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ABSTRACT

Finding similar objects is a general computational task which serves as a subroutine for
many major learning tasks like classification or clustering. With the recent increase of
availability of complex datasets, the need for analyzing and handling high-dimensional
descriptors has been increased. Likewise, there is a surge of interest into data structures
for trajectory processing, motivated by the increasing availability and quality of trajectory
data from mobile phones, GPS sensors, RFID technology and video analysis.

In this thesis, we investigate proximity problems for high-dimensional vectors and polygo-
nal curves. The natural way to measure dissimilarity between two vectors is by evaluating
a norm function for the vector difference. Popular examples of such distance functions
are the Euclidean distance and the Manhattan distance. Similarly, there exist several
well-studied distance functions for polygonal curves, the main example being the Fréchet
distance.

The core problem, for both data types, is the nearest neighbor searching problem. Given
a set of objects P, we aim for a data structure which supports nearest neighbor queries;
a new object ¢ arrives and the data structure returns the most similar object in P. When
the data complexity is high, aiming for an exact solution is often futile. This has led re-
searchers to the more tractable task of designing approximate solutions. The largest part
of this thesis is devoted to the approximate nearest neighbor problem and the approxi-
mate near neighbor problem: given a set of objects P and a radius parameter r, the data
structure returns an object in P which is approximately within distance r (if there exists
one) from some query object ¢q. Another basic question is that of computing a subset of
good representatives for a dataset. This subset often provides with sufficient information
for a given computational task, and hence it possibly simplifies existing solutions. Finally,
we investigate range systems for polygonal curves: we bound the Vapnik—Chervonenkis
dimension for ranges defined by distance functions for curves. These bounds have direct
implications in range counting problems and density estimation.

The thesis is organized as follows.

Random projections for proximity search. We introduce a new definition of “low-quality”
embeddings for metric spaces [8]. It requires that, for some query point ¢, there exists an
approximate nearest neighbor among the pre-images of the k£ > 1 approximate nearest
neighbors in the target space. Focusing on Euclidean spaces, we employ random pro-
jections a la Johnson Lindenstrauss in order to reduce the original problem to one in a
space of dimension inversely proportional to k. This leads to simple data structures which
are space-efficient and also support sublinear queries. By employing properties of certain
LSH functions, we exploit a similar mapping to the Hamming space.

Doubling sets and Manhattan distance. Our primary motivation is the approximate nearest
neighbor problem in /¢4, for pointsets with low intrinsic dimension. Doubling dimension is



a well-established notion which aims to capture the intrinsic dimension of points. Nearest
neighbor-preserving embeddings are known to exist for both /; and ¢; metrics, as well
as for doubling subsets of /;. We propose a dimension reduction by means of a near
neighbor-preserving embedding for doubling subsets of ¢, [40].

Approximate r-nets. Nets offers a powerful tool in computational and metric geometry,
since they serve as a subset of good representatives: all points are within distance r from
some net point and all net points lie at distance at least  from each other. We focus on
high-dimensional spaces and present a new randomized algorithm which efficiently com-
putes approximate r-nets with respect to Euclidean distance [19]. Our algorithm follows a
recent approach by Valiant in reducing the problem to multi-point evaluation of polynomi-
als.

Proximity search for polygonal curves. We propose simple and efficient data structures
[41], based on randomized projections, for a notion of distance between discretized curves,
which generalizes both discrete Fréchet and Dynamic Time Warping distance functions.
We offer the first data structures and query algorithms for the approximate nearest neigh-
bor problem with arbitrarily good approximation factor, at the expense of increasing space
usage and preprocessing time over existing methods.

Proximity search for short query curves. We propose simple and efficient data structures,
based on random partitions, for the discrete Fréchet distance, in the short query regime.
The data structures are especially efficient when queries are much shorter than the polyg-
onal curves which belong to the dataset. We also study the problem for arbitrary metrics
with bounded doubling dimension.

The VC dimension of polygonal curves. The Vapnik-Chervonenkis dimension provides
a notion of complexity for set or range systems. We analyze range systems where the
ground set is a set of polygonal curves in the Euclidean space and the ranges are met-
ric balls defined by curve dissimilarity measures, such as the Fréchet distance and the
Hausdorff distance [36]. Direct implications follow by applying known sampling bounds.

SUBJECT AREA: Computational Geometry

KEYWORDS: Nearest Neighbor, high dimension, polygonal curves



NEPIAHWH

H eUpeon OpoIwv avTIKEIMEVWY gival £va YEVIKO UTTOAOYIOTIKO TTPOBANUA TTOU XPNOIUEUE!
WG UTTOpPOUTIVA YIa TTOAAG TTpoBARuaTa uNXavikng pddnong 61Twg n cucTtadoTtroinon. Me
TNV TTPOCQATN augnon NG d1aBeaIuOTATAG TTOAUTTAOKWY CUVOAWY dedouEVWY, augnonke
N avaykn yia Tnv avaAuon dedouévwy uynAwyv diaotdacswy. lMapopoiwg, TTaparnpeital
aug¢non evolaPEPOVTOG OTIGC OOPEC DEDOUEVWV VIO ETTECEPYATIA KAUTTUAWY, AOYw TNG au-
Eavopuevng d10001UOTNTAG KAl TTOIOTATAG TWV OEDOPEVWV TPOXIAS ATTO Ta KIVATA TNAEQWVQ,
Toug a1I0ONTAPEG GPS, Tnv Texvoloyia RFID kai Tnv avaAuon Bivreo.

2€ auTA TN diIaTpIPn, EpeuvAUE TTPORARUATA yyUTATAG Yia dlavuouaTa PeydAng didotaong
KOl TTOAUYWVIKEG KAPTTUAEG. O QUOIKOG TPOTTOC PETPNONG TNG AVOUOIOTNTAG METAEU SUO
OIOVUONATWY €ival N aTToTiNNON MIAg ouvapTnong vopuag yia Tn dIaVUCHATIKR dlapopd
TwV OUO dIAVUCPATWY. ANUO@IAN TTapadeiyuaTa TETOIWV CUVAPTACEWY ATTOOTACNG €ival
n EukAgideia amméoTaon kai n amméotacn Mavydarav. MNapopoiwg, UTTApXouV apKETEG KOAG
MEAETNUEVEG CUVAPTAOEIG ATTOOTACNG YIA TTOAUYWVIKEG KAUTTUAEG, PE KUPIO TTapAdEIyua
TNV améotaon Fréchet.

To Baoikd TpéPANua, Kail yia Toug OUo TUTTOUG dedopévwy, gival To TTPORANUa avalntnong
TOU KOVTIVOTEPOU YeiTova. Aedouévou evog OUVOAOU QVTIKEIMEVWY P, OTOXEUOUWE O€ JIa
OOoWN BEDONEVWYV TTOU UTTOOTNPICEI EPWTHAPATA KOVTIVOTEPOU YeiTova. 'Eva vEo avTiKEipevo
g OiveTal Kal N Oour OeQONEVWY ETTIOTPEPEI TO OPOIOTEPO avTIKEIYEVO attd 10 P. Otav n
TTOAUTTAOKOTNTA TWV dedOUEVWV €ival uwnAr, hia AUon pe akpifelia gival otrévia atrodoTi-
KA. AuTO 00YNOE TOUG EPEUVNTEG OTOV TTIO EUKOAO OTOXO TOU OXEDIQOUOU TTPOCEYYIOTI-
KWV AUoewv. To geyaAUTEPO PEPOG QUTAG TNG Epyaaiag gival apiepwPéVo aTo TTPORANUa
TOU TTPOOCEYYIOTIKOU KOVTIVOTEPOU YEITOVA Kal 0TO TTPORBANUA TOU TTPOCEYYIOTIKOU KOVTI-
vou yeitova: Oedopévou VOGS OUVOAOU QVTIKEINEVWY P Kal PI0G TTAPAPETPOU OKTIVAG 7, N
00U BeDOUEVWV ETTIOTPEPEI Eva AVTIKEINEVO OTO P (€pOCOV UTTAPXEI) TO OTTOIO Eival Ka-
Td TTpooEyyion o€ ardoTacn r aTTd KATTOIO AVTIKEIUEVO €pwTnoNG ¢. 'Eva dANo Baoikd
EPWTNUA Eival AUTO TOU UTTOAOYIOHUOU £VOG UTTOOUVOAOU KOAWY EKTTPOCWTTWY YIA £va OU-
VOAO 0eDOUEVWY. AUTO TO UTTOOUVOAO TTAPEXEI CUXVA ETTAPKEIC TTANPOPOPIES YIa KATTOIO
UTTOAOYIOTIKO TTPOBANUA Kal ETTOPEVWGS ATTAOTTOIET TTIBAVWG TIG UTTAPXOUOEG AUCEIG. Té-
AOG, MEAETANE TOUG XWPOUG EUPOUG VIO TTOAUYWVIKEG KAPTTUAEG: @pAooupe Tn didoTaon
Vapnik-Chervonenkis yia eUpn TTou opidovTal a1rd CUVAPTACEIS ATTOOTAONG VIO KAUTTUAEG.
Ta atroteAéopaTta auTtd £XOUV AUECEG OUVETTEIEG OE TIPORAANATA NETPNONG EUPOUG KAI OTNV
EKTIUNON TTUKVOTNTOG.

H diatpiBn €xel doundei wg €EAG.

Tuxaiec mpoBoAéc yia mpoBAnuara syyurnrag. Elodyouue €vav véo opioud eupubioccwv
“XauNARG TTo1I0TNTAG” yIa PETPIKOUG XWpPoug [8]. ATTauTei OTI, yia KATTOIO ONUEI0 EpWTAHA-
TOG ¢, UTTAPXEI £€VAG TTPOCEYYIOTIKOG KOVTIVOTEPOG YEITOVAG METAEU TWV TTPO-EIKOVWY TWV
k > 1 TTpOCEYYIOTIKWY KOVTIVOTEPWY YEITOVWY OTO XWPO TTpoopiopou. EaTialovrag og Eu-
KAEIDEIOUG XWPOUG, XPNOIYOTIOIOUNE TuXaieg TTPORBOAEG a la Johnson Lindenstrauss Trpo-



KEIMEVOU VA avAYOUE TO apXIKO TTPORANUa o€ Eva TTpORANUa d1Tou N d1IA0TACH TOU XWPEOU
gival avTioTpOPws avaloyn Tou k. AuTo odnyei o€ aTTAEG DONEG DEDOUEVWY, Ol OTTOIEG €ival
a1TOd0TIKEG WG TTPOG TOV OTTAITOUMEVO XWPO OTTOBAKEUONG KAl UTTOOTNPICOUV £pWTARUATA
O€ UTTOYPAMMIKO XPOVO. XpNnOIKOTTOIWVTAG IDIOTNTEG CUYKEKPIMEVWY OUvVapTRoewyv LSH,
EKMETOAAEUOPOOTE PIa TTAPOUOIa ATTEIKOVION OTOV XWPo Hamming.

XaunAn eyyevng diaoraon kai arrooracn Mavyarav. To TTpWTAPXIKO PAG KivnTPo gival TO
TTPORBANUA TTANCIECTEPOU YEITOVA OTOV PETPIKO XWPO /1, YyIa CnUEia e XaunAn eyyevr did-
otaon. H didotaon dimAaciacpou gival pia kaBiepwpévn Evvola eyyevous dIAoTaonG Twv
onpeiwv. EpBubioelg mou dilatnpoulv Tov KOVTIVOTEPO YEITOVA UTTAPYXOUV TOOO Yid ¢, 600
Kal yIa /1 JETPIKEG, KABWG Kal Yo UTTOOUVOAQ TOU /5 PE XapnAf didotaon dimTAaciacuou.
MpoTeivoupe pia TEXVIKN PEiwoNg dIAoTaoNG TTOU dIATNPEI TOV KOVTIVO YEITOVA VIO UTTOOU-
VoA Tou ¢ pe xaunAr didotaon dirrAaciacpou [40].

lMpooeyyioTika r-dikTua. Ta r-OikTud TIPOCEPEPOUV £va IOXUPO EPYAAEIO OTNV UTTOAOYIOTIKA
KAl TN METPIKI YEWUETPIA, OEDOUEVOU OTI XPNOIUEUOUV WG UTTOCUVOAO KAAWYV aVTITTIPOOW-
TTwV: OAa Ta onueia Bpiokovtal o€ aTdéoTacn r aTTd KATTOIO ONUEI0 Tou r-OIKTUOU Kal OAa
Ta KEVTPA Tou r-OIKTUOU gival o€ atmdoTaon TouAdyioTov r PeTagl Toug. EoTmidloupe o€
XWPOUG MEYAANG BI00TACEWGS Kal TTapouciddoupe évav véo TOavoTiKO aAyopiBuo o oTToi-
0G UTTOAOYiCeEl ATTOTEAEOUATIKA TTPOCEYYIOTIKA r-OikTua 0 EukAgideioug xwpoug [19]. O
aAYOpPIBUOG pag akoAouBei pia TTpdo@atn TTpooéyyion Tou Valiant yia Tn avaywyr) Tou
TTPOBAAPATOG OTNV ATTOTIUNON TTOAAATTAWY ONUEIWY TTOAUWVUPWV.

lMpofARuara eyyutnTag yia moAUYwVIKES KAUTTUAES. TpoTEiVOUE ATTAEG KAl ATTOTEAECUO-
TIKEG OOUEG OedOPEVWY, PACIOUEVEG O€ TUXAIEG TTPORBOAEG, yIa Mia €vvoia TnNG attéoTaong
METALU DIOKPITOTTOINMEVWY KAUTTUAWY, N OTToia YeVIKEUEI TRV dIaKPITA atrooTaon Fréchet
ka1 Tnv atréotacn Dynamic Time Warping. lNpoo@époupe TIG TTPWTEG OOPEG OEDOUEVWV
yIQ TNV €UPECT TOU KOVTIVOTEPOU YEITOVA PE auBaipeTa KAAO CUVTEAECTH TTPOCEYYIONG, ME
TAUTOXPOVN AUENOT TOU XWPEOU OE OXEON WE TIG UTTApXOoUOEG ueBOdOoUG [41].

lMpoBARuara eyyurntag yia KAUITUAES ETTELWTNONS MIKPOU unkous. Tlpoteivoupe OOPES
oedouévwy, Baciopéveg o€ Tuxaieg DIOUEPICEIC TOU XWPOU, yia TNV dIaKPITA atrdéoTacn
Fréchet étav KauTTUAEG €TTEPWTNONG €ival PIKPOU PRKoug. Or douég dedopévwy Eival I-
dIAITEPA ATTOTEAECUATIKEG OTAV TA EPWTHMATA €ival TTOAU PIKPOTEPA ATTO TIG TTOAUYWVIKEG
KAUTTUAEG TTOU QVAKOUV O0TO OUVOAO dedopévwy. ETTiong, peAeTdue 1o TTPORANKA Yia au-
BaipeTOUG PETPIKOUG XWPOUG UE XaunAn didoTtaon SITTAaCIaooU.

H VC digoraon moAuywvikwv kautmuAwy. H didotaon Vapnik-Chervonenkis TTapéxel pia
€vvola TTOAUTTAOKOTNTAG VIO CUCTHAUATA CUVOAWV 1] EUpouUS. AVOAUOUNE CUCTAMOTA EUPOUG
OTTOU TO BACIKO GUVOAO €ival éva GUVOAO TTOAUYWVIKWY KAUTTUAWY oTov EUKAEgidEIo xwpo
Kal 0PN €ival PETPIKEG UTTAAEG TTOU OPICovVTal ATTO OUVAPTHOEIG ATTOOTACEWY VIO KAPTTUAEG,
OTTw¢ n amréoTaon Fréchet kai n amméotaon Hausdorff [36]. AKOAOUBOUV AUECEG OUVETTEIEG
EQAPPOLOVTAG YVWOTA atroTEAEoPATA dEIYUATOANYIAG.

OEMATIKH NMEPIOXH: YTtroAoyioTikA MewueTpia

AE=EIZ KAEIAIA: KovTivéTepog yeitovag, uynAr dIAoTaon, TTOAUYWVIKEG KOUTTUAEG



2YNONTIKH NMNAPOYZIAZH THZ AIAAKTOPIKHZ AIATPIBHZ

Me Tov augavouevo dyko dedopévwy Kal KaBwg n TTpdoacn o€ dedopéva UWNAAG TTOAU-
TTAOKOTNTOG YiVETAI EUKOAOTEPN, dNUIoUPYEITal avAaykn yia aAyopIBUIKEG AUCEIC O BATIKA
UTTOAOYIOTIKA TTPOBAAMATA, TWV OTToiwV N atrdédoon Ba KAIJOKWVEI OJAAG PE TNV auénon
TNG TTOAUTTAOKOTNTAG TWV OeOONEVWY €1I0000U. ZTNV dIaTPIRA auTr) HEAETAUE TTPOBAAUOTA
eyyuTntag, TTpoBAApaTa dnAadry ota oTroia n €i00d0¢ gival Eéva oUVOAO AVTIKEIMEVWY Kl
UTTOVOEITAI hIO OUVAPTNON OPoIdTNTAG A ATTO0TAONG METAEU TWV AVTIKEINEVWY. Towg TO
ONMAvTIKOTEPO TTPORANUG O€ AUTA TNV TTEPIOXN €ival TO TTPOBANPA TOU KOVTIVOTEPOU YEi-
TOova, OTO OTTOIO TTPETTEl VO oXedIaoTel dopury dedouévwy n otroia atrobnkevel Eva aUVoAo
QVTIKEIMEVWVY KAl UTTOOTNPICEl TNV EUPECN TOU TTEPIOCOTEPO OPOIOU AVTIKEIMEVOU ATTO TO
ATTOBNKEUPEVO OUVOAO, O€ OXEON ME Eva VEO QVTIKEIYEVO. Mpo@avwg n EUPECN TOU KOVTI-
VOTEPOU YEITOVA TTPETTEI VA YIVETAI O€ XPOVO QPKETA MIKPOTEPO ATTO AUTOV TToU Ba ATTAITEITO
av eEAEyXaUE Eva TTPOG Eva OAa Ta ATTOBNKEUPEVA OEQOMEVA. ZXETIKOG TUTTOG TTPOBANUATWY
gival autég TNG ouoTadoTToINONG. TNV cuoTAdOTToINCN, N €i0080G TOU TTPORANUATOG ival
TTAAI €éva OUVOAO QVTIKEIMEVWYV KAl IO CUVAPTNON ATTOOTACNG KAl OTOXOG £ival n dlauépIon
TWV QVTIKEINEVWY O OUOTADEG: OPOIO AVTIKEIMEVA TTPETTEI VA AVIKOUV OTNV idla cuoTdda
yla TNV OTToi0 OUVABWG UTTAPXEI KATTOIO AVTIKEIMEVO TTOU ATTOTEAET “avTITTPOOWTTO”.

O1 Baoikoi TUTTOI BEBOUEVWY TTOU PEAETANE OTNV dIaTPIRA aUTA, cival dUo. O TTPWTOG TUTTOG
gival To atrAG didvuoua ) onueio, 1 aAAIWG TTAEIGdA TTPpAyUATIKWY apIBuwy. KaBe ouvte-
Tayhévn UTTopEi va BewpnBEi 0TI avTIoTOIXET O€ £€va BIAPOPETIKO YVWPICHA TWV OEBOUEVWV.
H uywnAr TTOAUTTAOKOTNTA TWV BEQOPEVWYV O€ QUTO TO TTAQICIO JETAPPAZETAI WG UYWNAR DIG-
oTaon Twv dIAVUCPATWY, ONAadr Ta dedouéva £xouv TTOAANG yvwpiopaTta. Q¢ CuvapTACEIS
ATTO0TOONG BEWPOUNE KAAOTIKA TTOPAdEIYUATA VOPUWYV KAl TTIO OUYKEKPIUEVA TNV EUKAEI-
dcia amréoTaon r Tnv améotacn Mavxdrav. O deUTepog TUTTOG OEdOPEVWY TTOU £EETALETAI
otnv d1aTpIBA €ival N akoAouBia dlIavuoudTwy N OTToia OPIdEl YIO TTOAUYWVIKA KOUTTUAN.
Mapadeiypata TéEToIwV dedouévwy eival ol TpoxlEG atmd GPS 1} o1 xpovooeipég. e auth
TNV TTEPITITWON, Ol TTI0 dNUOYIAEIC ouvapToelg atrooTaong gival N Fréchet amméoTtaon (i
n d1akpITH €kdoxNA TNG) Kai N atréotacn Dynamic Time Warping. H uwnAr) TTOAUTTAOKO-
TATA TETOIWV OEDOUEVWV PETAPPAZETAI EITE WG UYNAN dIdoTaon TwV JIAVUCPATWY EITE WG
MEYAAO PNKOG TV OKOAOUBIWV.

KaBwg ol Baoikég AUoeIg yia TTpoBARpaTa eyyuTnTag Bacilovral O TTPOCEKTIKO diaxwpl-
OMO TOU XWPOU, aVATTOQEUKTA QUTEG aTToTUYXAvVouV OTav n didoTacn gival uwnAf Kabwg
0 OYKOG ToU TTEPIBAAAOVTOG XWPOU augAveTal eKBETIKA. Q¢ ek TOUTOU, BaCI(ONOOTE O€ PE-
B06d0uGg peiwong NG d1IACTAONG NEOW TUXAiIWV TTPOROAWYV. To KUPIO OTTOTEAECUA O€ QUTH
TNV TTEPIoXN €ival To Johnson-Lindenstrauss AAuPa, TO OTTOI0 ATTOTUTTWVEL TO €EN1G YEYO-
vOG: av n anueia ato RY, TpoBANBoUv ot £vav Tuxaio uTToXwpeo didaTaong Trepitou log n,
TOTE PE KaAn mBavoTnTa ol EukAgideieg atmootaoelg dev Ba petaBAnBoUv TTOAU av eaipé-
ooupE Evav KoIvo TTOAAATTAACIaoTIKG TTapdyovTa. NMpoTeivoupe pia dIQOPETIKN EQAPHOY
TOU AUPATOG, TTIPOCOPUOCUEVN OTIG AVAYKES TOU TTPOBARUATOG EUPECNG TOU TTPOCEYYIOTI-
KoU KovTIvOTEPOU YeiTova. lNa éva TTpoRANPa cuoTadoTroinong onueiwy, BacifdpaoTe o€



TTPOOEPATA ATTOTEAECUATA YIA TNV EUPECN KOVTIVOTEPOU (eUyapIOU PNECW YPAYOPOU TTOA-
AQTTAQCI0OUOU TTivaKa Kal OEiXVOUUE OTI QVTIOTOIXEG BEATILWOEIG UTTOPOUV VA ETTEKTOBOUV
Kal o€ AGAAQ TTPOBAAUATA. TNV TTEPITITWON TWV TTOAUYWVIKWY KOUTTUAWY, TTPOTEIVOUNE
MEBOBOUG yIa TNV EUPEDN TTPOCEYYIOTIKOU KOVTIVOTEPOU YEiTOVA Kal JEAETAUE TNV Vapnik—
Chervonenkis (VC) didoTaon yia TOUG YEUDBOUETPIKOUG XWPOUG TTou opidovTal aTrd TIG avTi-
OTOIXEG ouvapTAoEIG atmooTacewyv. H peAétn Tng VC didoTtaong BioKel EQApUOYEG HECW
KAQOOIKWV PEBSOWV delypaToAnyiag. AKOAOUBEI pia TTIO AETTTOPEPNG ETTIOKOTTNON TWV
QATTOTEAECPATWV.

Kovrivorepog yeitovag. 'EoTw P éva oUVOAO n onuEiwv o€ KATTOI0 PETPIKO Xwpo (M, d).
To mpéPAnua cuvioTartal oTnv dnuioupyia piag dounG dedouEVWY TETOIO WOTE, YIA OTTOIO-
ONTTOTE ONUEIO EPWTANATOG ¢ € M, n dopN ETIOTPEPEI anuEio p € P yia 1o o1oio d(p, ¢) <
d(p’,q), yia k48e p' € P. Tdte 10 OnuEio p gival €vag KOVTIVOTEPOG YEITOVAG TOU ¢. ZUYVd,
MIa Auon pe atréAuTn akpifeia yia Tnv avalritnon KOVTIVOTEPOU YEITOVA ATTAITEI OTTAYOPEU-
TIKG Bapeic TTOpouUS. 'ETOI, o1 TTEPICCOTEPEG AUCEIG ETTIKEVTPWVOVTAI OTO AIlyOTEPO ATTAITN-
TIKO TTPOBANUA TNG EUPECNG TOU TTPOOEYYIOTIKOU KOVTIVOTEPOU yeiTova. [a OTTOI0dNTTOTE
METPIKO Xwpo (M, d), kal dedopEVou TTETTEPACHUEVOU OUVOAOU P C M Kal TIPAYUATIKAG
TTAPAPETPOU € > 0, evag (1 + €)-TTPOCEYYIOTIKOG KOVTIVOTEPOG YEITOVAG O€ €va ONUEIo £TTE-
pwTNONG ¢ € M gival €va onueio p € P TETOIO WOTE

d(g,p) < (L+e¢)-d(gp), forall p' e P.

Q¢ ek TOUTOU, OTOXEUOVTAG O€ MIA TTPOCEYYIOTIKA AUCN, N aTTdvTnon JTTOPEi va ival oTTolo-
onTroTe onueio Tou otroiou n atréaTacn atrd 10 ¢ €ival TO TTOAU (1 + €) QOpPEG PeyaAUTEPN
atrd TNV ardéoTaon METAEU TOU ¢ KAl TOU TTPAYHOATIKOU KOVTIVOTEPOU YEiTova.

To avrioToixo TpéBAnua atrdé@acng (ME HAPTUPQA) Eival YWWOTO wg To TTPORANUA eUpeoNng
EVOG KOVTIVOU YEITOVA, TO OTT0I0 OPICETAl WG EEAG.

Opiopoég 1. Eotw P C M, ue |P| = n, 6mmou (M, d) Ka1moio¢ UETPIKOS XWpog. Asdouévou
e > 0,r > 0, {nreitar doun dedouévwy yia Tnv orroia, yia KGO emepwtnua q € M,

« avdp* € Ps.t.d(p*,q) < r, 101E N doun emioTpéPEl otTolodNTToOTE p' € P T.w. d(p/, q) <
(I+e€)-m,

s av Vp e P,d(p,q) > (1 +¢)-r, T0TE N doun EMOTPEQPEI “ATTOTUXIA”.

H doun emitpémeral va emoTpéWel €ite éva onueio o€ améoraon < (1 + €)r €iTe TO uRVUUA
“Armoruyia’.

Eival yvwoTd 611 To TTpOBANUa eUPECNG TOU TTPOCEYYIOTIKOU KOVTIVOTEPOU YEITOVA PTTO-
pei va AuBei AuvovTag AoyapiBUIKG TTOAAEG TTEPITITWOEIG TOU TTPORANPATOS ATTOPACNG UE
MapTupa [51].

Kovrivorepoc yeitovag otov EUKA€ideIo xwpo. Ol VIETEPUIVIOTIKES TEXVIKEG DIQUEPITHOU TOU

Xwpou, ottwg T1a kd-0évtpa, Ta BBD-6évTpa kai Ta Voronoi diaypduuata, TTapEXouV aTro-
OOTIKEG AUOEIg OTaV N dIAoTAON gival OXETIKA XaunAr aAAG eTTnpeddovTal atrd Tnv Katdpa



NG d1IACTACINOTATAG. Mpog eTTIAUCN AUTOU TOU NTAMOTOG, £XOUV TTPOTABEI TUXAIOKPATIKES
pEBodOI 6TTwG To Locality Sensitive Hashing (LSH), pia doury TTou Bacietal o Tuxaio-
KPATIKO KATOKEPHATIONO WOTE KOVTIVA onueia va Teivouv va avijkouv oTtnv idla cuoTada
KATOKEPUATIOPOU. KATToI0G UTTOPEI £TTIONG va e@appooel To Johnson-Lindenstrauss Afp-
MO 0 OUVOUAONO PE TEXVIKEG VIO XapnAEG dlaoTdoelg. To TTpOBANUa TTOU TTPOKUTITEI €ival
€iTE OTI N XWPOG TTOU ATTAITEITAI OTTO TNV dOMA €ival TG TAENG ToU w(n) €iTE O XPOVOG €-
TTEPWTNONG gival w(n). Epeig eoTidloupe 010 0EVAPIO KATA TO OTTOIO OTOXEUOUUE OE XWPO
O(dn) kai TrTap&dAAnAa o€ xpbvo ETTEPWTNONG o(n).

MNa Tov oKoTTé aUTO EI0AYOUE PIa VEA £vVOoIa “XaUNANG TTOIOTNTAS” TUXAIOKPATIKWY EUPUBI-
OEWV Kal XPNOIUOTTOIOUUE Tuxaieg TTPOROAEG a la Johnson-Lindenstrauss yia va opicoupue
Hia ouvapTnon aTro To ¢2 ato (¢, dtrou

d=0 (e*Q -log %) ,

TETOIO WOTE £VAG TTPOCEYYIOTIKOG KOVTIVOTEPOG YEITOVOG OTOV ApPXIKO XWPEO va BpiokeTal
QVAPECQ OTOUG k TTPOCEYYIOTIKOUG KOVTIVOTEPOUG YEITOVEG OTOV VEO XWEO. AUTA n TTapa-
TAPNON MOG ETTPETTEI VO OUVOUACOULE TIG TuXaieG TTPOROAEG PE TNV PEBOOO TTAEYNOTOG
[51], KOl vO KOTAOKEUACOUNE HIO TUXAIOKPATIKA doun dedouévwy yia To TTpORANuUa atro-
QaONG ME NAPTUPA PE BEATIOTO XWPEO KAl UTTOYPANMIKO XPOVO ATTOKPIONG EPWTHHATOGC.

Mo CUYKEKPIPEVQ, PETA TNV TuXaia TTPOROAR OTO (4, epapUOIOUNE £va TTAEYUO UE MAKOC
TTAEUPAG KeAIOU ¢/ Vd' Kal 1o KGBe ONUEio ETTEPWTNONG, EEEPEUVOUNE VEITOVIKA KEAIG TTOU
Téuvouv TNV EukAeideia utrdAa n otroia mepiéxel O(1/€)? kehid. O aAyopiBuog oTapatdel
aPoU eEeTdoEl k onueia TTou TTEPIEXOVTAI OTNV UTTAAA 1} OAa Ta KEAIG TNG UTTAAAG. OETOVTOG
KATAAANAQ TIG TTAPAPETPOUG TTETUXAIVOUUE YPAUMIKO XPOVO dnuioupyiag TG OOPNG, YPAU-
MIKO XWpPOo, Kal Xpovo £Tepwtnang O(dn’), émou p = 1 — O(e?/log(1/¢)). MNa kabe onpeio
ETEPWTNONG ¢ € RY, n KATAGKeUN TNG BOUNG TIETUXAIVEI ue OTABEPN TIBAVOTNTA, N OTToia
MTTOPEI va evIoXUuBei dnuioupywvTag TTOANEG avegdpTnTEG DOUEG. ETTioNng eTTeKTEIVOUUE TO
ATTOTEAECHA VI UTTOOUVOAQ PE XOUNAR €yyevh dilaoTaon.

XPNOIYOTIOIWVTAG YVWOTEG avaywyEg [51], uTTopoupe va oXedidooupe AUOn yia To TTPO-
BANuUQ TOU TTPOCEYYIOTIKOU KOVTIVOTEPOU YEITOVA XPNOIUOTTIOIWVTAG TNV TTapaTTavw Oopr).
H 16€a dpwg utTopei va epapuooTei atreudeiag oTo TTPORANUA TOU TTPOCEYYIOTIKOU KOVTIVO-
TEPOU YeiTOVQ, Yia TTapadelyua xTidovrag éva Balanced Box-Decomposition (BBD) &évtpo
010 VEO XwpPo didotaons d'. O ocuvdUaoPOG AUTOG ETTITUYXAVEL TTI0 adUvapa gpdyuata
aAAG pTTopEi va Bpel TTpakTIKA agia Adyw TnNG atrAdTNTAG TOU.

Kovrivég yeitovag yia perpikous xwpoug¢ ue LSH. O1 Tapatmavw 1I0€€¢ UTTopoUV va €TTE-
KTaBoUv yia OTToIOOATTOTE UETPIKO XWPEO Yia Tov oTroio uttdpxouv LSH ouvaptioeic. H
TuXaia TTPOPBOAN o€ auTr TNV TTEPITITWON opieTal aTTd TOV APXIKO PETPIKO XWPEO TTPOG TOV
Xwpo Hamming ({0, 1}, || - ||1). H Tapatipnon autr odnyei o€ pia BeATiwon oTov Xpdvo
ETTEPWTNONG, OTNV TTEPITTTWON ToU EUKAgidEIoU Xwpou. OETovTag KATAAANAQ TIG TTAPAUE-
TPOUG TTETUXQAIVOUUE YPAUMPIKO XPpOVO dnuioupyiag TNG OOUNAG, YPAUMIKO XWPOo, KAl XpOvVOo
£TEPWTNONG O(dn”), OTTIoU p = 1 — O(?).

Kovrivog yeitovag kai pgiwon didoraong yia ¢1. H pgiwon didotaong pe diatipnon 6Awv
TWV ATTOOTACEWY OTOV PETPIKO XWPO ¢1, €ival yWwWOoTO OTI aTTOoTEAEI DUOKOAO €yXEipnua,



akoua kai étav n diactaon diTAaciacuou (doubling dimension) Twv onueiwy gival apkeTa
MIKPP) [66]. ZTnVv d1aTPIRr auTr) HEAETAUE ATTAEG TEXVIKEG hEiwoNG didoTaong TTou Ogv diaTn-
POUV OAEG TIG ATTOOTACEIG OAAG BIaTNPOUV TTANPOPOPIa TTOU Eival APKETH yIa TO TTPOBANUA
TOU KOVTIVOU yeiTova. Me dAAa AGyIa TTPOCQOEPOUNE Wia avaywyr Tou TTPOoRARUATOG eUpE-
ongG KovTivou yeitova o€ uwnAnf d1a0Tacn OTo avTioTolXo TTPORANKa o€ XaunAn diactaon.
Mo n onueia aTo ¢4, Kal yIa YPAUMIKO XPOVo TTPOROARG, TreTuxaivoups didataan Trpofo-
A\G TToOAUWVUIKN oTo loglog n, 6Tav n eyyevig didotaon Bswpeital otabepr). Map’dTi o1
OUVETTEIEG TOU OTTOTEAECHATOG dev TTEPIANAUPBAVOUV VEQ BewPNTIKA @PAyHaTA YIa OOUES
0edopévWY, N pEiwon dlAoTaoNG TTPOCPEPEI DIAPOPA TTAEOVEKTANATA, OTTWG TNV MEIWON
MVAKNG TTOU aTTaITEITAlI avA OnuEio.

Eva mpdBAnua cuotadorroinong. MeAetdpe Ta r-dikTua (r-nets), Eva xprioiuo epyaAeio TG
UTTOAOYIOTIKNG KAl TNG METPIKNG YEWHETPIAG, ME TTANBWPA EQAPUOYWY OTOUG TTPOCEYYIOTI-
koUg ahyopiBuoug. ‘Eva r-8ikTuo yia éva anpelioglvolo P otov EukAeideio xwpo (RY, ||-1|,),
Kal yia apIBunTIKA TTOPAUETPO 7 gival éva uTtooUvolo N C P TETOIO WOTE Ol KAEIOTEG UTTA-
Aeg akTivag r/2 pe kévtpa Ta anueia Tou N gival EEveg eTagU TOUG, Kl Ol KAEIOTEG UTTAAEG
OKTIVOG r JE KEVTPA T idla anueia KaAUTITouv 0Ao 1o P. Opiloupe avaloya Ta TTPOCEYYI-
OTIKA 7-OiKTUQ.

OpiIopdg 2. AoBévroc evoc anueioauvolou P C RY, uiag mapauérpou akrivac r > 0 kai
pIag TapauéTPouS mPooéyyions € > 0, éva (1 + €)-mpooeyyIaTiKO r-OikTuo Tou P gival éva
urrooUvoAo N' C P TToU IKQVOTTOIET TIC AKOAOUBECS 1010TNTES:

1. Na kGBe p,q € N, p # q, EXOUNE OTI ||p — ||, > 7.

2. MNa kaBe p € P, umapxel éva g € N s.t. [[p—qll, < (1 + e)r.

O uTtoAOYIONOG VOGS -OIKTUOU UTTOPE VA Yivel Je Evav TTOAU aTTAG TPOTTO: Bewpoupe ap-
XIKA OAa Ta onueia Tou P un-KaAUPPEVA, Kal ETTAVAANTITIKA ETTIAEYOUUE KEVTPA ATTO TO
OUVOAO AKAAUTITWY ONMEIWV KAl JE AQUTA KAAUTTTOUME onuEia atrd To oUVOAO OKAAUTITWY
onueiwv. H diadikacia otapatdel 0tav kKaAugBouv 6Aa Ta onueia. Otav n didoTtaon eivai
XOuNARA, N Tapatmavw d1adIKaoia JTTOPED va Yivel JE TTI0 atTodOoTIKO TPOTTO XPNOIKOTTOIW-
VTOG TTAEYMOTA KOl TTIVOKEG KATAKEPUATIOPOU [49].

Otav n didoTaon €ival uynAr OToXEUoOUUE Eavd o€ TTOAUTTAOKOTNTA TTOAUWVUUIKE OTNV
didoTtaon. Etiong n e€dptnon oto TTARBOG onueiwy TTPETTEN va gival 0aQwg PIKPOTEPN a-
M6 O(n?), 6mou |P| = n, a@ol 1600 KOaTifel va e£eTAooUpEe OAeG TIG amoaTdoels. Mia
TTPOCEyyion n otroia uTtoAoyilel (1 + €)-TrpooeyyIoTIKA r-OikTud o€ uwnAn didoTaon [42],
xpnoipoTtroiei LSH. Ta apketd pIkpo € > 0, n TTOAUTTAOKOTNTA XpdVvou gival O(dn2*@(ﬁ)),
é1ou 10 O KPUPREI TTOAUAOYapPIBUIKOUS TTAPAYOVTEC.

"evikd TTOAG a11é Ta TTPOBAANATA £yYUTNTOG €XOUV ETTIAUBET 0 UYNAEG DIOOTACEIG HEOW
Tou LSH. TNa mrapdadeiypa 10 TPORANPA TNG €UPECNG TOU TTPOCEYYIOTIKOU KOVTIVOTEPOU
Ceuyapiou avAapeoa o€ n Oonueia o€ diIdoTaon d PTTopei va emAUBEi og Xpbdvo O(an‘Q(E)).
Mpoogarta, o Valiant [77] TTapouciace Evav aAyopiBuo yia Trn eUPECN TOU TTPOCEYYIOTIKOU
KOVTIVOTEPOU (euyapioU O€ XPOVOo O(dn%@(\/g)) 0 otroiog dgv Baoifetal oto LSH. Auti) n



OIOPOPETIKN TTPOCEYYION BaAciCeTal OTOV YPIYOPO UTTOAOYICHO TTIVAKWY VIO TNV OTTOTiKNON
TTOAUWVUWV.

Emrekteivoupe Tov aAyépiBuo Tou Valiant kai uttoAoyidoupe TTPOOEYYIOTIKA r-OiKTUQ O€ XPO-
vo O(dn>~®W9), BeATiovovTag €101 ToV XPOVo Tou aAyopiBuou Trou Bagciletal oto LSH,
otav 10 € gival apkeTd WIKPO. H BeATiwon auTth ival avtioToixn TnG BeATiwoNG yia 1o Tpo-
BAnua Tou KovTIvoTEPOU Ceuyapiol. H peAéTn pag woeital atmd TIC SIAQPOPES EQPAPUOYES
TWV r-OIKTUWV OTOUG TTPOCEYYIOTIKOUG OAYOPIOuouUG [54].

Mia evigia avriueTwmion mPoLANUATWY £yyuTnTas KaUTTUAWY. YTTIApXouv dIGpopol TPOTTOI
KaBopiopou TNG avopoidTNTag 1 TNG atrdéoTaong PETagu duo KauTTuAwy. Ta duUo TTIo on-
MO@IAN PETPa aviodTnTag cival n diakpith amméoTaon Fréchet (Discrete Fréchet distance 1)
DFD) kai n ammréotacon Auvapikng Xpovikig ZTpéBAwaong (Dynamic Time Warping 1 DTW),
Ol OTTOIEG €ival EUPEWG HEAETNMEVEG Kal EQapudlovTal o€ TTPORANUATA TAgIVOUNONG Kal a-
vakTnong yia diagopoug TUTToug dedopévwy. To DFD cival weudod-peTpikr|, o€ avtiBeon
pe To DTW TT0U dgV IKaVOTTOIET TNV TPIYWVIKA aviootnta.  Eival ouvnBeg, OTIC aTTo0TACEIG
TWV KOUTTUAWY, va xpnoldoTrolgital n €vvola Tng didoyiong (traversal) yia dU0 KQUTTUAEG.
AlcioOnTiké, pia didoxion avTIoToIXEl o€ éva Xpovodidypauua cUP@WYa PE TO OTToio dla-
oxifoupe TIC OUO KAPTTUAEG TaUTOXPOVA, EEKIVWVTAG OTTO TO TIPWTO ONWEIO KABE KAPTTUANG
KOl TEAEILWVOVTAG OTO TEAEUTAIO oNpEio KABE KauTTUANG. Me Tnv TTadpodo Tou Xpdvou, n dIa-
oXIon TTPOXWPAEI O€ TOUAAXIOTOV Wia atro TIG U0 KaUTTUAEG. To DFD €ival n eAaxiotn (wg
TTPOG TIG DIOOXIOEIG) PEYIOTN aTTOOTACH TWV onuEiwy Katd Tnv didoyxion. To DTW civail 1o
eAAXI0TO (WG TTPOG TIG BIOCXIOEIG), ABPOICUA TWV ATTOOTACEWV KATA TN didoyion.

MNapouaialoupe pia €vvola amméoTacng KAUTTUAWY trou yevikeuel Tig DFD kait DTW. H 7,,-
arroaTacn dOUO KAUTTUAWY EAAXIOTOTIOIEN, WG TTPOG OAEG TIG dIATXiOEIG, TNV ¢, VOPUA TOU
d1avUOoPaTOG OAWYV TwV EUKAEIDEIWY OTTOOTACEWYV PETAEU ONUEIWY TTOU ETTIOKETTTOVTAI TAU-
TéxpOova Katd TNV didoyion. Qg ek Toutou, N DFD avTioToIxEi TNV /,,-aTTO0TACT) TTOAUYW-
VIKWV KAPTTUAWY, Kal To DTW avTioTolxei oTnv ¢1-atmméoTacn.

H Baoiki pag ouvelo@opd cival pia doun dedouévwy yia 1o TTPORANUa TNG eUPECNG TOU
TIPOCEYYIOTIKOU KOVTIVOTEPOU YEITOVA YIA TIG £,-ATTOOTACEIG TTOAUYWVIKWY KAPTTUAWY, O-
Tav 1 < p < co. AUTO ETTEKTEIVETAI EUKOAQ YIQ TNV £o.-aTTOOTACN KAUTTUAWY AUVOVTOG YIa
TNV £,-amméaTacn, OTToU TO p ETTIAEYETAI VA Eival APKETA PEYANO. ZTOXOG pag gival 1 + e
TTPOOCEYYIoN. TETOIOI TIPOCEYYIOTIKOI TTAPAYOVTEG ETTITUYXAVOVTAI VIO TTPWTN Qopd, Buoid-
{ovTag 0€ XWPIKEG atraIThoEIg TNG dopng. ‘Eva emimrAéov TTAeovEKTAUA gival 6TI o1 PéBodol
Mag AUvouv aTtreuBeiag 1o TTpORANUa Tou KOVTIVOTEPOU YeEiTova. MapdTi UTTAPXOUV YVWOTEG
avaywy£G 0To TTPORANUA TOU KOVTIVOU YEITOVA YIA JETPIKOUG XWPOUG, OEV Eival yvwoTd av
QVTIOTOIXEG AVAYWYEG MTTOPOUV VA AEITOUPYAOOUV O€ PN-PETPIKEG ATTOOTACEIS OTTWG TO
DTW.

2UYKEKPIYEVQA, OTaV p > 2, YIA n KAUTTUAEG TTOAUTTAOKOTNTOG M, OXEDIGloUNE dopr| dedo-
MEVWV PE XWPO Kal XPOVO TTPOETTEEEPYOTiAg

~ O(dm-ap,c)
O (n . (i + 2) ) ,
yus

OTTOU TO «v, . ECAPTATAI HOVO ATTO TA P, €, KAl O XPOVOG ETTEPWTNONG Eival 0(24m logn).



Aopéc dedouévwy yia epwriuara xaunAng moAummAokornrag. ‘Otav yeAeTaue TTpoBARpaTa
eyyuTNTOG YIO KAPTTUAEG €ival QUOIOAOYIKO VO UTTOBECOOUUE OTI Ol KAOUTTUAEG ETTEPWTNONG
Oev €ival idIag TTOAUTTAOKOTNTAG PE QUTEG TTOU ATTOTEAOUV TO 0UVOAO dedouévwy. EoTidlou-
ME OTNV TTEPITITWON OTTOU 01 KAUTTUAEG ETTEPWTNONG ATTOTEAOUVTAI ATTO MIKPOTEPO TTARB0G
KOPUQWV.

MNa v dlakpit amméoTtaon Fréchet otov EukAEidEIo xwpo, divouuEe Pia TUXAIOKPATIKY do-

3/2 dk 7 e 7
M OedopEVWVY PE Xwpo n - O <’“d6/ > + O(dnm) ka1 xpovo epwTtrpatog o€ O (dk), 6TTou

TO k£ ONAWVEI TO PNKOG TNG KAUTTUANG epwTApaToS. O aAyopiBuog Bacifetal o€ TUXAieg
OIaPEPIOEIG TOU XWPOU, KAl TTI0 CUYKEKPIYEVA O€ DIAUEPIOEIG TTOU dnUIoUpyouUVTal ATTO TU-
xaia yeratotmopéva TTAEypaTa. H doun Twv 0ed0UEVWY UTTOPET va YiVEI VIETEPUIVIOTIKI UE
eANa@pa emodeivwon TNG ammdédoong.

MNa auBaipeToug HETPIKOUG XWPOUG PE XaunAr didoTtaon dirrAaciacuou, divoupe avaioya
atmroteAéapaTa, aAAd n ETTITUYXAVOPEVN aTTOd0O0N EAPTATAI OTTO TIC UTTOBETEIG TTOU OXETI-
dovTal JE TO TTWG EXOUME TTPOCRAcn 0ToV £V AOyw PETPIKO Xwpo. O aAyopiBuog BaaciceTal
Kal TTAAI O€ TuXaieg DIOUEPICEIG TOU XWPOU Ol OTTOIEG UAOTTOIOUVTAI PE DOUEG OEDOUEVWIV
yia TTpoBARpaTa eyyuTNTOG ONUEIWY O YEVIKOUG UETPIKOUG XWPOUG.

H VC-éigoraon yia moAuywvikéS KautruAeg. 'Evag xwpog eupous (X, R) (YvwoTO €Tmiong
w¢ ouoTnua ouvoAwv) opieTal atrd €va oUVoAo X Kal €va oUVoAo aTré oUuvola R, OTTou
KGBe r € R gival éva utroouvolo Tou X . 'Evag Baoikdg deikTng yia KABe Xwpo eUpoug gival
n VC-diaotaon [79]. H évvoia auTr TTOCOTIKOTTOIEI TO TTO00 TTEPITTAOKOG Eival £VOG XWPOG
eUpoUG Kal £Xel TTaigel BepeAILdN POAO OTNV PNXAVIK HABNON, OTIG BOUEG OEDONEVWV Kal
OTNV UTTOAOYIOTIKI YEWMETPIA.

H Baoikn pag cuveio@opd gival n availuon tng VC-d1doTaong yia Xwpoug eUPOoUG TToU Opi-
CovTtal aTTd TTOAUYWVIKEG KAPTTUAEG. To 0UVOAO X aTToTeAEITAI ATTO TTOAUYWVIKEG KAUTTUAEG
ME m KOPUQEG Kal TO oUVOAO R opiCeTal atro “UTrdAeg” Tng Fréchet amméotaong pe KEVTpo
TTOAUYWVIKEG KOUTTUAEG e k KOPUQES. AvTioTolxn avaAuon yiveral kai yia Tnv Hausdorff
ammooTacn. EidikéTepa yia tnv amoéoTtacn Fréchet kai yia tnv améotacn Hausdorff yia
KAUTTUAEG oTo emmiTredo Seixvoupe 611 n VC-didoTtaon givail 1agng Tou O (k% log(mk)).

H avaAuon pag yiveral ye tnv dIAoTTaon Tou BaciKOU XWEOU EUPOUG O€ ETTIMEPOUG ATTAOU-
OTEPOUG XWPOUG eUpout. Apou ppdtoupe Tnv VC-didoTaon Twv atTAoUCTEPWV XWPWV KAl
agou dgicoupe OTI N didoTTaon auTr gival opdr), yTTopoUuE va cuVBECoOUNE Kal va ByAaAouue
TO €MOUUNTO CUNTTEPACHA VIO TOV OPXIKO XWPO EUPOUG.



ACKNOWLEDGEMENTS

First of all, | would like to thank my advisor loannis Emiris for his support and his contin-
uous effort to maintain a workspace that inspires creativity in an otherwise problematic
environment, especially due to the economic crisis and its negative effects on academia.
His positivity really helped me overcome both academic and non-academic challenges.

| would like to thank Anastasios Sidiropoulos for his hospitality and help during the time
| spent in Chicago. | would also like to thank Anne Driemel for inviting me to Bonn and
starting a collaboration with her. | am thankful to all of my coauthors and my labmates; |
had a great time working with all of them.

| would like to thank my family for all the support. | would like to thank my friends for
keeping me sane and balanced, and my partner for being very supportive.

This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme «Human Resources Development, Education
and Lifelong Learning» in the context of the project “Strengthening Human Resources
Research Potential via Doctorate Research” (MIS-5000432), implemented by the State
Scholarships Foundation (IKY).

Operational Programme 2 EZ"A

Human Resources Development, = 2[]]4-202[]
Education and Lifelong Learning

Evpwmaikn ‘Evwon
European Social Fund Co-financed by Greece and the European Union






CONTENTS

1 INTRODUCTION
1.1 Proximity problems . . . . . . . . . . ... Lo
12 Relatedwork . . . . . . . . . . e e e e
1.21 Normedspaces . . . . . . . . . i i i e e e e e e e e e e e e e e e e e e
1.2.2 Polygonalcurves . . . . . . . . . L e e e e e e e e e
1.3 Contribution . . . . . . . . . L e e e
1.3.1 Normedspaces . . . . . . . . . o o it e e e e e e e e e e e e
1.3.1.1 Approximate Nearest Neighbors . . . . . . . . . . . . . . ... ... ...
1.3.1.2 Approximate Nets . . . . . . . . . . . . Lo
1.3.2 Polygonalcurves . . . . . . . . e e e e e e e e e e e e e e e e e e e
1.3.2.1 Approximate Nearest Neighbors . . . . . . . . . . . . . . . ... ... ..
1.3.2.2 Vapnik—Chervonenkis dimension . . . . . . . . . . . . .. ... .. ...,

2 PRELIMINARIES
21 Metrics . . . . . . L e e e e e e e e e e e e e e e e e
e B O 4o 4 1
2.1.2 Distance functionsforcurves . . . . . . . . . .. L L. e e e e e e
2.1.2.1 Discretemeasures . . . . . . . . . .. e e e e e e e e e e e e e e
2.1.2.2 Continuous distances . . . . . . . . . . .. Lo o o e e e e
2.2 Random projections and dimensionality reduction . . . . . . . . . . . ... ... ...
2.3 Doublingdimensionandnets . . . . . . . . . . . . . . . . . Lo e e
2.4 Range spaces and Vapnik-Chervonenkis dimension . . . . . . . . . . ... ... ...

3 RANDOM PROJECTIONS WITH FALSE POSITIVES
3.1 Randomized Embeddings withslack . . . . . . . . . . . ... ... ... .......
3.2 Approximate Near Neighbor . . . . . . . . . . . . . . . .. o e
3.2.1 Finitesubsetsof /o . . . . . . . . . L e e e e e e e e e e e e e
3.2.2 Thecase ofdoublingsubsetsof /o . . . . . . . . . . . . .. . ...,
3.3 Approximate Nearest NeighborSearch . . . . . . . . . . . . . .. ... ... ...,
3.3.1 Finitesubsetsof /o . . . . . . . L . e e e e e e e e e e e e
3.3.2 Finite subsets of /> with bounded expansionrate . . . . . . . . . . . . .. ... ..
3.4 0nLSHablemetrics . . . . . . . . . .. L e e e
341 TheloCase . . . . . v v i i e e e e e e e e e e e e e e e e e e e e e e e e e e
3.4.1.1 Projectonrandomlines . . . . . . . . . . . . . . o 0 e e e
3.41.2 Hyperplane LSH . . . . . . . . . . . . Lo

29
29
30
30
32
33
33
33
35
35
35
36



342 Thel1Ca8e . . . v v v v e e e e e e e e 64
BE5SUMMArNY . . . . . . o o e e e e e e e e 65

4 NEAR-NEIGHBOR PRESERVING DIMENSION REDUCTION FOR DOUBLING

SUBSETS OF /; 67
4.1 Concentration bounds for Cauchy variables . . . . . . . . .. ... ... ....... 68
4.2 Net-based dimensionreduction . . . . . . . . . . . . ... ... ... ... ..., 70
4.3 Dimension reduction based on randomly shiftedgrids . . . . . . . . . . ... ... .. 72
4.4 Summary and algorithmic implications. . . . . . . . . . .. .. ... ... ....... 74
5 APPROXIMATE NETS IN HIGH DIMENSIONS 75
5.1 Points in {—1,1}? underinnerproduct . . . . . . . . . .. ... ... ... ... ... 75
5.2 Applications and Futurework . . . . . . . . . . . ..o Lo Lo oL 78
6 APPROXIMATE NEAREST NEIGHBORS FOR POLYGONAL CURVES 81
6.1 (,-products of /o . . . . . ... 82
6.2 Polygonal Curves . . . . . . . . . . v v it e e e e e e e e e e e e 86
6.3 Conclusion . . . . . . . ... e e e e e e e 89

7 APPROXIMATE NEAR NEIGHBORS FOR SHORT QUERY CURVES UNDER

THE DISCRETE FRECHET DISTANCE 91
7.1 ANN for short query curves in Euclideanspaces . . . . . . . . . . . . ... ...... 91
7.2 ANN for short query curves indoublingspaces . . . . . . . .. ... ... ....... 94
7.21 NetHierarchies . . . . . . . . . . . . . . . i e e 95
7.22 Adatastructureforcurves . . . . . . . . L L. L oL Lo Lo 97
8 VAPNIK-CHERVONENKIS DIMENSION FOR POLYGONAL CURVES 101
8.1 Preliminaries . . . . . . . . . . .. e e e e e 102
820urResults . . . . . . . . . . e e e e 102
83 OurApproach . . . . . . . . . . e e e e 103
8.4 Weak Fréchetdistance . . . . . . . . . . . . . . . . . . ... 104
8.4.1 Someusefullemmas . . . . . . . . . . . . e e e 104
8.4.2 Representationintermsofpredicates . . . . . . . . . . . ... ... ... ... 105
8.4.3 Representationasarange space . . . . . . . . . .t e e e e e e e 106
8.4.4 VCdimensionbound . . . . . . . . . . ... e e e e 106
8.5 The Fréchetdistance . . . . . . . . . . . . . . . . . . . i i 107
8.5.1 Someusefullemmas . . . . . . . . . . . .. e 107
8.5.2 Representationintermsofpredicates . . . . . . . . . . . .. ... ..o 108
8.5.3 Representationasarange space . . . . . . . « . .ttt u e e e e e e e e e 108
8.5.4 VCdimensionbound . . . . . . . . . . . . e e 109
8.6 The Hausdorffdistance . . . . . . . . . . . . . . . . . .. ... ... ... .. 110
8.6.1 Representationintermsofpredicates . . . . . . . . . . . . .. ... 111
8.6.2 Representationasarangespace . . . . . . . . . ottt u e e e e e e e e e 113
8.6.3 VCdimensionbounds . . . . . . . . . . . . e e e 115

8.7 The discrete case in higherdimensions . . . . . . . . . . ... ... .......... 116



8.8 Lowerbounds . . . . . . . . L e e e e e e e
ABBREVIATIONS - ACRONYMS
REFERENCES






2.1

2.2
8.1

8.2

LIST OF FIGURES

The traversal starts from the starting endpoints. Then, it only progresses
on the red curve. Then, it progresses on both curves. . . . . .. ... ...

lllustration of the predicate P;: The predicate evaluates to true if and only
if the triple intersection of the line ¢ supporting ¢;¢;;1 with the two stadiums
centered at 5,5, and 5,5, is non-empty. Note that g;¢;; - may lie outside
oftheintersection. . . . . . .. .. ... .. ... ...
The lower bound for (X;, R4r2). The two disks correspond to the two polyg-
onal curves of the ground set. The set of these two polygonal curves is
shattered by Rapo. . . . . . . . oo oo

111






3.1

4.1
6.1

8.1

LIST OF TABLES

Juxtaposition of our results with previous and concurrent results on the
linear-space regime. . . . . . ...

Comparison with related dimension reductionresults. . . . . ... ... ..

Summary of previous results compared to this chapter’s. The result of [55]
holds for arbitrary metrics and X denotes the domain set of the input metric.
All results except [55] are randomized. All previous results are tuned to
optimize the approximation factor. The parameters p,, p, satisfy (1+¢),/p,+

/Py > V1I+26e. oo

Our results on the VC dimension of range space (X,R). In the first col-
umn we distinguish between X consisting of discrete point sequences vs.
X consisting of continuous polygonal curves. The ground set X consists
of polygonal curves of complexity m and the range set R consists of balls
centered at polygonal curves of complexity k. Additional upper bounds on
the range space under the directed Hausdorff distance are stated in Theo-

rems 117 and 118. . . . . . . . . . 103






Proximity problems for high-dimensional data

1. INTRODUCTION

1.1 Proximity problems

Nearest neighbor searching is a fundamental computational problem with several applica-
tions in Computer Science and beyond. The setting is very clear: we need to preprocess
a set of objects in a way which assists proximity queries, i.e. when a query object arrives,
we should be able to retrieve the most similar object among the set of preprocessed ob-
jects. The dissimilarity or distance function typically depends on the context and affects
the performance of the solution. Finding similar objects is a general computational task
which serves as a subroutine for many major learning tasks like classification or clustering.
With the recent increase of availability of complex datasets, the need for analyzing and
handling high-dimensional descriptors has been increased. Likewise, there is a surge of
interest into data structures for trajectory processing, motivated by the increasing avail-
ability and quality of trajectory data from mobile phones, GPS sensors, RFID technology
and video analysis.

Definition 1 (Nearest Neighbor (NN) problem). Given a set of objects P which is a finite
subset of some ambient set M, and a distance function d(-,-), preprocess P into a data
structure which supports the following type of queries:

for any object q in M, find p* such that for all p in P : d(q,p*) < d(q,p).

Obviously, a naive linear scan provides a stable and easy-to-implement solution. The
problem gets really intriguing when we aim for strictly sublinear query time. Then, we hope
that we can exploit properties of the distance function during preprocessing. To simplify
things, we may assume that objects live in a metric space, i.e. (M, d) defines a metric.
Moreover, we can restrict ourselves to some of the most well-studied metrics, e.g. the
Euclidean metric. In particular, for low dimensional Euclidean spaces, we obtain simple
solutions. For dimension d = 1, all points lie on the real line and one can sort them so that
any query reduces to a simple binary search. For d = 2, the solution relies on the notion
of Voronoi Diagram, one of the most classical structures in Computational Geometry.

Proximity problems in metric spaces of "low dimension” have been typically handled by
methods which discretize the space and hence they are affected by the prominent curse
of dimensionality, so called because it refers to the computational hardness of analyzing
high-dimensional data. In the past two decades, the increasing need for analyzing high-
dimensional data, lead the researchers to devise approximate and randomized algorithms
with polynomial dependence on the dimension. Similarly, other complex data such as time
series or polygonal curves have been typically handled by approximate or randomized
algorithms.

Definition 2 (c-Approximate Nearest Neighbor (c-ANN) problem). Given a finite set P C
M, a distance function d(-, -), and an approximation factor ¢ > 1, preprocess P into a data
structure which supports the following type of queries:

Vg € M, find p* such thatVp € P: d(q,p*) < c-d(q,p).
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The corresponding augmented decision problem (with witness) is known as the approxi-
mate near neighbor problem, defined as follows.

Definition 3 ((c, 7)-ANN Problem). Given a finite set P C M, a distance functiond(-,-), an
approximation factor ¢ > 1, and a range parameter r, preprocess P into a data structure
which supports the following type of queries:

« if 3p* € P s.t. d(p*, q) < r, then return any point p’ € M s.t. d(p',q) < c-r,

« if Yp € P,d(p,q) > c-r, then report “Fail”.
The data structure is allowed to return either a point at distance < c - r or “Fail”.

It is known that one can solve logarithmically many instances of the decision problem with
witness to solve the (1 + ¢)-ANN problem [51].

Another problem of interest is that of computing good representatives for a finite metric
space. An r-net for a finite metric space (P, d), |P| = n and for numerical parameter r is
a subset A/ C P such that the closed r/2-balls centered at the points of N are disjoint,
and the closed r-balls around the same points cover all of P. We define approximate
r-nets analogously: the closed r/2-balls centered at the points of A are disjoint, and the
closed cr-balls around the same points cover all of P, where ¢ denotes the approximation
factor. These notions are very useful since they lead to an economical representation of
a pointset, while preserving the structure up to a scale O(cr).

In all proximity problems, there is an explicit notion of dissimilarity or distance between
two input objects. It is natural to define ranges based on the distance function: a range is
essentially a pseudo-metric ball. Generally, a range space (X, R) (also called set system)
is defined by a ground set X and a set of ranges R, where each r € R is a subset of X.
A crucial descriptor of any range space is its VC-dimension [79, 75, 74]. These notions
quantify how complex a range space is, and have played foundational roles in machine
learning [80, 13], data structures [29], and geometry [50, 26].

Unless otherwise explicitly stated, log(-) is the logarithm with base 2.

1.2 Related work

In this section, we present previous results on proximity problems in two main settings:
normed spaces and polygonal curves.

1.2.1 Normed spaces

This section details results that existed prior to this thesis, and results which appeared
concurrently. Unless otherwise stated, the results concern the case of points in /5.
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An exact solution to high-dimensional nearest neighbor search, in sublinear time, requires
heavy resources. One notable approach to the problem [69] shows that nearest neighbor
queries can be answered in O(d° log n) time, using O(n¢*°) space, for arbitrary ¢ > 0.

In [16], they introduced the Balanced Box Decomposition (BBD) trees. BBD-trees achieve
query time O(c4logn) with ¢; < d/2[1 + 6d/€]?, using space in O(dn), and preprocessing
time in O(dnlogn). BBD-trees can be used to retrieve the k£ > 1 approximate nearest-
neighbors at an extra cost of O(dlogn) per neighbor. BBD-trees have proved to be very
practical, as well, and have been implemented in software library ANN.

Another relevant data structure is the Approximate Voronoi Diagrams (AVD). They are
shown to establish a tradeoff between the space complexity of the data structure and
the query time it supports [15]. With a tradeoff parameter 2 < ~ < % the query time
is in O(log(nv) + 1/(e7)“= ) and the space in O(ny¢~!log 1). They are implemented on
a hierarchical quadtree-based subdivision of space into cells, each storing a number of
representative points, such that for any query point lying in the cell, at least one of the
representatives is an approximate nearest neighbor. Further improvements to the space-

time trade offs for ANN are obtained in [14].

One might apply the Johnson-Lindenstrauss Lemma and map the points to O(¢2logn)
dimensions with distortion equal to 1 + ¢ aiming at improving complexity. In particular,
AVD combined with the Johnson-Lindenstrauss Lemma have query time polynomial in
logn, d and 1/¢ but require n©(°9(1/9/<) space, which is prohibitive if ¢ < 1. Notice that
we relate the approximation error with the distortion for simplicity.

In high dimensional spaces, classic space partitioning data structures are affected by the
curse of dimensionality, as illustrated above. This means that, when the dimension in-
creases, either the query time or the required space increases exponentially. An impor-
tant method conceived for high dimensional data is Locality Sensitive Hashing (LSH). LSH
induces a data independent random partition and is dynamic, since it supports insertions
and deletions. It relies on the existence of locality sensitive hash functions, which are more
likely to map similar objects to the same bucket. The existence of such functions depends
on the metric space. In general, LSH requires roughly O(dn'**) space and O(dn*) query
time for some parameter p € (0,1). It has been shown [10] that in the Euclidean case, one
can have p = 1/(1 + €)?, which matches the lower bound of hashing algorithms proved in
[71]. Lately, it was shown that it is possible to overcome this limitation by switching to a

data-dependent scheme which achieves p = Q(H—i)gfl +o(1) [12].

For practical applications, memory consumption is often a limitation. Most of the previous
work in the (near) linear space regime dn'*°(") focuses on the case that ¢ is greater than
0 by a constant term. One approach [73] achieves query time proportional to dn©/(1+<)
which is sublinear only when ¢ is large enough. The query time was later improved [10] to
dn®1/(1+9%) which is also sublinear only for large enough e. For comparison, in Theorem 35
we show that it is possible to use near linear space, with query time roughly O(dn”), where
p~1—¢?/log(1/¢), achieving sublinear query time even for small values of e.

After the original submission of our paper [8], a better query time of O(n'~*’+9(")) has
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been established [11]. The bound has been shown to be optimal for a large class of data
structures. Despite the fact that our algorithm is sub-optimal, it is simpler and easier to
implement. Heuristics which are related to our method have been successful in practice
[76].

Significant amount of work has been done for pointsets with low doubling dimension. For
any finite metric space X of doubling dimension ddim(X), there exists a data structure [52]
with expected preprocessing time O(299MX)y logn), space usage O(29™ X)) and query
time O(299M(X) Jogn + ¢~ C@IMX)) |n [58], a new notion of nearest neighbor preserv-
ing embeddings has been presented. Moreover, it has been proven that in this context
we can achieve dimension reduction which only depends on the doubling dimension of
the dataset. Naturally, such an approach can be easily combined with any known data
structure for (1 + ¢)-ANN.

Random projection trees [32] have been shown to adapt to pointsets of low doubling di-
mension. Like kd-trees, every split partitions the pointset into subsets of roughly equal
cardinality. Unlike kd-trees, the space is split with respect to a random direction, not nec-
essarily parallel to the coordinate axes. Classic kd-trees also adapt to the doubling dimen-
sion of randomly rotated data [81]. However, for both techniques, no related worst-case
guarantees about the efficiency of (1 + ¢)-ANN search were given.

In [61], a different notion of intrinsic dimension has been introduced; namely the expansion
rate ¢ which is formally defined in Subsection 3.3.2. The doubling dimension is a more
general notion of intrinsic dimension in the sense that, when a finite metric space has
bounded expansion rate, then it also has bounded doubling dimension, but the converse
does not hold [48]. Several efficient solutions are known for metrics with bounded expan-
sion rate 1, including for the problem of exact nearest neighbor. One such solution [63]
provides a data-structure which requires /°Yn space and answers queries in ¥/°Y Inn.
Moreover, Cover Trees [24] require O(n) space and each query costs O(1'? logn) time for
exact nearest neighbors. In Theorem 42, we present a data structure for the (1 + ¢)-ANN
problem with linear space and O((¢'°9'°9%) . d - logn)) query time. The result concerns
pointsets in d-dimensional Euclidean space.

One related problem is that of computing (1 + ¢)-approximate r-nets. In [52], they show
that an approximate net hierarchy for an arbitrary finite metric X, such that | X| = n, can be
computed in O(299MX)py logn). This is satisfactory when doubling dimension is constant,
but requires a vast amount of resources when it is high. In the latter case, one approach is
that of [42], which uses LSH and requires time O (n!*/(1+9°+o()) ' When ¢ is small enough,
we show in Theorem 66 that time complexity can be improved to O(n?~®(/9)), without using
LSH.

1.2.2 Polygonal curves

The ANN problem has been mainly addressed for datasets consisting of points. Very little
is known about distances between curves which, in a sense, are the next more complex
type of geometric object. In this thesis, we focus on discrete Fréchet (DFD) and Dynamic
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Time Warping (DTW) distance functions.

The first result for DFD by Indyk [55], defined by any metric (X,d(-,-)), achieved ap-
proximation factor O((logm + loglogn)'~'), where m is the maximum length of a curve,
and t > 1 is a trade-off parameter. The solution is based on an efficient data struc-
ture for /..-products of arbitrary metrics, and achieves space and preprocessing time in
O(m2|X|)™"" . n2, and query time in (mlogn)°®). Table 6.1 states these bounds for ap-
propriate ¢t = 1 + o(1), hence a constant approximation factor. It is not clear whether the
approach may achieve a 1 + ¢ approximation factor by employing more space.

More recently, a new data structure was devised for the DFD of curves in Euclidean
spaces [37]. The approximation factor is O(d*/?). The space required is O(2*™nlogn +
mn) and each query costs O(2'¥mlogn). They also provide a trade-off between perfor-
mance, and the approximation factor. At the other extreme of this trade-off, they achieve
space in O(nlogn + mn), query time in O(mlogn) and approximation factor O(m). Our
methods can achieve any user-desired approximation factor at the expense of a reason-
able increase in the space and time complexities. Furthermore, it is shown that the result
establishing an O(m) approximation [37] extends to DTW, whereas the other extreme of
the trade-off has remained open. To compare with, we offer the first data structures and
query algorithms for (1 + ¢)-ANN with arbitrarily good approximation factor, at the expense
of increasing space usage and preprocessing time.

After the publication of our work, a new deterministic data structure [43] was devised, with
better query performance.

Notice that all related approaches solve the approximate near neighbor problem, which is
essentially a decision problem, instead of the optimization (1 + ¢)-ANN. It is known that a
data structure for the approximate near neighbor problem can be used as a building block
for solving the (1 + ¢)-ANN problem. This procedure has provable guarantees on metrics
[51], but it is not clear whether it can be extended to non-metric distances such as the
DTW.

1.3 Contribution

1.3.1 Normed spaces
1.3.1.1 Approximate Nearest Neighbors

In Chapter 3, we introduce a notion of “low-quality” randomized embeddings and we em-
ploy standard random projections a la Johnson-Lindenstrauss in order to define a mapping

from ¢4 to ¢4, for
1o (ctea(2)

such that an approximate nearest neighbor of the query lies among the pre-images of
k approximate nearest neighbors in the projected space. This observation allows us to
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combine random projections with the bucketing method [51], and obtain a randomized data
structure with optimal space and sublinear query for the augmented decision problem.

In particular, after a random projection to ¢¢', we simply employ a grid with cell width e/\/?
and for each query we explore cells inside the approximate Euclidean ball of size O(1/¢)?.
The query stops after having examined m candidate points. This is the topic of Section 3.2,
and Theorem 35 states that there exists a randomized data structure for the (1 + ¢, 7)-
ANN problem, with linear space, linear preprocessing time, and query time O(dn”), where
p =1—0(e?/log(1/e)). For each query ¢ € R?, preprocessing succeeds with constant
probability, and can be amplified by repetition.

We are able to extend our results to doubling subsets of /; (see Subsection 3.2.2) by
applying our approach to an r-net of the input pointset. The resulting data structure has
linear space, preprocessing time which depends on the time required to compute an r-net,
and query time (2/¢)°@dmX)) ‘where ddim(X) is the doubling dimension of X.

Our ideas directly extend to the (1+-¢)-ANN problem, by building a BBD tree in the projected
d’-dimensional space. This achieves bounds which are weaker than the ones obtained
through the (1 + €, 7)-ANN solution, but the algorithm is very simple and quite interesting
in practice, since reducing (1 + ¢)-ANN to (1 + ¢, 7)-ANN is nontrivial and typically avoided
in implementations. The main result of Section 3.3 is Theorem 39, which offers a random-
ized algorithm for the (1 + ¢)-ANN problem with optimal O(dn) space, and query time in
O(dn”logn), where p = 1 — O(e?/InInn), for ¢ € (0,1/2]. The total preprocessing time
is O(dnlogn). For each query ¢ € R?, the preprocessing phase succeeds with constant
probability.

This direct approach is extended to finite subsets of /, with bounded expansion rate v
(see Subsection 3.3.2). The pointset is now mapped to a space of dimension O(log ),
and each query costs roughly O((¥'°9'°9%)d logn).

Finally, we are able to define a mapping from any metric which admits an LSH family of
functions to the Hamming space. Using this mapping, we achieve improved query time in
O(dn'~®()) (see Subsection 3.4).

In Chapter 4, we investigate the problem of reducing the dimension for doubling subsets of
/1. While this embeddability question has a negative answer in general due to known lower
bounds [66], we show that one can reduce the dimension considerably when focused on
the (¢, r)-ANN problem. The main requirement is that the dimension reduction preserves
enough information for reducing the (¢, r)-ANN problem in a high dimensional space to
the (¢, r)-ANN problem in a much lower dimensional space. We refer to randomized em-
beddings which satisfy this requirement as near neighbor-preserving. In particular, for
pointsets with doubling constant \p, we show the following:

1. In Theorem 53, we prove that for every ¢ € (0,1/2) and ¢t > 1, there is a random-
ized mapping h : (¢ — (¢ that can be computed in time O(dn'+'/*®) and is near
neighbor-preserving for P with distortion 14+6¢ and probability of correctness Q(e),
where

d' = (log Ap - log(t/¢))®™M /¢ (e).
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Although the mapping ~ depends on the pointset, the parameter ¢ is user-defined
and therefore provides a trade-off between preprocessing time and target dimension.
The term ((¢) depends only on e.

2. In Theorem 56, we show that for every ¢ € (0,1/2), there is a randomized mapping
W ¢? — (¢ that can be computed in time O(dd'n) and is near neighbor-preserving
for P with distortion 1+6¢ and probability of correctness €)(¢), where

d' = (log Ap - log(d/e))®™M ) /¢ (e).

In this case, the function 4’ is oblivious to P and well-defined over the whole space,
but the target dimension depends on d. The term ((¢) depends only on e.

1.3.1.2 Approximate Nets

In Chapter 5, we present a new randomized algorithm that computes approximate r-nets in
time subquadratic in n and polynomial in the dimension, and improves upon the complexity
of the best known algorithm. With probability 1 — o(1), our method returns A/ C X, which
is a (1 + ¢)-approximate r-net of X.

We reduce the problem of computing approximate r-nets for arbitrary vectors (points)
under Euclidean distance to the same problem for vectors on {—1,1}00°97/<*)  Then, we
extend and simplify Valiant’s framework [77] and we compute r-nets in time O(an*@(@),
thus improving on the exponent of the LSH-based construction [42], when ¢ is sufficiently
small. This improvement by /¢ in the exponent is the same as the complexity improvement
obtained in [77] over the LSH-based algorithm for the approximate closest pair problem.

Our study is motivated by the fact that computing efficiently an r-net leads to efficient
approximate solutions for several geometric problems. In particular, our extension of r-
nets in high dimensional Euclidean space can be plugged in the framework of [54]. The
new framework has many applications, notably the kth nearest neighbor distance problem,
which we solve in O(dn?>~°W9),

1.3.2 Polygonal curves
1.3.2.1 Approximate Nearest Neighbors

In Chapter 6, we study the (1 + ¢)-ANN problem for polygonal curves. We present a
notion of distance between two polygonal curves, which generalizes both DFD and DTW
(for a formal definition see Definition 5). The ¢,-distance of two curves minimizes, over
all traversals, the ¢, norm of the vector of all Euclidean distances between paired points.
Hence, DFD corresponds to /..-distance of polygonal curves, and DTW corresponds to
¢1-distance of polygonal curves.

Our main contribution is an (1 + ¢)-ANN data structure for the /,-distance of curves, when
1 < p < oo. This easily extends to /. -distance of curves by solving for the /,-distance,
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for a sufficiently large value of p. Our target are methods with approximation factor 1 + e.
Such approximation factors are obtained for the first time, at the expense of larger space
or time complexity. Moreover, a further advantage is that our methods solve (1 + ¢)-ANN
directly instead of requiring to reduce it to near neighbor search. While a reduction to the
near neighbor problem has provable guarantees on metrics [51], we are not aware of an
analogous result for non-metric distances such as the DTW.

Specifically, when p > 2, we show that there exists a data structure with space and pre-

processing time in
~ d O(dm-ap,e)
Ol|n- (— + 2) ,
pE

where «, . depends only on p, ¢, and query time in O(2*"logn).

When specialized to DFD and compared to [37], the two methods are only comparable
when ¢ is a large enough fixed constant. Indeed, the two space and preprocessing time
complexity bounds are equivalent, i.e. they are both exponential in d and m, but our query
time is linear instead of being exponential in d.

When p € [1, 2], there exists a data structure with space and preprocessing time in
O (n . 2O(dm'apyé)) ,

where «, . depends only on p, ¢, and query time in 0, (24 logn). This leads to the first ap-
proach that achieves 1+ ¢ approximation for DTW at the expense of space, preprocessing
and query time complexities being exponential in m. Hence our method is best suited
when the curve size is small.

In Chapter 7, we focus on DFD, and we provide a solution which is especially efficient in the
short query regime. Moreover, we extend our ideas to non-Euclidean spaces: we provide
a solution for arbitrary metrics with bounded doubling dimension, and can be accessed
through a metric oracle.

5\ dk
For the Euclidean space, we give a randomized data structure with space in n-O (’“dg/ ) +

€

O(dnm) and query time in O (dk), where k denotes the length of the query curves. This
result improves on the (the more general) result of Chapter 6 on DFD, even in the case
that queries are of the same complexity as the dataset. It also improves upon [43], when
k < m, and it is comparable otherwise. The data structure can be derandomized with a
slight worsening of the performance. For arbitrary doubling metrics, we give analogous
results, but the achieved performance depends on the assumptions associated with the
metric oracle.

1.3.2.2 Vapnik—Chervonenkis dimension

In Chapter 8, we analyze the VC dimension of range spaces defined by polygonal curves.
To the best of our knowledge, the results presented here are the first for this problem. For

|. Psarros 36



Proximity problems for high-dimensional data

Discrete Hausdorff or Fréchet balls defined on point sets (resp. point sequences) in R? we
show that the VC dimension is at most near-linear in k, the complexity of the ball centers
that define the ranges, and at most logarithmic in m, the size of the point sets of the ground
set. The same holds for our bounds for the range space induced by the Weak Fréchet
distance. Our lower bounds show that these bounds are almost tight in both parameters
k and m. For the Fréchet distance, where the ground set X are continuous polygonal
curves in R? we show an upper bound that is quadratic in k& and logarithmic in m. These
initial bounds assume a fixed radius of the metric balls that define the ranges R. The same
holds for the Hausdorff distance, where the ground set are sets of line segments in R2.

The bounds in the discrete setting hold for ranges of metric balls of all radii and readily
extend to ground sets of curves defined in R? for d > 2. In all cases, the bounds are tight
in the dependency on m, the complexity of elements of the ground set.
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2. PRELIMINARIES

In this chapter, we formally define basic concepts and we prove preliminary results which
will be useful in the subsequent chapters.

2.1 Metrics

While this is not always the case, we may assume that the distance functions of inter-
est satisfy certain properties. This often allows us to prove desirable guarantees for the
proposed solutions. Given a set of objects X, a distance function on X is a function
d: X x X — [0,00). Then, the pair (X,d) defines a metric space if for any z,y,z € X,
the following conditions are satisfied:

(non-negativity )
<= 1z = y (identity of indiscernibles)

(y,z) (symmetry)
(x,y) +d(y, z) (subadditivity or triangle inequality)

The difference between a pseudometric and a metric is that in a pseudometric, two distinct
objects may have zero distance. Quasimetric spaces satisfy all axioms of a metric space
with the exception of 3. , the axiom of symmetry. Ultrametrics satisfy a stronger version of
the triangular inequality: d(z, z) < max{d(z,y),d(y, 2)}.

211 /, norms

Metrics in general can be defined on arbitrary sets. A norm is defined on some vector
space X as follows:

1. Vx € X : ||z € ][0,00)

2. ||l =0 = 2 =0
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3. ||az|| = af|z|| forall « € R

4 Nz +yll <zl + vl

Every norm || - || defines a metric, in which the distance of points z, y equals ||z — y||. The
unit ball of any norm is a symmetric convex body which contains the origin. In addition,
any symmetric convex body K defines a norm: ||z||x = min{\ > 0| z € AK}.

For a point z = (21,3, ...,24) € R? and for p € [1, 00), the £, norm is defined as

d 1/p
lzll, = (Z Ixilp) -
i=1

We denote by ¢ the normed space (R, || - ||,). When d is not important, we simply use /,
denoting (R?, || - ||,,) for some d € N.

2.1.2 Distance functions for curves
2.1.2.1 Discrete measures

Let us start with point sequences, which are closely related to curves. For metrics My, ..., My,
we define the ¢ ,-product of My, ..., M) as the metric with domain M; x --- x M, and dis-
tance function

k 1/p
d((xh‘“?xk)v(yl?"'7yk)) = (Zdifl(xwyl)) :

It is common, in distance functions of curves, to involve the notion of a traversal for two
curves. Intuitively, a traversal corresponds to a time plan for traversing the two curves
simultaneously, starting from the first point of each curve and finishing at the last point of
each curve. With time advancing, the traversal advances in at least one of the two curves.

Definition 4 (Traversal). Given polygonal curves V. = vy,... v, U = uy, ..., Up,, @
traversal T = (i1, 71), ..., (i, j;) iS @ sequence of pairs of indices referring to a pairing of
vertices from the two curves such that:

1. i1,51 =1, iy = mq, Jy = mo.
2. V(ig, jx) €T 2 igy1 —ip € {0,1} @nd jpy1 — jir € {0, 1},
3. V(g Ji) €T 2 (th+1 — ix) + (a1 — J) = 1.
Now, we define a class of distance functions for polygonal curves. In this definition, it is

implied that we use the Euclidean distance to measure distance between any two points.
However, the definition easily extends to arbitrary metrics.
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Figure 2.1: The traversal starts from the starting endpoints. Then, it only progresses on the red
curve. Then, it progresses on both curves.

Definition 5 (¢,-distance of polygonal curves). Given polygonal curves V. = vy,...,vp,,
U=u,...,un, We define the (,-distance between V and U as the following function:
1/p

dp(v7 U) = jr,nelg Z ||Ulk - u]ng )

where T denotes the set of all possible traversals for V and U.

The above class of distances for curves includes some widely known distance functions.
For instance, d..(V,U) coincides with the DFD of V' and U (defined for the Euclidean
distance). Moreover d,(V, U) coincides with DTW for curves V, U.

Remark 6. The discrete Fréchet distance in an arbitrary metric space defines a pseudo-
metric: the triangular inequality is satisfied, but distinct curves may have zero distance.
However, for our purposes, it is sufficient to consider the metric space which is naturally
induced by that pseudo-metric: two polygonal curves are considered to be equal if their
discrete Fréchet distance is zero. This observation allows us to refer to the metric space
of polygonal curves under the discrete Fréchet distance.

2.1.2.2 Continuous distances

Any polygonal curve V' with vertices vy, . . ., v,,,, and edges v1vs, . . ., U, —10m, has a uniform
parametrization that allows us to view it as a parametrized curve v : [0,1] — R? Once
again, we assume that curves belong to the Euclidean space.

Definition 7 (Directed Hausdorff distance.). Let X, Y be two subsets of R?. The directed
Hausdorff distance from X to Y is:

dz(X,Y) = jg)gvlggj [u = vl
Definition 8 (Hausdorff distance.). Let X, Y be two subsets of R¢. The Hausdorff distance
between X and Y is:
dp(X,Y) =max{d3(X,Y),dz(Y, X)}.

Definition 9 (Fréchet distance). Given two parametrized curves u,v : [0,1] — RY, their
Fréchet distance is defined as follows:

d = min ma —
plwo) = min  max lo(a) —u(f(0))]

where f ranges over all continuous and monotone bijections with f(0) = 0 and f(1) = 1.
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Definition 10 (Weak Fréchet distance). Given two parametrized curves u,v : [0, 1] — R,
their Weak Fréchet distance is defined as follows:

dw ) = - )
o) =, i, e o(f(@) =~ u(s(@)l
where f and g range over all continuous functions (not exclusively bijections) with f(0) = 0
and f(1) =1and g(0) =0and g(1) = 1.

2.2 Random projections and dimensionality reduction

In this section, we present basic results and easily-obtained lemmas about random pro-
jections.

Theorem 11 ([57]). Let G be a d' x d matrix with i.i.d. random variables following N (0, 1).
There exists a constant C > 0, such that for any v € R? with ||v||, = 1.

$PriGul < (1 -6 4] < exp(~Cde?),
e Pr [”GUH% > (1+e€)- %] < eXp(_Cd/€2>'

A simple computation shows the following (see also [58]).

Lemma 12. Let GG be a d' x d matrix with i.i.d. random variables following N (0, 1), and let
D > 3. Forany v € R? with ||v|, = 1:

or[ieetz < am) 4] < (2

We also prove concentration inequalities for central absolute moments of the normal dis-
tribution. Some of these results may be folklore, and the reasoning is quite similar to
the one followed by proofs of the Johnson-Lindenstrauss lemma, e.g. [67]. Notice also
that results concerning random projections from ¢, to ¢, p € [1, 2] are folklore, but we are
also interested in the case p > 2. In addition, the properties which are required for ANN
searching are weaker than the ones which are typically investigated.

The 2-stability property of standard normal variables, along with standard facts about their
absolute moments imply the following claim.

Lemma 13. Let v € R? and let G be d’ x d matrix with i.i.d random variables following
N(0,1). Then,

E[IGvIl}] = ¢y d' - [[v]l5,
2p/2.p(m

wrr(t) is a constant depending only on p > 1.

where ¢, = —-
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Proof. Let g = (Xi,...,X,) be a vector of random variables which follow N(0,1) and
any vector v € R?. The 2-stability property of gaussian random variables implies that
{(g,v) ~ N(0,|lv||3). Recall the following standard fact for central absolute moments of
Z ~ N(0,0?):

»/.T ()

E[|Z]] = o - NG

Hence,

2p/2 .T (p+1)

D 2
E [[|Gvl|?] Z\gl, ]— ol - —

]

In the following lemma, we give a simple upper bound on the moment generating function
of | X|P, where X ~ N(0,1).

Lemma 14. Let X ~ N(0,0%), p > 1, and t > 0, then E[exp(—t|X|P)] < exp(—tE[| X 7] +
R[] X]]).

Proof. We use the easily verified fact that for any = < 1, exp(z) < 1+ z + 2% and the
standard inequality 1 + = < e”, for all z € R.

E [e—t\le] <1—t-E[X])+¢-E [|X‘2p} < @ EIXIPIHAEX]*]
OJ

Lemma 15. Let X ~ N(0,1). Then, there exists constant C > 0 s.t. for any p > 1,
E[X[] < C - 2° - E[|X]]".

Proof. In the following, we denote by f(p) ~ g(p) the fact that there exist constants 0 <
c< Cst foranyp > 1, f(p) < C-g(p) and f(p) > c- g(p). In addition, f(p) = g(p)
means that 3C > 0s.t. Vp > 1, C- f(p) > g(p). In the following we make use of the Stirling
approximation and standard facts about moments of normal variables.

or . [ (2t 2 2p)% 1 2°p"\/p
E “XIQP} — \/(%2 ) ~ (2p—1)l = épp;' ~ (( 1;) >'\/Z_?'2p (2)7’ ~ ep\/_ ~ 2. p
(/2+1/2)\ 2
E (X ~ ((p - 1) 2 (2?/2“/2- (L ) <Lz
O

The following lemma is the main ingredient of our embedding, since it provides us with a
lower tail inequality for one projected vector.
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Lemma 16. Let G be a d' x d matrix with i.i.d. random variables following N (0,1) and
consider vector v € R?, s.t. ||v||s = 1. For appropriate constant ¢ > 0, forp > 1 and
5 €(0,1),

Pr{[|Gullp < (1—6) - E[|Gu|p]] < e~ 2",

Proof. For X ~ N(0,1) and any ¢ > 0,

Pr[IGullz < (1 - 6)-E[|Go|lz]] < E [e X" . et EIXPD <

< g (—tE[|X[P]+¢2-.C-2P E[| X [P]? +¢-(1-0)-E[| X |*])

The last inequality derives from Claim 15. Now, we set ¢t = WW Hence,
Pri|Gully < (1-0) - E[|Gufl7]] < e,
for some constant ¢ > 0. O

Standard properties of ¢, norms imply a loose upper tail inequality.

Corollary 17. Let G be a d' x d matrix with i.i.d. random variables following N(0,1) and
consider vector v € R%. Let p > 2. Then, for constant C' > 0,

Pr (Gl > (1+ llu]vT] < e 0

Proof. Since p > 2, we have that Vz € R? ||z||, < ||z|2. Hence, by Theorem 11,

PrIGull, > (14 €)lollaVd) < Pr{lGull > (1 + ) o]}V < 670,

However, an improved upper tail inequality can be derived when p € [1,2].

Lemma 18. Let G be a d' x d matrix with i.i.d. random variables following N (0,1) and
consider vector v € R%. Letp € [1,2] . Then, for constant C > 0,

Pr [HGUHP > (3 Cp - d,)l/p”UH?} < e Cd

Proof. Let X ~ N(0,1).

+00 +0oo
E [eX/3] = L / glil/3-a/2q, < V2 / e /322y = /3,
VT o

V2T s

Now, assume wlog ||v]|s = 1,

Pr [HGng > 3.E [HGUHQ} < E [e\X|P/3}d/ .e,d/.E[\X|P] < efd/(cp72/3) < efd//m?

21’/2.{‘(%)

where ¢, = ——
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2.3 Doubling dimension and nets

In this section, we define basic notions about doubling metrics and nets.

Definition 19 (Doubling constant). Consider any metric space (X,dx) and let B(p,r) =
{r € X | dx(z,p) < r}. The doubling constant of X, denoted \y, is the smallest integer
Ax such that forany p € X and r > 0, the ball B(p,r) can be covered by \x balls of radius
r/2 centered at points in X.

The doubling dimension of (X,dx) is defined to be equal to log \x. Nets play an impor-
tant role in the study of embeddings, as well as in designing efficient data structures for
doubling metrics. They are generally subsets of the original sets, which satisfy the follow-
ing: no two points in the net are within distance r of each other, and for every point in the
original set there exists a net point within distance r. Figure 2.2 illustrates this notion. In
the following we introduce the notion of c-approximate r-nets.

Definition 20 (Approximate nets). Forc > 1, r > 0 and metric space (V, dy ), a c-approximate
r-net of V is a subset N' C V such that no two points of N are within distance r of each
other, and every point of V' lies within distance at most c-r from some point of N

A &
ROV

Figure 2.2: r-nets.

Theorem 21. Let P C ({ consisting of n points. Then, for any ¢ > 0, r > 0, one can
compute a c-approximate r-net of P in time O(dn'*'/<), where ¢ = Q(c). The result is
correct with high probability. The algorithm also returns the assignment of each point of P
to the point of the net which covers it.

Proof. We employ basic ideas from [51]. An analogous result in ¢, is stated in [42]. First,
we assume r = 1, since we are able to re-scale the point set. Now, we consider a randomly
shifted grid with side-length 2. The probability that two points p,¢q € P fall into the same
grid cell, is at least 1 — ||[p — ¢||1/2. For each non-empty grid cell we snap points to a
grid: each coordinate is rounded to the nearest multiple of § = 1/10dc. Then, coordinates
are multiplied by 1/6 and each point z = (z,...,74) € [20]? is mapped to {0,1}?%? by a
function G as follows: G(x) = (g(x1),...,9(z4)), Where g(z) is a binary string of = ones
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followed by 2/6 — = zeros. For any two points p, ¢ in the same grid cell, let f(p),f(q) be the
two binary strings obtained by the above mapping. Notice that,

1f(p) = f(D)lr € (2/0) - |lp — qlls £ 1.

Hence,
lp—qlli <1 = |If(p) = f(@)lh <(2/0) +1,

lp—dlhzc = [If(p) = f(@Ih = (2/6) - c— 1.

Now, we employ the LSH family of [51], for the Hamming space. After standard concate-
nation, we can assume that the family is (p, ¢p,n ="/, n=')-sensitive, where p = (2/6) + 1
and ¢ = Q(c). Leta=n"""and g =n"".

Notice that for the above two-level hashing table we obtain the following guarantees. Any
two points p, g € P, such that ||[p—q||; < 1, fall into the same bucket with probability > a/2.
Any two points p,q € P, such that |[p — ¢||1 > ¢, fall into the same bucket with probability
< p.

Finally, we independently build & = ©(n'/¢ logn) hashtables as above, where the random
hash function is defined as a concatenation of the function which maps points to their grid
cell id and one LSH function. We pick an arbitrary ordering py,...,p, € P. We follow a
greedy strategy in order to compute the approximate net. We start with point p,, and we
add it to the net. We mark all (unmarked) points which fall at the same bucket with py, in
one of the k hashtables, and are at distance < ¢r. Then, we proceed with point p,. If py is
unmarked, then we repeat the above. Otherwise, we proceed with p;. The above iteration
stops when all points have been marked. Throughout the procedure, we are able to store
one pointer for each point, indicating the center which covered it.

Correctness. The probability that a good pair p, ¢ does not fall into the same bucket for
any of the k hashtables is < (1 — a/2)" < n~1°. Hence, with high probability, the packing
property holds, and the covering property holds because the above algorithm stops when
all points are marked.

Running time. The time to build the k hashtables is k - n = O(n't/¢). Then, at most n
queries are performed: for each query, we investigate k buckets and the expected number
of false positives is < k-n?- 8 = O(n'+1/). Hence, if we stop after having seen a sufficient
amount of false positives, we obtain time complexity O(n1+1/c') and the covering property
holds with constant probability. We can repeat the above procedure O(logn) times to
obtain high probability of success. O

2.4 Range spaces and Vapnik—Chervonenkis dimension

Each range space can be defined as a pair of sets (X, R), where X is the ground set and
R is the range set. Let (X, R) be a range space. For Y C X, we denote:

Ry ={rnY |reR}
If Rjy contains all subsets of Y, then Y is shattered by R.
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Definition 22 (Vapnik-Chernovenkis dimension [79]). The Vapnik-Chernovenkis dimen-
sion (VC dimension) of (X, R) is the maximum cardinality of a shattered subset of X.

Definition 23 (Shattering dimension). The shattering dimension of (X, R) is the smallest
0 such that, for all m,
max |R | = O(m°).

BCX
|Bl=m

It is well-known [13, 50] that for a range space (X, R) with VC-dimension v and shattering
dimension § that v < O(dlogd) and 6 = O(v). So bounding the shattering dimension and
bounding the VC-dimension are asymptotically equivalent within a log factor.

Definition 24 (Dual range space). Given a range space (X, R), for any p € X, we define
R,={r|reR,per}.
The dual range space of (X, R) is the range space (R,{R, | p € X}).

It is a well-known fact that if a range space has VC dimension v, then the dual range space
has VC dimension < 2*! (see e.g. [50]).

It is also known [25] that the composition ranges formed as the k-fold union or intersection
of ranges from a range space with bounded VC-dimension v induces a range space with
VC-dimension O(vklog k), and this was recently shown that this is tight for even some
simple range spaces such as those defined by halfspaces [31].
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3. RANDOM PROJECTIONS WITH FALSE POSITIVES

Deterministic space partitioning techniques, such as kd-trees, BBD-trees and approximate
Voronoi diagrams, perform well in solving (1 + ¢)-ANN when the dimension is relatively
low, but are affected by the curse of dimensionality. To address this issue, randomized
methods have been proposed, such as Locality Sensitive Hashing (LSH), which are more
efficient when the dimension is high. One might try applying the celebrated Johnson-
Lindenstrauss Lemma, followed by standard space partitioning techniques, but the prop-
erties of the projected pointset are too strong for designing an efficient (1 + ¢)-ANN search
method when aiming for near-linear storage.

We introduce a new notion of embedding for metric spaces requiring that, for some query,
there exists an approximate nearest neighbor among the pre-images of its £ > 1 approx-
imate nearest neighbors in the target space. In Euclidean spaces, we employ random
projections a la Johnson-Lindenstrauss to a dimension inversely proportional to k. In
other words, we allow k false positives, meaning that at most £ far points will appear as
near neighbors in the projected space.

After dimension reduction, we store points in a uniform grid of side length ¢/+/d’, where
d' is the reduced dimension. Given a query, we explore cells intersecting the unit ball
around the query. This data structure requires linear space, and query time in O(dn”),
p ~ 1—¢?/log(1/e¢), where n denotes input cardinality and d space dimension. Bounds
are improved for doubling subsets via r-nets. A small improvement on the exponent p
can be achieved by employing certain LSH functions to define a mapping to the Hamming
space.

Organization. Section 3.1 introduces our embeddings to dimension lower than predicted
by the Johnson-Linderstrauss Lemma. Section 3.2 states our main result for the (¢, 7)-ANN
problem in /5 and an extension to doubling subsets of /,. Section 3.3 states a weaker, yet
practical result on c-ANN in /5, and an extension to pointsets with bounded expansion rate.
Section 3.4 extends the results to the case of LSH-able metrics, and includes a slightly
improved result for the Euclidean space. We conclude with a summary of our results.

In the sequel, the approximation factor c is equal to 1 + ¢, for some ¢ € (0,1/2].

3.1 Randomized Embeddings with slack

This section examines standard dimensionality reduction techniques and extends them to
approximate embeddings optimized to our setting.

In [1], they consider non-oblivious embeddings from finite metric spaces with small di-
mension and distortion, while allowing a constant fraction of all distances to be arbitrarily
distorted. In [23], they present non-oblivious embeddings for the ¢, case, which preserve
distances in local neighborhoods. In [45], they provide a non-oblivious embedding which
preserves distances up to a given scale and the target dimension mainly depends on
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ddim(.X) with no dependence on | X|. In general, embeddings based on probabilistic par-
titions are not oblivious. In [21], they solve ANN in ¢, spaces, for 2 < p < oo, by oblivious
embeddings to /., and /s.

But, it is not obvious how to use a non-oblivious embedding in the scenario in which we
preprocess a dataset and we expect a query to arrive. Therefore we focus on oblivious
embeddings.

Let us now revisit the classic Johnson-Lindenstrauss Lemma:

Proposition 25. [59] Forany set X C R%, € € (0, 1/2] there exists a distribution over linear
mappings f : RY — R?, where d' = O(log | X|/€?), such that for any p,q € X,

(1=olp—dqll; < If ) = f@3 < (1 +€)p—qll3.

In the initial proof [59], they show that this can be achieved by orthogonally projecting
the pointset on a random linear subspace of dimension d'. In [72], they provide a proof
based on elementary probabilistic techniques. In [57], they prove that it suffices to apply
a gaussian matrix G on the pointset. G is a d x d’ matrix with each of its entries inde-
pendent random variables given by the standard normal distribution N(0,1). Instead of a
gaussian matrix, we can apply a matrix whose entries are independent random variables
with uniformly distributed values in {—1, 1} [2], or even independent random variables with
uniform subgaussian tails [68].

However, it has been realized that this notion of randomized embedding is stronger than
what is required for c-ANN. The following has been introduced in [58] and focuses on the
distortion of the nearest neighbor.

Definition 26. Let (Y, dy), (Z,dz) be metric spaces and X C Y. A distribution over map-
pings f : Y — Z is a nearest-neighbor preserving embedding with distortion D > 1 and
probability of correctness P € [0, 1] if, Ve > 0 and Vq € Y, with probability at least P, when
x € X issuch that f(x) is an c-ANN of f(q) in f(X), then x is a (D -c)-approximate nearest
neighbor of q in X.

Let us now consider a closely related problem. While in c-ANN we search one point which
is approximately nearest, in the k& approximate nearest neighbors problem, or c-kANNs,
we seek an approximation of the £ nearest points, in the following sense. Let X be a set
of n points in R%, let ¢ € R? and 1 < k < n. The problem consists in reporting a sequence
S = {p1,...,px} of k distinct points such that the i-th point p; is an c-approximation to
the i-th nearest neighbor of ¢q. Furthermore, the following assumption is satisfied by the
search routine of certain tree-based data structures, such as BBD-trees.

Assumption 27. The c-kANNs search algorithm visits a set S’ of points in X. Let S =
{p1,-..,pr} be the k nearest points to the query in S’. We assume that for all x € X \ 5’
andy € S, d(z,q) > d(y,q) - c.

Assuming the existence of a data structure which solves c-kANNs and satisfies Assump-
tion 27, we propose to weaken Definition 26 as follows.
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Definition 28. Let (Y,dy), (Z,dz) be metric spaces and X C Y. A distribution over
mappings f : Y — Z is a locality preserving embedding with distortion D > 1, probability
of correctness P € [0, 1] and locality parameter k if, Yc > 1 and Vq € Y, with probability at
least P, when S = {f(p1),..., f(px)} is a solution to c-kANNs for ¢ under Assumption 27,
then there exists f(x) € S such that x is a (D - ¢)-approximate nearest neighbor of q in X.

According to this definition we can reduce the problem of ¢-ANN in dimension d to the
problem of computing k& approximate nearest neighbors in dimension d' < d.

We employ the Johnson-Lindenstrauss dimensionality reduction technique and, more specif-
ically, Theorem 11 and Lemma 12.

Remark 29. In the statements of our results, we use the term (1 + ¢)* or (1 + ¢)3 for
the sake of simplicity. Notice that we can replace (1 + €)* by 1 + € just by rescaling
€ <+—¢€/4 = (1+)2<1+¢ whene<1/2.

We are now ready to prove the main theorem of this section.

Theorem 30. Under the notation of Definition 28, there exists a randomized mapping
f : R* — R¥ which satisfies Definition 28 for

d=0 (5‘2 -log %) ,
e € (0,1/2], distortion D = (1 + ¢)? and probability of success 2/3.

Proof. Let X be a set of n points in R? and consider map

f: RV RY v /d/d -G o,

where G is a matrix chosen from a distribution as in Theorem 11. Without loss of generality
the query point g lies at the origin and its nearest neighbor « lies at distance 1 from ¢q. We
denote by ¢ > 1 the approximation ratio guaranteed by the assumed data structure (see
Assumption 27). That is, the assumed data structure solves the ¢-kANNs problem. Let
N be the random variable whose value indicates the number of false positives, that is

N=HzeX :|zlz>y Alf@)ll2 < B},
where we define 8 = (1 +¢), v = ¢(1 + €)?. Hence, by Lemma 11,
E[N] < n-exp(—C'dé?),

where C’ > 0is a constant, which is slightly different than the one that appears in Lemma 11
(since we aim for distortion factor 1/(1+¢) instead of (1—¢)). The event of failure is defined
as the disjunction of two events:

N2zk vV [lf(u)lz = (B/c), (3.1)
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and its probability is at most equal to
Pr(N > k] +exp (—Cd'¢*),

by applying again Theorem 11. Now, we setd’ = © (Iog(%)/&) and we bound these two
terms. Hence, there exists d’ such that

/ -2 2
d =0 (e log k)
and with probability at least 2/3, the following two events occur:

1(0) = F(w)ll2 < (1 + &)fJu = qll2,
{p € Xlllp —qll2 > cL + )*lu—qll: = |If(a) = F(P)]l2 < c(1 + €)Ju — qll2}| < k.

Let us assume that the random experiment succeeds, and let S = {f(p1),..., f(px)} be a
solution of the ¢-kANNs problem in the projected space, given by a data-structure which
satisfies Assumption 27. Itholds thatVf(z) € f(X)\S', || f(x)—f(@)|l2 > ||f(px)—f(q)|l2/C,
where S’ is the set of all points visited by the search routine.

If f(u) € S, then S contains the projection of the nearest neighbor. If f(u) ¢ S, then if
f(u) ¢ S” we have the following:

1 (w) = F(@ll2 > [1f (px) = F(@l2/¢ = 1f(pr) = F(@ll2 < (1 + €)llu—gll2,

which means that there exists at least one point f(p*) € Ss.t. ¢ —p*|l2 < (1 +¢€)||u—q||2-
Finally, if f(u) ¢ S but f(u) € S" then

1 (x) = F(@ll2 < [1f(w) = F(@llz = [[f(r) = F(@ll2 < (1 + )l = glla,

which means that there exists at least one point f(p*) € Ss.t. |l[g—p*|l2 < (1+¢€)?||[u—q||2-

Hence, f satisfies Definition 28 for D = (1 + ¢)? and the theorem is established. O

Theorem 30 essentially translates the ¢-ANN problem to the c-kANNs problem. While this
is convenient in practice, better bounds can be achieved when working with the (¢, 7)-ANN
problem.

3.2 Approximate Near Neighbor

This section combines the ideas developed in Section 3.1 with a simple, auxiliary data
structure, namely the grid, yielding an efficient solution for the augmented decision (c,r)-
ANN problem. In the following, the O(-) notation hides factors polynomial in 1/¢ and log n.

The data structure succeeds if it indeed answers the approximate decision problem for
query ¢. Building a data structure for the Approximate Nearest Neighbor Problem reduces
to building several data structures for the decision (¢, r)-ANN problem. For completeness,
we include the corresponding theorem.
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Theorem 31. [51, Theorem 2.9] Let P be a given set of n points in a metric space, and
letc=1+4+¢€¢>1, f € (0,1), and v € (1/n,1) be prescribed parameters. Assume that
we are given a data structure for the (c,r)-ANN that uses space S(n,c, f), has query time
Q(n,c, f), and has failure probability f. Then there exists a data structure for answering
c(1 + O(v))-NN queries in time O(logn)Q(n,c, ) with failure probability O(flogn). The
resulting data structure uses O(S(n,c, f)/v - log®n) space.

A natural generalization of the (¢, )-ANN problem is the k-Approximate Near Neighbors
Problem, denoted (¢, r)-kANNSs.

Definition 32 ((c,r)-kANNs Problem). Let X c R? and |X| = n. Given ¢ > 1, r > 0, build
a data structure which, for any query q € R¢:

c if[{pe X | |lg—pll» < r}| > k, then report S C {p € X | g —pls < -7} s.t.|S| = &,

cifa={pe X ||lg—plla <r} <k thenreport S C{pec X ||qg—pla<c-r}st
a<|[S| <k

The following algorithm is essentially the bucketing method which is described in [51] and
concerns the case k = 1. We define a uniform grid of side length ¢/+/d on R?. Clearly, the
distance between any two points belonging to one grid cell is at most ¢. Assume r = 1.
For each ball B, = {z € R? | ||z — q|] < r}, ¢ € R, let B, be the set of grid cells that
intersect B,.

In [51], they show that |B,| < (C"/e)?. Hence, the query time is the time to compute the
hash function, retrieve near cells and report the & neighbors:
O(d+k+ (C'/e)h.

The required space usage is O(dn).

Furthermore, we are interested in optimizing this constant C’. The bound on |B,| follows
from the following fact: -
Byl < V5'(R),

where V{(R) is the volume of the ball with radius R in ¢4, and R = %3 Now,

d/2 dj2 dj2 d/2 d+1 dj2 d
27 d 21 d 27 d 21 qd_ 2 (18) < 9

WS ra ™ = wap ™ S ™ S e S e Sa

Hence, C' < 9.

Theorem 33. There exists a data structure for Problem 32 with required space O(dn) and
query time O (d + k + (2)%).

The following theorem is an analogue of Theorem 30 for the Approximate Near Neighbor
Problem.
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Theorem 34. The ((1 + €)*c,)-ANN problem in R? reduces to checking the solution set
of the (c, (1 + €)r)-kANNs problem in RY, where d' = O (log (%) /€), by a randomized
algorithm which succeeds with constant probability. The delay in query time is proportional
tod- k.

Proof. The theorem can be seen as a direct implication of Theorem 30. The proof is
indeed the same. O

3.2.1 Finite subsets of /,

We are about to show what Theorems 33 and 34 imply for the (¢, r)-ANN problem.

Theorem 35. There exists a data structure for the (c,r)-ANN problem with O(dn) required
space and preprocessing time, and query time O(dn”), where p =1 — O(e?/log(1/¢)) < 1.

Proof. For k = © (n”),
d/
(9) + dk < O(dn”).

€

Since, the data structure succeeds only with probability 9/10, it suffices to build it O(log n)
times in order to achieve high probability of success. ]

3.2.2 The case of doubling subsets of /,

In this section, we apply our ideas to pointsets with bounded doubling dimension, in order
to obtain non-linear randomized embeddings for the (c, )-ANN problem.

Now, let X C R?s.t. |X| = n and X has doubling constant Ay = 294mX) Consider also

8r;
S; € X with diameter 2r;,. Then we need )\')O(QT tiny balls b, C X of diameter ¢/4 in order
to cover S;. We can assume that » = 1, since we can scale X. The idea is that we first
compute X’ C X which satisfies the following two properties:

*Vpge X p—ql2>€/8,
*Vge X dpe X'st |p—ql2 <e€/8.

This is an r-net for X for r = ¢/8. The obvious naive algorithm computes X’ in O(n?) time.
Better algorithms exist for the case of low dimensional Euclidean space [49]. Approximate
r-nets can be also computed in time 200@4mX)y, Jog n for doubling metrics [52] , assuming
that the distance can be computed in constant time.

87,
Then, for X’ we know that each S; C X’ contains < /\';gT points, since X' C X —
ddim(X’) < ddim(X).
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Theorem 36. The (¢, r)-ANN problem in R¢ reduces to checking the solution set of the
(¢, cr)-kANNs problem in RY, where d = O(ddim(X)) and k = (2/¢)°dmX) by g ran-
domized algorithm which succeeds with constant probability. Preprocessing costs an ad-
ditional of O(n?) time and the delay in query time is proportional to d - k.

Proof. Once again we proceed in the same spirit as in the proof of Theorem 30.
Let X’ be an ¢/8-net of X. Let r; = 27"3(1 4 ¢) for i > 0 and let B,(r) C X' denote the
points of X' lying in the closed ball centered at p with radius ». We assume 0 < ¢ < 1/2
and we define:
Netose = [{z € X+ |lzfls € [(1+ €)% 1) A [[f(@)]la < 1+ €},
Niar ={z € Xt |lzllz =m0 A [ f(@)ll2 <1+ €}

We make use of Lemma 12.

[e'e) 3 d’ e’ | Lo fe 1 d o . 0o )\z
E[Njo] < 3 By (r1)| - < ) < 3ot (LY7o aguesr g N
' =2 i=2

ri—1

d'>Q(log Ax) 20(ddim(X)Iog(2/e)) _ (2>O(ddim(X))
€

In addition,

Y

O(log(1/¢)) ;2 O(log(1/e)) _ (2 C1dm(X))
E[Netose) < Ay cexp(—d - - C) <\ _ <€>
where C' > 0 is a constant, which is slightly different than the one that appears in Lemma 11
(since we aim for distortion factor 1/(1 + ¢) instead of (1 — ¢)). The number of grid cells of
sidewidth ¢/+/d’ intersected by a ball of radius 1 in R? is also (2/¢)°@dmX))  Notice, that
if there exists a point in X which lies at distance 1 from ¢, then there exists a point in X’
which lies at distance 1 + ¢/8 from ¢. Finally the probability that the distance between the
query point ¢ and one approximate near neighbor gets arbitrarily expanded is less than

AP, 0

Now using the above ideas we obtain a data structure for the (¢, r)-ANN problem.

Theorem 37. There exists a data structure which solves the (c,r)-ANN problem which
requires space and preprocessing time O(dn) and the query costs

9 O(ddim(x))
d (_) |
€

For fixed q € R?, the building process of the data structure succeeds with constant prob-
ability.
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3.3 Approximate Nearest Neighbor Search

This section combines tree-based data structures which solve c-kANNs with the results of
Section 3.1, in order to obtain a randomized data structure which solves c-ANN. The main
result of this section does not rely on an efficient reduction from the (¢, r)-ANN problem,
and hence it is simpler to implement. On the other hand, the obtained bounds are weaker
than those of Section 3.2.

3.3.1 Finite subsets of /,

This subsection examines the general case of finite subsets of /5.

BBD-trees [16] require O(dn) space, and allow computing &k points, which are (1 + ¢)-
approximate nearest neighbors, in time O(([1+ 6419+ k)d logn). The preprocessing time
is O(dnlogn). Notice, that BBD-trees satisfy Assumption 27.

The algorithm for the ¢-kANNs search visits cells in increasing order with respect to their
distance from the query point q. If the current cell lies at distance more than r;/c, where
rr is the current distance to the kth nearest neighbor, the search terminates. We apply
the random projection for distortion D = ¢ = 1 + ¢, thus relating approximation error to the
allowed distortion; this is not required but simplifies the analysis.

Moreover, k = n”; the formula for p < 1 is determined below. Our analysis then focuses
on the asymptotic behavior of the term O([1 + 6<% + k).

Lemma 38. With the above notation, for fixed ¢ € (0,1), there exists k > 0 s.t., it holds
that [1 +6<]7 + k = O(n*), where p =1 — ©(e?/loglogn) < 1.

Proof. Recall that d < 6% In 3 for some appropriate constant C > 0. Since (%’)d' is a
decreasing function of m, we need to choose £ s.t. (%)d’ = O(k). Let k = n”. ltis easy

to see that [1 + 6%’16” < (c’d?/)d/, for some appropriate constant ¢’ € (1,7). Then, by
substituting d’, k& we obtain:

In ((J’%)d _C0=n)y, (é(m —r) '”"> Inn. (3.2)

€2 €3

We assume ¢ € (0,1) is a fixed constant. Hence, it is reasonable to assume that * < Inn.

Substituting p = 1 — m into equation (3.2), the exponent of »n is bounded as
follows:

C(1—p) n (éC’(l —p) |nn> _

€2 €3
= C : (In((]’ln n) +In1 —In(2¢ +2In(C’In n))) <
~26(e 1 In(C'Inn)) e P
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Notice that

¢—of-l9n
€2 + loglogn

Combining Theorem 30 with Lemma 38 yields the following theorem.

Theorem 39. Given n points in R¢, there exists a randomized data structure which requires
O(dn) space and reports an (1 + ¢)-approximate nearest neighbor in time

O(dn”logn), where p <1 — O(¢*/loglogn) < 1.

The preprocessing time is O(dnlogn). For each query q € R¢, the preprocessing phase
succeeds with any constant probability.

Proof. The space required to store the dataset is O(dn). The space used by BBD-trees
is O(d'n) where d' is defined in Lemma 38. We also need O(dd’) space for the matrix A
as specified in Theorem 30. Hence, since d' < d and d' < n, the total space usage is
bounded above by O(dn).

The preprocessing consists of building the BBD-tree which costs O(d'nlogn) time and
sampling A. We sample in time O(dd'), a d x d’ matrix where its elements are independent
random variables with the standard normal distribution N (0,1). Since d' = O(logn), the
total preprocessing time is bounded by O(dnlogn).

For each query we use A to project the point in time O(dd’). Next, we compute its d' =
n? approximate nearest neighbors in time O(d'n”logn) and we check these neighbors
with their d-dimensional coordinates in time O(dn”). Hence, each query costs O(dlogn +
d'n”logn + dn”) = O(dn”logn) because d' = O(logn), d = O(d). Thus, the query time
is dominated by the time required for e-kANNs search and the time to check the returned
sequence of k£ approximate nearest neighbors. O

To be more precise, the probability of success, which is the probability that the random
projection succeeds according to Theorem. 30, is at least constant and can be amplified
to high probability of success with repetition. Notice that the preprocessing time for BBD-
trees has no dependence on e.

3.3.2 Finite subsets of /, with bounded expansion rate

This subsection models some structure that the data points may have so as to obtain
tighter bounds.

The bound on the dimension d’ obtained in Theorem 30 is quite pessimistic. We expect
that, in practice, the space dimension needed in order to have a sufficiently good projection
is less than what Theorem 30 guarantees. Intuitively, we do not expect to have instances
where all points in X, which are not approximate nearest neighbors of ¢, lie at distance
~ (1 + ¢)d(q, X). To this end, we consider the case of pointsets with bounded expansion
rate.
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Definition 40. Let M be a metric space and X C M be a finite pointset and let B,(r) C X
denote the points of X lying in the closed ball centered at p with radius r. We say that X
has (1,v)-expansion rate if and only if, Vp € M and r > 0,

| By(r)| =7 = |Bp(2r)| < ¢ - [By(r)].

Theorem 41. Under the notation of Definition 28, there exists a randomized mapping
f: R — R¥ which satisfies Definition 28 for dimension d' = O(log ), locality parameter
k = O(r?), distortion D = (1 + ¢)? and constant probability of success, for pointsets with
(1,1)-expansion rate.

Proof. We proceed in the same spirit as in the proof of Theorem 30.

Let X be a set of n points in R? and consider map
f:RE S RY v \/d/d - A,

where A is a matrix chosen from a distribution as in Theorem 11. Without loss of generality
the query point ¢ lies at the origin and its nearest neighbor « lies at distance 1 from ¢. Let rg
be the distance to the 7—th nearest neighbor, excluding neighbors at distance < (1 + ¢€)?.
Fori >0, letr; =6-7,_,. Notice also that ry > (1 + €)%

We distinguish the set of bad candidates according to whether they correspond to “close”
of “far” points in the initial space. More precisely,

Netose = [{z € X = [|lz]l2 € [ro,71) A [[f(2)]]2 < B},
Nyar = [{z € X ¢ |zl =m0 A f(2)ll2 < B},
where 5 = 1 + €. Clearly, by Theorem 11, and for d' > Q(log ),

E[Nclose] < w “T eXp(—dl ' 62 ’ Cl) = O(w : T)7
where C’ > 0 is a constant, which is slightly different than the one that appears in Lemma 11
(since we aim for distortion factor 1/(1 + ¢) instead of (1 — €)). and similarly by Lemma 12,
d/

>, 1\ > /1
< +3 . - < . 3 7 - — A 3 )
E[Nfer] < ;w T (2) <T-% ;¢ (21) O(t - ¢°)
Finally, using Markov’s inequality, we obtain constant probability of success. O

Employing Theorem 41 we obtain a result analogous to Theorem 39 which is weaker than
those in [63, 24] but underlines the fact that our scheme shall be sensitive to structure in
the input data, for real world assumptions.

Theorem 42. Given n points in (3 with (1,1)-expansion rate, there exists a randomized
data structure which requires O(dn) space and reports an (1 + ¢)*-approximate nearest
neighbor in time

O(('°9008%/9) 7.3 ) d log n)).

The preprocessing time is O(dnlogn). For each query q € R¢, the preprocessing phase
succeeds with constant probability.
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Proof. We combine the embedding of Theorem 41 with the BBD-trees. Then,

o((%)) =o((*)™)

and the number of approximate nearest neighbors in the projected space is

k= O(r-¢*).

This establishes the resuilt. O

3.4 On LSHable metrics

An important approach for proximity problems today is Locality Sensitive Hashing (LSH).
It has been designed precisely for problems in high dimension. The LSH method is based
on the idea of using hash functions designed so that it is more probable to map nearby
points to the same bucket.

Definition 43. Take reals r1 < ry, and p; > p, > 0. We call a family F' of hash func-
tions (p1, p2, 71, 1r2)-S€nsitive for a metric space M if, for any x,y € M, and h distributed
uniformly in F, it holds:

* du(z,y) <= Prib(z) = hy)] = p1,

* du(e,y) =y = Prih(z) = h(y)] < ps.

We start our presentation with an idea applicable to any metric admitting an LSH-based
construction, aka LSH-able metric. Then, we study some classical LSH families which are
also simple to implement.

The algorithmic idea is to apply a random projection from any LSH-able metric to the
Hamming hypercube. Given an LSH family of functions F' for some metric space, we
uniformly select d’ hash functions, where d’ is specified later. The nonempty buckets
defined by any hash function are randomly mapped to {0, 1}, with equal probability for
each bit.

In particular, the random projection works as follows. We first sample h; € F. We denote
by h,(P) the image of P under h;, which is a set of nonempty buckets. Now each nonempty
bucket x € hy(P) is mapped to {0, 1}: with probability 1/2, set f,;(x) = 0, otherwise set
This is repeated d’' times, and eventually for p € M, we compute the function

f(p) = (fi(ha(p)), - .., far(ha (p))),

where f: P — {0,1}%.

59 |. Psarros



Proximity problems for high-dimensional data

Thus, points are projected to the Hamming cube of dimension d' and we obtain binary
strings serving as keys for buckets containing the input points. The query algorithm
projects a given point, and tests points assigned to the same or nearby vertices on the
hypercube. To achieve the desired complexities, it suffices to choose d' = logn.

The main lemma below describes the general ANN data structure whose complexity and
performance depends on the LSH family that we assume is available. The proof details
the data structure construction.

Lemma 44 (Main). Given a (p, p2, 1, cr)-sensitive hash family F for some metric (M, d )
and input dataset P C M, there exists a data structure for the (c,r)-ANN problem with
space O(dn), time preprocessing O(dn), and query time O(dn'~° 4+ nf1((1=P1)/2)) 'where

(p1 —p2)* loge
(1 — pz) 4 ’
where e denotes the basis of the natural logarithm, and H (-) is the binary entropy function.

The bounds hold assuming that computing d(.) and computing the hash function cost
O(d). Given some query q € M, the building process succeeds with constant probability.

§=0(p1,p2) =

Proof. The first step is a random projection to the Hamming space of dimension d’, for d’
to be specified in the sequel. We first sample h; € F'. We denote by h,(P) the image of
P under hy, which is a set of nonempty buckets. Now each nonempty bucket = € hy(P) is
mapped to {0, 1}: with probability 1/2, set f;(z) = 0, otherwise set f,(x) = 1.

This is repeated d’ times, and eventually for p € M, we compute the function
f(p) = (f1(ha(p)), - - -, far(ha (p))),

where f: P — {0,1}%. Now, observe that
du(p,q) <v = E[l|fi(hi(p)) — fi(hi(g)[:] €051 —p1), i=1,....d =

= E[l|f(p) — f(@)I] £0.5-d"- (1 —p1),
dum(p,q) > er = E[l|fi(hi(p) — filhi(@))1] > 0.5(1 —po),i=1,...,d =
= E[|f(p) = f(@)Ih] = 0.5-d"- (1 = p2).
We distinguish two cases.
First, consider the case d(p,q) < r. Let u = E[||f(p) — f(q)|[1]- Then,

Prillf(p) — f(@lh = p] <

Y

N | —

since || f(p) — f(q)| follows the binomial distribution.

Second, consider the case dn(p,q) > c¢r. By standard Chernoff bounds, Pr|||f(p) —
F@lh < 772 - u] <exp(=0.5- - (p1 — p2)*/(1 = p2)*) < exp(—d - (p1 — p2)*/4(1 = p2)).
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After mapping the query ¢ € M to f(q) in the d’-dimensional Hamming space we search
for all “near” Hamming vectors f(p) s.t. ||f(p) — f(¢)|]1 < 0.5-d" - (1 — p1). This search
costs (1) + (‘é) +- '+.(Ld.’-(1(—ip1)/.2J) < O(d' - 27 H((=p1)/2)) where H(") is the binary entropy
function. The inequality is obtained from standard bounds on binomial coefficients, e.g.
[70]. Now, the expected number of points p € P, for which d(p, ¢) > cr but are mapped
"near” qis < n-exp(—d - (p1 — p2)?/4(1 — py))). If we set &’ = logn, we obtain expected
query time

O(nH((l—pl)/2)) + dnl_‘s),
where
5 (P —p2)® loge
If we stop searching after having seen, say 10n'~? points for which d(p, ¢) > cr , then we

obtain the same time with constant probability of success. Notice that "success” translates
to successful preprocessing for a fixed query ¢ € M. The space required is O(dn). O

The value of ¢ could be somewhat larger, but we have used simplified Chernoff bounds to
keep our exposition simple.

Discussion on parameters. We set the dimension d’ = logn (which denotes the binary
logarithm), since it minimizes the expected number of candidates under the linear space
restriction. We note that it is possible to set ' < logn and still have sublinear query time.
This choice of d’ is interesting in practical applications since it improves space requirement.
The number of candidate points is set to n!~? for the purposes of Lemma 44 and under
worst case assumptions on the input.

3.41 The (, case
3.41.1 Project on random lines

Let p, ¢ two points in R? and 7, the distance between them. Let w > 0 be a real parameter,
and let ¢t be a random number distributed uniformly in the interval [0,w]. In [33], they
present the following LSH family. For p € R¢, consider the random function

h(p) = LWJ , pveERY (3.3)

where v is a vector randomly distributed with the d-dimensional normal distribution. This
function describes the projection on a random line, where the parameter ¢ represents the
random shift and the parameter w the discretization of the line. For this LSH family, the
probability of collision is

2

a(n,w) = /:)0 \/22_7”7 exp < - ;—772> (1 - %)dt.
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Lemma 45. Given a set of n points P C R¢, there exists a data structure for the (c, 7)-ANN
problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn),
and query time O(dn'~° + n%?), where

§>0.03(c—1)%

Given some query point g € R?, the building process succeeds with constant probability.

Proof. In the sequel we use the standard Gauss error function, denoted by erf(-). For
probabilities p1, ps, it holds that

p1=oz(1,w)=/w %ﬂexp(—g)(l—g)dtzerf(%) —\/gi(l—exp(—w;))a

and also that
2

pz,:a(c,w):/:o jmexp<_;_;)( Dar = ers (- @5(1_exp<_%>).

The LSH scheme is parameterized by w. One possible value is w = 3, as we have checked
on a computer algebra system. On the other hand, w = ¢ gives similar results, and they
are simpler to obtain. In particular, we have

ppr=ert () 22 (1o (-

2

%)) - ers () +@(1—exp<—%>>-

We shall prove that, given w = ¢, for ¢ € (1, 2], it holds that p; — p > 2l | et us define
B 5(c—1) c 1
g@)=p—pr— == €Tf<ﬁ) - erf(ﬁ> -

2
2 (-ew (- 5) 21w 5) - X
¢ € (1,2]. Using elementary calculus, it is easy to show that ¢(c) is concave over ¢ € (1, 2].
Also, g(1) = 0and g(2) > 0, thus Ve € (1 2], g(c) > 0and consequently p; —py > 21 In
addition, w = cimplies 1—p, = 1— erf +\/7 1—exp(—1)) < 0.64,and H (=2 pl) < 0.9.
Hence, forw =cand c € (1,2], 6 > ().()3(c —1)% O

3.4.1.2 Hyperplane LSH

This section reduces the Euclidean ANN to an instance of ANN for which the points lie
on a unit sphere. The latter admits an LSH scheme based on partitioning the space by
randomly selected halfspaces.

In Euclidean space R?, let us assume that the dimension is d = O(logn - loglogn), since
one can project points a la Johnson-Lindenstrauss [72], and preserve pairwise distances
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up to multiplicative factors of 1 +0(1). Then, we partition R¢ using a randomly shifted grid,
with cell edge of length O(v/d) = O((logn - loglogn)'/?). Any two points p, ¢ € R? for which
lp — ¢ll2 < 1 lie in the same cell with constant probability. Let us focus on the set of points
lying inside one cell. This set of points has diameter bounded by O((logn - loglogn)*/2).
Now, a reduction of [77], reduces the problem to an instance of ANN for which all points
lie on a unit sphere S, and the search radius is roughly ' = ©((logn - loglogn)~'/2).
These steps have been also used in [11], as a data-independent reduction to the spherical
instance.

Let us now consider the LSH family introduced in [28]. Given n unit vectors P C S, we
define, for each ¢ € S?~1, hash function i(q) = sign{q, v), where v is a random unit vector.
Obviously, Pr[h(p) = h(q)] = 1 — @, where 6(p, ¢) denotes the angle formed by the
vectors p # ¢q € S%!. Instead of directly using the family of [28], we employ its amplified
version, obtained by concatenating d’ ~ 1/’ functions K(-), each chosen independently
and uniformly at random from the underlying family. The amplified function ¢(-) shall be
fully defined in the proof below. This procedure leads to the following.

Lemma 46. Given a set of n points P C R¢, there exists a data structure for the (c,r)-ANN
problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn),
and query time O(dn'~° + n%%), where

§>0.05- (c; 1>2.

Given some query q € R, the building process succeeds with constant probability.

Proof. We exploit the reduction described above that translates the Euclidean ANN to a
spherical instance of ANN with search radius " = ©((logn - loglogn)~'/2). The latter is
handled by a hyperplane LSH scheme based on [28] as detailed immediately below.

Let us denote by F' the aforementioned LSH family of [28]. We build a new (amplified)
family of functions Gy = {g(x) = (h1(2), ..., ha(x)):i=1...d, h; € F')}. Now, obviously,
for any two unit vectors p # ¢, we have

Prycclo(p) = 9(q)] = (1 e q>>d,-

(e

Hence, [lp — gl < 7" = 2sin (@) <1 = #0(p,q) < 2arcsin (5) = 0,, which
defines 6,.

By using elementary calculus, it is easy to prove that 2 arcsin (%) > 2c¢ - arcsin (%) =
9(p,q) > c-0,. Hence, ford’ = |7 /6, | and since ' = ©((logn-loglogn)='/2?) = 6, = o(1),

0.\ 7r 1
pr="Prlg(p) =9(a) | llp —all2 < 7] > (1 - ;) = exp (_(7{ — 0 )) = g

T 1 < 1
9_7~ - = c.el-o(1)"
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Now applying Lemma 44 yields

eo(l) 2 1 log(e) 1N 2
> — . . > (. . _ = '
02 Gream <1 c ) —(ce ' 4 - 0.059 (1 c) , force(1,2]
The space required is O(dn + nd’)) = O(dn). Notice also that H () < 0.91. O

The data structure of Lemma 46 provides slightly better query time than that of Lemma 45,
when c is small enough.

3.42 The /, case

In this section, we study the (¢, r)-ANN problem under the ¢; metric. The dataset consists
again of n points P C R? and the query point is ¢ € R%.

For this case, let us consider the following LSH family, introduced in [9]. A point p is hashed

as follows:
(|t h P2 + 1o Pd+ta

where p = (p1,p2, ..., pq) is @ pointin P, w = ar, and the ¢; are drawn uniformly at random
from [0,...,w). Buckets correspond to cells of a randomly shifted grid.

Now, in order to obtain a better lower bound, we employ an amplified hash function, de-
fined by concatenation of &’ = a functions h(-) chosen uniformly at random from the above
family.

Lemma 47. Given a set of n points P C R¢, there exists a data structure for the (c, 7)-ANN
problem under the ¢, metric, requiring space O(dn), time preprocessing O(dn), and query
time O(dn'~° + n®'), where
_ 2
5> 0.05- (C 1) .

c

Given some query point g € R?, the building process succeeds with constant probability.

Proof. We denote by F' the previously introduced LSH family of [9], which is (1 — é, 1 -
— 1, c)-sensitive. We build the amplified family of functions

Gy ={g9(x) = (h(x),...,ha(x)):i=1,....d, h; € F)}.

Setting o = d' = logn, we have:

n=(-3) = (iegn) 2 (o (i) = g

() )™
b2 = a+c) logn + ¢ '
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Table 3.1: Juxtaposition of our results with previous and concurrent results on the linear-space

regime.
Space Query
Entropy-based LSH [73] | O(dn) dnO(+971)
Entropy-based LSH [10] | O(dn) dnO((+9)~2)
Theorem 35 O(dn) dn1—O(?/log(1/e))
Lemma 45 O(dn) dn'=O()
LSH tradeoffs [11] O(dn) | O(dn20+9°=D/(1+9%)

p > eXp(-C) > —
2 —Z - . (20 1)7

and
c & g°t)
pQ§exp<—1+ . ):exp(—1+0(1))gexp(—c+o(1))§ o

logn

Therefore, for n large enough, it holds that

2 2
- | 1 1-1 | 1
5 (P1-p) loge S UL=o) 100 o5 (1- 1), force (1,2
(1—p2) 4 € oy ¢
Notice that H((1 — p;)/2) < 0.91. O
3.5 Summary

In this section, we presented (¢, 7)-ANN data structures on the linear-space regime with
sublinear query time for any ¢ > 1, and polynomial dependence. As it is shown in Ta-
ble 3.1, previously, most results in this regime were non-trivial only when ¢ was a large
enough constant. After the original submission of our paper [8], a better query time of
O(n1*4€2+0(63)) has been established [11]. The bound has been shown to be optimal for a
large class of data structures. Despite the fact that our algorithms are sub-optimal, they
are simpler and easier to implement.
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4. NEAR-NEIGHBOR PRESERVING DIMENSION REDUCTION FOR
DOUBLING SUBSETS OF /,

In this chapter we focus on the (1 + ¢,7)-ANN problem for subsets of ¢; with bounded
doubling dimension. It is known that dimension reduction in ¢; cannot be achieved in the
same generality as in /5, even assuming that the pointset is of low doubling dimension [66]:
there are arbitrarily large n-point subsets P C ¢, which are doubling with constant 6, such
that every embedding with distortion D of P into ¢¢ requires dimension n%(/?*)_ Aiming
for more restrictive guarantees, e.g. preserving distances within some pre-defined range,
is a relevant workaround. Then, dimension reduction techniques for doubling subsets
of /,, p € [1,2], exist [22], but they rely on partition algorithms which require the whole
pointset to be known in advance. Hence, applicability of such techniques is quite limited
and, specifically, it is not clear whether they can be used in an online setting where query
points are not known beforehand.

The main result in the context of randomized embeddings for dimension reduction in ¢4 is
the following theorem, which exploits the 1-stability property of Cauchy random variables
and provides an asymmetric guarantee: The probability of non-contraction is high, but
the probability of non-expansion is constant. Nevertheless, this asymmetric property is
sufficient for proximity search.

Theorem 48 (Theorem 5, [56]). Forany e < 1/2,6 > 0, ¢ > ~ > 0 there is a probability
space over linear mappings f : (¢ — (¢, where d' = (In(1/6))Y(=/((~), for a function
(() > 0 depending only on ~, such that for any pair of points p, q € (4:

1+
+e

1=

Prllf(p) = f(@ll, < 1= llp—dall,] <&Pr[Iflp) = f@l = A+e)lp—al,] <

—_

Note that the embedding is defined as f(u) = Au/T, where A is a d'xd matrix with each
element being an i.i.d. Cauchy random variable. In addition, 7" is a scaling factor defined
as the expectation of a sum of truncated Cauchy variables, such that 7" = ©(d’log (d'/¢))
(see Lemma 5 in [56]).

In this chapter, we establish two non-linear near neighbor-preserving embeddings for dou-
bling subsets of /4. We use a definition which is essentially a modified version of the
nearest neighbor preserving embedding of [58]:

Definition 49 (Near-neighbor preserving embedding). Let (Y, dy), (Z, dz) be metric spaces
and X C Y. A distribution over mappings f : Y — Z is a near-neighbor preserving em-
bedding with range r > 0, distortion D > 1 and probability of correctness P € [0, 1] if,
Va>1andVq €Y, ifx € X is such that dy(x,q) < r, then with probability at least P,

* dz(f(x), f(q)) < D-r,

cVpe X :dy(p,q) >D -a-r = d(f(p),f(q) > a-r.

67 |. Psarros



Proximity problems for high-dimensional data

Both embeddings consist of two basic components. First, we represent the pointset P
with an e-covering set, and then we apply a random linear projection a la Indyk [56] to that
set, using Cauchy variables.

The role of the covering set is to exploit the doubling dimension of P. In the analogous
result for /5 [58], no representative sets were used; the mapping was just a random linear
projection of P. In the case of /; however, a similar analysis of a linear projection with
Cauchy variables without these representative sets seems to be impossible, since the
Cauchy distribution is heavy tailed.

In Theorem 53, we consider c-approximate r-nets as a covering set. Inspired by the al-
gorithm of [42] for /5, we design an algorithm that computes a c-approximate r-netin ¢; in
subquadratic —but superlinear— time. On the other hand, Theorem 56 relies on randomly
shifted grids, which can be computed in linear time, but are inferior to nets in terms of
capturing the doubling dimension of the pointset.

To bound the distortion incurred by the randomized projection, we exploit the 1-stability
property of the Cauchy distribution. To this end, we prove a concentration bound for sums
of independent Cauchy variables. To overcome the technical difficulties associated with
the heavy tails of the Cauchy distribution, we study sums of square roots of Cauchy vari-
ables, where in [56], Indyk considers sums of fruncated Cauchy variables instead. Al-
though our concentration bound is rather weak, it is sufficient for our purposes and its
analysis is much simpler compared to Indyk’s.

Organization. Section 4.1 establishes a concentration bound on sums of independent
Cauchy variables. Section 4.2, achieves dimensionality reduction by means of represent-
ing the pointset by a carefully chosen net, while Section 4.3 employs randomly shifted
grids for the same task. We conclude with discussion of results and implications.

4.1 Concentration bounds for Cauchy variables

In this section, we prove some basic properties of the Cauchy distribution, which serves
as our main embedding tool.

Let C'p denote the Cauchy distribution with density c(z) = (1/7)/(1+2?). One key property
of the Cauchy distribution is the so-called 1-stability property: Let v=(vy,...,v0) € RY
and Xy,..., Xy be i.i.d. random variables following Cp, then Z _ Xv; is dlstrlbuted as
Xvl1, where X ~ Cp.

The Cauchy distribution has undefined mean. However, for 0 < ¢ < 1, the mean of the ¢-th
power of a Cauchy random variable can be defined. More specifically, for some X ~ Cp
we have
2 [ 2
Blxp) -2 [T 28 v

T )y 14a2 dr = T2

The following lemma provides a bound for the moment-generating function of | X |/2.
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Lemma 50. Let X ~ Cp. Then forany g > 1:

E [exp (—8|X|'/?)] <

Wl

Proof. For any constant £,

Then, forany 5 > 1,

B loxp (~51X77)) = [ ey ar=2 [Ten L ai =
0

— 00

1 00
= z/ efﬁwl/Q . 1 dx _|_ z/ efﬁxl/Q . 1 dx S
T Jo 1+ 22 ™ 1+ a2

2 [l 2 [ 1
S—/ g hr'"? dx+—/ e ’. dz =
T Jo T J; 1+ 22

2 B+1 4 1 2
—(1- < < = ]
B2< eﬂ>+2e/3_7r62+2e5—6

2
n ™
Let S := Zj;l |X;| where each X is an i.i.d. Cauchy variable. To prove concentration

bounds for S, we study the sum S := 37 | |X;|V2. By known bounds, § < 52 < d'- S
hence, forany t > 0, 3
Pr(S <t] < Pr[S < Vid']. 4.1)

We use the bound on the moment-generating function, to prove a Chernoff-type concen-
tration bound for S, which by Eq. (4.1) translates into a concentration bound for S.

Lemma 51. Forevery D > 1,

Pr Sg% < (E)d,.

D | —\D

Proof. Since Xj’s are independent, E[S‘] = v/2d'. Then, by Lemma 50 and Markov’s
inequality, for any g > 1, it follows that

=Pr [exp(—ﬁﬁ) > exp (—ﬁ : %g]>

P _Q [~]
< -
o D

~ exp(—BE[S]/D)  exp(—Sv2d/D) g
Setting 5 = D completes the proof. O

Elexp(~A9)] _ Elexp(~AX, )" _ (2) evEID,
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4.2 Net-based dimension reduction

In this section we describe the dimension reduction mapping for ¢, via r-nets. Let P C ¢¢
be a set of n points with doubling constant A\p. For some point z € R? and » > 0, we
denote by Bi(x,r) the ¢,-ball of radius r around z. The embedding is non-linear and is
carried out in two steps.

First, we compute a c-approximate (¢/c)-net N’ of P with the algorithm of Theorem 21.
Moreover, the algorithm assigns each point of P to the point of AV which covered it. Let
g : P — N be this assignment. In the second step, for every s € N and any query point
q € (4, we apply the linear map of Theorem 48. That is, f(s) = As/T, where A is a
d' x d matrix with each element being an i.i.d. Cauchy random variable. Recall that value
T = 0(d log (d'/¢)). By the 1-stability property of the Cauchy distribution, f(s) is distributed
as ||s||;- (Y3,...,Ys), whereeach Y; isi.id. and Y; ~ Cp. Hence, || f(s)||, = ||s]|, - S where
S =251l

We define the embedding to be h = f o g. We apply h to every pointin P, and f to any
query point ¢. It is clear from the properties of the net that g incurs an additive error of +¢
on the distance between ¢ and any point in P, so it is sufficient to consider the distortion
of f.

Our analysis consists of studying separately the following disjoint subsets of N: Points
that lie at distance at most D, from the query and points that lie at distance at least D,,
for some D, > 1 chosen appropriately. For the former set, we directly apply Theorem 48,
as it has bounded diameter.

The next lemma guarantees the low distortion for points of the latter set, namely those
that are sufficiently far from the query. We consider the sum of the square roots of each
Y;],i.e., S =Y, [Y;|'/2, in order to employ the tools of Section 4.1.

Lemma 52. Fix a query point ¢ € ({. Foranye < 1/2, ¢ > 1, § € (0,1), there exists
Dy = O(log(d'/€)) such that for d = © (log* Ap - log(c/e) + log(1/4)), with probability at
least 1 — ¢,

VseN: |ls—dll; 2 Do = |If(s) = f(a)ll, = 4.

Proof. Assume wlog that the query point is the origin (0,...,0). For some Dy > 1, we
define the following subsets of N
Nz’ = {S € N ’ Dz < H8||1 < Di+1}, Dl = 221'1)07 7= O, 1,2, R

By the definition of doubling constant and the fact that two points of N lie at distance at
least ¢, |N;| is at most A[P9UeP1/IT < \dlos(eDin/) - Therefore, by the union bound, and
Eq. (4.1):

4 4T
P [Hias &Nt (sl < ”5”1] Py [azas € NS < 3} <

D;
> - \4d'T s
<> INi|Pr [S <
i=0 VD

2

~ ~ 2T
S ESI\ g,

= [Ni|Pr
=0

|. Psarros 70



Proximity problems for high-dimensional data

By Lemma 51, for Dy = [8007'/d"] = O(log(d'/e)) and d" > 4 -logAp - log(cDy/¢€) +
2log(2Ap/0):

°_ 9log(Ap)(4log (cDo/€)+2i+2)

[e's) d
dlog(cDi1/e) [ 1 B
= Z Ap - (2i+1) - Z od' (i+1) <
i=0 1=0

. 5 _ E[S]
ZZ; | Ni|Pr [S < 10 - 2i+1

9log(Ap)-410g (cDo/e) . 92l0g(Ap)(i+1)

< Z 9(4:log Ap-log(cDo/€))(i+1) . 92109(2Ap/6))(i+1) <
1=0
 o-2l0g2/m)i+1) _ N (00 0?
—2log i _ s I R
3 Sl (A
i=0 =0

Finally, for some large enough constant C', we demand that
d > C (log\p -log(clogd'/e) +1log(1/d)) > 4 -log Ap - log(cDy/€) + 2log(2Ap/5)
which is satisfied for ' = © (log” Ap - log(c/e) + log(1/6)). O

Theorem 53. Let P C (¢ such that |P| = n. Forany ¢ € (0,1/2) and ¢ > 1, there is a non-
linear randomized embedding h = fog : (4 — (¥, where d' = (log Ap - log(c/¢))®Y9 /¢(e),
for a function ((¢) > 0 depending only on ¢, such that, for any q € (¢, if there exists p* € P
such that ||p* — q||» < 1, then, with probability 2(e):

[h(p") = F(@ll, £1+3e,Ype P [lp—qli > 149 = |h(p) = f(@)ll, > 1+ 3e.
Set P can be embedded in time O(dn'+'/%), and any query q € (¢ can be embedded in
time O(dd').

Proof. Let f, g be the mappings defined in the beginning of the section and D, = ©(log(d'/¢)).
Assume wlog for simplicity that ¢ = 0¢. Then, by Lemma 52 for &’ = © (Iog2 Ap - |Og(c/e)),
with probability at least 1 — ¢/5, we have:

VpeP:llp—dqly 2 Do+e = [[h(p) = f@)ll, = 4

By Theorem 48, for v = ¢/10 and § = ¢/(5)%°¢ 7/ 'with probability at least 1 — ¢/5, we
get:

VpeP: |lp—qli € (149 Dy+e¢) = |[|h(p) = f(@)ll; > (L+8e)(1 —€) = 14 3e.

Moreover,

1+¢€/10
1+e¢
Then, the target dimension needs to satisfy the following inequality:

Pr|ia(p") — f(@)ll, < 1+3¢) > 1~

>1-(1-¢/2).

(In(5A§J°g(CD°/G)/e))2/E _ (©(loglogd' -log Ap +log Ap - In(c/e)))%

d > =
- ¢(e) ¢(e)
Hence, for &' = (log Ap - log(c/€))®"/ /¢(€), we achieve a total probability of success in
Q(e), which completes the proof. N
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4.3 Dimension reduction based on randomly shifted grids

In this section, we explore some properties of randomly shifted grids, and we present a
simplified embedding which consists of a first step of snapping points to a grid, and a
second step of randomly projecting grid points.

Let w > 0 and ¢ be chosen uniformly at random from the interval [0, w]. The function

oo () = V — tJ

w

induces a random patrtition of the real line into segments of length w. Hence, the function

gw(x) = (hw,tl (xl)v ) hw,td(xd))a

for ¢1,...,t4 independent uniform random variables in the interval [0, w], induces a ran-
domly shifted grid in R?. For a set X C R?, we denote by g,(X), the image of X on the
randomly shifted grid points defined by ¢,,. For some z € R? and r > 0, the number of
grid cells of g,,(¢¢) that B, (x,r) intersects per axis is independent, and in expectation is
1+2r /w. Then, the expected total number of grid cells that B, (z, r) intersects is (1+2r /w)<.

Now let P C ¢{ be a set of n points with doubling constant A\r and ¢ € ¢¢ a query point.
For w = €¢/d, the ¢;-diameter of each cell is € and therefore ¢,,(P) is an e-covering set of
P.

Lemma 54. Let R > 1 and P’ := By(q, R) N P. Then, forw = ¢/d

21 dR/e
E [|g.,(P')]] < 8Xp8“H9.

Proof. By the doubling constant definition, there exists a set of balls of radius ¢/d* centered
2log(dR/e

at points in ', of cardinality at most A7 ) which covers P'. For each ball, the expected
number of intersecting grid cells is (1 + 2/d)? < e2. The lemma follows by linearity of
expectation. ]

The next lemma shows that, with constant probability, the growth on the number of repre-
sentatives, as we move away from ¢, is bounded.

Lemma 55. Let {D;}.cn be a sequence of radii such that, for any i, D;.1 = 4D,. Let A; be
the points of g,,(P) within distance D;,, = 22+ Dy from q. Then, with probability at least
1/3,

Vi€ {=1,0,...} : |4 < 47F3\Fo0EP/),

Proof. By Lemma 54, E[|A;|] < 8A2%"P/9 for every i € {—1,0,...}. Then, a union
bound followed by Markov’s inequality yields

Pr[3ie{0,1,...}: |4] > 4E[|A]]] <1/3.
In addition,

PrlA_| = 4E[|A]]] < 1/4. O
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Theorem 56. Let P C (¢ such that |P| = n. Forany e € (0,1/2), there is a non-linear ran-
domized embedding 1 : (4 — (¢, where d' = (log Ap - log(d/€))®"'® /¢(e), for a function
¢(e) > 0 depending only on ¢, such that for any q € (¢, if there exists p* € P such that
lp* — ¢ql|1 < 1, then with probability Q(¢),

1B (") = f(@ll, 1+3eVpe P lp—qlh > 149 = [[I'(p) = f(@)ll, > 1+ 3€
Any point can be embedded in time O(dd').

Proof. We follow the same reasoning as in the proof of Theorem 53. The embedding is
h' = f o g./q, Wwhere f is the randomized linear map defined in Section 4.2. As before, we
apply h' to every point in P, and only f to queries. The randomly shifted grid incurs an
additive error of ¢ in the distances between ¢ and P.

Assume wlog that ¢ = 0¢ and let 4, be the points of g.,4( P) within distance D, = 22+ D,
from ¢. Hence, by Lemma 55,

| . 4llsl,] _ AT
Pr 33 € A 19, < T30 <3 s < | <

7

/
< Z:41_,_3)\2Iog(dDz-H/E Pr [ < dT

=0

As in Lemma 52, for Dy = [8007"/d'] = ©(log (d'/€)), d' > 20log Ap-log (422) and § = €/5,

0 92i+6+2log Ap(log(dDg/e€)+2(i+1)]

Z o' (i+1) < ¢/5.

1=0

o ~ /
) 4y esd /I py. [S o VAT

=0

Hence, for &' = Q ((log® Ap - log(d/€)), with probability at least 1 — /5, we have:

VpeP: |lp—qll; =2 Dot+e = |M(p) = fla)l; = 4
Now, we are able to use Theorem 48 for points which are at distance at most Dy + ¢ from g,
and the near neighbor. By Lemma 55, with constant probability, the number of grid points

at distance < D + ¢, is at most 32 - A5,/ Hence, by Theorem 48, for v = ¢/10 and
§ = ¢/(160X1 7% “P°/<)) "with probability at least 1 — ¢/5, it holds:

WpeP: p—qlh€(1+9%Dy+e) = [W(p)— f(@), >1+3e.
Moreover, with probability at least ¢/2, we obtain:

1K' (p*) = f@)lly <1+ 3e

As in Theorem 53, the target dimension needs to satisfy the following:
(In (160X @20/ /)y
- ¢(e)

Hence, for @’ = (log Ap - log(d/€))°™ /¢ (€) we achieve total probability of success Q(e).
O

/
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Table 4.1: Comparison with related dimension reduction results.

Comments Target dimension Time
[56], Nearest-Neighbor preserving, ¢, d = (logn)®%/9 /((e) O(dd'n)
[58], Nearest-Neighbor preserving, /, d =log(1/e)log \p /e O(dd'n)

Theorem 53 d' = (log Ap - log(c/e))®M9 /¢ (e) | O(dn'+1/20)

Theorem 56 d' = (log Ap - log(d/e))°Y) /c(e) | O(dd'n)

4.4 Summary and algorithmic implications.

In Table 4.1, we show a comparison of our results with previous results on dimension re-
duction for proximity search. Previous results focus on different scenarios: either subsets
of 7, without any assumption on the doubling dimension, or doubling subsets of /;.

Our results show that efficient dimension reduction for doubling subsets of ¢, is possible, in
the context of ANN. In particular, these results imply efficient sketches, meaning that one
can solve (1 + ¢, 7)-ANN with minimal storage per point. Dimension reduction also serves
as a problem reduction from a high-dimensional hard instance to a low-dimensional easy
instance. Since the algorithms presented in this chapter are quite simple, they should also
be of practical interest: they easily extend the scope of any implementation which has been
optimized to solve the problem in low dimension, so that it may handle high-dimensional
data.

Our embedding can be combined with the bucketing method of [51] for the (1 + ¢,r)-
ANN problem in ¢¢. For instance, setting ¢ = logn in Theorem 53, yields preprocessing
time dn't°W), space n'*°(!) and query time O(d)-(log Ap - log log n)°('/9) assuming that the
doubling dimension is a fixed constant. This improves upon existing results: the query
time of [63] depends on the aspect ratio of the dataset, while the data structures of [52,
30] support queries with time complexity which depends exponentially on the doubling
dimension. However, it is worth noting that one could potentially improve the results of
[63, 52, 30] in the special case of /;, by employing ANN data structures with fast query
time, in order to accelerate the traversal of the net-tree. Hence, while our result gives
a simple framework for exploiting the intrinsic dimension of doubling subsets of /;, it is
unlikely that it shall improve upon simple variants of previous results in terms of complexity
bounds.
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5. APPROXIMATE NETS IN HIGH DIMENSIONS

We study r-nets, a powerful tool in computational and metric geometry, with several ap-
plications in approximation algorithms. We focus on the ¢¢ metric, in the high-dimensional
regime. This chapter is essentially a simplified exposition of [19].

An r-net for a finite metric space (X,d), |X| = n and for numerical parameter r is a
subset A/ C X such that the closed r/2-balls centered at the points of A/ are disjoint, and
the closed r-balls around the same points cover all of X. We define approximate r-nets
analogously (see Definition 20). We restate the definition for the special case of finite
subsets of /4.

Definition 57. Given a pointset X C R?, a distance parameterr € R and an approximation
parameter e > 0, a (1 + e)r-net of X is a subset N' C X s.t. the following properties hold:

1. (packing) For every p,q € N, p # q, we have that ||p — q||, > r.

2. (covering) For every p € X, there existsaq € N s.t. ||p —ql|, < (1 +¢€)r.

A simple reduction, which is also utilized in [5] and shares its main idea with results of
Section 3.4 allows us to focus on the space {—1,1}°(°9"/<)  The reduction is based on
the randomized embedding described in Section 3.4 (but to a higher dimension) f : X —
{0,1}00097/<*) gych that with high probability the following holds: Vp,q € X, if |[p—q» < r
then || f(p)— f(q)]s <" andif|[p—q|l2 > (1+2¢)r then || f(p)— f(q)|1 > (1+€)r’. Moreover,
r"=1/2+ O(e). Then, translating binary coordinates to sign coordinates is trivial.

Organization. Section 5.1 discusses the main results, and Section 5.2 shows implications.

5.1 Points in {—1,1} under inner product

In this section, we resolve the problem of computing nets for subsets of {—1,1}%. Using
the fact that the Euclidean norms of all vectors in our new space are equal to d, we can
define the new notion of p-nets with respect to their inner product.

Definition 58. For any X C {—1,1}¢, an approximate p-net for (X, (-,-)) , with additive
approximation parameter e > 0, is a subset C C X which satisfies the following properties:

» foranytwop # q € C, (p,q) < p, and

» forany x € X, there existsp € C s.t. (x,p) > p—e.

The algorithm follows the recipe of [77], later also explored in [5]. The main observation
is that finding the correlations between points in {—1,1}¢ can be reduced to a polynomial
multi-point evaluation
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problem, which can be solved by fast matrix multiplication. A high-level description follows.

High-level description of net algorithm.
+ Compute part of the net greedily; the remaining set is “sparse”.

* For suitable ¢(-) compute f(X) and f'(X) s.t.
Vr,y € X2 (f(2), ['(y)) = ¢({x,y)).

* Arbitrary partition of X: P;,..., P,,.
* Forany x € X:

— For any part P;:

*

compute

D@ ) = ) o)) =\ [(wy) = d/2+ ed].

yePR; yePr; yePr;

* decide: is x correlated with some vector in P,?

We need ¢(-) s.t. ¢(q‘f(/j/+2§d) as large as possible. To that end, we use the Chebyshev

polynomial which is known to satisfy nice threshold properties.

Definition 59 (Chebyshev Polynomials). An explicit expression for the qth Chebyshev
polynomial of the first kind is the following:

lg/2] q
T,(z) = Z (ri) (2% — 1)Fz972k,
k=0

Fact 60. Let T,(x) denote the qth Chebyshev polynomial of the first kind, then the following
hold:

* The leading coefficient = 2971,
* All roots of T,(z) are real and within [—1, 1].
* Forz € [—1,1], |T,(z)] < 1.

« Foré € (0,1/2], T,(1+9) > LeaVs,

Valiant’s result [77] includes a double randomized embedding f, f': {—1,1}¢ — {—1,1}%
which aims for the following property: (f(x), f'(v)) ~ T,({(x,y)). We refer to this algo-
rithm as Chebyshev Embedding and state the formal guarantees associated with it in the
following theorem.
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Theorem 61 ([77]). LetY, Y’ € {—1,1}¥*" be the matrices output by algorithm Chebyshev
Embedding on input X € {—1,1}%", integers q,d'. With probability 1 — o(1) over the
randomness in the construction of Y,Y’, for all i, j € [n],

Y, Y eT, (2%

J
where T, is the degree-q Chebyshev polynomial of the first kind. The algorithm runs in
time O(d' - n - q).

) d 273 + V/d logn

Corollary 62. LetY = [y1,...,un), Y = [v},...,y,] be the matrices output by algorithm
“Chebyshev Embedding” on input X € {—1,1}%", ¢ = loglogn, d' = log” n. With proba-
bility 1 — o(1), for all pairs i, j, the following holds:

¢ <xi7'rj> € [_d/27d/2] = ’<yl7y;>| < 10|096 n,
s (v, 75) 2 d/2+ed = (yi,y;) > (O.l . |Ogﬁn> -log® n.

Lemma63. LetY,Y’ € {—1,1}%*" be the output of the algorithm in Corollary 62. Consider
set of indices .J C [n] and the d'-variate polynomial F;(y) = 3. (y,y;)? of degree q. Set

q=0.1- ,'0%3 =0.1- mc‘;;}%gn assuming q is even. Then, there exists an o = n®"Y such that,

s VjieJ: [y, <10log’n = Fy(y) < |J|- o

cJjed: [yl > (0.1 : Iogﬁn> log®n = Fj(y) > a - nY/' for large enough
n.

Proof. The statement holds by a simple calculation on the bounds derived by Corollary 62.
N

Hence, we can partition [n] (equivalently input set X) into n!~v</% parts which correspond
to n!'~V</1%0 polynomials. Each polynomial has < n’!' monomials.

To evaluate the n'!~v</1% polynomials, we employ fast rectangular matrix multiplication.

Theorem 64 (Coppersmith’97). Forany positive v > 0, provided that < 0.29, the product
of a k x k” with a k% x k matrix can be computed in time O(k*™).

Theorem 65. Let X C {—1,1}% |X| =n, e > 0, and assumethat |z,y € X | (z,y) > p| <,
where p = 1/2 4+ ©(e). We can compute a (p, €)-approximate net, as defined in Definition
58, in time n?~9W9) + atn°e), The algorithm succeeds with probability 1 — o(1).

Proof. We need to multiply a n'~Ve/19 x n01 matrix with a n®! x n matrix. Equivalently,
we perform nvV</1% fast rectangular matrix multiplications in time:

pVE/100 | (1=VE/100)(24+9) < p2=Ve/100+y < n2—\/2/200’
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by setting ~ to be a sufficiently small multiple of \/e. Then, there are at most ¢ "heavy”
elements, each one corresponding to n°V) points: we visit all of them in a bruteforce
manner. Il

Theorem 66. Let X C {—1,1}% |X| = n, ¢ > 0. We can compute a (p, ¢)-approximate
net, as defined in Definition 58, in time n2=°We 4 dnl-5+0We),

Proof. The complete algorithm consists of a first step which aims to compute a subset of
the net greedily. The remaining set of uncovered points has the desired property that it is
"sparse”.

Repeat n%° times:

* Choose a column z; uniformly at random.
» Delete column 7 from matrix X.

* Delete each column & from matrix X s.t. |(z;, z)| > p.

We perform n°? iterations and for each, we compare the inner products between the ran-
domly chosen vector and all other vectors. Hence, the time needed is O(dn'*®).

In the following, we denote by X; the number of vectors which have “large” magnitude
of the inner product with the randomly chosen point in the ith iteration. Towards proving
correctness, suppose first that E[X;] > 2n%5 for all i = 1,...n°%°. The expected number of
vectors we delete in each iteration of the algorithm is more than 2n%° + 1. So, after n%5
iterations, the expected total number of deleted vectors will be greater than n. This means
that if the hypothesis holds for all iterations we will end up with a proper net.

Finally, the proof is complete after invoking Theorem 65. O

5.2 Applications and Future work

The main result of Section 5.1 is an algorithm for computing approximate r-nets in high
dimensions. Another set of particular interest, is the set of "far” points, that is points which
do not have any neighbor at distance < r. This is obviously a subset of any r-net. We
remark that throughout the execution of the algorithm described in Section 5.1, we can
mark points which are approximately far. We denote this modified algorithm by DelFar
with input set X, radius parameter r, and approximation parameter ¢ > 0. This algorithm
outputs X \ S, for a set S such that,

{reX|WeX|ly—z|>Q+er}CSC{reX|VyeX|y—a|>r}

In [54], they design an approximation scheme, which solves various distance optimization
problems. Their algorithm works by randomly sampling a point and computing the distance
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to its nearest neighbor. Let this distance be r. Then they rely on the existence of an
efficient decider for the problem: assuming that r is not a good guess, then if r is too small
then an r-net is computed, and if r is too large then DelFar is computed. In both cases,
the computation proceeds with a subset of the initial set and selects a new random value
for r.

We apply our algorithms to the problem of approximating the kth nearest neighbor dis-
tance.

Definition 67. Let X C R? be a set of n points, approximation errore > 0, andletd; < ... <
d,, be the nearest neighbor distances. The problem of computing an (1 + ¢)-approximation
to the kth nearest neighbor distance asks for a pair z,y € X such that |z — y| € [(1 —
E)dk,<1 +—€)dky

Now we present an approximate decider for the problem above. This procedure combined
with the framework of [54], results in an efficient solution for this problem in high dimension.

kth NND Decider
Input: X C R?, constant e € (0,1/2], integer k > 0.
Output: An interval for the optimal value f(X, k).

+ Call DelFar(X, T ¢/4) and store its output in ;.
+ Call DelFar (X, ¢/4) and store its output in W.
* Do one of the following:

— If [Wy| > k, then output “f (X, k) < r”.
— If [Ws| < k, then output “f (X, k) > »”.
— If W3] < k and [W,| > k, then output “f(X, k) € [1Lrg, L2,

1+e/4?

Theorem 68 ([19] Theorem 4.1). Given a pointset X C R¢, one can compute a (1 + ¢)-
approximation to the k-th nearest neighbor in O(dn?>-°<)), with probability 1 — o(1).

To the best of our knowledge, this is the best high dimensional solution for this problem,
when ¢ is sufficiently small. Setting k£ = n and applying Theorem 68 one can compute the
farthest nearest neighbor in O(dn*~®(V9)) with high probability.

Concerning future work, let us start with the problem of finding a greedy permutation.
A permutation II =< 7y, m,,--- > of the vertices of a metric space (X, |-||) is a greedy
permutation if each vertex =; is the farthest in X from the preceding vertices II;_; =<
T, ...,m;_1 >. The computation of r-nets is closely related to that of the greedy permuta-
tion.

The k-center clustering problem asks the following: given a set X C R¢ and an integer k,
find the smallest radius r such that X is contained within % balls of radius . Our algorithm
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can be plugged into the framework of [54] to achieve a (4+¢) approximation for the k-center
problem in time O(dn2~©V9. By [42], a simple modification of our net construction implies
an algorithm for the (1 + ¢) approximate greedy permutation in time O(dn?>~®V log ®)
where ¢ denotes the spread of the pointset. Then, approximating the greedy permutation
implies a (2 + ¢) approximation algorithm for k-center clustering problem. We expect that
one can avoid any dependencies on .
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6. APPROXIMATE NEAREST NEIGHBORS FOR POLYGONAL
CURVES

Our first contribution is a simple data structure for the (1 + ¢)-ANN problem in /,-products
of finite subsets of ¢4, for any constant p. The key ingredient is a random projection from
points in ¢, to points in ¢,. Although this has proven a relevant approach for (1 + ¢)-ANN
of pointsets, it is quite unusual to employ randomized embeddings from ¢, to ¢,, p > 2,
because such norms are considered “harder” than /, in the context of proximity searching.
After the random projection, the algorithm “vectorizes” all point sequences. The original
problem is then translated to the (1 + ¢)-ANN problem for points in Eg’, ford ~ d-mto be

specified later, and can be solved by simple bucketing methods in space O (d'n-(1/e)?)
and query time O(d’ log n), which is very efficient when d - m is low.

Then, we present a notion of distance between two polygonal curves, which generalizes
both DFD and DTW (for a formal definition see Definition 5). The /,,-distance of two curves
minimizes, over all traversals, the ¢, norm of the vector of all Euclidean distances between
paired points. Hence, DFD corresponds to /..-distance of polygonal curves, and DTW
corresponds to /;-distance of polygonal curves.

Our main contribution is an (1 + ¢)-ANN structure for the /,-distance of curves, when
1 < p < oo. This easily extends to /. -distance of curves by solving for the /,-distance,
where p is sufficiently large. Our target are methods with approximation factor 1+ ¢. Such
approximation factors are obtained for the first time, at the expense of larger space or
time complexity. Moreover, a further advantage is that our methods solve (1 + ¢)-ANN
directly instead of requiring to reduce it to near neighbor search. While a reduction to the
near neighbor problem has provable guarantees on metrics [51], we are not aware of an
analogous result for non-metric distances such as the DTW.

Specifically, when p > 2, there exists a data structure with space and preprocessing time

In
~ O(dm-ap,e)
O (n . (i + 2) ) ,
yus

where «, . depends only on p, ¢, and query time in O(2'" logn).

When specialized to DFD and compared to [37], the two methods are only comparable
when ¢ is a large enough fixed constant. Indeed, the two space and preprocessing time
complexity bounds are equivalent, i.e. they are both exponential in d and m, but our query
time is linear instead of being exponential in d.

When p € [1, 2], there exists a data structure with space and preprocessing time in
O (n . 20(dm-ap7€)) ’

where «, . depends only on p, ¢, and query time in 0, (24" logn). This leads to the first ap-
proach that achieves 1+ ¢ approximation for DTW at the expense of space, preprocessing
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Table 6.1: Summary of previous results compared to this chapter’s. The result of [55] holds for
arbitrary metrics and X denotes the domain set of the input metric. All results except [55] are
randomized. All previous results are tuned to optimize the approximation factor. The parameters

Pus pq Satisfy (1+€),/pg +e\/pu > V1 + 2.

Space Query Approx. | Comments

Om2|X|)™ " x O(n?>°W) (mlogn)®W O(1) | det. [55]
DFD | O(2%"dn) O(2* logn) O(d®?) | ¢4 [37]

- Odm**V/<log(1/€)) | .

O(n) x (i +2) O(dm'*V/e . 2%mlogn) | 1+ | (4, Thm 74

O(mn O(mlogn) O(m) | (4[37]
DTW | O(n) x 20(mdlog(1/e)) O(d - 2*™ logn) 1+e |44, Thm75

O (2*mnltew) O (24mnpa) 1+¢ | ¢4, Thm76

and query time complexities being exponential in m. Hence our method is best suited
when the curve size is small.

Our results for DTW and DFD are summarized in Table 6.1 and juxtaposed to existing
approaches in [37, 55].

Organization. The rest of this chapter is structured as follows. In Section 6.1, we present
a data structure for (1 + ¢)-ANN in /,-products of ¢,, which is of independent interest. In
Section 6.2, we employ this result to address the /,-distance of curves. We conclude with
future work.

6.1 /,-products of /,

In this section, we present a simple data structure for (1 + ¢)-ANN in ¢,-products of finite
subsets of ;. Recall that the ¢,-product of X1, ..., X,,, which are finite subsets of /5, is a
metric space with ground set X; x X, x --- x X,, and distance function:

m 1/p
d((z1, .. @m), W1, - ) = llllze —willes - ll2m — ymll2ll, = (Z (e le’z’) :
i=1

For (1+¢)-ANN, the algorithm first randomly embeds points from ¢, to ¢,,. For this purpose,
we build upon results which are probably folklore and the reasoning is quite similar to the
one followed by proofs of the Johnson-Lindenstrauss lemma, e.g. [67]. Then, itis easy to
translate the original problem to (1 + ¢)-ANN in ¢, for large vectors corresponding to point
sequences.

We now present our main results concerning (1 + ¢)-ANN for /,-products of ;. First,
we show that a simple random projection maps points from /¢ to E;”, where d' = O(d),

|. Psarros 82



Proximity problems for high-dimensional data

without arbitrarily contracting norms. The probability of failure decays exponentially with
d'. For our purposes, there is no need for an almost isometry between norms. Hence, our
efforts focus on proving lower tail inequalities which imply that, with good probability, no
far neighbor corresponds to an approximate nearest neighbor in the projected space.

We now prove bounds concerning the contraction of distances of the embedded points.
Our proof builds upon the inequalities developed in Section 2.2.

Theorem 69. Let G be a d’' x d matrix with i.i.d. random variables following N(0,1). Then,

* if2 < p< o then,

RS

Pr

L d) /P d'z=
d. < —(Cp . <
e e I L =

d
+ 2) . e-@’'2”’~d’~(p€/(2+pe))27

. ifp € [1,2] then,

. dN\/p 1\ ¢ L
Pr {Elv cR?: |Gol|, < % . HUH% <0 (_) .ecd ~(p6/(2+p6))2’
€ €

where ¢ > 1 is a constant, e € (0,1/2).

Proof. By Lemma 16:

! !

Cp'd —c-d’-(pe/(2+pe))?
. ||U||§] <Pr [HGng < T HUHYQ’} <e (pe/(24pe))*

cp-d
(1+ ¢

Pr [HGUH” <

In order to bound the probability of contraction among all distances, we argue that it suf-
fices to use the strong bound on distance contraction, which is derived in Lemma 16, and
the weak bound on distance expansion from Corollary 17 or Lemma 18, for a j-dense set
N cC S¢ ! for § to be specified later. First, a simple volumetric argument [51] shows that
there exists N C S%'s.t. Vo € S Iy € N ||z — y|» < 6, and [N| = O (1/6)".

We first consider the case p > 2. From now on, we assume that for any v € N, ||Gul|, >
(c, -d)?/(1+¢€) and |Gu|, < 2v/d’ which is achieved with probability

d

Now let  be an arbitrary vectorin R? s.t. |||, = 1. Then, there exists u € N s.t. ||z —ul|, <
0. Also, by the triangular inequality we obtain the following,
o le =

[l = ull

(z —u)
[l = ull

6.1)

1Gll, < |Gull,+[Glz—u)ll, = [[Gullp+[lz—ull;

< [|Gull,+5 HG
D
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Let M = max,csa-1 |Gzl|,- The existence of M is implied by the fact that S*~! is compact
and z — ||z||,, x — Gz are continuous functions. Then, by plugging M into (6.1),

IGull, _ 2V
1—-60 —1-9¢’

M < |Gull, + 6M = M <

where the last inequality is implied by Corollary 17. Again, by the triangular inequality,

(cp-d)P 20V _l—¢/2
1+e€ 1—90 = 1+4¢€

1G]y > |Gully = 1G(x =)l > (cp - d)M7,

e-(cp-d)t/P
for g < 2V d +e-(cp-d)1/P”

Notice now that

In the case p € [1,2], we are able to use a better bound on the distance expansion;
namely Lemma 18. We now assume that for any u € N, ||Gul, > (c,-d')*/?/(1 + ¢) and
|Gull, < (3-¢,-d)'? which is achieved with probability

1 d

Once again, we use inequality (6.1) to obtain:

Gull, _ (3 cy- )

<
M=y =5 =
1 3P
> o o > . aN1/p _
= |G|, > [|Gull, = |Gz — Gullp = (¢, - ') (1+€ 1_5)
1—¢€/2
= [Gally > (e d)7 - ==,
foro <e/(6(1+¢€) +€) = Q(e). O

Theorem 69 implies that the (1+¢)-ANN problem for ¢, products of ¢, translates to the (1+
¢)-ANN problem for ¢, products of /. The latter easily translates to the (1+¢)-ANN problem
in Eg’. One can then solve the approximate near neighbor problem in Eg', by approximating
% balls of radius 1 with a regular grid with side length ¢/(d')"/?. Each approximate ball is
essentially a set of O(1/¢)? cells [51]. Building not-so-many approximate near neighbor
data structures for various radii leads to an efficient solution for the (1 + ¢)-ANN problem
[51].

Theorem 70. There exists a data structure which solves the (1+¢)-ANN problem for point
sequences in {,-products of ¢,, and satisfies the following bounds on performance:
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« If p € [1,2], then space usage and preprocessing time is in

_ 1 O(m-d-ap,e)
O(dmn) x (—) :

€
query time is in O(dmlogn), and a, . = log(1/e) - (2 + pe)? - (pe)~2.

* If 2 < p < o0, then space usage and preprocessing time is in

_ d O(m-d-ap,e)
O(dmn) x (— + 2) :
pe

query time is in O (dm - 2?logn), and a,,. = 27 -log(1/€) - (2 + pe)? - (pe) 2.

We assume € € (0,1/2]. The probability of success is )(¢) and can be amplified to 1 — ¢,
by building 2(log(1/6)/¢) independent copies of the data-structure.

Proof. Let ¢, . = pe/(2 + pe). We first consider the case p > 2. We employ Theorem 69
and we map point sequences to point sequences in ég', for

d-2? . log 4
d=0(—s5—r).
62,

Hence, Theorem 69 implies that,

(cp . d')l/p

Pr (3 RY . <
r{ v E |G|, < T e

: ||v||2} < €/10.

Then, by concatenating vectors, we map point sequences to points in ég'm.

Now, fix query point sequence Q = qi,...,¢, € (R%)"™ and its nearest neighbor U, =

Uty .oy Uy € (Rd)m. By a union bound, the probability of failure for the embedding is at
most

(cp- )P

R ) / T
e D NGu; = Gailly < (L +e)Ped Y llui = aill3 | -

i=1 =1

P [av eR?: |G|, < ||v||z} +Pr

We know that the first probability is < ¢/2. Hence, we now bound the second probability.
Notice that

m

= ZE [HG(Uz - %‘)Hﬁ = Cp- dlz i — qill5-
=1

i=1

E

> (G — Gl
=1

By Markov’s inequality, we obtain,

Pr) 1Gu — Gallh < (14 € cp-d > |lui —gil5| < (1+€)7".

i=1 i=1
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Hence, the total probability of failure is ifjé)lf In the projected space, we build AVDs[51].

The total space usage, and the preprocessing time is

i / i J O(m-d-27-log(1/€)/52..)
O(dmn) x O(1/e)*™ = O(dmn) x <— + 2) :
pe

The query time is O(dm2” log n). The probability of success can be amplified by repetition.
By building © <M) data structures as above, the probability of failure becomes 6.

The same reasoning is valid in the case p € [1, 2], but it suffices to set
dlog !
J:@( gﬁ.
02,

When p € [1,2], we can also utilize "high-dimensional” solutions for ¢, and obtain data
structures with complexities polynomial in d - m. Combining Theorem 69 with the data
structure of [11], we obtain the following result.

]

Theorem 71. There exists a data structure which solves the (1 + ¢)-ANN problem for
point sequences in (,-products of {,, p € [1,2], and satisfies the following bounds on
performance: space usage and preprocessing time is in O(n”ﬂu), and the query time is
in O(n*e), where p,, p, satisfy:

(L+e)P/pg+((1+e)f =1)\/pu > V21 +€)p -1
We assume ¢ € (0,1/2]. The probability of success is §(¢) and can be amplified to 1 — 6,
by building 2(log(1/d)/¢) independent copies of the data-structure.

Proof. We proceed as in the proof of Theorem 70. We employ Theorem 69 and by
Markov’s inequality, we obtain,

Pr) G — Guillb < (14 €) - cp-d' > Jlos — 5| < (1+€)7"

i=1 =1

Then, by concatenating vectors, we map point sequences to points in Eg’m, where d' =

O(d). For the mapped points in fﬁ'm, we build the LSH-based data structure from [11] which
succeeds with high probability 1 —o(1). By independence, both the random projection and
the LSH-based structure succeed with probability Q(e) x (1 — o(1)) = Q(e). O

6.2 Polygonal Curves

In this section, we show that one can solve the (1 + ¢)-ANN problem for the class of /,-
distance functions defined on polygonal curves, as in Definition 5. Since this class is
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related to /,-products of ¢,, we invoke results of Section 6.1, and we show an efficient
data structure for the case of short curves, i.e. when m is relatively small compared to the
other complexity parameters.

The class of /,-distances for polygonal curves includes some widely known distance func-
tions. Forinstance, d..(V, U) coincides with the DFD of VV and U (defined for the Euclidean
distance). Moreover d,(V, U) coincides with DTW for curves V, U.

Theorem 72. Suppose that there exists a randomized data structure for the (1 + ¢)-ANN
problem in ¢, products of {5, with space in S(n), preprocessing time T'(n) and query time
Q(n), with probability of failure less than 2=*™~'. Then, there exists a data structure for
the (1+¢€)-ANN problem for the (,-distance of polygonal curves, 1 < p < oo, with space in
m - (4e)™*. S(n), preprocessing time (4e)™*! - T(n) and query time (4€)™ ' - Q(n), where
m denotes the maximum length of a polygonal curve, and the probability of failure is less
than 1/2.

Proof. We denote by X the input dataset. Given polygonal curves V = vy,..., v, Q =
q1,-- -, Gm,, and traversal T', one can define Vi = vq,..., v, Qr = q1, .. ., q, Sequences of
[ points (allowing consecutive duplicates) s.t. Vk, v;, = Vr[k] and ¢;, = Qr[k], if and only

One traversal of V, @ is uniquely defined by its length | € {max(my,ms),...,m; + mso},
the set of indices A = {k € {1,...,1} | ix11 —ix = 0 a@nd jy1 — jx = 1} for which only @
is progressing and the set of indices B = {k € {1,...,l} | ix11 — i = 1 and jy11 — ji. =
1} for which both @) and V' are progressing. We can now define V, 4 5, Q); 4 5 to be the
corresponding sequences of [ points. In other words if [, A, B corresponds to traversal T,
Vias = Vi, Quap = Qr. Observe that it is possible that curve V' is not compatible with
some triple [, A, B.

We build one (1 + ¢)-ANN data structure, for ¢, products of ¢,, for each possible [, A, B.
Each data structure contains at most | X| point sequences which correspond to curves
that are compatible to [, A, B. We denote by m = max(my, ms). The total number of data
structures is upper bounded by

S50 () =2 () (L) - S0 =£() - (0)-

< (4e)™*!. For any query curve (), we create all possible combinations of I, A, B and
we perform one query per (1 + ¢)-ANN data structure. We report the best answer. The
probability that the building of one of the < (4e)™*! data structures is not successful is
less than 1/2 due to a union bound. O

We now investigate applications of the above results, to the (14 ¢)-ANN problem for some
popular distance functions for curves.
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Discrete Fréchet Distance. DFD is naturally included in the distance class of Defini-
tion 5 for p = co. However, Theorem 72 is valid only when p is bounded. To overcome
this issue, p is set to a suitable large value.

Lemma73. LetV =vy,..., 0, € RYand U = uy, ..., u,, € R? be two polygonal curves.
Then for any traversal T of V and U:
1/p 1/p
(1 + 6)71 ) Z Hvlk - uijp < max ||Ulk - u]k” < Z Hvlk - uijp )
.= (ik,Jx)€T .=
(ik,jx)ET (ik,J)ET
forp > log (|T]) /log(1 + ¢).
Proof. Forany z € RI7l, itis known that ||z« < [|z], < (IT])"" ||2]|e- O

Theorem 74. There exists a data structure for the (1 + ¢)-ANN problem for the DFD of
curves, with space and preprocessing time

Y

R d O(m't1/<.d-log(1/€))
O(dm?n) x (— + 2)

logm
and query time O(dm!*/<.2*™ log n), where m denotes the maximum length of a polygonal
curve, and € € (0,1/2]. The data structure succeeds with probability 1/2, which can be
amplified by repetition.

Proof. We combine Theorem 72 with Theorem 70 for p > logm/log(1 + ¢) > ¢ 'logm.
Notice that in order to plug the data structure of Theorem 70 into Theorem 72 we need to
amplify the probability of success to 1 — 274™~!. Hence, the data structure for the (1 + ¢)-
ANN problem for ¢,-products of ¢, needs space and preprocessing time

~ O(m-d-ap,e)
O(dm®n) x (i + 2) ,
pe

and each query time costs O(dm?), where a, . = 27 - log(1/¢) - (2 + pe)* - (pe)~2. Now,
substituting p and invoking Theorem 72 completes our proof.

]

Dynamic Time Warping. DTW corresponds to the /;-distance of polygonal curves as
defined in Definition 5. Now, we combine Theorem 72 with each of the Theorems 70 and
71.

Theorem 75. There exists a data structure for the (1+¢)-ANN problem for DTW of curves,
with space and preprocessing time

~ 1 O(m-d-¢~2)
O(dm®n) x (—) )

€
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and query time O(d -2'mogn), where m denotes the maximum length of a polygonal curve,
and e € (0,1/2]. The data structure succeeds with probability 1/2, which can be amplified
by repetition.

Proof. We first amplify the probability of success for the data structure of Theorem 70 to
1 — 274m=1 Hence, the data structure for the (1 + ¢)-ANN problem for ¢,-products of ¢,
needs space and preprocessing time

O(den) x 20(m-d-ape)

and each query time costs O(dm?), where «,,. = log(1/e) - (2 + €)? - (¢)~2. We plug this
data structure into Theorem 72. O]

Theorem 76. There exists a data structure for the (1+¢)-ANN problem for DTW of curves,
with space and preprocessing time O(2'™n!*r«) and the query time is in O(2*™nr«), where
Pq, Pu SaLISTy:

(14 €)\/pg + €/pu = V1 + 2e.

We assume ¢ € (0,1/2]. The data structure succeeds with probability 1/2, which can be
amplified by repetition.

Proof. First amplify the probability of success for the data structure of Theorem 71 to
1 — 2741 by building independently O(m) such data structures. We plug the resulting
data structure into Theorem 72. O

6.3 Conclusion

Thanks to the simplicity of the approach, it should be easy to implement it and should have
practical interest. We plan to apply it to real scenarios with data from road segments or
time series.

The key ingredient of our approach is a randomized embedding from /5 to ¢, which is the
first step to the (1 + ¢)-ANN solution for ¢,-products of /. The embedding is essentially a
gaussian projection and it exploits the 2-stability property of normal variables, along with
standard properties of their tails. We expect that a similar result can be achieved for /-
products of /,, where ¢ € [1,2). One related result for (1+¢)-ANN [22], provides dimension
reduction for ¢,, ¢ € [1,2).
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7. APPROXIMATE NEAR NEIGHBORS FOR SHORT QUERY CURVES
UNDER THE DISCRETE FRECHET DISTANCE

In this chapter, we study data structures for queries under the discrete Fréchet distance
in the short queries regime. In this scenario, the dataset consists of polygonal curves of
length at most m, but the queries are of length £ < m. We base our solution on the O(k)-
approximate data structure proposed by Driemel and Silvestri [38] and achieve a (1 + ¢)-
approximation with little computational overhead. Our main idea is to handle queries in
two stages. After the input is snapped to a (coarse) randomly shifted grid, each bucket
of the hash table is refined further using (finer) e-grids. For the discrete Fréchet distance,
the data structure improves upon our (more general) result of Chapter 6 even for the case
k=m.

Finally, we show that our techniques generalize to variants of the discrete Fréchet distance
that are derived from other metrics. When the underlying metric is a doubling metric, we
can use net-trees instead of e-grids. This incurs a slight increase in query time since we
cannot simply snap the query to the grid and instead use a lookup table.

We use X%, = (R?)™ and treat the elements of this set as ordered sets of points in R? of
size m called polygonal curves. In the metric case, we assume a metric space (M™,d,,),
write a curve p with m vertices as p = py,...,p,, and denote the space of all curves by
M™. For any polygonal curve p, V (p) denotes the set of its vertices.

Organization. In Section 7.1, we show our results for polygonal curves. In Section 7.2,
we extend our ideas to metric spaces of bounded doubling dimension.

7.1 ANN for short query curves in Euclidean spaces

In this section, we present efficient data structures for the (1 + ¢,7)-ANN problem, for
polygonal curves under the discrete Fréchet distance d,» in Euclidean spaces. We further
assume that » = 1 since we can uniformly scale the ambient space.

Randomly shifted grids constitute the main ingredient of our algorithm. It has been pre-
viously observed [38] that randomly shifted grids induce a good partition of the space of
curves: with good probability, near curves pass through the same sequence of cells and
hence they belong to the same part. Let ) > 0 and z chosen uniformly at random from the
interval [0, §]. The function ks .(z;) = |6 !(x; — 2)| induces a random partition of the line.
Hence, for any vector « = (1, ..., z,4), the function gs .(z) = (hs.(z1), ..., ks .(x4)), iInduces
a randomly shifted grid. Notice that, for our purposes, it suffices to use the same random
variable for all coordinates. It is easy to bound the probability that a set with bounded
diameter is entirely contained in a cell.

For any set X, diam(X) denotes the diameter of X. We begin with simple technical lem-
mas and then we proceed to our main theorems.
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Lemma 77. Let X C R? be a set such that diam(X) < A. Then,

dA
Pr.3ze X3yeX: g5.(x) # gs5:(y)] < 5

Proof. Let a,b € R such that |a — b| < A. Then,

2] <3

Hence, by a union bound over all coordinates:

d
Pr.Bz e X JyeX: g5.(7) # g5.(y)] < 5
The same argument extends to k sets of bounded diameter.
Lemma 78. Let X;,..., X, C R? be k sets such that Vi € [k] : diam(X;) < A.
dkA
Pr.[3X;dr € X; 3y € X gs5.(v) # g5-(y)] < 5
Proof. The statement holds by Lemma 77 and a union bound over all sets. ]

Lemma 79. For any two curves p € X% and q € X4, let XI',..., X} be a sequence of
subsets of V(p) UV (q), where X} denotes the ith disconnected component of an optimal
traversal T. If dyr(p, q) < 1, then for § = 4dk:

Pr.3ie[d3reX,yeX;: gs.(x) # g5.(y)] <

N —

Proof. Lemma 78, and the fact that for any i € [k] diam(X]) < 2, imply the result. O

The following lemma indicates that the optimal traversal between two polygonal curves
p € X¢ and ¢ € X¢, k < m, can be viewed as a matching between V(p) and V(q).

Lemma 80 (Lemma 3 [38]). For any two curves p € Xﬁu and q € Xﬁw, there always exists
an optimal traversal T with the following two properties:

(i) T consists of at most k = min{m,, my} disconnected components.

(i) Each component is a star, i.e., all edges of this component share a common vertex.

Hence, by a union bound, we are able to bound the probability of splitting one of the &
disconnected components with a random partition induced by a randomly shifted grid with
side-length ©(kd). Furthermore, we can precompute and store solutions for polygonal
curves realized by the grid points of a refined grid of side-length ©(¢/+/d), and use these
solutions to answer any query, after snapping its vertices to the grid.
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Theorem 81. Given as input a set of n polygonal curves P C X%, and an approximation

€

parameter ¢ > 0, there exists a randomized data structure with space inn - O (M> +

. kd
O(dnm), preprocessing time in dnmk - O (de/ 2) , and query time in O(dk), for the (1 +

e, )-ANN problem under the discrete Fréchet distance. For any query curve q € X¢, the
preprocessing algorithm succeeds with constant probability.

Proof. For any vector x = (x4, ...,z4), we define the random function

where 2z is a random variable following the uniform distribution in [0, d], and 6 = 2dk. We

also define . .
o= (2] [2]),

where w = ¢/(2v/d). The preprocessing algorithm:

(@) Input: n polygonal curves P C X4 .
(b) For each curve p € P, assign a key vector € Z* which is defined by the sequence
of cells induced by g; ., which are stabbed by p. The curves which stab more than

k cells are not stored. If the number of stabbed cells is less than &, then for the last
coordinates we use a special character indicating emptiness.

(c) Store curves in a hashtable: each bucket corresponds to a key vector (as described
in (b)).

(d) Let C1,...,C; be the sequence of cells which corresponds to a given bucket: com-
pute the solutions for all curves of complexity k£ which are defined by points in
9w, (C1), ..., 9u.(Ct) (and respect the ordering).

(e) Store the solutions (as indices) in a new hashtable: one new hashtable per bucket
of (c). Any curve within distance 1+ ¢/2 is considered an appropriate near neighbor.

The query algorithm:

(i) Input: query curve ¢ € X¢.

(if) Hash the curve twice: first by g;.(-), and then by g, .(-). Report the answer.

Storage. We use perfect hashing to store the curves. There are at most n non-empty buck-
ets which contain curves. For each such bucket, we precompute and store (approximate)
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answers for all possible queries. The number of possible queries which are compatible
with a given sequence of k cells is upper bounded by:

M a3l AP ok — 1\ [ad¥2EN\" 16432k \
Z H € = Z € - k ' € = € '
th+.. A=k i=1 t1+..Htp=k

Vi: ;>0 Vi: t; >0
121,421

Hence there are n-O(d*?ke")* indices to store. Indices refer to the input set of polygonal
curves which are stored in O(dnm).

Preprocessing time. For each data curve, we compute the real distance to all possible
kd
kd3/2>

€

queries. Hence, the total preprocessing time is dnmk - O (

Query time. O(kd) because of perfect hashing.

Correctness. By Lemma 79, we have that if d;z(p, q) < 1, then p, ¢ lie at the same bucket
with probability > 1/2. Now, let any two points z,y € R<, and let 2/ be the image of z in
G ova- Fllz —ylla < 1, then [[2" — yll2 < [z —2'[la + [lz — ylla < 1+ ¢/2. Similarly, If
|z —ylls > 1+cthen ||z —ylo > 1+¢/2. O

One may notice that the above data structure requires limited randomness. In fact, there is
only one random variable which is used for the randomly shifted grid. As a consequence,
the data structure can be easily derandomized.

Theorem 82. Given as input a set of n polygonal curves P C X¢, and an approxima-
tion parameter ¢ > 0, there exists a deterministic data structure with space in O (dnm) +

(d3/2nke) x O (’“dg/ 2>kd preprocessing time in O (d%?*nmke™") x O (’“dg/ 2>kd and query

€ €

€

time in O <’“2d5/ 2), for the (1 + ¢,7)-ANN problem under the discrete Fréchet distance, for
query curves in X4.

Proof. The data structure is essentially a derandomized version of the data structure of
Theorem 81. First we snap all points to a grid with side-length ©(¢/+/d). This introduces an
additive error of ©(¢). Then, instead of applying a randomly shifted grid, we build several
shifted grids; one for each interesting value of z. After having discretized the coordinates,
there are O(d*/?k/¢) such values. O

7.2 ANN for short query curves in doubling spaces

In this section, we consider an arbitrary metric space (M, d ). We assume the existence
of a constant-time oracle that gives us access to the metric space. We refer to the two
computational models relevant for our work as follows:

* black-box model ([30, 53, 63]): there exists a constant-time distance oracle for the
metric space that reports the pairwise distance for any two points,
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» weakly explicit model ([17]): there exists a distance oracle and a doubling oracle for
the metric space. Given any ball in the metric space M, the doubling oracle returns
in time A, a covering with A\ balls of half the radius.

Note that for any finite set X € M, Ax < A\y. We present two data structures for the (¢, r)-
ANN problem of polygonal curves in arbitrary doubling metric spaces, under the discrete
Fréchet distance. The dataset consists of curves in M™ and queries belong to M*. Once
again, we aim for polynomial dependence on m. The first data structure achieves O(k)
approximation in the black-box model when the doubling dimension is constant, and the
second one achieves (1 + ¢) approximation in the weakly explicit model.

The high-level idea of our solution is very similar to the one of Section 7.1. We use nets, in
order to discretize the input space, and a net-hierarchy which allows for a fast implemen-
tation of a A-bounded-diameter random partition. Such partitions are quite common in the
literature (see e.g. [50], Chapter 26). The random partition of points naturally extends to a
random partition of curves by considering k-tuples of parts. Then, we use perfect hashing
and we build a look-up table where the set of non-empty buckets realizes the partition
(each bucket contains only these curves which belong to a certain part). Now, any two
curves which fall into the same bucket are A-near, and by carefully adjusting the param-
eters, this already provides with an O(k) approximation. Furthermore, assuming the exis-
tence of a doubling oracle for the ambient space, we can precompute (1 + ¢)-approximate
answers to all possible queries. To answer a query, we use the net-hierarchy to efficiently
compute the corresponding part and then we retrieve the answer from the look-up table.

7.2.1 Net Hierarchies

We now introduce the main algorithmic tool of this section. Our data structure is based on
the notion of net-trees.

Definition 83 (Net-tree [53]). Let P C M be a finite set. A net-tree of P is a tree T' whose
set of leaves is P. We denote by P, C P the set of leaves in the subtree rooted at a vertex
v € T. Associate with each vertex v a point rep, € P,. Internal vertices have at least two
children. Each vertex v has a level ((v) € Z U {—oo}. The levels satisfy ((v) < ((p(v)),
where p(v) is the parent of v in T. The levels of the leaves are —cc. Let T be some large
enough constant, say T = 11. We require the following properties from T':

» Covering property: For every vertex v € T:

2
P, C by (repv, T -TE(U)> .
T —_

» Packing property: For every nonroot vertex v € T,

_5 7
b (repv, 7 ) -Tf(p(“))_l) NP CP,.

2(r—1
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* Inheritance property: For every nonleaf vertex u € T, there exists a child v € T of u
such that rep, = rep,.

Theorem 84 (Theorem 3.1 [53]). Given a set P of n points in M, one can construct a
net-tree for P in )\103(1)n log n expected time.

Enhancing the net-tree so that it supports several auxiliary operations leads to the following
theorem.

Theorem 85 (Theorem 4.4 [53]). Given a set P of n points in a metric space M, one can
construct a data-structure for answering (1+¢)-ANN queries (where the quality parameter ¢
is provided together with the query). The query time is A3") log n+¢~01°93») | the expected
preprocessing time is /\,OD(l)n log n, and the space used is )\IOD(l)n.

Definition 86 (Pruned net-tree). Given some pruning parameter w > 0, we define the
pruned net-tree to be a net-tree as in Definition 83 which is pruned as follows: for any
v € T such that P, C by, (rep,, w), we delete all points in P,, except for rep, which remains
as the single leaf of v.

We present a data structure for the range search problem on nets, which is entirely based
on [53]. We note that in order to keep the presentation simple, we make use of the main
results there in a black-box manner, but a more straightforward solution is likely attainable.

Theorem 87. Let X C M, where (M,d,) is a metric space, and X is the set of n leaves
in a pruned net-tree T with pruning parameter w (i.e. X is a Q)(w)-net). There exists a data
structure with input X which supports the following type of range queries:

» givenqg e M, r >0, report by(q,7) N X.

The expected preprocessing time is A?((l)n log n, the space consumption is )\)Ofl)n and the
query time is AQ™ logn + AQ(°90/)),

Proof. We build a data structure as in Theorem 85, and we are able to find a 2-approximate
nearest neighbor of ¢ in time Ag(l) log n, with expected preprocessing time in )\)O((l)n logn
and space in Ag(l)n. This point is denoted by ¢'. By the triangular inequality, it suffices to
seek for the points of by (q,7) N X in bay(q,3r) N X.

In order to perform a range query for a leaf ¢/, we invoke an auxiliary data structure from
[63] (see Section 3.5), which, for any query node v, allows us to find all points U within
radius ' = O(7%")) that are roughly at the same level, i.e Yu € U : ((u) < £(v) < £(p(u)).
This can be done by maintaining appropriate lists of size /\?((1), while building the net-
tree, and it does not affect asymptotically the construction of the net-tree. By the packing

property of pruned net-trees, we can retrieve all leaves within distance O(r) from ¢’ in time
AQog(r/w)), O
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7.2.2 A data structure for curves

Our data structure is based on a quite standard random partition method which has been
used repeatedly in the literature, especially in results concerning metric embeddings. We
use this method in order to obtain a partition of the curves with the desired property that
near curves probably belong to the same part. For any set X, diam(X) denotes the
diameter of X.

partition(X C M, A > 0)

» Set random permutation of X: zq,zs, ..., z,.
Set Cyy « 0.

Set ordered set P « ().

Choose uniformly at random R € [A/4, A/2].
Fori=1,...,n:

- SetC; «+ {pe€ X |dum(z;,p) <r}UC;_1, where C;_; C X is the set of covered
points in the (i — 1)th iteration.

= SGtB(—Cz\szltp%PU{PZ}

Return the permutation x4, z,, . . ., z,,, and indices to corresponding parts according
to P.

The following lemma describes the performance of the above partition scheme. Typically,
similar guarantees discussed in the literature concern only points participating in the pro-
cedure (e.g. Lemma 26.7 [50]), while we need to take into account a query point which is
not known in advance. To that end, we include a proof for completeness.

Lemma 88. Let (M.dn) be a metric space, X C M a finite subset, and let P be the
random partition generated by partition(X,A). Forany x € X, let P(z) be the part to
which x has been assigned. Then, the following hold:

* Forany P € P, diam(P) < A.

* Letq € M and let z; € X be such that j = min{i | dy(q,z;) < R}. Then, if
bu(g, )N X £Dandt < A/S,

Pribadg, ) N X € Plx))] < %m (baalq, A) A X])

Proof. Since R < A/2, obviously VP € P : diam(P) < A.

Letm = |bp(g, A)N X| and let py, ..., p, be the points in b (¢, A) N X which are ordered
in increasing distance from ¢. The probability that a certain point p; serves as the first
center for a cluster that intersects (but does not include) b(q, t) is upper bounded by the
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probability that R € [dy(pi, q) — t, dm(pis q) + t] and p; appears before py,...,p;—1 in the
permutation, since otherwise one of the previous clusters would have intersected (and
possibly covered) br(q,t). Formally,

Pr[3z € X | bp(q,t) NP(z) # 0 and by(g,t) N X € P(x)] <

1 8t

<ZPTR€dM(pZ, q) £t - 7S Zl m.
=1

Finally, since by (q,t) N X # () and ¢t < A/S8, there exists at least one point which serves
as a center for a cluster containing b(q, t).

]

Lemma 89. Given as input parameters A > 0, a pruned net-tree T with pruning parameter
w, where X is the set of n leaves in T, partition(X,A) can be implemented to run in

)\)O(( n-logn + n - AQW9A") time,

Proof. By Theorem 87, we can build a data structure which supports range queries: given
a point q € M R € [0, A/Q] we are able to report {r € X | du(q,x) < R} in time

Ylogn + AQWE ) < 9D j0g 4+ AQU9A/) Hence, for any point z;, we cover and
mark points WhICh had not been covered before and since we need to consider at most
n points, the total amount of time needed is AQ"n - logn + n - AQ1°9(2/*)),

]

Now, for a partition which is obtained by partition (actually for any partition), each polyg-
onal curve in M™ stabs at most m distinct parts. Using Theorem 87, we are able to build
a data structure on the centers of the partition. Then, recovering the part that some point
beIongs to, is easy: we perform a A-range query for the given point and then we examine
all < AQ(09(2/») points inside this range.

Theorem 90. Given as input a set of n polygonal curves P C M™ in the black-box
model, there exists a randomized data structure for the (O(p),r)-ANN problem under

the discrete Fréchet distance, with space in )\)O((l)nm, expected preprocessing time in
n-m- ()\)O(('ogp) + QW |Og(nm)> , and query time in k - ()\)O(('og”) + QW |Og(nm)> , where

X = Uyep V(p), and p := p(Ax, k) € O(klog\x). For any query curve ¢ € M", the
preprocessing algorithm succeeds with constant probability.

Proof. Preprocessing. Let r’ be the ANN radius search parameter, and let r := 4///3.
First, we bund a pruned net-tree on X := (J ., V(p). A net-tree can be built in expected

time )\X nmlog(nm) by [563]. Then, we transform it to a pruned net-tree 7" with pruning
parameter w := r/4, by visiting at most all nodes and checking which ones should be
deleted. We then build the data structure of Theorem 87 and we run the algorithm of
Lemma 89 with input X, A = 100 -7 - (klog Ax)log (klog Ax). The output consists of an
ordered set of points and the partition.
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We store P in a hashtable as follows. First we compute one vector of indices per curve indi-
cating the corresponding parts. By Theorem 87, this costs m- )\?(('c’g@/w)) + A?((l) Iog(nm))

time for each curve. If one polygonal curve stabs more than k parts, we discard it. If it
stabs less than k parts, we use a special character for the remaining coordinates. The
polygonal curves are then stored in a hashtable: each bucket is assigned to a key vector
of dimension k. Any non-empty bucket corresponds to < k parts, of diameter < A.

Storage. We store a net tree, which requires )\)Ofl)nm space, and a hashtable with at most
n non-empty buckets containing indices to curves.

Query. For any query ¢ € M*, we perform k A-range queries on the leaves of 7. For
each of the k vertices, we explore points within distance A, in order to find which point
is the first in the permutation used in partition, that covers it. Hence we compute the

corresponding key vector in time k - (/\)O(("’Q(A/w)) + /\)O((l) |Og(nm)>. We have access to the
bucket in O(k) time, and we report any data curve stored in that bucket.

Correctness. We claim that the above data structure solves the (O(A/r)), 3r/4)ANN prob-
lem. The choice of our pruning parameter implies that if there is a point in the original
pointset within distance 3r/4 from some query point, then there is a leaf in the net-tree
within distance r. In order to prove that the approximation factor holds, we make use of
Lemma 80, and the fact that the pruning step only induces constant multiplicative error.
This implies that if d;»(p, q) < 3r/4 then there exists an optimal traversal which consists
of k£ components and each component can be covered by a ball of radius r centered at a
point of X U V(¢q). By Lemma 88, the probability that partition splits one component is
at most

8r SA 8 log(800(klog\x) -log(klogAx)) 8 10+ 2log ((klogAx))
—InAx-log— < : < :
A r 100k log(klog Ax) 100k log(klog Ax)

< 99/(100k), and by a union bound the probability that ¢ is separated from its near neighbor
is constant. n

Theorem 91. Given as input a set of n polygonal curves P C M™ in the weakly explicit
model, and an approximation parameter ¢ > 0, there exists a randomized data structure
for the (1+¢,r)-ANN problem under the discrete Fréchet distance, with space in A?((l)ner
AQH1090) ), - expected preprocessing time in A nm log(nm) + A% . nmk, and query
time in k - ()\%'09”) + AW Iog(nm)) , where X :=J ., V(p), and

p:=p(Ax,k,e) €0 (e k- (logAx)-log(1/e)).

For any query curve q € MF, the preprocessing algorithm succeeds with constant proba-
bility.

Proof. Preprocessing. The first preprocessing step is similar to the one applied in the
proof of Theorem 90. We build a pruned net-tree 7" on X := (J . V(p), with pruning
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parameter w = er, in expected time A)O((l)nm log(nm). We then build the data structure of
Theorem 87 and we run the algorithm of Lemma 89 with input X, and

A =100r - (klog Ax log(1/e)) - log (klog Ax log(1/¢))) .

We compute one vector of indices per curve indicating the corresponding parts. This costs
m - (AQUE9A/wD) L 3O |Og(nm)> time for each curve. If one polygonal curve stabs more

than k parts, we discard it. If it stabs less than k parts, we use a special character for the
remaining coordinates. The polygonal curves are then stored in a hashtable: each bucket
is assigned to a key vector of dimension k. Any non-empty bucket corresponds to < &
parts, of diameter < A. The weakly explicit model assumes that we are able to access
points which er-cover a ball of radius r in )\ (°9(1/9)) time. Given a sequence of k pointsets
which er-cover the whole bucket, we precompute and store the answers for all possible
approximate queries. The number of possible queries which are compatible with a given
sequence of £ parts is: <

k
AT o (2 —1 " "
O | E I SV O ( h ) ALIoS( /) \O(kiog(as/u),

t1+...+tp=k i=1 t1+...+tp=k
Vi: t,2>0 Vi: t,2>0
t1 21,21

Storage. We store a net-tree in )\O(l nm. We also store a hashtable with at most n non-
empty buckets, WhICh correspond to different parts. For each bucket/part we store a
hashtable with < A{{¥°94/)) non-empty buckets, one for each approximate query.

Query. For any query ¢ € M*, we perform k A-range queries on the leaves of 7. For
any point x € V(q), we explore points within distance A, in order to find which point is
the first in the permutation used in partition, which also covers x. Hence, we compute

the corresponding key vector in time & - ()\?(("’Q(A/w)) + /\?((1) |Og(nm)>. Then, we have
access to the bucket in O(k) time, and we locate the representative sequence of points in
k- A9 time,

Correctness.We claim that the data structure solves the (1+©(e), (1—2¢)r)-ANN problem.
In order to prove correctness, we make use of Lemma 80 and the fact that approximat-
ing the input dataset by the net, only induces O(er) additive error. This implies that if
dar(p, q) < (1—2¢)r then there exists an optimal traversal which consists of £ components
and each component can be covered by a ball of radius r centered at a point of X UV (¢).
The probability that partition splits one component is at most

8r e - lo A 8 “log (100~ (klog A\x log(1/¢)) - log(k log Ax log(1/e)))
A N8 S 100k log(1/e) log(klog Ax log(1/e))
< 8 T+log(1/e) + 2log ((klog Ax log(1/€))) < 9
~ 100k log(1/e) log(k log Ax log(1/€)) — 10k’
and by a union bound the probability that ¢ is separated from its approximate near neighbor
is < 1/10. O
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8. VAPNIK-CHERVONENKIS DIMENSION FOR POLYGONAL
CURVES

A crucial descriptor of any range space is its VC-dimension [79, 75, 74] and related shat-
tering dimension, which we define formally below. These notions quantify how complex
a range space is, and have played foundational roles in machine learning [80, 13], data
structures [29], and geometry [50, 26]. For instance, the specific task of bounding these
complexity parameters have is critical for tasks as diverse as neural networks [13, 62],
art-gallery problems [78, 44, 64], and kernel density estimation [60].

The last five years have seen a surge of interest into data structures for trajectory process-
ing under the Fréchet distance, manifested in a series of publications [34, 47, 35, 4, 82, 20,
39, 27, 38, 18, 41]. Partially motivated by the increasing availability and quality of trajectory
data from mobile phones, GPS sensors, RFID technology and video analysis [65, 83, 46].
Initial results in this line of research, such as the approximate range counting data struc-
ture by de Berg, Gudmundsson and Cook [34], use classical data structuring techniques.
Afshani and Driemel extended their results and in addition showed lower bounds on the
space-query-time trade-off in this setting [4]. In particular, they showed a lower bound
which is exponential in the complexity of the curves for exact range searching. In 2017,
ACM SIGSPATIAL, the premier conference for geographic information science, devoted
their software challenge (GIS CUP) to the problem of range searching under the Fréchet
distance [82]. Spurring further developments, the most recent results explore the use of
heuristics and randomization, such as locality-sensitive hashing.

The Fréchet distance is a popular distance measure for curves. Intuitively, it can be defined
using the metaphor of a person walking a dog, where the person follows one curve and
the dog follows the other curve, and throughout their traversal they are connected by a
leash of fixed length. The Fréchet distance corresponds to the length of the shortest dog
leash that permits a traversal in this fashion. The Fréchet distance is very similar to the
Hausdorff distance for sets, which is defined as the minimal maximum distance of a pair
of points, one from each set, under all possible matchings between the two sets. The
difference between the two distance measures is that the Fréchet distance requires the
matching to adhere to the ordering of the points along the curve. Both distance measures
allow flexible associations between parts of the input elements which sets them apart
from classical ¢, distances and makes them so suitable for trajectory data under varying
speeds.

Our contribution in this chapter is a comprehensive analysis of the Vapnik-Chervonenkis
dimension of the corresponding range spaces. In particular, we analyze the asymmetric
case: the ground set consists of polygonal curves of complexity m, and the ranges are
defined by polygonal curves of complexity k. The resulting VC dimension bounds, while
being interesting in their own right, have a plethora of applications through the implied
sampling bounds.

Organization. In Section 8.1, we state basic definitions. Section 8.2 provides an overview
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of the results obtained in this chapter. In Section 8.3, we summarize our approach and we
present our first results for the simple discrete setting. Section 8.4 states our results for
the weak Fréchet distance, Section 8.5 extends our results to the Fréchet distance and
Section 8.6 is dedicated to the Hausdorff distance.

8.1 Preliminaries

In this section, we formally define primitives, which are repeatedly used throughout the
chapter.

Geometric primitives. Forany p € R? we denote by C,(p) the circle of radius r, centered
at p. For any p € R? we denote by D,(p) the disk of radius r, centered at p. For any two
points s,t € R?, we denote by st the line segment from s to ¢. For any two points s, ¢ € R?,
we define the stadium centered at st, B,(s,t) = {z € R* | 3p € st ||p — x||» < r}. For any
two points s,¢ € R?, we define L,(s,t) = {x € R? | Ip € {(st) ||p — z||>» < r}. Finally, for
any two points s, ¢ € R?, we define the rectangle centered at st: R,(st) = conv{s — u,s +
u,t +u,t —u}and u € R? s.t. {t — s,u) = 0 and ||u|, = r. For a set A, we denote by 0A
the boundary of A, e.g. C,.(p) = 9D, (p).

We also need to define the ball for pseudometric spaces.

Definition 92. Let (M,d) be a pseudometric space. We define the ball of radius r and
center p, under the distance measure d, as the following set:

ba(p,7) = {z € M | d(z,p) <r},

where p € M.

8.2 Our Results

Table 8.1 shows an overview of our bounds.

While the VC dimension bounds for the Hausdorff metric balls may seem like an easy im-
plication of composition theorems for VC dimension [25, 31], we still find two things about
these techniques remarkable. First, for Fréchet variants, there are ©(2%2™) valid align-
ment paths in the free space diagram. And one may expect that these may materialize in
the size of the composition theorem. Yet by a simple analysis of the shattering dimension,
we show that they do not. Second, the VC dimension only has logarithmic dependence
on the size m of the curves in the ground set, rather than a polynomial dependence one
would obtain by simple application of composition theorems (even ignoring the alignment
path issue). This difference has important implications in analyzing real data sets where
we can query with simple curves (small k), but may not have a small bound on the size of
the curves in the data set (large m).
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Table 8.1: Our results on the VC dimension of range space (X, R). In the first column we
distinguish between X consisting of discrete point sequences vs. X consisting of continuous
polygonal curves. The ground set X consists of polygonal curves of complexity m and the range
set R consists of balls centered at polygonal curves of complexity k. Additional upper bounds on
the range space under the directed Hausdorff distance are stated in Theorems 117 and 118.

| X,m | R, k \ Upper bound | Lowerbound |
discrete Hausdorff
(d=2) Frechet O(klog(km)) (Theorems 93,94,99) (d>2)
weak Fréchet Q(max(k,logm))
cont. Fréchet (Theorem 127)
— 2
(d=2) Hausdor® O(k*log(km)) (Theorems 106,119)

8.3 Our Approach

Our methods use the fact that both the Fréchet distance and the Hausdorff distance are
determined by one of a discrete set of events, where each event involves a constant num-
ber of simple geometric objects. For example, it is well known that the Hausdorff distance
between two discrete sets of points is equal to the distance between two points from the
two sets. The corresponding event happens as we consider a value ¢ > 0 increasing from
0 and we record which points of one set are contained in which balls of radius § centered at
points from the other set. The same phenomenon is true for the discrete Fréchet distance
between two point sequences. In particular, the so-called free-space matrix which can
be used to decide whether the discrete Fréchet distance is smaller than a given value §
encodes exactly the information about which pairs of points have distance at most §. The
basic phenomenon remains true for the continuous versions of the two distance measures
if we extend the set of simple geometric objects to include line segments and if we also
consider triple intersections. Each type of event can be translated into a range space of
which we can analyze the VC dimension. Together, the concatenation of the range spaces
encodes the information about which curves lie inside which metric balls in the form of a
set system. This representation allows us to prove bounds on the VC dimension of metric
balls under these distance measures.

We now prove our upper bounds in the discrete setting. Let X,, = (R?)™; we treat the
elements of this set as ordered sets of points in R? of size m. The range spaces that
we consider in this section are defined over the ground set X,,, and the range set of balls
under either the Hausdorff or the Discrete Fréchet distance. The proofs in the proceeding
sections all follow the basic idea of the proof in the discrete setting.

Theorem 93. Let (X,,, Ry ) be the range space with R the set of all balls under the
Hausdorff distance centered at sets in X;. The VC dimension is O (klog(km)).

Proof. Let{Si,..., S} CX,,and S =, S;; we define S so that it ignores the ordering with
each S; and is a single set of size tm. Any intersection of a Hausdorff ball with {5, ..., S}
is uniquely defined by aset {D, N S,..., D, NS}, where Dy,..., D, are disks in R
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Consider the range space (R?, D), where D is the set of disks in the plane. We know that
the shattering dimension is 3 [50]. Hence,

max |Ds| = O((tm)?).
SQRQ"SI:W\ H ((tm)?)

This implies that [{{D; N S,..., D, N S} | Dy,..., Dy are disks in R?}| < O((tm)**), and
hence’,
2t < 20Wleg(tm) .+ — O (klog(km)) . O

Theorem 94. Let (X,,, Rari) be the range space with R, the set of all balls under
the Discrete Fréchet distance centered at polygonal curves in X,.. The VC dimension is
O (klog(km)).

Proof. Let {S;,...,S5,} € X and S = |J,;S;. Any intersection of a Discrete Fréchet ball
with {S1,...,S;} is uniquely defined by a sequence D, N S,..., D, NS, where D, ..., Dy
are disks in R%. The number of such sequences can be bounded by O((tm)3*) as in the
proof of Theorem 93. Enforcing that a sequence contains a valid alignment path only
reduces the number of possible distinct sets formed by ¢ curves, and it can be determined
using these intersections and the two orderings of Dy, ..., D, and of vertices within some
S; € X,. O

8.4 Weak Fréchet distance

In this section we prove our upper bounds for the Weak Fréchet distance. Let W,,, be the
set of polygonal curves of complexity m; for each s € W,,,, we associate an ordered set of
vertices V' (s) and an ordered set of edges F(s). We consider the range space (W,,,, R.r),
where R, r is the set of all balls under the Weak Fréchet distance.

8.4.1 Some useful lemmas

Lemma 95. Consider the range space (X, R), where X = R? and R is the set of the form
{B.(s,t) | r >0, s,t € R*}. The shattering dimension of this range space is O(1).

Proof. Let Y C X s.t. |[Y| = n and let D be the set of all disks in R%. Let D,(s) = {z €
R? | ||z — sl < r} and D,(t) = {x € R?* | ||z — t|l < r}. Consider any intersection
S = B.(s,t) NY. We can assume that S contains a point ¢ at distance exactly r from
the segment st (otherwise decrease r). Then, S is uniquely defined by the intersections
D,(s)NY, D.(t)nY and D,(p) NY, where |p — q||» =, p € st. Hence, |Ryy| < |Dyy|* =
O(n?). O

Yoru > /e if x/In(x) < u then 2 < 2ulnu. Hence, if tm/log(tm) < km, then tm = O(kmlog(km)).
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Corollary 96. Let X = {B,(s,t) | » > 0, s,t € R*}. Consider the range space (X, R),
where R = {R, | p € R®} and R, = {r € X | p € r}. The shattering dimension of this
range space is O(1).

Proof. The range space (X, R) is the dual of the range space from Lem. 95. N

8.4.2 Representation in terms of predicates

It is known that the Fréchet distance between two polygonal curves can be attained, either
at a distance between their endpoints, at a distance between a vertex and a line supporting
an edge, or at the common distance of two vertices with a line supporting an edge. In this
sense, our representation of the ball of radius » under the Fréchet distance is based on
the following predicates.? Let s € W,, with vertices s, ...,s,, and ¢ € W, with vertices

q1s - -5 k-

Py (Endpoints (start)) This predicate returns true if and only if ||s; — ¢1]|2 < 7.
P, (Endpoints (end)) This predicate returns true if and only if ||s,, — gkl < r.

P; (Vertex-edge (horizontal)) Given an edge of s, 5;5,77, and a vertex ¢, of ¢, this pred-
icate returns true iff there exist a point p € 5,557, such that |[p — ¢;||» < 7.

P, (Vertex-edge (vertical)) Given an edge of ¢, ¢;¢;11, and a vertex s; of s, this predicate
returns true iff there exist a point p € g;gi11, such that ||p — s[> <.

P5; (Monotonicity (horizontal)) Given two vertices of s, s; and s, with j < ¢ and an edge
of ¢, §;qi71, this predicate returns true if there exist two points p; and p, on the line
supporting the directed edge, such that p; appears before p, on this line, and such
that ||p1 — s;|l2 < rand [[ps — s¢f[2 < 7.

Ps (Monotonicity (vertical)) Given two vertices of ¢, ¢; and ¢, with ¢ < t and an directed
edge of s, 5;5,51, this predicate returns true if there exist two points p; and p, on the
line supporting the directed edge, such that p, appears before p, on this line, and
such that |[p; — ¢l <7 and ||ps — @2 < 7.

Lemma 97 (Lemma 9, [3]). Given the truth values of all predicates (P1) — (P6) of two
curves s and q for a fixed value of r, one can determine if dp(s,q) < r.

Predicates P, — P, are sufficient for representing metric balls under the weak Fréchet
distance. We include a proof for the sake of completeness.

Lemma 98. Given the truth values of all predicates (P,) — (P,) of two curves s and q for
a fixed value of r, one can determine if d,,r(s,q) < r.

2 This representation was earlier derived in the context of data structures for range searching under the
Fréchet distance (see [4, 3]). We repeat the relevant definitions and lemmas here.
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Proof. Alt and Godau [7] describe an algorithm for computing the Weak Fréchet distance
which can be used here. In particular, one can construct an edge-weighted grid graph
on the cells (edge-edge pairs) of the parametric space of the two polygonal curves and
subsequently compute a bottleneck-shortest path from the pair of first edges to the pair
of last edges along the two curves. We can use edge weights in {0, 1} to encode if the
corresponding vertex-edge pair has distance at most r, as given by the predicates P;
and P,. If and only if there exists a bottleneck shortest path of cost 0 and the endpoint
conditions are satisfied (as given by the predicates P, and ), the Weak Fréchet distance
between ¢ and s is at most r. [

8.4.3 Representation as a range space

Predicates P, — P, can be directly translated into simple range spaces. Consider any two
polygonal curves s € W,, and ¢ € W,. In order to encode the intersection of polygonal
curves with metric balls, we will make use of the following sets:

* P(q,s) = Di(q1) N V(s),
* Pi(q,s) = Dr(qp) NV (s),
* Pi(q,5) = {Br(5i,5i41) N V(q) | 5511 € E(s)},

* P{(q,s) = {B.(qi,qi+1) NV (s) | ZGir1 € E(q)}.

8.4.4 VC dimension bound

Theorem 99. Let R,r be the set of balls under the Weak Fréchet metric centered at
polygonal curves in W;.. The VC dimension of (W,,, R,r) is O (klog(km)).

Proof. If S is a set of ¢ polygonal curves of complexity m, the set {s € S | dyr(s,q) < r}
is uniquely defined by the sets

U Pita.9). | Psla,9). | Pila, ). | Pila, ).

seS seS sES seS

Notice that the number of all possible sets | J,.,cs P (¢, s) is bounded by the shatter
function for the range space of points and disks and it is (tm)°("). The same holds for the
number of all possible sets | J, ., U,cs (¢, 5)-

The number of all possible sets |J,.,U,cs F5 (¢, s) and the number of all possible sets
U, =0 Uses Pi (g, s) are both bounded by (tm)°* by Lemma 95 and Corollary 96 respec-
tively. Hence, 2! < 20(10a(tm)) —. t — O (klog(km)) . O
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8.5 The Fréchet distance

In this section we prove our upper bounds for the Fréchet distance. Let W,, be the set
of polygonal curves of complexity m; for each s € W,,, we associate an ordered set of
vertices V (s) and an ordered set of edges E(s). We consider the range space (W,,, R}.),
where R7. denotes the set of all balls, of radius r, under the Fréchet distance.

8.5.1 Some useful lemmas

Lemma 100. Fix r > 0. Consider the range space (X, R), where X = R? and R is the set
of the form {L,.(s,t) | s,t € R?}. The shattering dimension of this range space is O(1).

Proof. The VC dimension of halfspaces in R? is O(1), which also bounds its shattering
dimension. Each L,(s,t) coincides with the intersection of two parallel halfspaces which
define the set of points at distance < r from ¢(st). Hence, the shattering dimension is
O(1). O

Corollary 101. Fixr > 0. Let X = {L,(s,t) | s,t € R*}. Consider the range space (X,R),
where R = {R, | p € R®} and R, = {r € X | p € r}. The shattering dimension of this
range space is O(1).

Proof. The range space (X, R) is the dual of the range space from Lemma 100. O

Lemma 102. Consider the range space (X, R), where X = R? and R is the set of the
form {A(64,0:) | 61,0 € [0,27]}, where

A(61,05) = {z € R?| 6(x) € [01,6]},

and 0(x) denotes the angle of vector x. The shattering dimension of this range space is
O(1).

Proof. When |0, — 6, < m, each set A(6y, ) coincides with the intersection of two halfs-
paces crossing the origin. If |§; — 6,| € [r, 27, then A(6,, 6,) coincides with the union of
two halfspaces crossing the origin. Hence, the shattering dimension is O(1). [

Corollary 103. Let X = {A(6,,6,) | 61,6, € [0, 27]}, where
A(91,92) = {.T € RQ ‘ 9(.1') S [91,92]},

and 0(x) denotes the angle of vector x. Consider the range space (X,R), where R =
{R,|peR*}and R, = {r € X | p € r}. The shattering dimension of this range space is
O(1).

Proof. The range space (X, R) is the dual of the range space from Lemma 102. O
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8.5.2 Representation in terms of predicates

We use the predicates P, — F; from Section 8.4. Correctness follows from Lemma 97. For
encoding the monotonicity predicates P; and Py, we repeat the definitions from [4, 3].
Let a1, ay be the vertices and let ¢ be the line supporting the directed edge e of a mono-
tonicity predicate P; (respectively, Ps). Let points b, by be C,.(a;) N C.(as).

(d) The line ¢ intersects the circle of radius r centered at a;.

(e) The line ¢ intersects the circle of radius r centered at as,.

(f) The angle between the translation vector (a; — a;) and the edge e is at most 7.
(h) The line ¢ passes in between the two points b; and b,

(i) The angle of 7 is contained in the range of angles of tangents of the circular arc
between b, and b, of the circle of radius » centered at «;.

Lemma 104 (Lemma 16, [3]). Given the truth values of the predicates (d)-(i) one can
determine the truth value of the predicate Ps (respectively, Ps). Moreover, the predicate
P (respectively, Fs) is true if and only if the clause (d ANe A f)V (hV (d A e Ni)) is true.

8.5.3 Representation as a range space

Now, consider any two polygonal curves s and ¢. In addition to the sets P[(q, s), ..., P{(q, s)
which were defined in Section 8.4.3, we need to define sets which describe predicates
Py, Ps. We invoke Lemma 104 to show that our sets are sufficient in order to determine
whether dg(s,q) < rordg(s,q) > r. The new sets are defined as follows:

* Pine(q,8) = {L (45, 4i+1) NV (s) | GGit1 € E(q)}

* Pipe(q,8) = {Le(s08i41) NV (@) | 551 € E(s)}

* Pi(q,s) = {{z € R?* | (¢iy1 — ¢iyz) > 0} N f/(s)}, where V(s) ={sp,—s; | k>
J Sk, 85 € V(s)}

* Pi(q,s) = {{z € R* | (si41—s5i,2) > 0}NV ()}, where V(q) = {gx—q; | k > j, qr, q; €

Vig)}

* Pu(g,s) = {h" (@) NV (s) | @@ir € E(Q)} U{U@Ti) NV (s) | Gdir € E(q)},
where h (g;g;11) denotes the right-side halfspace which is supported by the directed

edge G;gi+1, V" (s) = Uy, Cr(sk) N Cr(s;)

* Pilgs) = {p7(sisicn) N Vig) | Sisin € E(s)} U{l(ssin) N Vi) | &isim €
E(s)},where ht*(5;5;71) denotes the right-side halfspace which is supported by the
directed edge 5721, V,'(q) = Uys; Cr(gi) N Co(q)
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* Piq,5) = {A0:(ar, 4)), Oo(ai, 0;)) NV E(s) | k> j, q,q5 € V(g)},
where [(01(qx, ¢;), 02(ax, ¢;)] defines the range of angles of tangents of the circular arc
between the two points of C,.(¢x) N C;(g;), and E(s) = {si41 — S; | si, si41 € E(s)}. If
Cr(qr) N Cy(g5) = 0, then we define A(6;(qx, q;), 02(qx, q;)) =0

* Pi/(Q7S) = {A(Gl(ska Sj)a92($k’7 S])) N E(q) ’ k> j7 Sk, Sj € V(S)}’
where [(0:(sk, s;), 02(sk, s;)] defines the range of angles of tangents of the circular

arc between the two points of C,(s;) N C.(s;), and E(q) = {qis1— ¢ | ¢, qi1 € E(q)}.
If C..(qx) N Cy(q;) = 0, then we define A(61(qx, q;), O2(qx, q;)) = 0

Lemma 105. Let s be a polygonal curve in W,,, with vertices s, .. ., s,, and q be a polygonal
curve in W, with vertices q1, . . ., qx. Fixany r > 0. The following sets are sufficient in order
to determine whether dg(s,q) < r ordg(s,q) > r:

Pl(q.s), P5(q: ), P5(q,8), P (q,5); Pare(q: 8), Pc,l/\e(Q> s), Pr(q, 3)>P}(Qa s), Pu(q; s),
Pf/L(q7 S)? PZ(Qv 8)7 ‘Pi/(Q7 S)-

Proof. Sets P/, ..., P; correspond to high level predicates (P;), ..., (P,) from Lemma 97.

We will now use Lemma 104, to show that for any s;,s, € V(s) s.t. j < k and assum-
ing that C,(s;) N C,.(sx) = {a,b}, the outcome of the high-level monotonicity predicate
Ps5(s;, sk, i¢i+1) is uniquely defined by the above-mentioned sets.

By Lemma 104, we have that P;(s;, s, ¢:Gi+1) is true iff one of the following is true:
* (85,86 € Lr(Gis gis1)) A ({Giv1 — @iy sk — 55) > 0)],
* [((a € B (@Gi1) Ab & hT(GGi1) V (a ¢ BT (Gigin) Ab € hT(GiGi1))) V (a,b € (@),
* [(s5,8% € Li(qi,gi1)) N (@is1 — @iy Sk — S5) = 0) A (s — 85 € A(01(qx, q5), 02(qk, q5)))] -
Notice that if |C,.(s;) N C..(sx)| < 1, then the predicate is equivalent to

(S5, 5% € Li(qis @is1)) A ((@ig1 — Gis Sk — 55) = 0)] V [Cr(s55) N Cr(si) N Ggi1) # 0]

Similarly for P;.

8.5.4 VC dimension bound

The associated VC dimension is quadratic in k£ because sets P, and P, are defined with
respect to V*(¢) which may include all O(k?) pairs of vertices in q.

Theorem 106. Let R). be the set of all balls of radius r, under the Fréchet distance,
centered at polygonal curves in W,.. The VC dimension of (W,,, R%.) is O (k*log(km)).
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Proof. Due to Lemma 105, if S ¢ W,, is a set of ¢ polygonal curves and ¢ € W, the set
{s € S| dr(s,q) < r}is uniquely defined by the sets

U P{(Qv 8)7 U Pg(%s)? U Pg(Qa S)’ U PZ(Q? S): U Pd/\e(‘]v S)v U Pc/l/\e(Q7 S)v

seS seS SES seS seS seS
U Pr(a,s). | Pi(a.9). | Pulass), | Pilas), | Pila.s). | (g, 9).
ses ses seS ses seSs seS

As in the proof of Theorem 99, the number of all possible sets

(USGS Pl <Q7 8)7 USGS PQ(Q? 5)7 UsGS’ P3(Q7 S)? UsES P4(Q7 S)) is bounded by (tm)O(k) NOW’ by
Lemma 100 and Corollary 101 we are able to bound the number of all possible sets

(U Fune(q; 5); U Pine(a, 5)) )

seS seS

which is also in (tm)°™,

The shattering dimension of the range space implied by | J,.4 Pf(q, s) is O(1), since each
range is a halfspace. Its dual corresponds to the set |, P;(¢, s) and also has shatter-
ing dimension of O(1). The number of all possible sets (U, s P(¢,s), U,cs Pf(q,5)) is
bounded by (tm)°*"), because [V (q)| = O(k?).

The same arguments apply to the range space implied by | J, ¢ P.(q,s). The shattering

dimension of this range space is O(1), since each range is a halfspace, and the same
holds for its dual which corresponds to (J,. 4 F;(q,s). The number of all possible sets

Pi(q, s), P/(q,s)) is bounded by (tm o) because V(q)| = O(k?).
seS seS T h

Finally by Lemma 102 and Corollary 103, we are able to bound the number of all possible
sets (UseS Pi(q, 5), UseS P/(q, S)) by (tm)o(k2>' Hence,

2! < 20 loaltm) — ¢ — O (k*log(km)) .

8.6 The Hausdorff distance

In this section we prove our upper bounds for the Hausdorff distance. Let W,,, be the set
of polygonal curves® of complexity m; for each s € W,,, we associate an ordered set of
vertices V' (s) and an ordered set of edges E(s). We consider the range space (W,,, R};),
where R; denotes the set of all balls, of radius r, under the Hausdorff distance.

3The proofs in this section are written for polygonal curves, but they readily extend to (not-necessarily
connected) sets of line segments in R? of size m.
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Figure 8.1: lllustration of the predicate P;: The predicate evaluates to true if and only if the triple
intersection of the line ¢ supporting 7;¢; 11 with the two stadiums centered at 5,5, 7 and 5;5, 7 is
non-empty. Note that 7;q;; 1 may lie outside of the intersection.

8.6.1 Representation in terms of predicates

According to Alt, Behrends and Blomer [6], the directed Hausdorff distance d; (A, B) of
two pairwise disjoint sets of line segments A and B is assumed either at some vertex of
A or at some intersection point of A with a Voronoi-edge of B. We can re-use part of the
predicates from the previous section for encoding the first type of event where the distance
is assumed at a vertex of A. We need to derive a new set of predicates for the second
type of event. In particular we need a predicate for testing if a line supporting an edge
intersects the intersection of two stadiums (see Figure 8.1).

Consider any two polygonal curves s € W,, and ¢ € W,. In order to encode the intersec-
tion of polygonal curves with metric balls under the Hausdorff metric, we will make use of
the following predicates:

P; (Vertex-edge (horizontal)) As defined in Section 8.4.
P, (Vertex-edge (vertical)) As defined in Section 8.4.

P (Stadium-stadium-line (horizontal)) given one edge of ¢, ¢;, ¢;;1, and two edges of s,
S5, 541 St, Si+1, this predicate is equal to (g, ¢ir1) N B, (s, Sj+1) N By(st, Se41) # 0.

Py (Stadium-stadium-line (vertical)) given one edge of s, 5;, 5,71, and two edges of ¢,
j, Gi+1, @> Ge+1, this predicate is equal to ((53,5:11) N B,(¢5, ¢j+1) N Br(qe, i41) # 0.

As in the proofs of Theorems 99 and 106, we argue that the truth values for the first
predicate over all possible inputs, are uniquely defined by the set P} (q, s). Similarly, the
truth values for predicate P, are uniquely defined by the set P} (q,s). Now predicate P;
(resp. F) breaks to three simple predicates:

(7) given an edge @;¢;+1, an edge 5,5,11, and a point s;, determine whether /(g;g;:7) N
R,.(5;5;51) N Dy (s¢) # 0,
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(k) given an edge ¢;¢i11, and edges 55,41, 5:5:11, determine whether
Uiy Gir) N R (558551) N Ry (5:5041) # 0.

(1) givenan edge g;q;11, and points s;, s;, determine whether ¢(g;g51) N D, (s;)ND,(s;) #
0,

Lemma 107. For any two polygonal curves s, q, given the truth values of the predicates
Ps, P; one can determine whether d-;(q,s) < r. Similarly, given the truth values of the
predicates P,, Px one can determine whether d-(s,q) <.

Proof. We first assume for the sake of simplicity that ¢ is a line segment in the plane with
endpoints ¢; and ¢o. We claim that d(q, s) < r if and only if there exists a sequence of
€dges 5;,5(;,41), 5725(ja+1)s - - - » 55,5(j.+1) fOr some integer value v, such that the predicates
P3(q1,5;,5G1+1))» Ps(q2,5;,5(;,+1)) both evaluate to true and the conjugate

v—1

/\ P7(Q1’ 42, S S(je+1)> Sjt+18(ji+l+1)>
t=1

evaluates to true.

Assume such a sequence of edges exists. In this case, there exists a sequence of points
p1,- .-, Py ON the line supporting ¢, with p; = q1, p, = ¢» and such that p; € B,(s;,, s;,,,) (for
1 <i < w)and such that p; € B, (s, ,,s;,) (for 1 <i < wv). Since each stadium is a convex
set, it follows that each line segment connecting two consecutive points of this sequence
pi, piv1 1S contained in one of the stadiums. Moreover, the curve that is formed by these
edges is continuous and contained inside a line and as such the points on the curve form
a convex set U. Since ¢; and ¢, are contained in U, it follows that ¢ is contained inside the
union of the stadiums and thus d4(q,s) <.

Now, in order to prove the other direction, let us assume that d-;(¢,s) < r. We invoke
the observation in [6], restricted in the case of polygonal curves, stating that the directed
Hausdorff distance d; (¢, s) is assumed either at some vertex of ¢ or at some intersection
point of ¢ with a Voronoi-edge of the Voronoi-diagram of a set of pairwise disjoint line seg-
ments representing s. To this end, we split each edge of s that intersects another edge
of s at the intersection point in order to obtain a set of pairwise disjoint line segments £’
which represent s. The sequence of Voronoi cells of the Voronoi-diagram of E’ that are
intersected by ¢, induce a sequence of edges of s with the desired properties. Indeed, the
matching induced by the Voronoi diagram is optimal, therefore the corresponding predi-
cates evaluate to true.

In general, for any polygonal curve ¢ € W, with vertices ¢, ..., ¢x, we have that

k—1
dg(q.s) <r <= N [d5(@T.s) < 7).

=1

Thus, we can apply the arguments above to each edge of ¢ individually. Similarly, we
can prove that given the truth values of the predicates P,, FP; one can determine whether
d;(s,q) <. O

|. Psarros 112



Proximity problems for high-dimensional data

8.6.2 Representation as a range space

We will make use of the following sets, defined in Sections 8.4 and 8.5:

P3T(q7 S>7 P4(Q7 8)7 Pd/\e(Qa 8)7 Pc,l/\e(Q7 8)7 Ph(Q7 S)v P}/L(qv S>7 ‘Pl(QJ 8)7 ‘Pi,((JJ 8)'

In addition, we define the following new sets:

* Pi(g,8) = {h"(@Gir1) N Vre(s) | @Gi1 € E(q)} U{l(@Gi1) N Vro(s) | g € E(q)},
where h*(g;gi;1) denotes the right-side halfspace supported by the directed edge
7:%i+1 and

Vic(s) = | 9R.( (),
ecE(s)
pEV(s)

* Pi(g,s) = {h"(5i5i41) N Vre(q) | 5iSiv1 € E(s)} U{€(5i8iv1) N Vre(q) | 5isiv1 € E(s)},
where h*(5;5,77) denotes the right-side halfspace supported by the directed edge
Si, Si+1 and

Vac(q) = | 9R.( -(p),
e€E(q)
PEV(q)

* Pi(q,s) = {h"(@di1) N Ver(s) | @i € E(q)} U{U@Tir1) N Vre(s) | @Gi1 € E(q)},
where h*(7;gi;1) denotes the right-side halfspace supported by the directed edge
7:%i+1 and

Var(s) = | 0R.(er) NOR,(e2),
e1,e2€E(s)
e17#e2
* Pi(g,s) = {h*(5i5i1) N Vrr(q) | 581 € E(s)} U {L(5:5i71) N Vre(q) | Sisit1 € E(s)},
where h'*(5;5;71) denotes the right-side halfspace supported by the directed edge
Si, Si+1 and
Var(e) = | OR.(e1) NOR.(e2),

e1,e2€E(q)
e17#ea

where R, (st) = conv{s —u,s +u,t +u,t —u}and u € R?s.t. (t — s,u) = 0 and |Jull, = r.

Lemma 108. Let s be a polygonal curve in W,, and ¢ a polygonal curve in W,. Fix any
r > 0. The truth values for predicate (j) over all possible inputs g;q;+1 € E(q), 5;5;11 € E(s),
sy € V(s) are uniquely defined by the sets P,..(q, s), P;(q, s).

Proof. Let a, b be the two intersection points. The line ¢(g;, ¢;+1) passes between a and b iff
one of the supporting halfspaces contains only one of them. If the line passes between the
two intersection points of OR, (5;5;71) N C,(s;), then the predicate returns true. Now if the
line does not pass between the two intersection points, then ¢(g;gi 1) R, (5;5;51) N D, (s¢) #
0iff s, € L.(@qiz1) @and [a € W (Gigis1) A b € W (Gigi1)| V [a & M (Gigia) Nb & R (Gigin))-
If there is just one intersection point, it suffices to check whether ¢(g;g;;1) intersects that
point. ]
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Lemma 109. Let s be a polygonal curve in W,, and q a polygonal curve in W,. Fix any
r > 0. The truth values for predicate (j) over all possible inputs ;5,11 € E(s), §;jgj+1 € E(q),
q: € V(q) are uniquely defined by the sets F,, (q,s), Pi(q; s).

Proof. The statement follows by the same arguments which were used in the proof of
Lemma 108. [

Lemma 110. Let s be a polygonal curve in W,,, and q a polygonal curve in W,. Fix any
r > 0. The truth values for predicate (k) over all possible inputs G;qi-1 € E(q), 5;5,41 €
E(s), Sisi+1 € E(s) are uniquely defined by the set Py(q, s).

Proof. Suppose that |0R,(5;5,41)NOR, (5, Si+1)| > 1. Theintersection R, (5;5,11)N R, (5, St41)
defines a convex polygon and the line ¢(q;, ¢;11) intersects it iff there exist two points
a,b € OR,.(5;5;:1) N OR, (51, 5¢41) which are separated by h* (g, ¢iv1). If [OR,(5;5,51) N
OR,.(3:,511)| = 1, then it suffices to check whether the line ¢(g;; g1 1) intersects that point.
L]

Lemma 111. Let s be a polygonal curve in W,,, and q a polygonal curve in W,.. Fix any r >
0. The truth values for predicate (k) over all possible inputs 5;5,11 € E(s), ¢jgj+1 € E(q),
Gqr1 € E(q) are uniquely defined by the set P/(q, s).

Proof. The statement follows by the same arguments which were used in the proof of
Lemma 110. O

We repeat the following lemma from [3].

Lemma 112 (Lemma 14, [3]). Ifand only if h vV (d A e A i) evaluates to true, then the line ¢
intersects the lens formed by the two disks of radius r at a; and as.

Lemma 113. Let s be a polygonal curve in W,, and q a polygonal curve in W,. Fix any
r > 0. The truth values for predicate (I) over all possible inputs g;gi1 € E(q), s; € V(s),
s; € V(s) are uniquely defined by the sets Pix.(q,s), Pn(q, s), Pi(q, s).

Proof. Predicate () is equivalentto h V (d A e A i), according to Lemma 112. O

Lemma 114. Let s be a polygonal curve in W,,, and ¢ a polygonal curve in W,. Fix any
r > 0. The truth values for predicate (I) over all possible inputs 5;5.1 € E(s), q¢; € V(q),
q: € V(q) are uniquely defined by the sets P;,.(q,s), Pi.(q, s), P!(q, s).

Proof. Predicate (/) is equivalentto iV (d A e A i), according to Lemma 112. O

Lemma 115. Let s be a polygonal curve in W,,, and ¢ be a polygonal curve in Wy. Fix
any r > 0. The following sets are sufficient in order to determine whether d4(q,s) < r or
d-(q,s) >r:

Pg((b 5)7 PdAe(Qa 3)7 Ph(qv 3)7 Pi(q> 5)7 PJ(Q7 3)7 Pk<Q7 3)'

Proof. Lemmas 107, 108, 110, 113 imply the statement. O
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Lemma 116. Let s be a polygonal curve in W,, and q be a polygonal curve in W,. Fix
any r > 0. The following sets are sufficient in order to determine whether d-(s,q) < r or

d(s,q) >r:
Py(q,5), Pinela,8), Pr(a; 8), P (q, 5), Pi(q; 5), P(q, 5).

Proof. Lemmas 107, 109, 111, 114 imply the statement. O

8.6.3 VC dimension bounds

Theorem 117. Let R, be the set of all balls of radius r, under the directed Hausdorff
distance from polygonal curves in W,.. The VC dimension of (W,,,, R’;) is O(klog(km)).

Proof. Let S ¢ W,, be a set of ¢ polygonal curves and let ¢ € W,. By Lemma 115, the set
{s € S| dg(q,s) < r}is uniquely defined by the sets:

U P?j(Qa 8)7 U Pd/\e(Q) 5)7 U Ph(Qv S)v U R(Q7 S)v U Pj(Qa S)a U Pk(Q7S>'

seS sES sES seSs seS seS

For any s € S, recall that Vzc(s) is the set of points which belong to all possible intersec-
tions formed by rectangles centered at edges in E(s) and circles of radius r centered at
points in V(). Formally,

Vic(s) = | Re(e)nCilp),

where R, (st) = conv{s —u,s +u,t +u,t —u} and u € R? s.t. (¢t — s,u) = 0and ||ul|y = r.
Let Vre(S) = U,es Vre(s). Notice that [Vac(S)| = tm®®). We need to bound the number
of different sets

{h* (¢, qi+1) N Vre(S) | g1 € E(q)}
over all possible ¢ € W,, where h*(g;, ¢;+1) defines either one of the two halfspaces defined

by points ¢;, ¢;.1. The shattering dimension of the range space of points and halfspaces

is O(1), hence we get an upper bound of (tm)°®

Now, for any s € S, recall that Vzr(s) is the set of points which belong to all possible
intersections formed by two rectangles centered at different edges in E(s). Formally,

Var(s) = |  Re(er) N Ri(ea).

e1,e2€E(s)
e1#£e2

Similarly, we get an upper bound of (tm)o(k) on the number of different sets
{h" (¢, @i+1) N V&r(S) | GGt € E(q)}
over all possible ¢ € W,. It remains to reclaim, as we did in the proof of Theorem 106, that

the number of all possible sets | J, ¢ P5 (¢, 5), U,eq Pine(@, 5)s Uses Pr(a,5), Uses Pilg, s) is
bounded by (tm)°*). Hence, the VC dimension of this range space is O(k log(km)).

]
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Theorem 118. Let R, be the set of all balls of radius r, under the directed Hausdorff
distance to polygonal curves in Wy. The VC dimension of (W,,, R%;) is O(k?log(km)).

Proof. We able to follow the same analysis as in the proof of Theorem 117. However,
notice that |Vrc(q)] = O(k?), and |Vgr(q)] = O(k?). Due to Lemma 116, we can em-
ploy similar arguments to the ones we used in the proof of Theorem 117, now for the
dual range space of the points-halfspaces range space, and for the sets | J, ¢ Fi(q, s),
Uses Pire(@:5), Uses Pr(a,5), Uses P (g, s) imply that the VC dimension of this range space
is O(k? Iog(km)) O

Theorem 119. Let R, be the set of all balls of radius r, under the symmetric Hausdorff
distance in W,. The VC dimension of (W,,, R;) is O(k*log(km)).

Proof. Lemmas 115 and 115 imply that the set {s € S | diy(q,s) < r} is uniquely defined
by the sets:

U Pg(%‘s)? U Pd/\E(Q7S>7 U Ph(q> 5)7 U Pi<q> 5)7 U PJ<Q7 8)7 U Pk(Q7S)

ses ses ses ses ses ses
and

U Pi(@9), U Pircla. ). U Pila. 5), | Pl(a,s), | Pj(a, s), | Pi(a, s)

sES seS seS seS seS seS
Now bounding the number of all possible such sets, as we did in the proofs of Theorems
117 and 118, implies the statement. O

8.7 The discrete case in higher dimensions

In the following sections we focus on Euclidean spaces of higher dimension (d > 2) being
the ambient space of the curves of the ground set. In this section we discuss our bounds
in the discrete setting. Let X¢, = (R?)™; we treat the elements of this set as ordered sets
of points in R? of size m.

Theorem 120. Let (X¢,, Ry ) be the range space with Ry . the set of all balls under the
Hausdorff distance centered at sets in X¢. The VC dimension is O (kdlog(kdm)).

Proof. The proof is similar to the one from Theorem 93. We are able to extend it to higher
dimensions by making use of known bounds for balls in any dimension instead of just disks.
Let {S1,.... 5.} C X, and S =, S;; we define S so that it ignores the ordering with each
S; and is a single set of size tm. Any intersection of a Hausdorff ball with {S;,...,S;} is
uniquely defined by a set {D{N S, ..., D¢N S}, where DY, ..., D¢ are balls in R.

Consider the range space (R¢, D,), where D, is the set of balls in R?. We know that the
VC dimension is d + 1. Hence, since the shattering dimension is upper bounded by the
VC dimension,

max |Dg| = O((tm)*).
SQR2,|S|:tm| H ((tm)™")
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D DD

Figure 8.2: The lower bound for (X, R4r2). The two disks correspond to the two polygonal curves
of the ground set. The set of these two polygonal curves is shattered by R ;5 2.

This implies that |[{{D?N S, ..., D{NS} | DY, ..., D¢ are balls in R4}| < O((tm)@D¥), and
hence,
ot < 90Uklogltm)) s ¢ — O (dk log(dkm)) . O

Theorem 121. Let (X,,, Rqri) be the range space with R, the set of all balls under
the Discrete Fréchet distance centered at polygonal curves in X;.. The VC dimension is
O (kdlog(kdm)).

Proof. Similar to the proof of Theorem 120. The only difference is that, as with the proof
of Theorem 94, we need to bound the number of sequences D{N S, ..., Dg NS, which is
also O((tm)+1), O

8.8 Lower bounds

We now state the lower bounds. We denote by R,z be the set of all balls, under the
Discrete Fréchet distance, centered at polygonal curves in X;,. We also denote by Rz,
Rrr Rurk, the sets of all balls, under the Weak Fréchet distance, under the Fréchet dis-
tance and under the Hausdorff distance respectively, where balls are centered at polygo-
nal curves in W,,.

We start with a weaker result about Discrete Fréchet distance, that will be easier to extend
to continuous metrics.

Lemma122. Let R, be the set of all balls, under the Discrete Fréchet distance, centered
at polygonal curves in X,.. The VC-dimension of the range space (X,,, Rary) is > k.

Proof. We will show that there exists a configuration S of k& polygonal curves of complex-
ity m = 1, i.e. points in R?, which are shattered by Discrete Fréchet balls centered at
polygonal curves of complexity k. Consider & disks Dy, ..., D, centered at the k polygo-
nal curves of S and let pq, ..., px be the vertices of the polygonal curve which is the center
of the Discrete Fréchet ball. Any intersection between a Discrete Fréchet ball and the
set of polygonal curves is defined by the disks which are commonly stabbed by all points

Pi;- .- Dk-
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First, we will show that there exists a configuration of disks D, ..., D, such that:
k
area (ﬂ Di> >0,
=1
k
ﬂ Dﬁ’éﬂDz’ Vj € [K]
i i=1
i=1,...,k
area| (] Di| >0 Vj € [k].
i#]

We can easily prove this by induction: two disks can be placed in a way that area(D; N
Ds) >0, Dy # D,. Now consider t disks Dy, ..., D, which satisfy the induction hypothesis.
Since area (ﬂﬁzl Di) > 0, we can simply place a disk D, such that its boundary 0D,
halves area ((;_, D;).

Then, the set S of polygonal curves which consists of the k centers of the disks Dy, ..., D,
is shattered as follows: each point p; either stabs (}_, D; or it stabs (miyéj,ie[k} Di> \D, and

hence the corresponding polygonal curve either belongs to the intersection of the set of
polygonal curves with the Discrete Fréchet ball or not. The simple case k& = 2 is depicted
in Figure 8.2. m

However, we can strengthen this bound for this distance measure.

Lemma123. Let R, be the set of all balls, under the Discrete Fréchet distance, centered
at polygonal curves in X;.. The VC-dimension of the range space (X,,, Rar) is 2(klog k).

Proof. We will show that there exists a configuration S of x = Q(k log k) polygonal curves
of complexity m = 1, i.e. points in R?, which are shattered by Discrete Fréchet balls
centered at polygonal curves of complexity k. Consider k disks Dy, ..., D, centered at the
x polygonal curves of S and let py, ..., p, be the vertices of the polygonal curve which is
the center of the Discrete Fréchet ball. Any intersection between a Discrete Fréchet ball
and the set of polygonal curves is defined by the disks which are commonly stabbed by
all points p1, ..., px.

We now show this result by reducing to a recent lower bound of Csikos et al. [31] which
gave an Q(klog k) lower bound for a related range space. This is defined on a ground set
P c R? with ranges R, defined so each range R € R, is the intersection of £ halfspaces.
The first step is to observe that we can set r sufficiently large so that with respect to all
p1, - - ., pr We consider each disk D; has the same inclusion properties as some halfspace
H;. That is, we now need to show a set of x halfspaces can be shattered by a set of &
points, where a ground set object H; is contained in the range defined by those k points
if it includes all of them.
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The second step is to observe that the standard point-line duality transforms this problem
into the one considered by Csikos et al.. Under this transform a dual point ¢; (correspond-
ing to primal halfspace H,) is contained in a dual halfspace h; (corresponding to primal
point p;). Thus the primal halfspace H; is contained in the range defined by the k points
1, - - ., px if @and only if its dual representation, the point ¢;, is contained in all of the halfs-
paces hq, ..., hy which are the dual representations of the points py, ..., px.

Finally, the lower bound by Csikos et al. [31] shows that there exist a set of k = Q(klog k)
points ¢; which can be shattered by such ranges. O

Lemma 124. Let R ;- be the set of all balls, under the Discrete Fréchet distance, centered
at polygonal curves in X;.. The VC dimension of the range space (X,,, Rqr) is Q(logm).

Proof. Theorem 122 and [50, Lemma 5.18], which bounds the VC dimension of the dual
range space as a function of the VC dimension of the primal space, imply the theorem. [

The following constructions also works directly for the discrete case of the Hausdorff dis-
tance. We conjecture that they can also be extended for the weak Fréchet, Fréchet, and
Hausdorff for continuous curves, but do not have a complete proof. We can however
extend the weaker bound in Theorem 122. We denote by R,rk, Rrk, Ruy, the sets
of all balls, under the Weak Fréchet distance, under the Fréchet distance and under the
Hausdorff distance respectively, where balls are centered at polygonal curves in W,.

Lemma 125. The VC-dimension of the range spaces (W,,, Rursk), (Wi, Rrsk), and
(meRH,i’,k) is> k.

Proof. Consider the case m = 1, that is X consisting of all polygonal curves with 1 vertex.
We place k polygonal curves as in the proof of Thm. 122. Now, consider the corresponding
disks Dy, ..., D,. The continuous Fréchet balls of complexity 3k shatter X as follows: let 3k

points py, ..., Pk, @1y - - @k, DY, - - - P St fOrany j € [k], p;, p; € <ﬂf:1 Di) NoD;. Foreach
i € [k], we have a segment p;q;, a segment ¢;p, and for any i € [k — 1], we have segments
Pipir1. Then, either ¢; € N, D, or g, € (ﬂ#jﬂ.e[k} Di> \ D; which determines whether the
continuous Fréchet ball covers the jth polygonal curve. Notice thatif ¢; € ﬂle D; then the
segments p;q;, q;7 lie inside N, D; due to convexity. Similarly, if ¢; (ﬂ#j’ie[k] Di) \ D;
then the segments p;q;, ¢;7/ lie inside ﬂf#,ie[k] D;. O
Lemma 126. Let Rr be the set of all balls, under the Fréchet distance, centered at

polygonal curves in Wy. The VC dimension of the range space (W,,, Ruri), (W, Rrk),
(W, R k) is Q(logm).

Proof. Theorem 125 and [50, Lemma 5.18], which bounds the VC dimension of the dual
range space as a function of the VC dimension of the primal space, imply the theorem. [

Theorem 127. The VC-dimension of the range spaces (X,,, Rarx), and (X,,, Ruyx) Is
Q(max(klog k,logm)), and for(W,,,, Ruri), Wi, Rek), @and (W,,,, Ry k) is Q(max(k, logm)).
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Proof. The statement essentially combines Lemmas 125, 123, 126, 122 and 124. O
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ABBREVIATIONS - ACRONYMS

EKIA | EBviko kai KatrodioTpiako MNavetTiotTAuio ABnvwv
NKUA | National and Kapodistrian University of Athens
Mz MavetmoTtruio Tou IAAIVOIG 0TO ZIKAYO

uiC University of lllinois at Chicago

EMIM | EBvikd MeTodBio MoAuTexveio

NTUA | National Technical University of Athens

JL Johnson-Lindenstrauss

DFD | Discrete Fréchet Distance

DTW | Dynamic Time Warping

LSH Locality Sensitive Hashing

VC Vapnik—Chervonenkis
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