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Abstract: The term gradient nano-chemo-mechanics was
introduced to encompass models incorporating higher or-
der couplings between deformation and chemistry at the
nanoscale. Along these lines, the article �rst reviews the
basics of a robust theoretical framework developed for
such processes focusing on elasticity and di�usion. The
classical laws forHookeandeformation and Fickean trans-
port are modi�ed to include extra Laplacian terms and
corresponding internal lengths modeling nonlocal inter-
actions. Then, special cases are considered to describe de-
formation and fracture aspects of new energy materials;
namely Li-ion battery (LIB) nanostructured anodes and
disclinated metallic microcrystals (DMC). Both of these
material systems are characterized by ahigh degree of spa-
tial gradient structures (SGS)with extended surface for en-
ergy storage and catalysis applications.

Keywords: Gradient elastodi�usion, nanostructured sili-
con anodes, hollow disclinated microcrystals

1 Introduction
The terms “nanomechanics” and “chemomechanics”were
introduced by the last author in 1995 [1] and 1980 [2] to
point out the need for extending existing continuum me-
chanics models to the nanoscale, as well as the need for
developing coupled deformation-di�usion models when
mechanical stress and chemistry are present on an equal
footing. Recent advances on nanoscience and nanotech-
nology have tremendously accelerated the development of
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such models, mainly due to the exponential growth of so-
phisticatedmultiscale computer codes and corresponding
laboratory probes enabling to compare theory, simulation,
and experiment at the same scale of observation.

Amost notable contributionwas the extension of clas-
sical Hooke’s law of elasticity to include an extra gradient
term (the Laplacian of Hookean stress)multiplied by a cor-
responding internal length parameter to account for weak
deformation nonlocality. The resulting model [3], com-
monly known as gradient elasticity (or GradEla model)
was used to eliminate stress singularities in dislocation
lines and crack tips, as well as to interpret size e�ects in
elastic structural components, not captured by classical
elasticity theory. A recent review with a long list of related
references canbe found in [4]. Along similar lines, the clas-
sical Fick’s law of di�usion was extended to include an ex-
tra gradient term (theLaplacianof Fickean�ux)multiplied
by a corresponding internal length parameter to account
for weak di�usion nonlocality. The resulting model [5],
commonly known as higher order di�usion, was used to
interpret experimental data for grain boundary di�usion
and nanopolycrystals, not captured by classical di�usion
theory. A recent reviewwith a long list of related references
can be found in [6].

The aforementioned models of gradient elasticity and
higher order di�usion have not been su�ciently consid-
ered to address coupled deformation-di�usion problems
at the nanoscale where the interaction between elastic in-
ternal lengths and di�usion internal lengths need to be
accounted for. This issue becomes especially important
in considering chemomechanical processes at small vol-
umes, such as those occurring in microstructured compo-
nents used in advanced applications for energy storage
and catalysis devices. Sucha couplednanochemomechan-
ics frameworkwill be outlinedhere for chemoelastic defor-
mations. It will be used then to discuss chemomechanical
damage in rechargeable lithium-ion battery (LIB) nanos-
tructured anodes, as well as deformation and fracture of
pentagonal disclinatedmicrocrystals (DMC). LIBs is an im-
portant class of advanced energy storage devices (ESD).
DMCs is an important class of objects with extended sur-
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face and spatially gradient structure (SGS). In this connec-
tion, it is noted that some background on related aspects
can be found in published joint work by the �rst and the
last authors [7–10].

The plan of the paper is as follows. In Section 2 a brief
review of open problems in LIB anodes is presented and
the same is done for SGS materials. In Section 3 the basics
of gradient elasticity and higher order di�usion are pre-
sented, alongwith the governing equations accounting for
higher order elastodi�usion couplings. In Section 4 repre-
sentative results on both LIB and SGS chemomechanical
aspects are presented. Finally, in Section 5 some closing
remarks for this initial e�ort onmodeling deformation and
fracture in LIB and SGS components are given, along with
some open remarks for future directions.

2 Open problems in LIB and SGS
(i) LIB Anodes: In Figure 1, a representative con�gura-
tion of a LIB device is shown, along with electrochemical
reactions taken place in the anodes and cathodes. Com-
mercially available LIBs use graphite (C) as anode. Cur-
rent battery developers focus on replacing C with Sn and
Siwhich lead to higher capacities. In Figure 2, the cyclic re-
sponse of nanostructured anodes and electronmicroscopy
images are provided. It is noted, however, that during lithi-
ation/delithiation the active nanoparticles (Si, Sn or Al)
embedded in an inert matrix (C, ceramic or polymer) un-
dergo large volumetric expansions/contractions (theoreti-
cally up to 400% for freely expanding and fully lithiated Si
active particles) which result to fracture and capacity fade.
These volume changesmay be suppressed by reducing the
size of active nanoparticles to prevent chemomechanical
damage and capacity fade upon electrochemical cycling.
Obviously, this is a size e�ect problemwhich can be conve-
niently addressedwithin the couplednanochemomechan-
ical framework outlined in Section 3. Some representative
results of such considerations are provided in Section 4.
(ii) SGS Objects: In Figure 3, various SGS objects as pro-
duced by electrodeposition under mechanical steering are
presented. These structures are characterized by pentago-
nal symmetry (not predicted by classical crystallography)
due to internal disclination e�ects that emerge during pro-
cessing and result to an extended surface with unusually
high chemical activity. In Figure 4, a pentagonal Cu mi-
croparticle is shown, along with an internal void revealed
by etching. The pentagonal symmetry can be described in
terms of a disclination defect in an initially solidmicropar-
ticle, the stress �eld ofwhich can act as a vacancy accumu-

Figure 1: Typical electrochemical cell and Li reactions. Commercial
graphite (C) is experimentally being replaced by Sn or Si. C gives
a capacity of 370 mAh/g (LiC6); Sn gives a capacity of 990 mAh/g
(Li4.4Sn) and Si gives a capacity of 4200 mAh/g (Li4.4Si). The result-
ing volume expansion can reach 300-400%. [Courtesy of Katerina E.
Aifantis]

Figure 2: Volume fraction and size e�ects on capacity: (a) Capacity
increase upon volume fraction increase of Sn content; (b) Corre-
sponding Sn particles of size 20-50 nm before electrochemical
cycling; (c) Mechanical stability of these particles after 80 cycles;
(d) Capacity fade of larger Sn particles 100 nm as shown in (e),
which fracture and delaminate into the electrolyte after 80 cycles
as shown in (f). (Courtesy of K.E. Aifantis; see also K.E. Aifantis et
al, Electrochim. Acta 2010 [22]; J. Power Sources 2012 [23]).

lator along the disclination line, resulting to the formation
of an internal void. The competition of the stress �eld gen-
erated by the disclination and that due to the external sur-
face can lead to a fracture criterion as shown in Figure 5
by using a previous purely classical elasticity framework.
Again, this is a size e�ect problem which can be conve-
niently addressedwithin the couplednanochemomechan-
ical framework outlined in Section 3. Some representative
examples of such considerations are provided in Section 4.
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Figure 3: Various con�gurations of SGS objects produced by elec-
trodeposition under mechanical steering. For a brief overview and
related references the reader can consult [24] (E.C. Aifantis, Rev.
Adv. Mater. Sci. 2017).

Figure 4: Cu micro/nanoparticle of pentagonal symmetry with an
interior void revealed after chemical etching. For details, the reader
can consult [10, 24] and references quoted therein.

Figure 5: The critical parameter ξ (the ratio of the internal over ex-
ternal radius) of a hollow ISP particle as determined by classical
elasticity theory. For details, the reader can consult [10, 20, 24] and
references quoted therein.

3 Gradient elastodi�usion theory
For elastic deformations, the term `2

ε∇2[λεmmδij + 2Gεij]
– where `ε denotes an elastic internal length (IL), εij is
the elastic strain, and (λ, G) are the Lamé constants – is
incorporated into classical Hooke’s law. Previous results
(see [4] and references quoted therein) show that the re-

sulting internal length gradient (ILG) model can eliminate
stress/strain singularities from dislocation/disclination
lines and crack tips and interpret elastic size e�ects. For
elastic deformations at the atomic scale (near disloca-
tion lines in crystals), `ε relates to the subatomic con�g-
uration and electronic state (through DFT calculations),
while at the microscale `ε relates to particle size/spacing
(through MD simulations). For di�usion problems the ILs
enter through the additional term `2

d∇
2j, which general-

izes the classical Fick’s law (`d is a di�usional internal
length and j denotes the di�usion �ux), in a manner simi-
lar to the Cahn-Hilliard theory [11] for spinodal decompo-
sition.

The above ideas can be extended in a straightforward
manner for coupled elastodi�usion processes accounting
for higher order internal length couplings. The standard
equations that are usually employed to model coupled
elasto-di�usion processes (without accounting for inter-
nal length couplings) are of the form σij = λεmmδij+2Gεij−
αρδij, j = −D∇ρ + Mρ∇σii for the chemostress σij and the
mechanodi�usive �ux j, where the coe�cients (α,M) de-
note chemomechanical coupling constants and D is the
di�usivity. The �elds (ρ, εij) denote concentration of the
di�using chemical agent and mechanical strain, respec-
tively. Since these constitutive equations do not contain
higher order ILs, related chemomechanical size e�ects and
pattern formation may not be captured.

Within our Laplacian-based ILG formulation, it turns
out that the above constitutive equations are general-
ized by replacing σij with σij − `2

σ∇2σij; εij with εij −
`2
ε∇2εij; and ρ with ρ − `2

ρ∇2ρ, with (`σ/`ε , `ρ) denoting
stress/strain and di�usional ILs. Under suitable assump-
tions, it is possible to uncouple the deformation and chem-
ical �elds by �rst computing a “ground” hydrostatic stress
component σ0

h from a conventional or a gradient elas-
ticity theory, and then derive the concentration ρ from
a stress-assisted di�usion equation of the form ∂ρ/∂t =(
D + Nσ0

h
)
∇2 [ρ − `2

ρ∇2ρ
]
−M∇σ0

h ·∇
[
ρ − `2

ρ∇2ρ
]
, where

N is a new phenomenological constant accounting for the
e�ect of hydrostatic stress on di�usivity. This model with
`ρ = 0 has been used extensively to model hydrogen em-
brittlement and stress corrosion cracking in metals [12],
and it is compatible with a mechanodi�usive �ux of the
form j = −

(
D + Nσ0

h
)
∇ρ + (M + N)ρ∇σ0

h provided that
∇2σ0

h = 0. This constraint is removed here and the model
is adopted to consider chemomechanical damage and fail-
ure in LIB anodes. As a “ground” hydrostatic stress, the
constitutive equation σ0

h = σijε0
ij is used, where σij = σcij −

`2
ε∇2σcij; σcij = λεmmδij + 2Gεij − αijρ; αij = λε0

mmδij + 2Gε0
ij

and the tensor ε0
ij relates to the elastic mis�t strains ρε0

ij,
which are assumed transversely isotropic for the Li/Si sys-
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tem. In this connection, it is noted that for isotropic mate-
rials, αij reduces to αij = αδij shown above in the standard
form for the chemostress.

4 Benchmark problems for LIB &
SGS

In this section, we present some results on model con�gu-
rations pertaining to LIB nanostructured anodes and SGS
pentagonal objects. We focus, in particular, on size e�ects
in Si-nanowires (NWs) since these objects are currently ex-
plored as potential candidates for LIB anodes, as well as
on size e�ects in hollow icosahedral small particles (ISPs)
since these objects are currently explored as potential can-
didates for nanocatalysis.
(i) Size e�ect on failure of Si NW: Failure during lithi-
ation of a single Si nanowire has been addressed by de-
veloping a concentration-dependent modi�cation of the
so-called “universal fracture criterion” [13] to account for
the strength decrease as the lithiation proceeds due to the
weakening of Si-Si covalent bonding and the formation of
metallic or mixed ionic-covalent bonds [14, 15]. An equiva-
lent stress measure σeq has been de�ned for this criterion,
with the onset of failure corresponding to values σeq/τ0 ≥
1. The quantity τ0 is given by τ0 = ασFT , where the intrinsic
parameter α depends on the compression-tension strength
ratio σFC/σFT . This ratio varies as a linear function of Li con-
centration between the values α ∼= 3.59 for ρ = 0 and α =
1 for ρ = 1 with the latter corresponding to the boundary
between metallic and ionic or covalent bonding (see Fig-
ure 4 in [13]). For the tensile strength, the theoretical limit
approximation σFT ∼= E/10 is adopted and the dependence
of σFT on lithium concentration is incorporated by employ-
ing the linear rule ofmixtures E(ρ) = E0

(
1 − f (ρ)

)
+E1f (ρ),

where E0 ∼= 156 GPa, E1 ∼= 67 GPa are the Young’s mod-
ulus values found in [15] for Si and Li4.4Si, respectively.
Moreover, f (ρ) = υρ/(υρ+1−ρ) is the volume fractionwith
υ ∼= 4.4 denoting themolar volume ratio between the fully
lithiated and the unlithiated phase.

It has been found that smaller specimens exhibit
lower equivalent stresses during the entire lithiation pro-
cess, i.e. they are less susceptible to failure (Figure 6).More
important, there is a critical value

(
d/`ε

)
cr
∼= 8.5 at which

the ratio max(σeq)/τo becomes smaller than 1 and thus,
the theoretical limit fracture level is suppressed. Employ-
ing the value `ε ∼= 0.94 nm, which is estimated by �tting
the predictions of themodel to experimental results on the
thickness of the lithiated/unlithiated Si interface, a criti-
cal specimen diameter dcr ∼= 8 nm is obtained, which is

Figure 6: Size e�ect exhibited by the global maximum max(σeq) that
appears over the entire lithiation process.

quite small (~19 times the Van der Waals diameter of sili-
con atoms).

Following the same procedure used for single silicon
specimens, the theoretical failure stress of the activemate-
rial in a nanocomposite anode made of silicon nanowires
(active sites) of diameter dSi embedded in a glass matrix
can be estimated. In the absence of any data concerning
the elastic internal length `m of the matrix, the inactive
material is assumed to obey classical linear elasticity, i.e.
`m = 0.

The maximum equivalent stress for the entire lithia-
tion process does not only depend on the ratio dSi/`ϵ, but
also on the ratio dm/dSi between the diameters of the unit
cell and the active site which, in turn, is directly related
to the density of silicon nanowires in the nanocomposite
material. More important, as shown in Figure 7, the criti-
cal value (dSi/`ϵ)cr for fracture suppression is quite larger
than that of a free expanding nanowire and it is increased
as dm/dSi is decreased, i.e. the density of the active sites
becomes larger. Employing the aforementioned value of
`ϵ ∼= 0.94 nm, it gives a range between (dSi)cr ∼= 23.5 nm
for dm/dSi = 10 and (dSi)cr ∼= 65.5 nm as dm/dSi → 1.
It is noted that while theoretical fracture of silicon is sup-
pressed for any pair of values below the curves of Figure 7,
the failure of both the active site and the glass matrix is
suppressed only in the grey region thereof. This gives a
minimum value of ~44% for the Si volume fraction in the
closest (hexagonal) packing arrangement of the unit cells,
combined with a maximum of dSi ∼ 43 nm.
(ii) Size e�ect on failure of a hollow Cu ISP: In this sec-
tion, a stress gradient model of the form σ − `2∇2σ = σc is
employed to discuss size e�ects occurring during the frac-
ture of hollow ISPs produced by electrodeposition under
mechanical steering. Under radial symmetry, this leads to
the followingdi�erential equations for the components σrr
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(a)

(b)

Figure 7: Critical ratio (dSi/`ε)cr between the diameter of the silicon
nanowire and the elastic internal length for the suppression of the
theoretical fracture of Si vs. (a) the ratio of the unit cell diameter
over active site diameter, and (b) the volume fraction of silicon in
the nanocomposite for the densest unit cell packing possible. The
grey regions indicate suppression of fracture for both the active site
and the glass matrix.

Figure 8: Stress gradient e�ects on the functions PISP(ξ ) and
PMAX(ξ ).

and σθθ = σφφ

σrr − `2
(
d2σrr
dr2 + 2

r
dσrr
dr − 4(σrr−σθθ)

r2

)
= σcrr ,

σθθ − `2
(
d2σθθ
dr2 + 2

r
dσθθ
dr + 2(σrr−σθθ)

r2

)
= σcθθ .

. (1)

This system is solved for a hollow disclinated ISP, as
well as for a spherical shell subjected to uniform internal
pressure P. For the former, the classical elastic stress �eld
reads [16]

σcrr = 4Gκ
3

1+ν
1−ν

[
ln
(
r
R1

)
+ r3−R3

1
R3

1−R3
0

R3
0
r3 ln

(
R0
R1

)]
,

σcθθ = 4Gκ
3

1+ν
1−ν

[
1
2 + ln

(
r
R1

)
+ 2r3+R3

1
R3

1−R3
0

R3
0

2r3 ln
(
R0
R1

)]
,

(2)

where κ is the power of the Marks-Yo�e disclination, G is
the elastic shearmodulus, ν is the Poisson’s ratio, R1 is the
outer radius of the particle and R0 is the radius of the void.
For an internally pressurized spherical shell the respective
classical �eld reads

σcrr = −P R
3
1 − r3

R3
1 − R3

0

R3
0
r3 , σcθθ = P2r3 + R3

1
R3

1 − R3
0

R3
0

2r3 . (3)

For both problems, the homogeneous natural boundary
condition ∂nσ := σij,mnm = 0 is taken at the inner and
outer surfaces. This choice is the most widely used when
dealing with gradient elasticity [17, 18]. The same bound-
ary condition has been assumed in [19] by employing suit-
able thermodynamics arguments for the Eringen’s nonlo-
cal elasticity or stress gradient model. In this connection,
it is noted that this di�ers from the conditions employed
in [10] to determine the stress pro�les for both solid and
hollow ISP.

The derived solutions of Eq. (1) are not provided here
due to their complicated form but in both cases, they can
be recast into the forms σrr = σcrr + σgrr, σθθ = σcθθ + σgθθ. As
shown in [10], these, in turn, lead to the following expres-
sion for the total energy of an ISP with a void in its center

EISP = 4πγ(R2
0 + R2

1) + 8πGκ2(1 + ν)
27(1 − ν)[

R3
1 − R3

0 −
9R3

0R3
1

R3
1 − R3

0

(
ln
(
R0
R1

))2
]

+ Egd , (4)

where γ is the surface energy of the material and Egd is the
part of the strain energy introduced by the presence of the
gradient term in the constitutive equation. For the afore-
mentioned homogeneous boundary condition, Egd may be
calculated from the relation

Egd = 2π
R1∫
R0

(
σgrrεcrr + 2σgθθε

c
θθ
)
r2dr, (5)
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where εcrr , εcθθ is the classical strain �eld.
Following a similar analysis with that given in [20]

in the framework of classical elasticity, the pressure on
the inner surface of the ISP particle may be calculated by
using the relation PISP = EISP/V, where V = 4

3π(R3
1 − R3

0)
is its volume. The respective pressure PMAX at the point
of fracture is determined by the solution of Eq. (1) for the
internally pressurized shell, yielding

PMAX = σ
2ξ3+1

2(1−ξ3) + C1( ¯̀, ξ )Î 5
2

(ξ / ¯̀) + C2( ¯̀, ξ )Î− 5
2

(ξ / ¯̀)
, (6)

where σ is the ultimate stress of thematerialmakingup the
spherical shell and ξ := R0/R1, ¯̀ := `/R1, while În/2(x) :=√
π/2xIn/2(x) with In/2(x) denoting the respective modi-

�ed Bessel functions. Moreover, C1( ¯̀, ξ ) and C2( ¯̀, ξ ) are
integration constants determined by the aforementioned
boundary conditions but they are not given here due to
their lengthy form. It is also noted that unlike [20], the
thick-shell solution has been adopted here rather than its
thin-shell simpli�cation.

For electrolytic copper the material parameters found
in [20] have been used apart from κ which has been mis-
printed therein although the approximation κ = 0.06 of
the correct value κ = 0.0615 [21] has beenused in their cal-
culations. In Figure 8, the functions PISP(ξ ) and PMAX(ξ )
for di�erent internal over geometrical length ratios ¯̀ :=
`/R1 are depicted. As shown, larger gradient e�ects (i.e.
greater ¯̀values) lead to larger ξc values at the point of frac-
ture PISP = PMAX and thus, larger voids are attainable.

5 Conclusions
A preliminary e�ort has been described to show that
coupled chemomechanical models are necessary to
model elastodi�usion processes in small volume material
components used in current energy storage and cataly-
sis technologies. The focus was on nanostructured LIB
anodes and SGS objects with pentagonal symmetry. The
results indicate that such models can capture size e�ects
that are observed in these components and can potentially
lead to protocols and design criteria to prevent failure and
optimize their performance in related applications.
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