE (TR/TE equal to 2.72/1.36ms, slice thickness 

qual to 8mm, without parallel imaging) was used to acquire short 

xis images covering the entire volume of the left-ventricle. Table 1 

ummarizes the CINE parameters per volunteer. 

All images were analysed using the software Segment, version 

.2R7052 ( http://segment.heiberg.se ) [22] . The delineations of en- 

ocardium and epicardium from end-diastolic images were per- 

ormed by an experienced reviewer. The real MR dataset consisted 

f 99 images in total (30 apical images, 57 mid-ventricular images 

nd 12 basal images). End-systolic, short-axis, cardiac MR-images 

ere also acquired but were not used in this study because the 

im was to demonstrate using simulated datasets instead of real 

atasets for training NNs rather than a new segmentation method 

er se. 

Preprocessing was also performed on all real MR-images that 

ere used as inputs to the NN (training, validation and test 

atasets). In cases where the size of the acquired MR-images was 

ifferent than 192 × 144 pixels, zero-padding or cropping was per- 

ormed. These images were cropped at a size of 144 × 144 pixels 

hereas special care was taken to ensure that the LV center was 

lways at the center of the image. The images were then scaled at 

 size of 195 × 195 pixels and, last, a square 100 × 100 pixels was

ropped at the center of each scaled image. 

. Experiments 

.1. Mid-ventricular slices only 

In order to investigate the effect that the quality of the artifi- 

ial training dataset had on NN performance, 6 different configura- 

ions were applied, as described below, for generating the artificial 

raining dataset from the mid-ventricular slices of the first dataset 

nly (normal anatomy of myocardial tissue) whereas the NN per- 

ormance was evaluated on the healthy volunteers’ mid-ventricular 

mages only. The size of the training dataset was 216 images. 

In particular, the entire dataset of the mid-ventricular im- 

ges that underwent through all the different scales (165 × 165, 

80 × 180 and 195 × 195 pixels, 216 total images) was initially 

repared with a 2-D Gaussian smoothing kernel with a standard 
4 
eviation of 0.9 and then further examined for all the combina- 

ions of noise on the simulated MR signal (no noise, Gaussian dis- 

ributed noise with standard deviation equal to 25 and Gaussian 

istributed noise with standard deviation equal to 40) and contrast 

mprovement (unchanged contrast vs. contrast increased through 

he saturation of the bottom 1% and the top 1% of all pixel values). 

The six different configurations were the following: 

1. Noise00 without noise and without contrast improvement 

2. Noise00_ci without noise and with contrast improvement (_ci) 

3. Noise25 with gaussian distributed noise with standard devia- 

tion equal to 25 and without contrast improvement 

4. Noise25_ci with gaussian distributed noise with standard devi- 

ation equal to 25 and with contrast improvement (_ci) 

5. Noise40 with gaussian distributed noise with standard devia- 

tion equal to 40 and without contrast improvement 

6. Noise40_ci with gaussian distributed noise with standard devi- 

ation equal to 40 with contrast improvement (_ci) 

Moreover, to further investigate the effect that the augmenta- 

ion of the artificial training dataset had on NN performance, the 

forementioned 6 different configurations were also applied for 

enerating the artificial MR-images from the mid-ventricular slices 

nly of the first (normal anatomy of myocardial tissue) and the 

econd (pathological reduced myocardial thickness at the apex of 

he left ventricle) dataset whereas the NN performance was eval- 

ated on the healthy volunteers’ mid-ventricular images only. The 

ize of the training dataset was 432 images 

Last, real MR-images (extracted from the pool of the healthy 

olunteers’ mid-ventricular acquisitions) were added into the ar- 

ificial training dataset and the performance of the NN was re- 

ssessed on the healthy volunteers’ remaining mid-ventricular im- 

ges. The incorporation was performed under a 90%-10% and 80%- 

0% configuration, where the 90% and 80% represented the propor- 

ion of the simulated MR-images in the training dataset whereas 

he 10% and 20% represented the proportion of the real MR-images 

n the training dataset. In these experiments, the simulated MR- 

mages were generated using all the mid-ventricular slices of the 

rst dataset (normal anatomy of myocardial tissue) that underwent 

hrough all the different scales, Gaussian distributed noise with 

tandard deviation equal to 25 and 40, gauss filtering with stan- 

ard deviations of 0.9 and contrast improvement (unchanged con- 

rast and contrast increased through the saturation of the bottom 

% and the top 1% of all pixel values). 

The 90%-10% configuration consisted of 159 artificial MR-images 

nd the real mid-ventricular MR-images from 3 healthy volunteers 

19 MR-images) whereas the 80%-20% configuration consisted of 

59 artificial MR-images and the real mid-ventricular MR-images 

rom 6 healthy volunteers (41 MR-images). For comparison pur- 

oses, training of the NN was also performed on the 159 artificial 

R-images only. The assessment of the NN performance was per- 

ormed on the remaining 16 real mid-ventricular MR-images ac- 

uired from the remaining 2 healthy volunteers and remained the 

ame across the different experiments. 

http://segment.heiberg.se
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Table 2 

Details of the six different experiments that involved trainings on the publicly available dataset and tests on the healthy volunteer’s real MR-images. LV: Left-ventricle. 

Training (publicly available dataset) 

Size of training 

dataset Testing (eight healthy volunteers) 

Size of test 

dataset 

Mid-ventricular 

slices only 

Mid-ventricular only, entire population, end-diastolic 

images 

187 Mid-ventricular MR-images 57 

Mid-ventricular only, normal subjects only, 

end-diastolic images 

34 Mid-ventricular MR-images 57 

Mid-ventricular only, 159 randomly selected images 

from the entire population, end-diastolic images 

159 On the remaining 18 real mid-ventricular 

MR-images (see 90%-10% and 80%-10% experiments 

for mid-ventricular images only) 

18 

Entire LV volume Entire LV volume, entire population, end-diastolic 

images 

420 Entire LV volume images 99 

Entire LV volume, normal subjects only, end-diastolic 

images 

78 Entire LV volume images 99 

Entire LV volume, 279 randomly selected images 

from the entire population, end-diastolic images 

279 On the remaining 28 real MR-images of the entire 

LV volume (see 90%-10% and 80%-10% experiments 

for entire LV volume) 

28 
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.2. All slices covering the entire LV volume 

In order to assess the performance of the NN on short-axis MR- 

mages that covered the entire LV volume, training of the NN was 

erformed on the simulated MR-images that were generated using 

ll slices of the first dataset (normal anatomy of myocardial tissue) 

hat underwent 1) through all the different scales, Gaussian dis- 

ributed noise with standard deviation equal to 25, gauss filtering 

ith standard deviations of 0.9 and no contrast improvement, and 

) through all the different scales, Gaussian distributed noise with 

tandard deviation equal to 40, gauss filtering with standard devi- 

tions of 0.9 and contrast improvement through the saturation of 

he bottom 1% and the top 1% of all pixel values. The size of each

raining dataset was 279 artificial MR-images. 

Moreover, real MR-images (extracted from the pool of the 

ealthy volunteers’ acquisitions) were added into the previously- 

reated artificial training datasets under a 90%-10% and 80%-20% 

onfiguration. The 90%-10% configuration consisted of 279 artificial 

R-images and 31 real MR-images (12 apical, 12 mid-ventricular 

nd 7 basal MR-images) whereas the 80%-20% configuration con- 

isted of 279 artificial MR-images and 71 real MR-images (16 api- 

al, 48 mid-ventricular and 7 basal MR-images). For comparison 

urposes, training of the NN was also performed on the 279 arti- 

cial MR-images only. Last, training of the NN with only the 71 

eal MR-images (16 apical, 48 mid-ventricular and 7 basal MR- 

mages) from the 80%-20% configuration was performed for com- 

arison purposes as well. 

The assessment of the NN performance was performed on the 

emaining 28 real MR-images acquired from the healthy volunteers 

14 apical, 9 mid-ventricular and 5 basal MR-images) and remained 

he same across the different experiments. 

.3. Publicly available dataset 

One publicly available annotated dataset (Sunnybrook dataset) 

f short-axis MR-images [23] was utilized in this study in order to 

ssess the performance of the NN on images that were acquired 

hrough the regular and most resource-demanding approach. The 

ublicly available dataset consisted of 420 end-diastolic, short- 

xis images acquired from a mixed group (n = 45, 32 men, 13 

omen, age 61 ±15 years) of normal subjects (n = 9, 6 men, 3 

omen, age 60 ±18 years) and patients with hypertrophy (n = 12, 

 men, 5 women, age 58 ±14 years), patients with heart failure 

ith infarction (n = 12, 11 men, 1 woman, age 61 ±12 years) and

atients with heart failure without infarction (n = 12, 8 men, 4 

omen, age 65 ±17 years). The images were acquired from a 1.5T 

E Signa MRI system with a cine, SSFP based pulse sequence (slice 

hickness = 8mm, slice gap = 8mm, FOV = 320 × 320 mm and matrix- 
5 
ize = 256 × 256) whereas delineations of the endocardium and 

picardium were drawn and confirmed by two experienced car- 

iologists. End-systolic, short-axis, cardiac MR-images were also 

vailable in this publicly available dataset but were not used in 

his study because the aim was to demonstrate using simulated 

atasets instead of real datasets for training NNs rather than a new 

egmentation method per se. 

The publicly available dataset was utilized as the training 

ataset so as to assess the performance of the NN that was trained 

n a dataset acquired under a different configuration than the one 

sed for the acquisition of the test dataset. Therefore, six differ- 

nt trainings on the publicly available dataset and tests on the 

ealthy volunteer’s data were performed in this study and com- 

ared against the relevant experiments that involved artificial MR- 

mages. Table 2 presents the details of these six different experi- 

ents. 

. Results 

Fig. 3 presents simulated short-axis MR-images covering the en- 

ire LV that were generated from the coreMRI simulation platform 

sing the XCAT anatomical model and the single-shot bSSFP pulse 

equence. Fig. 4 shows the same mid-ventricular, short-axis, artifi- 

ial MR image for different combinations of noise on the simulated 

R signal, gauss filtering and contrast improvement. 

.1. Mid-ventricular slices only 

Table 3 shows the performance of the NN in terms of delineat- 

ng the LV endocardium and epicardium in mid-ventricular slices 

cquired from 8 healthy volunteers. The NN was trained on 100% 

imulated images. 

First, out of the 6 different trainings on normal anatomy alone, 

he configurations Noise25_ci and Noise40_ci (bold typeface in 

ines 4 and 6 of Table 3 ) yielded the best combined performance. 

he configuration Noise40_ci also yielded the best performance for 

elineating the LV endocardium (DICE index 94%) whereas the con- 

guration Noise25 (line 3 in Table 3 ) yielded the best performance 

DICE index 90%) in delineating the LV epicardium. 

Second, out of the 6 different trainings on normal anatomy and 

athologically reduced myocardial thickness at the apex of the left 

entricle, the configuration Noise25 (line 3 at Table 3 ) yielded the 

est performance in delineating both the LV endocardium and epi- 

ardium (93% DICE index for endocardium and 90% DICE index for 

picardium). 

The corresponding performance (DICE index) of the NN when 

rained on the mid-ventricular MR-images of the entire population 

healthy and patients, 187 images) of the publicly available dataset 



C.G. Xanthis, D. Filos, K. Haris et al. Computer Methods and Programs in Biomedicine xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: COMM [m5G; November 4, 2020;20:33 ] 

Fig. 3. Simulated short-axis MR-images covering the entire LV volume for three different scale factors. The first row presents the simulated short-axis MR-images that were 

scaled up to a size of 165 × 165, the second row presents the same simulated short-axis MR-images that were scaled up to a size of 180 × 180 and the third row presents 

the same simulated short-axis MR-images that were scaled up to a size of 195 × 195. 

Fig. 4. A simulated, mid-ventricular, short-axis, MR image for different combinations of noise on the simulated MR signal (no noise, Gaussian distributed noise with zero 

mean and standard deviation equal to 25, and with Gaussian distributed noise with zero mean and standard deviation equal to 40), gauss filtering (2-D Gaussian smoothing 

kernel with standard deviations of 0.6, 0.7, 0.8, 0.9 and 1) and contrast improvement. 

Table 3 

NN trained 100% on simulated MR-images: performance on delineating the LV endocardium and epicardium in the mid-ventricular images acquired from 8 healthy volunteers. 

Training was performed a) on normal anatomy a.k.a. first dataset and b) on normal anatomy as well as on pathological reduced myocardial thickness at the apex of the 

LV a.k.a. second dataset. All experiments in this table refer to configurations of images with all scales (165 × 165, 180 × 180 and 195 × 195 pixels) and a 2-D Gaussian 

smoothing kernel with a standard deviation of 0.9. The experiments in bold represent the best performing configurations ( 3 , 4 and 6 ). The corresponding DICE indexes 

of the NN were 93% (endocardium) and 91% (epicardium) when trained on the mid-ventricular MR-images of the entire population of the publicly available dataset and 

10% (endocardium) and 15% (epicardium) when trained on the mid-ventricular MR-images of the healthy subjects alone. HD: Hausdorff Distance; endo: endocardium; epi: 

epicardium; SD: standard-deviation. 

Normal anatomy training (216 images) Normal and abnormal anatomy training (432 images) 

DICE endo (%) DICE epi (%) HD endo HD epi DICE endo (%) DICE epi (%) HD endo HD epi Nr. Experiment Noise SD 

Contrast 

improvement 

1 Noise00 0 No 90 80 4.46 12.4 92 86 3.77 10.78 

2 Noise00_ci 0 Yes 91 84 4.2 12.08 89 87 4.83 11.4 

3 Noise25 25 No 86 90 5.65 8.51 93 90 2.98 7.59 

4 Noise25_ci 25 Yes 93 87 3.43 9.19 87 85 5.47 11.53 

5 Noise40 40 No 87 88 5.44 9.27 92 85 4.17 11.33 

6 Noise40_ci 40 Yes 94 86 2.88 11.4 92 87 3.57 10.44 

6 
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Table 4 

NN trained with a mix of simulated MR-images and real images: performance on delineating the LV endocardium and epicardium in the mid-ventricular images acquired 

from 2 healthy volunteers. All experiments in this table refer to configurations of images with all scales (165 × 165, 180 × 180 and 195 × 195 pixels) and a 2-D Gaussian 

smoothing kernel with a standard deviation of 0.9. The experiment in bold represents the best performing solution. The corresponding DICE indexes of the NN were 96% 

(endocardium) and 94% (epicardium) when the NN was trained on 159 randomly selected mid-ventricular images from the entire population (healthy and patients) of the 

publicly available dataset. HD: Hausdorff Distance; endo: endocardium; epi: epicardium; SD: standard-deviation; mid: mid-ventricular. 

Nr. Experiment 

Noise 

SD 

Contrast 

improvement 

Simulated 

vs Real 

Short-axis 

slices 

Size training 

dataset 

Size artificial 

dataset 

Size real 

dataset 

DICE 

endo (%) 

DICE 

epi (%) 

HD 

endo 

HD 

epi 

1 Noise25_8020 25 No 80%-20% Mid 200 159 Mid: 39 97 97 1.55 2.11 

2 Noise40_ci_8020 40 Yes 80%-20% Mid 200 159 Mid: 39 97 97 1.59 1.86 

3 Noise25_9010 25 No 90%-10% Mid 178 159 Mid: 18 97 95 1.74 2.91 

4 Noise40_ci_9010 40 Yes 90%-10% Mid 178 159 Mid: 18 96 95 1.6 1.99 

5 Noise25_sim 25 No 100%-0% Mid 159 159 0 87 90 6.81 9.98 

6 Noise40_ci_sim 40 Yes 100%-0% Mid 159 159 0 87 90 6.61 7.39 

Table 5 

Performance of the NN for delineating the LV endocardium and LV epicardium in real short-axis images that covered the entire LV volume (test dataset: 28 images) when 

trained with different mixes of simulated and real MR-images. The experiment in bold represents the best performing solution (line 1). The corresponding DICE indexes 

of the NN were 78% (for both endocardium and epicardium) when the NN was trained with 71 in-vivo MR-images from the dataset of the 8 healthy volunteers and 83% 

(endocardium) and 81% (epicardium) when trained on 279 randomly selected real images (from the entire LV volume) from the entire population (healthy and patients) 

of the publicly available dataset. LV: Left-ventricle; Mid: mid-ventricular; Ap: Apical; B: Basal; HD: Hausdorff Distance; endo: endocardium; epi: epicardium; SD: standard- 

deviation. 

Nr. Experiment 

Noise 

SD 

Contrast 

improvement 

Simulated 

vs Real 

Short-axis 

slices 

Size training 

dataset 

Size artificial 

dataset Size real dataset 

DICE 

endo (%) 

DICE 

epi (%) 

HD 

endo 

HD 

epi 

1 Noise25_8020 25 No 80%-20% Entire LV 350 279 Mid: 48, Ap: 16, B: 7 85 86 4.23 5.07 

2 Noise40_ci_8020 40 Yes 80%-20% Entire LV 350 279 Mid: 48, Ap: 16, B: 7 83 88 4.94 4.66 

3 Noise25_9010 25 No 90%-10% Entire LV 310 279 Mid: 12, Ap: 12, B: 7 82 84 5.57 6.68 

4 Noise40_ci_9010 40 Yes 90%-10% Entire LV 310 279 Mid: 12, Ap: 12, B: 7 83 84 6.72 7.22 

5 Noise25_sim 25 No 100%-0% Entire LV 279 279 0 59 47 18.68 23.44 

6 Noise40_ci_sim 40 Yes 100%-0% Entire LV 279 279 0 67 49 11.59 21.45 

7 In-vivo images (72% of 

all images from 8 

healthy volunteers) 

- - In-vivo Entire LV 71 0 Mid: 48, Ap: 16, B: 7 78 78 7.01 10.69 
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g

n

as 93% and 91% for endocardium and epicardium respectively. 

hen trained on the mid-ventricular MR-images of the healthy 

ubjects alone (34 images) the performance dropped down to 10% 

nd 15% for endocardium and epicardium, respectively. 

Table 4 shows the performance of the NN in delineating the 

V endocardium and LV epicardium in mid-ventricular images (16 

mages) acquired from two volunteers. Training of the NN was per- 

ormed with a different mix of simulated and real MR-images. The 

ddition of 10% real MR-images to the 159 simulated images used 

or training helped raise the performance to 97% (DICE) for endo- 

ardium and 95% (DICE) for epicardium (lines 3 and 4 in Table 4 ).

imilar to the aforementioned performance was obtained when the 

N was trained on 159 randomly selected mid-ventricular images 

rom the entire population (healthy and patients) of the publicly 

vailable dataset and tested on the same 16 mid-ventricular im- 

ges of the two healthy volunteers (96% and 94% for endocardium 

nd epicardium respectively). Section ”Tables 4 and 5 plots” in Ap- 

endix presents plots of DICE and Hausdorff scores for the experi- 

ents presented in Table 4 . 

.2. All slices covering the entire LV volume 

Table 5 shows the performance of the NN in delineating the 

V endocardium and LV epicardium in the real short-axis images 

hat cover the entire LV from base to apex (test dataset: 28 im- 

ges) for different mixes of simulated and real MR-images in the 

raining dataset. An addition of 10% real MR-images in the artificial 

raining dataset (lines 3 and 4 in Table 5 ) yielded a performance of

3% and 84% (DICE index) for endocardium and epicardium respec- 

ively. The addition of 20% real MR-images in the artificial train- 

ng dataset (lines 1 and 2 at Table 5 ) yielded a performance of

5% and 88% (DICE index) for endocardium and epicardium, re- 

pectively. With 0% real MR-images added to the artificial training 

ataset the performance of the NN was only 67% and 49% for en- 
7 
ocardium and epicardium respectively (line 6 at Table 5 ). Typical 

esults of the performance of the NN (for experiment 1 in Table 5 )

n real MR-images acquired from 8 healthy volunteers are shown 

n Fig. 5 . Last, when the NN was trained with 71 in-vivo MR-images 

rom the dataset of the 8 healthy volunteers (corresponding to 72% 

f the total images acquired from this population) then the perfor- 

ance was 78% (DICE index) for both endocardium and epicardium 

line 7 at Table 5 ). 

The corresponding performance (DICE index) of the NN that 

as trained on 279 randomly selected real images (from the en- 

ire LV volume) from the entire population (healthy and patients) 

f the publicly available dataset and tested on the same 28 images 

s above (entire LV volume) of the eight healthy volunteers dataset 

as 83% and 81% for endocardium and epicardium respectively. 

Section ”Tables 4 and 5 plots” in Appendix presents plots 

f DICE and Hausdorff scores for the experiments presented in 

able 5 . 

Moreover, the training of the NN on all short-axis, end-diastolic, 

R-images (entire LV volume) from the entire population (healthy 

nd patients, 420 images) of the publicly available dataset resulted 

n a performance of 86% (DICE index) for the delineation of both 

he endocardium and epicardium in the dataset of 28 images of 

he eight healthy volunteers. The corresponding performance of 

he NN that was trained on all short-axis, end-diastolic, MR-images 

entire LV volume) from the healthy subjects only (78 images) was 

2% and 71% for the delineation of endocardium and epicardium, 

espectively. 

.3. Discussion 

This study demonstrated the first application of a simulator for 

enerating datasets for use in training with supervised ML tech- 

iques. In particular, a physics simulator was used to generate 
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Fig. 5. Typical delineations on real MR-images acquired from the population of eight healthy volunteers. The top row presents the delineations of the endocardium whereas 

the bottom row presents the corresponding delineations of the epicardium. Red contours indicate ground truth whereas green contours indicate the predictions given by the 

NN. The NN was trained with a 20% addition of real MR-images in the artificial training dataset (experiment Noise25_8020, line 1 at Table 5 ). 
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ardiac MR images for training neural networks in myocardial seg- 

entation. 

In this study, the 4D-XCAT anatomical model [13] was used 

ith the coreMRI simulation platform ( www.coremri.org ) [14] for 

enerating artificial MR-images. Artificial datasets of short-axis 

R-images were generated and utilized for training a fully convo- 

utional neural-network in order to automatic delineate the endo- 

ardium and the epicardium of the LV. A set of several different pa- 

ameters for generating artificial images was utilized and the per- 

ormance of the neural-network was assessed on real MR-images 

cquired from eight healthy volunteers. For comparison purposes, 

he neural-network was also trained on real MR-images from a 

ublicly available dataset and its performance was assessed on the 

ame healthy volunteers’ data. 

The proposed solution showed that a dataset of simulated 

R-images has the potential to substitute datasets of real MR- 

mages for training a NN for automatic LV segmentation. The re- 

earch community has long recognized more technical difficul- 

ies in the segmentation of basal and apical slices compared to 

id-ventricular slices [ 20 , 24 , 25 ]. For this reason, two series of ex-

eriments were performed in this study. Experiments with mid- 

entricular only slices were initially performed to evaluate the 

erformance of the proposed solution against conventional ap- 

roaches on a simpler framework. The proposed solution demon- 

trated a performance of 94% DICE (endocardium) and 90% DICE 

epicardium) in real mid-ventricular slices, whereas a 10% addi- 

ion of real MR-images in the artificial training dataset demon- 

trated a performance of 97% DICE (endocardium) and 95% DICE 

epicardium). The corresponding performance of the NN that was 

rained on the mid-ventricular MR-images of a publicly available 

ataset was 96% and 94% for endocardium and epicardium, respec- 

ively. In the set of more advanced experiments that cover the en- 

ire LV, the highest performance was achieved under the 80%-20% 

onfiguration and was equal to 85% and 88% (DICE index) for the 

elineations of endocardium and epicardium, respectively, in real 

hort-axis images covering the entire LV volume. The correspond- 

ng performance of the NN that was trained on the entire publicly 

vailable dataset was 86% for the delineations of both endocardium 

nd epicardium. Last, the performance of the NN that was trained 

n 71 in-vivo MR-images from the dataset of the 8 healthy volun- 

eers was 78% DICE for both endocardium and epicardium whereas 

he corresponding performance of the NN with the addition of 279 

imulated images went up to 85% and 88% DICE, respectively. 

Despite the high performance achieved in this study with the 

roposed approach, the lower performance of the NN for delineat- 
8 
ng the entire LV volume could be associated to the fuzzy bound- 

ries in basal and apical slices that could have a negative influence 

n the segmentation accuracy in these locations. However, a sim- 

lar performance drop was observed using the publicly available 

ataset for training the NN suggesting that this was not a lim- 

tation of the proposed approach. Although these technical chal- 

enges in LV segmentation have long been recognized by the re- 

earch community [ 20 , 24 , 25 ], the lower performance could also 

e associated to the level of realism that the selected simulation 

odel exhibited in these anatomical locations. This limitation may 

e due to the low number of available tissue types within the com- 

uter model but also to the selected magnetic properties of the 

vailable tissue types due to lack of measurements in the litera- 

ure. Moreover, the proposed simulation framework is highly de- 

endent on a prior knowledge of the characteristics of the real MR 

xperiment (from magnetic properties of the tissues to the applied 

oise level on the simulated signal). Any deviation of the simula- 

ion model from real conditions may affect the performance of the 

roposed solution. Last, the different orientation of the simulated 

R-images compared to the real MR-images could be considered 

s a limitation of the current study that could adversely affect the 

erformance of the NN [26] . 

This study showed that the generation of an artificial dataset 

or training a NN is a cost-effective solution that has the potential 

o outperform the traditional approach of acquiring real MR data 

rom healthy volunteers and patients. In the field of LV segmenta- 

ion, the proposed solution outperformed the utilization of a pub- 

icly available dataset that was acquired from 45 subjects (healthy 

ubjects and patients) and required the availability of MR scanners, 

echnologists and radiologists. Compared to this conventional ap- 

roach, the proposed solution could generate the artificial dataset 

nd the corresponding delineations within a couple of hours on 

 single-GPU computer on the cloud. Moreover, the high perfor- 

ance achieved in this study could be attributed to the generation 

f the artificial dataset using a similar pulse sequence design as the 

ne used for the acquisition of the real test dataset from healthy 

olunteers. The use of representative training datasets has become 

 necessity for achieving high performance in NN, however, this 

ption remains today costly, resource intensive and may not al- 

ays be available. The suggested methodology provides a flexible 

olution that allows the generation of training datasets for mul- 

iple variations of both the imaging protocol and the computer 

odel, which is not easy today with a real MRI experiment con- 

guration (MRI system, patient recruitment, etc.). In addition, the 

igitized and highly-customizable nature of the anatomical model 

http://www.coremri.org
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llows for the concurrent production of well-annotated data in the 

orm of tissue masks. The annotation of the artificial data is al- 

ays objective and depicts the real tissue characteristics without 

eing affected by various factors that may deteriorate the quality 

f the medical image, such as noise, limited spatial and tempo- 

al resolution due to the pulse sequence design, etc. The automatic 

eneration of well-annotated tissue masks may also aid in training 

ecurrent NNs that utilize temporal information from images ac- 

uired at different phases along the cardiac cycle [27] . Moreover, 

ariants where noise and the presence of other artifacts that can 

ake the data look close to real can easily be accommodated. Last, 

ompared to publicly available datasets, the current work proposes 

n alternative approach on the effort needed today to setup public 

atabases of reliable data. Advanced MR simulations can help in 

imiting the number of datasets needed to be made available pub- 

icly in such databases. Also, they could potentially help in cases 

here data are hard to come by or are not easily sharable due to 

egulatory issues. Moreover, when sharing such real data, it is most 

f the times difficult to also keep track of the particular protocols 

hat were used to acquire the images, which is important in de- 

ermining image characteristics in MR. The datasets from MRI sim- 

lations could potentially reduce the effort needed for setting up 

ublicly available datasets or provide an additional value to them. 

ith the proposed solution, the training sets can be produced 

aster and easier, without the use of a real MRI scanner, without 

canning patients and without requiring expensive specialized per- 

onnel (such as technologists for running the MR scanner, radiol- 

gists for evaluating the MR-images or data scientists to properly 

abel publicly available data). Even in cases of more advanced MR 

pplications where the incorporation of real data may be beneficial 

such as the cases of basal and apical LV segmentation presented 

n this study), this study suggests that the use of less subjects and 

ersonnel-effort within the proposed framework may achieve the 

ame or even better performance compared to the sole use of real 

ata ( Table 5 ). 

The contribution of this work in the field of MR image synthe- 

is can be summarized as follows: 1) Realistic simulated MR data : 

he suggested method allows for the generation of training 

atasets through a realistic simulation framework. Such a sim- 

lation approach is as close as possible to a real MR experi- 

ent since it integrates realistic aspects of the MRI experiment 

rom signal generation to image formation and solves the en- 

ire complex problem for densely spaced isochromats and for a 

ensely spaced time axis. Other available simulation frameworks 

28] are based on approximations via signal equations whereas ba- 

ic and more complex artifacts cannot be taken into account. 2) 

igh simulation performance : The publicly available, cloud-based 

nd GPU-based simulation framework allows for the generation 

f artificial datasets and their corresponding delineations within 

 few hours. Others available solutions [ 17 , 18 , 29 , 30 ] may require

urchase of advanced computer systems, advanced setup of a com- 

uter cluster, advanced technical knowledge, and the ability to 

odify the source code. 3) Well-annotated data : The digitized and 

ighly-customizable nature of the anatomical model allows for the 

oncurrent, automatic production of well-annotated data in the 

orm of tissue masks. While other solutions that involve neural 

tyle transfer [ 31 , 32 ] may generate realistic MR images, the corre-

ponding tissues masks may not follow the generated anatomy due 

o geometric distortions introduced in the target generated image 

y the style transfer mechanism [33] . 

In the field of MR image synthesis, the utilization of statistical 

tlases [11] could be considered as an alternative to the approach 

roposed in the current study. Statistical atlases are more accu- 

ate in the representation of a population than models built on a 

ingle subject or based on analytical expressions of general knowl- 

dge. Moreover, the synthesis of artificial images is usually accom- 
9 
anied by the generation of well-annotated tissue masks. However, 

n the field of MRI, representative statistical atlases usually require 

he availability of thousands of real MR images and an increased 

mount of manual intervention [11] whereas their synthetic im- 

ges are usually confined to the same type of MR images as the 

nes used for the structure of the statistical atlas and cannot be 

eneralized. On the other hand, the utilization of a representa- 

ive statistical atlas as the main anatomical model in the proposed 

ramework could yield more representative MR images. This could 

e a topic of further research in the future. In a similar manner, 

imulated MR images could be combined with real MR images in 

 style-transfer process to generate more realistic synthetic MR im- 

ges. Preliminary results of the utilization of a GAN framework are 

resented in Section “GAN framework” in Appendix. 

The work presented here is a proof-of-concept study that 

dds on the research that other groups have recently performed 

n medical image simulations and synthesis [34] . This proof-of- 

oncept study suggests that a low-cost solution for the generation 

f artificial training datasets for supervised learning techniques is 

easible in the field of MR by means of cloud-based and GPU- 

ased, advanced MR simulations on a realistic computer model of 

he human anatomy. The proposed framework could be applied in 

ther segmentation-related MR applications (such as MRI segmen- 

ation for tumor volume measurements, MRI segmentation of the 

uman brain, etc.) [ 35 , 36 ] but also in more advanced medical ap-

lications that require the synthesis of medical images from one 

maging modality to another [ 37 , 38 ]. 

This study does not intent to become another automatic LV seg- 

entation method but mainly aims on showing how existing NNs 

n several other MR image processing methods may be utilized 

ithout acquiring real MR data or without using publicly available 

mall benchmark datasets that may not be representative to the 

orresponding test dataset in terms of image quality and charac- 

eristics. Future work within the proposed framework should in- 

olve the development and incorporation of more advanced com- 

uter models that simulate pathological cases and specific dis- 

ases. Moreover, future work should also aim in the incorporation 

f different types of image artifacts that have been covered exten- 

ively in previous studies [ 14 , 17 , 18 , 39 ] so as more realistic artificial

R images to be generated and cover a wider spectrum of MR ap- 

lications. We hope that this work will change the way training 

atasets are generated and inspire follow-up studies with applica- 

ions in patients and specific diseases. 

. Conclusions 

This study presented an alternative solution to the limitations 

ncountered today in generating training datasets that are used 

n supervised learning techniques in MRI. Nowadays, the lack of 

arge training sets does not allow for the development of ad- 

anced supervised ML techniques, whereas the availability of non- 

epresentative training sets may delay the application of these 

echniques in clinical practice. The proposed solution creates artifi- 

ial training datasets through the application of advanced MR sim- 

lations on a realistic computer model of human anatomy without 

he use of a real MRI scanner, without scanning patients and with- 

ut using expensive personnel (such as technologists, radiologists 

nd data scientists). 
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The study was approved by the Regional ethics committee and 
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