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Abstract—Caching at the edge of the radio network is increas-
ingly viewed as a promising countermeasure to the staggering
demand for mobile video content. The persistent orientation of
newer generations of mobile communication systems towards
lower latency and faster radio access speeds only strengthens
the arguments in its favor. When content caching is coordinated
with other radio resource management functions, in particular,
the benefits for the end users and the network operator are
significant. In this paper, we investigate these benefits in cache-
enabled small cell networks that jointly control (i) the Small-Cell
Base Stations (SBSs) that serve as network access points for the
mobile users; and (ii) the content that is stored at the SBS
co-located caches. Our main contribution is a fast-converging
computationally simple heuristic algorithm that iterates between
assigning users to small cells and content to SBS caches, to maxi-
mize the overall cache hit ratio. The algorithm solutions compete
with the optimal assignments at small problem instances and
outperform alternative solutions for larger instances, especially
when the content demand exhibits spatial locality. Combining
good performance with non-prohibitive complexity, the algorithm
could become a valuable tool for small cell network operators
seeking to optimize the use of radio network resources.

I. INTRODUCTION

Mobile network operators routinely respond to the growing
demand for mobile data with densifying the radio access
network. The deployment of various types of Small-cell Base
Stations (SBSs) is an expression of this strategy. On the
contrary, more disruptive is the proposal to add caches at the
SBSs, as a way to alleviate the resulting load of the radio
network backhaul links. The rationale behind this proposal,
which appears to be fully aligned with the promises for ultra-
low latency communications in 5G and beyond mobile cellular
networks, is straightforward: if the content stored at the SBS
co-located caches matches the demand of the users each time
associated with the cell, this demand will be served locally
alleviating the traffic load at the backhaul links.

In general, the network possesses two control mechanisms
in pursuit of this matching: content caching, determining
which content is stored at each cache, and user associations,
determining which cell each user is associated with. The two
mechanisms may be exercised over different time scales. For
instance, with online caches, the cache placement may be
reiterated upon each and every content item request by a
user. Alternatively, the cached content may be determined
periodically (e.g., every day or half a day) out of estimates for
the local content demand and remain fixed for the respective

interval of time. On the other hand, a new user association to
a small cell may let its cache intact or trigger changes that
budget for her individual content demand distribution.

In general, the more aggressively the network carries out
these control functions, the better the performance it can
achieve (smaller content access delay on the user side, of-
floading of mobile backhaul) at the expense of computational
resources. More recently, in light of the challenging network
capacity and latency targets advertised by 5G cellular net-
works [1], the wireless community has been investigating
scenarios of joint content caching and user association, where
the stored content across the SBS caches and the associations
of users to small cells are determined simultaneously.

Related work: Hence, in [2] the problem is formulated
as an one-to-many matching game between SBSs and users.
Users rank SBSs within range according to the radio signal
quality, SBSs rank users according to the volume of content
they can serve them from their cache, and an adaptation of
Shapley’s deferred acceptance algorithm [3] matches users
with cells. User content preferences are considered identical
and align with a single global Zipf distribution over the
content catalogue. On the contrary, the two studies in [4] and
[5] work with individual user content demand distributions
and decouple the joint problem. They both cluster the users
according to their content preferences, although they do not
clarify how these clusters are assigned to SBSs, in light of the
physical space constraints. Then, the cache placements in each
cell adapt to the users’ preferences through a reinforcement
learning algorithm in [4] and by leveraging the Named Data
Networking (NDN) technology in [5]. In [6], the problem
formulation is very similar to ours (ref. section III). The au-
thors resort to McCormick envelopes to linearize the objective
function and Lagrange partial relaxation to decompose the
original problem in three linear subproblems. It is not clear
whether and how they produce feasible solutions out of the
bounds the relaxation produces, while the complexity of the
solution technique is prohibitive except for very small problem
instances (e.g., two or three small cells and ∼10 users).

Our contributions: In our work, we revisit the joint content
caching and user association problem (JCAP)1, as this has

1Note the difference with the joint content caching and routing problem,
which has been more extensively studied in literature (e.g., [7] [8]). Thereby,
users are assumed to be simultaneously associated with all SBSs within range
and content items may be routed to them through different cells.



been implicitly or more explicitly formulated in [2], [4], [6].
Compared to [6], in our problem formulation, the objective
function draws on the cache hit ratio rather than the content
access delay (see section II). Then:

• We propose a heuristic algorithm for JCAP. The algorithm
iteratively determines which content to store in SBS
caches and which users to associate with small cells, by
alternately solving instances of the 0-1 Knapsack and the
Generalized Assignment problems, respectively.

• We assess the performance characteristics of this iterative
algorithm through a two-stage process. We first compare
the algorithm solutions against the optimal ones for toy
problem instances that can be solved optimally. Then,
we turn to larger problem instances and compare it with
two alternative heuristic algorithms under variable user
population, cache storage space and cell capacity. The
comparison is instructive about the sensitivity of the
algorithm to various system parameters.

In section II we present the system model we consider and
in section III we formalize the joint content caching and user
association problem. We develop our main contributions in
sections IV and V and conclude the paper in section VI.

II. SYSTEM MODEL

Our system model considers a set of SBSs and a Macro
Cell Base station (MBS) that together form a two-layer radio
access network. Each SBS can serve the set of mobile users
who lie within its range, whereas the MBS can serve the
users being within range of all SBSs. We assume that all the
SBSs are equipped with caches that can store content items
originally accessible through Content Provider platforms and
provide them to the users upon request.

Content Items: Let I be the catalogue of content items
that users demand. Content items may have different sizes
in bytes. We work with normalized sizes so that li denotes
the size of item i in multiples of the smallest item and lmax

is the ratio of the largest-to-smallest item. Replicas of each
content item i ∈ I may be stored in one or more SBS caches
depending on the actual caching decisions. One or more back
end server caches hold replicas of the full content catalogue
and can serve all those requests that cannot be served by the
small cell caches.

Cells, caches, users: Each SBS co-located cache c ∈ C
has finite storage, Lc, measured in multiples of the smallest
content item. At any point in time, each cache c stores a finite
set of files, referred to as the cache placement Pc.

Each user u ∈ U may be located within the range of a dif-
ferent subset of SBSs. We define as N (u) the “neighborhood”
of user u, i.e., the set of cells within communication range of
user u. At any point in time, each user can be associated
to only one SBS or the MBS. Users are characterized by
individual content preference distributions that express their
preferences over the catalogue content items. This distribution
can be extracted by relating the thematic categories users are
interested in with the thematic characterization of each item
(e.g., tags). In our work, we assume that the system is aware

of this distribution, i.e., each user u is described by a content
preference distribution, {pui, i ∈ I}, with

∑
i∈I

pui = 1. This

distribution is assumed to change much slower than the time
scale of user association events, so that it can be considered
fixed over multiple user association time epochs. Since the
content preferences change both spatially and temporally, the
network would need to maintain space- and time-dependent
characterizations (profiles) of user content preferences.

The number of users who can associate with an SBS is
bounded since the cell resources (bandwidth, transmission
power) are finite and associated users consume different parts
of these resources. For instance, a user at higher physical
distance from the SBS will typically demand higher transmis-
sion power on the SBS side for given minimum acceptable
transmission rate. Hence, we assume that an SBS incurs a
user-to-SBS specific association cost, buc, any time user u ∈ U
associates with SBS c ∈ C at minimum acceptable service rate.

In general, the aggregate user association cost for a small
cell c is a set function f : Uc −→ R over the set of users Uc

associated to the cell f and may be sub- or super-modular. In
this work, we assume that the user association cost is fixed
and f is additive, i.e., f(Uc ∪ u0) = f(Uc) + f(u0) =∑
u∈Uc

buc+bu0c. The number of users that an SBS can serve is

limited by the cell capacity Bc. Associating a user to an SBS
instead of the MBS benefits both the user, who gains access
to the locally cached content, and the network, which saves
macrocell resources. Hence, a user is associated to the MBS,
only when all SBS in the user’s “neighborhood” have reached
their capacity Bc and cannot serve more users.

III. THE JOINT CONTENT CACHING AND USER
ASSOCIATION PROBLEM

A. Problem formulation
The objective of the joint caching and association problem

(JCAP) is to maximize the total demand that can be satisfied
across all SBS caches. Let {xic} and {yuc} be sets of binary
variables, with xic = 1 if item i is stored at the cache of SBS
c, yuc = 1 if user u is associated with SBS c, and xic = 0 and
yuc = 0 in the opposite events, respectively. Then, the demand
that can be satisfied across all SBS caches can be written

Dhit =
∑
u∈U

∑
c∈Nu

∑
i∈I

puixicyuc (1)

The small cell network operator then, faces the following
maximization problem (P1), which we hereafter call the Joint
content Caching and user Association (JCA) problem:

max
x,y

Dhit (P1)

s.t.
∑
i∈I

xicli ≤ Lc, ∀c ∈ C (2)∑
u∈U

bucyuc ≤ Bc, ∀c ∈ C (3)∑
c∈N (u)

yuc ≤ 1, ∀u ∈ U , (4)

yuc, xic ∈ {0, 1}, u ∈ U , i ∈ I, c ∈ C (5)



Constraints (2) and (3) reflect the cache storage and cell ca-
pacity constraints for each small cell, respectively. Constraint
(4) captures the fact that users cannot associate with more than
a single SBS within their range. When yuc = 0, user u ends
up associated with the MBS and fetches all requested content
from the Content Provider caches.

The problem (P1) is an instance of bilinear programming, a
special class of non-convex quadratic programming. Showing
that it is NP-hard is trivial. It suffices to remark that when
we fix variables {xic}, we get the generalized-assignment
type problem first treated in [9]. This problem is equivalent
to the maximum Generalized Assignment Problem (GAP)2,
where SBSs correspond to agents (knapsacks) and users to
jobs (items) with agent-specific requirements {buc} and profits
{
∑
i∈I

xicpui}, c ∈ Nu. Since the maximum GAP is an NP-hard

problem, the generalization (P1) of its equivalent problem in
[9] is NP-hard as well.

B. Problem linearization

The objective function of (P1) is a weighted sum of bilinear
terms, i.e., products of binary variables. As a first step towards
solving it, we can linearize these products. For each pair of
variables (xic, yuc), i ∈ I, u ∈ U , c ∈ Nu, we introduce a
new binary variable ziuc = xic · yuc subject to the additional
constraints:

zuic ≤ xic, zuic ≤ yuc and zuic ≥ xic + yuc − 1 (6)

Plugging {ziuc} in (2) and adding constraints (6) to the (P1)
formulation, we get a zero-one Linear Program (LP) with
O(C · I · U) additional decision variables and O(3C · I · U)
additional constraints with respect to (P1). This problem,
hereafter called (P2), can be tackled with generic Integer LP
solvers for small (C,U, I) values. We use these solutions as
comparison references for our heuristic in section V-B.

IV. A HEURISTIC SOLUTION TO JCAP

In this section, we present and analyze a heuristic algorithm
for the JCA problem. The algorithm is iterative and essentially
decouples the two decisions made in the JCAP, i.e., which SBS
should we associate each user with and which content to cache
at each cache-enabled SBS. This decoupling is possible at first
place since the constraints of (P1) are separable.

A. The algorithm

The algorithm first takes an initialization step, determining
the cache content at each SBS when all users within its
range are assumed to be associated with it. This assumption
implies solving (P1) after removing the user association related
constraints (3) and (4) and setting yuc = 1 for each SBS
c ∈ Nu so that the value fic carried by an item i when placed
at cache c is given by

fic =
∑

u:yuc=1

pui =
∑
u

puiyuc (7)

2The inequalities in (4) are replaced by equalities in the maximum GAP.
The equivalence of the two problems is shown in e.g., [10], pp. 190-191.

We can then determine the cache placements at the SBS caches
by solving independent instances of the 0-1 Knapsack Problem
(KP). Namely, at each SBS cache c, we solve for

max
x

∑
i∈I

ficxic (P3a)

s.t.
∑
i∈I

xicli ≤ Lc (8)

xic ∈ {0, 1}, u ∈ U , i ∈ I (9)

Then, the algorithm enters an iterative phase. Given the
cache placements determined by (P3a), the algorithm updates
the user associations at each SBS solving an instance of GAP.
Intuitively, users correspond to jobs, SBSs to agents, and each
user (“job”) bears SBS(“agent”)-specific costs buc and profits
fuc given by

fuc =
∑

i:xic=1

pui =
∑
i

puixic (10)

where the {xic} values coincide with the solutions of the C
(P3a) instances. Hence, at this second step of the heuristic
algorithm we solve a single instance of the problem (P3b).

max
y

∑
u∈U

∑
c∈Nu

fucyuc (P3b)

s.t.
∑
u∈U

bucyuc ≤ Bc, ∀c ∈ C (11)∑
c∈N (u)

yuc ≤ 1, ∀u ∈ U , (12)

yuc ∈ {0, 1}, u ∈ U , c ∈ C (13)

The problem (P3b) iterates on the user associations to
SBSs and provides the first feasible solution of the original
problem (P1). In turn, the next step of the algorithm revisits
the cache placements at each SBS. With the new values of user
association variables {yuc} computed by (P3b), the algorithm
recomputes the item profit values {fic} in (7) and solves anew
the C 0-1 KP instances (P3a).

These two steps of the algorithm, iterating separately on
cached content and the user associations through problems
(P3a) and (P3b), respectively, are repeated until no improve-
ment is achievable in terms of the aggregate demand Dhit in
(1) that can be satisfied by the cache content.

B. Algorithm correctness and computational complexity

In the initialization step, the algorithm generates a non-
feasible solution for (P1), violating constraint (4) unless |Nu =
1|,∀u ∈ U , and possibly constraint (3). The objective function
value for this solution provides an upper bound for the optimal
solution, OPTJCAP .

The algorithm generates feasible solutions for JCAP as soon
as it enters the iterative phase. The value of the objective
function upon the first execution of (P3b) is smaller than
both the bound computed upon the initialization step and
OPTJCAP . Subsequent iterations get new feasible solutions
solving, alternately, either the C 0-1 KPs (P3a) or the GAP



(P3b). The solution produced in each iteration is checked
against the current solution, which is the best feasible solution
achieved so far, and replaces it as far as it improves over it.
Since the optimal value is finite, the algorithm will definitely
terminate with a solution that is upper bounded by OPTJCAP .

From a computational point of view, the heuristic algo-
rithm proceeds through two types of iterations, on the user
associations and cached content, respectively. Each iteration
on the cached content demands the solution of C 0-1 KP
instances. Solving them with the pseudo-polynomial Dynamic
Programming (DP) algorithm (see, for example, [11], 6.4)
the time complexity is O(CILc). Each iteration on the
user associations demands the solution of one GAP. With
the 2-approximation algorithm in [12]3 the required time is
O(CILc + CI). Hence, the time complexity of the iterative
heuristic algorithm is O(kCILc), where k is the number of
iterations the algorithm demands. Indicatively, in all experi-
ments reported in section V, k < 10.

V. EVALUATION OF THE HEURISTIC

A. Methodology

The evaluation of the heuristic proceeds in two steps. First,
for small problem instances, we compare the heuristic against
the optimal solution, as this results from an exact generic
ILP solver. In the absence of analytical results about the
approximability properties of the heuristic, this evaluation step
provides important evidence about the quality of the solution
it produces. Then, we shift to more realistic problem instances
and compare the heuristic against simpler alternatives for tack-
ling the user association and content caching tasks. This step
quantifies the achievable performance gain with our heuristic.

In all experiments, we let the item sizes vary randomly in
{1, lmax} and the association costs in {1, bmax}, where lmax

and bmax are the maximum over minimum ratios of the two
quantities, respectively. With respect to the content demand
distributions of individual users, we consider two scenarios.
In the first one, the probabilities {pui} are randomly assigned
to end users. In the second one, end users are partitioned
according to their physical location, so that users within range
of approximately the same BSs belong to the same subset.
Users within each of these Ncl subsets are assigned identical
demand distributions over the content items, i.e., there are
Ncl distinct content demand distributions, one per user subset.
Although the two scenarios for the user content demand
distributions serve as rather extreme cases regarding the spatial
locality of content demand, they are most informative about
the properties of our heuristic and the way it compares with
alternative solutions, as discussed in section V-C.

B. Small-scale problem instances: optimality

In the first set of experiments we consider two cells (C = 2),
fix the number of items to I = 100 and let the number of
users vary in {4, 9}. The size of the normalized cache capacity

3The algorithm decomposes the GAP into a series of 0-1 KPs. These ap-
proximation and time complexity scores assume use of the pseudo-polynomial
DP algorithm for solving those KPs.

TABLE I
ACCURACY OF THE ITERATIVE HEURISTIC.

Comparison var Users var Users var Items
scenario rand. demand clust. demand rand. demand

median ∆H(G) 0.001(0.2%) 0(0%) 0.004(0.81%)
95th perc. ∆H(G) 0.097(17.7%) 0.1(14.2%) 0.081(13.3%)

max ∆H(G) 0.161(29.2%) 0.21(25%) 0.189(35.2%)

Ln = Lc

I·Lmax/2
ranges in [0.1, 0.5], where I · Lmax/2 is the

expected normalized catalog size. Figures 1a and 1b compare
the cache hit rate, HRheur, achieved by our iterative heuristic
against the optimal one, HRopt, as produced by a generic ILP
solver. Each point in the plot averages 20 different instances
of the experiment, i.e., sets of item sizes {Li} and association
costs {buc}. In all cases, the heuristic solution lies very close
to the optimal one. To quantify this, let ∆H = HRopt −
HRheur be the empirical gap between the two solutions and
G = ∆H

HRopt
x100% denote its % normalized value. The median

of G over all experiments is practically 0% under both types of
content demand, the two solutions coinciding in more than half
of the experiments. The worst-case deviation from the optimal
in all experiments is less than 30%, as shown in Table I.

In the second set of experiments, we consider C = 3 cells,
fix the number of users to U = 8 and let the number of content
items vary in [40, 80] in 10-item step sizes. The capacities of
the three cells are set to Bc = 20 and their cache storage
space varies so that Ln ∈ [0.1, 0.6]. Again, as shown in Fig.
1c, the heuristic solution approximates well the optimal cache
hit ratio. The median of the deviation is approximately zero
and the worst-case (max) value of G is 35%.

C. Performance gain and sensitivity analysis

We now turn into more realistic system scenarios and
compare our heuristic with two alternative solutions for JCAP.

Greedy heuristic: The first one is a greedy-like heuristic.
The algorithm parses all user content demand probabilities in
order of decreasing size. Each parsed probability corresponds
to given user u0 and item i0. If the user is not yet associated
to a cell, the algorithm seeks to associate the user with the
cell of minimum association cost out of those that fulfill the
cache capacity constraints and user association constraints, as
given by Eqs. (2) and (3), respectively. At the same time, it
caches item i0 to the corresponding cache. If the user is already
associated with a cell, the algorithm checks whether item i0
is already in the cache of that cell; if not, it is added to it as
far as the cache capacity constraint (2) is satisfied.

Decoupled user associations: With this heuristic, abbrevi-
ated hereafter as Decoupled, the user association decisions are
separated from the content caching ones and timewise precede
them. First, the cell association options for each user are
ranked in order of increasing association cost (cell preference
list). Then, users are listed in order of increasing minimum
association cost. The heuristic parses users sequentially and
tries to associate them with the cell in their cell preference
list that presents the minimum association cost. If this not
possible for a user u, i.e., the user association constraint in (4)
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Fig. 1. Comparison of the iterative heuristic (‘o’) with the optimal solution (‘x’). Marks correspond to averages of 15 simulation runs. bmax = 10, Bc = 25.
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Fig. 2. Comparison of the three heuristics as a function of the number of users: I=1000, C=20, Bc=200, lmax=12, bmax=20.
.

is violated if u associates, the next cell in u’s cell preference
list is checked and so on till a user is associated with a cell
or its cell preference list is exhausted.

We compare the performance of the three heuristics and
how this depends on a number of system parameters.

Impact of spatial locality in content demand: The first
comparison focuses on the two alternatives for generating the
user content demand distributions, described in section V-A.
In this set of experiments, the SBS cache sizes correspond to
roughly 15% of the expected content catalogue size (I ·lmax/2)
and the expected number of users (2Bc/bmax) that can fit in
one small cell is 20. Under no spatial locality in demand,
the decoupled heuristic competes with our iterative heuristic,
and even slightly outperforms it for high numbers of users,
as shown in Fig. 2a. At those user levels, the decoupled
approach can match all users to SBSs, whereas our iterative
heuristic is forced to associate a few with the MBS. The non-
satisfied demand of these users corresponds to the marginal
performance gain of the decoupled heuristic. The greedy
heuristics cannot compete with either of the two alternatives.

When there is spatial locality, the performance of all three
heuristics improves, the greedy one benefiting most (Fig.
2b). In this scenario, it matters more which users will be
grouped in a cell rather than how many. Factoring the content
preferences of users in its decisions, the iterative heuristic
clearly outperforms the decoupled one. This performance gain
fades out as the number of users grows since the latter manages
to squeeze more users in small cells.

Impact of cache sizes: In this second set of experiments, we
only consider content demand with embedded spatial locality.
The capacity of each cell corresponds to an expected number
of 20 users so that the 20 (30) small cells in Fig. 3a(b)
essentially render the user association constraints inactive for
the considered 200 users. On the contrary, we activate the
cache capacity constraint by letting the cache size vary from
5% to 15% of the overall content catalogue size.

In the absence of user association constraints, the iterative
heuristic clearly outperforms the other two. Its gain scales up
both within and across the three scenarios in Fig. 3, as the
network resources (cell capacity, cache size) grow.
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Fig. 3. Comparison of the three heuristics as a function of the cache size: I=2000, C=30, U=200, Ncl=10, bmax=25.
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Fig. 4. Comparison of the three heuristics as a function of the cell capacity: C=30, Ncl=10, lmax=12, bmax=20.

Impact of cell capacities: In the third set of experiments,
the active constraints relate to user associations. Cache sizes
are generously set to 15% of the content catalogue, whereas
the cell capacities vary from the expected equivalent of 5 up
to 20 users. Fig. 4 reinforces what we have touched upon in
Fig. 2b. Prioritizing the associations of users to the minimum-
cost cells and adapting a posteriori the cached content to
the user population, the decoupled heuristic ends up serving
considerably more users and content demand through small
cells. As more capacity is added to small cells and the user
association constraints are relaxed, our iterative heuristic can
associate more users with similar demand to the same cells,
thus serving more demand locally.

VI. CONCLUSIONS

Our work adds to the research thread on the joint content
caching and user association problem in small cell networks.
The problem has attracted interest over the last few years,
in light of recent trends in the area of edge caching and 5G
networks. In particular, we have proposed a fast converging
iterative heuristic algorithm that combines good performance
with non-prohibitive complexity. We have compared its per-
formance to plausible alternative heuristics and demonstrated
its sensitivity to the sparseness of cell capacity and storage
resources, crafting arguments for its practical relevance.

ACKNOWLEDGEMENT

This research has been funded by the Operational Program
”Human Resources Development, Education and Lifelong
Learning”, co-financed by European Union (EU) and Greek
national funds. I. Koutsopoulos acknowledges support from a

GSRT Research Reinforcement grant for the EU R&D project
netCommons, and from the AUEB grant “Original Scientific
Publications 2019”.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What Will 5G Be?” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[2] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, “Cache-aware
user association in backhaul-constrained small cell networks,” in Proc.
WiOpt, Hammamet, Tunisia, May 2014, pp. 37–42.

[3] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” Amer. Math. Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[4] M. ElBamby, M. Bennis, W. Saad, and M. Latva-Aho, “Content-aware
user clustering and caching in wireless small cell networks,” in Proc.
Int’l Symp. on Wireless Commun. Sys. (ISWCS), 2014, pp. 945–949.

[5] A. V. Ribeiro, L. N. Sampaio, and A. Ziviani, “Affinity-based user clus-
tering for efficient edge caching in content-centric cellular networks,” in
in Proc. ISCC, Lisbon, Portugal, 2018.

[6] Y. Wang, X. Tao, X. Zhang, and G. Mao, “Joint caching placement and
user association for minimizing user download delay,” IEEE Access,
vol. 4, pp. 8625–8633, December 2016.

[7] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the Complexity of Optimal Request
Routing and Content Caching in Heterogeneous Cache Networks,”
IEEE/ACM Trans. on Netw., vol. 25, no. 3, pp. 1635–1648, Jun. 2017.

[8] A. Khreishah, J. Chakareski, and A. Gharaibeh, “Joint caching, routing,
and channel assignment for collaborative small-cell cellular networks,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 8, pp.
2275–2284, August 2016.

[9] L. Chalmet and L. Gelders, “Lagrangian relaxations for a generalized
assignment-type problem,” in Proc. Second European Congress on
Operations Research, Stockholm, Sweden, Nov-Dec 1976, pp. 103–109.

[10] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[11] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani, Algorithms, 1st ed.
New York, NY, USA: McGraw-Hill, Inc., 2008.

[12] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,” Information Processing Letters, vol.
100, no. 4, pp. 162 – 166, 2006.


