

Preparation and Application of Floating Chitosan and TiO₂-Graphene Oxide Based Photocatalysts for the Degradation of Antibiotic Drug Mixture Under Simulated Solar Irradiation

Anastasia Koltsakidou, Anna Ofrydopoulou, Myrsini Papageorgiou, Dimitra A. Lambropoulou

Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece, E-Mail: dlambro@chem.auth.gr

Introduction

 TiO_2 is characterized by low quantum efficiency and wide band gap (3.0-3.2 eV, located at the ultraviolet (UV) wavelength range), resulting to limited performance under visible light, which reflects the highest percent of solar irradiation. Graphene oxide (GO) has been also used to extend the visible light response and improve the photocatalytic activity of the TiO₂ materials. as a promising support. Additionally, using chitosan as a carrier for TiO_2 , chitosan-supported TiO_2 (CS-TiO₂) adsorbent has exhibited multifunctional performance for enhancing the adsorption-photocatalytic process of organic pollutants. Floating TiO₂ photocatalysts have also gained attention lately. Floatable photocatalyst can maximize the illumination/light utilization processes, especially in a system using solar irradiation. Under this light, the main goal of this study was the preparation and characterization of novel floating nanocomposite photocatalysts based on CS, TiO₂ and GO at different concentrations of TiO₂/GO in CS. The novel photocatalysts were applied under simulated solar light irradiation at the potocatalytic degradation of an antibiotic drug mixture, since the occurrence of this group of pharmaceuticals in the environment pose a large threat, due to their biological activity.

Experimental

Photocatalyst synthesis

Nanocomposite catalysts based on CS, TiO₂- *experiments* P25 and GO were prepared with the solution Photocatalytic mixing method. The amount of GO in each simulated solar irradiation were carried phocatalyst was 20 % of the weight of TiO_2 . out in a solar simulator Atlas Suntest Briefly, a proper amount of CS was dissolved CPS+ (Germany). Illumination was in an aquatic solution of 2% v/v CH_3COOH provided with a xenon lamp (1.5 kW) at followed by the addition of a predetermined an irradiance of 700 W m⁻². Irradiation amount of GO. The mixture was stirred and experiments were performed using a sonicated for 1 h to achieve good dispersion. Pyrex glass reactor containing 50mL of After that, TiO₂ was also added in the mixture aqueous solutions, at $\lg L^{-1}$ catalyst and was stirred and sonicated for 1 more hour. while the pH was the inherent of The mixture containing CS, TiO_2 and GO was ultrapure water, approximately 6. consequently stirred for 1 h, and finally it was precipitated in acetone, filtered and washed with deionized The final water. nanocomposites were freeze dried for the

solvent.

concentrations of TiO_2/GO in CS were 5, 10, 15

the

removal of

and 20 wt%.

Photocatalytic degradation

experiments under

Results

FT-IR spectrum

Sample	CS	TiO ₂	GO
	(g)	(g)	(g)
CS/TiO_2 -GO 5%	1.9	0.08	0.02
CS/TiO_2 -GO 10%	1.8	0.16	0.04
CS/TiO_2 -GO 15%	1.7	0.24	0.06
CS/TiO_2 -GO 20%	1.6	0.32	0.08

* Composites exhibited diffraction peaks only ascribed to P25, which contained both anatase and rutile. The absence of the diffraction peak of GO suggests its full exfoliation in the CS matrix due to the sonication process that helps expand and separate the GO layers.

The

final

* The peaks at 1658 cm⁻¹ and 1595 cm⁻¹ that are due to the vibrations of NH₂ groups of CS shift to smaller wavenumbers in the nanocomposites and that shift is usually observed after the formation of hydrogen bonds between polymeric matrices and nanofillers. The hydroxyl groups of TiO₂ as well as the hydroxyl, carboxyl and epoxide groups of GO have the ability to bond with the hydroxyl and amino groups of CS.

Conclusions

- \checkmark All the synthesized materials maintained the photocatalytic properties of TiO₂
- \checkmark The mixture of selected antibiotics (1 mg/L of each) were almost completely eliminated in 360 min (except for sulfomethoxazole), under simulated solar irradiation, for 1 g/L of all the studied materials.
- \checkmark An increase at the photocatalytic rate of antibiotics was observed at higher concentrations of TiO_2/GO in CS.
- \checkmark However, at higher concentrations of TiO₂/GO, the hydrophilicity of the materials increases, leading to possible decomposition.

Degradation kinetics for CS/TiO₂-GO 20%

References

* Haldorai, Yuvaraj, and Jae-Jin Shim. "Novel chitosan-TiO₂ nanohybrid: Preparation, antibacterial, and photocatalytic properties." *Polymer* Composites 35.2 (2014): 327-333.

- * Magalhaes, F., and R. M. Lago. "Floating photocatalysts based on TiO₂ grafted on expanded polystyrene beads for the solar degradation of dyes." Solar Energy 83.9 (2009): 1521 - 1526.
- * Ni, Lingfeng, et al. "Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible-light-mediated remediation of diesel-polluted surface water." Journal of Applied Polymer Science 133.19 (2016).
- * Huo, Pengwei, et al. "Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO₂ films with enhanced Rhodamine B photodecomposition activity." *Desalination* 256.1-3 (2010): 196-200.
- * Wang, Jingang, Bin He, and Xiang Z. Kong. "A study on the preparation of floating photocatalyst supported by hollow TiO₂ and its performance." Applied Surface Science 327 (2015): 406-412.
- * Xing, Zipeng, et al. "A floating porous crystalline TiO₂ ceramic with enhanced photocatalytic performance for wastewater decontamination." European Journal of Inorganic *Chemistry* 2013.13 (2013): 2411-2417.

Acknowledgments

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Program «Human Resources Development,

Education and Lifelong Learning 2014-2020» in the context of the project

"Antineoplastic Drugs and Antibiotics in the Aquatic Environment: Photocatalytic Degradation, Determination of Transformation Products, Toxicity and Antibiotic Resistance Study" (MIS 5004700).

Ευρωπαϊκή Ένωση European Social Fund

Operational Programme Human Resources Development, **Education and Lifelong Learning**

Co-financed by Greece and the European Union

