
Analysis of Complex Big Data Systems and
Telecommunication Networks
Aristotle University of Thessaloniki

Sotirios K. Michos

May 2020

This research is co-financed by Greece and the European Union (European
Social Fund- ESF) through the Operational Programme ⌧Human Resources
Development, Education and Lifelong Learning� in the context of the project
“Strengthening Human Resources Research Potential via Doctorate Research”
(MIS-5000432), implemented by the State Scholarships Foundation ().

Abstract

Coded caching is the distribution of content across a telecommunication system using techniques
from coding theory in order to create multicasting opportunities among the users receiving the
content. This enables a multiplicative improvement over the classic uncoded caching with
respect to the transmission rates required in the delivery phase of the content. Since its in-
troduction, coded caching has drawn significant research interest and several di↵erent schemes
have been proposed over the last years. In this work, we focus on the fundamental case of coded
caching with uncoded prefetching, where each user’s cache is filled with uncoded content during
a prefetching stage and, during a later delivery phase, each user’s request must be served in the
most e�cient way. This important case has recently received a complete information-theoretic
characterization. However, reaching the information-theoretic optimality imposes a significant
computational imbalance among the users. To this end, we aim at mitigating this imbalance
by first performing a complete computational analysis of the two major forms of coded caching
with uncoded prefetching, namely centralized and decentralized, and then proposing a new
method for the delivery phase that achieves a significant improvement compared to the state
of the art.

2

Per–lhyh

Ta sust†mata kwdikopoihmËnhc kruf†c mn†mhc anafËrontai sthn dianom† perieqomËnou entÏc

enÏc thlepikoinwniako‘ sust†matoc qrhsimopoi∏ntac teqnikËc apÏ th jewr–a kwd–kwn me skopÏ

na dhmiourghjo‘n eukair–ec pol‘-ekpomp†c metax‘ twn qrhst∏n pou lambànoun to perieqÏ-

meno. AutÏ odhge– se mia pollaplasiastik† belt–wsh se sqËsh me ta klassikà sust†mata

mh-kwdikopoihmËnhc kruf†c mn†mhc wc proc to rujmÏ ekpomp†c pou apaite–tai sth fàsh parà-

doshc tou perieqomËnou. ApÏ thn anàptux† tou, ta sust†mata kwdikopoihmËnhc kruf†c mn†mhc

Ëqoun proselk‘sei shmantikÏ ereunhtikÏ endiafËron kai Ëqoun anaptuqje– pollà diaforetikà

sq†mata sth diàrkeia twn teleuta–wn qrÏnwn. Se aut† thn ergas–a estiàzoume sth jemeli∏dh

per–ptwsh enÏc sust†matoc kwdikopoihmËnhc kruf†c mn†mhc me mh-kwdikopoihmËnh proanàk-

thsh, Ïpou sthn kruf† mn†mh kàje qr†sth topojete–tai mh-kwdikopoihmËno perieqÏmeno katà th

diàrkeia thc fàsh proanàkthshc kai, argÏtera, katà th fàsh paràdoshc, to a–thma kàje qr†sth

prËpei na exuphrethje– me ton pio apodotikÏ trÏpo. Aut† h shmantik† per–ptwsh Ëqei prÏsfata

deqte– Ënan pl†rh plhroforiojewrhtikÏ qarakthrismÏ. 'Omwc, h ep–teuxh tou plhroforiojew-

rhtiko‘ bËltistou eisàgei mia shmantik† upologistik† anisorrop–a metax‘ twn qrhst∏n. Gia to

skopÏ autÏ, stoqe‘oume sth belt–wsh aut†c thc anisorrop–ac arqikà anapt‘ssontac mia pl†rh

upologistik† anàlush twn duo basik∏n morf∏n sust†matoc kwdikopoihmËnhc kruf†c mn†mhc,

thc kentropoihmËnhc kai thc apokentropoihmËnhc morf†c, kai sth sunËqeia prote–nontac mia nËa

mËjodo gia th fàsh paràdoshc h opo–a petuqa–nei shmantik† belt–wsh se sqËsh me tic mejÏdouc

pou e–nai diajËsimec sth bibliograf–a.

3

Dedication

This thesis is dedicated to my family and especially to my brother, whose struggles through
life has been an inspiration for me.

4

Acknowledgements

This dissertation is the product of my research activity at the Department of Electrical and
Computer Engineering of Aristotle University of Thessaloniki, during the years 2015-2020.
Those five years were filled with a wonderful pursuit of knowledge, learning new and amazing
things and having the chance to experience the joy of reaching concrete results after a long
process of researching for them. Also, I had the opportunity to meet and work with wonderful
people, whose enthusiasm further fueled my research interests and engagement with the process
of pursuing a doctorate degree.

Firstly I would like to thank my advisor and mentor, prof. George Karagiannidis, Professor
at the Department of Electrical and Computer Engineering of Aristotle University of Thes-
saloniki and leader of the Wireless Communications Systems Group (WCSG). His guidance,
insights as well as vast experience contributed immensely in the formation of the final thesis’
contents and results. However, his father-like understanding, patience, and support were of
major importance for me and were the ones that allowed me to keep pursuing my doctorate
degree, besides some quite important di�culties that I was also facing in my personal and
family life. Furthermore, I would like to express my deepest gratitude towards my good friend
and collaborator Dr. Vassilis Kapinas, for his supportive presence in my life and the wonderful
work I had the opportunity to perform with him.

I would also like to thank the members of my advisory committee, prof. Leonidas Georgiadis,
whose contribution and advice were of insurmountable importance and prof. Niovi Pavlidou
for all her supportive comments and advice through my PhD preparation.

My best regards extend also to prof. Ioannis Antoniou, for allowing me to attend the Mas-
ter’s Program on Networks and Complexity, whose content contributed to the formation of my
thesis’ topic, as well as all the extremely talented members of the WCSG group I had the joy
and the honor to meet and collaborate with, including the older Dr. Diomidis Michalopoulos,
Dr. Athanasios Lioumpas, Dr. Korina Pappi, Dr. Georgia Ntouni, Dr. Alexandros Boulo-
giorgos and Dr. Dimitris Karas, all of whom are now pursuing very successful careers, as well
as the newer ones Vassilis Papanikolaou, Sotiris Tegos, Stelios Trevlakis and Pavlos Bouzinis,
with their PhD’s topics covering a quite wide domain of discourse, which made the interaction
with them quite stimulating and engaging.

I would also like to express my deepest gratitude to my family, my mother Nikoleta, my
brother Nektarios as well as my late father Konstantinos whose constant support throughout
my studies and life made this dissertation possible.

Last but not least, I would like to thank all my teachers and professors throughout my life
that shaped my personality and interests as well as the Aristotle University of Thessaloniki
itself, for all the support it provides its students.

5

Contents

1 Introduction 7

2 System Model and Preliminaries 11
2.1 Centralized Caching . 11
2.2 Decentralized Caching . 13
2.3 Hierarchical Caching . 15
2.4 Caching with non-Uniform Demands . 19
2.5 Device-to-Device Caching . 21
2.6 Online Caching . 23

3 Computational Analysis of ITODM 25
3.1 Centralized Caching . 25
3.2 Decentralized Caching . 29

4 Computationally Enhanced Decoding Method 34
4.1 Method Description for Centralized Caching . 34
4.2 Computational Analysis . 37
4.3 Extension to decentralized caching . 38

5 Comparison 40
5.1 Centralized Caching . 40
5.2 Decentralized Caching . 47

6 Conclusions 52

6

Chapter 1

Introduction

The next generation of 5G communication networks faces a number of challenges imposed by
the high requirements with respect to bandwidth and latency as well as the diverse ecosystem
of applications and services that drive these requirements and the special characteristics of the
physical medium that di↵er substantially from the ones in the past.

First of all, the use of radio frequencies up to 30GHz or even 60GHz, with the potential
expansion to the whole range of mmWave communications (up to 300GHz) [1] introduces an
unprecedented locality in the network due to the sheer amount of high atmospheric attenuation
and increased fading present in these frequencies. This overhauls the traditional approaches of
network design and enables a dramatic amount of frequency reuse, creating the chance for a
really consumer-centric network. The classical paradigm of large cells that cover a big area with
multiple users no longer applies and tends to be replaced by a large number of small cells each
serving a few users in their close vicinity, such as fempto and pico cells and their evolution [2].
As a matter of fact, the actual networks are expected to be a hybrid of these two paradigms,
having a multilevel structure of high heterogeneity composed of both small cells reliably serving
the low-mobility users in their range with high bandwidth and low latency communications and
large cells covering big areas with the goal to serve the high-mobility users. This multilevel
structure introduces an additional complexity in the network both with respect to its control as
well as the management of content generated and consumed by the individual users [3]. With
the additional massive device-to-device communication that is expected to be implemented in
these networks, they constitute a complex system in which the main challenge is to handle the
big amount of generated or requested data in the most e�cient way possible.

Applications such as virtual and augmented reality [4], autonomous vehicles [5] and smart
cities [6] as well as the full spectrum of IoT applications [7] in the industry and the commercial
sector impose a big data challenge for the network that should be able not only to process and
deliver this data but also utilize it for its own optimization. The high bandwidth and ultra-
reliable low latency requirement [5] create a need for pushing cloud computing towards the
edge of the network so that the core network can o✏oad the corresponding tasks and services
keeping them in close proximity to the users, in order to increase the quality of its service.

These developments are expected to create a profound convergence between communication
and computing in the form of fog computing enabled communication networks [8] or mobile
edge computing [8] networks that will manifest in every abstraction layer of the design, imple-
mentation and operation phases of these networks.

During our bibliographic research, caching [9] in general, and coded caching [10] in par-
ticular, stood out as major enablers of the above technologies. Caching is the technique of
duplicating content in distributed memories across a system with the goal of reducing the traf-

7

fic load and the service times whenever this content is requested. It is naturally comprised of
two phases [10], the placement phase where the content is placed in the system caches, and
the delivery phase where content requests are served. In essence, coded caching is the distri-
bution of content across the system using techniques from coding theory in order to create
multicasting opportunities among the users receiving the content. As we will explain in more
detail in the corresponding chapter, this creates a multiplicative improvement over the clas-
sic uncoded caching approach with respect to the transmission rates required in the delivery
phase of the content. This makes coded caching an essential candidate in order to harness the
increased complexity of these systems and mitigate the big data challenges imposed by their
specifications and modes of operation. What is more, there is a vast amount of coded caching
variations [11–37] that enable its deployment in a wide range of abstraction levels and scenarios
in and both central as well as edge nodes of the network, providing an exceptional asset to the
increasingly challenging and complex data management requirements of the system. Further,
the great ability of coded caching to be informed and self-adjust its operations based on results
coming from big data analytics taking place on the network, make it an essential ingredient
in the future 5G supported networks, like the Internet of Things, that are required to show
robustness and adaptability, support emergence [38] and self-organization [39] among its parts,
and in general, having the full spectrum of traits and behaviours [40] that are present in truly
complex systems.

Conventional caching has a long line of research [41–48], where the main goal is to either
maximize the hit rate, that is the probability that a requested content is found at the cache
memory, or to optimize the placement of contents in the caches based on various criteria, most
important of which being their popularity [49, 50].

Since its introduction, coded caching has drawn significant research interest and several
di↵erent schemes have been proposed over the last years. In this work, we focus on the funda-
mental case of coded caching with uncoded prefetching, where each user’s cache is filled with
uncoded content during a prefetching stage and, during a later delivery phase, each user’s re-
quest must be served in the most e�cient way. This important case has recently received a
complete information-theoretic characterization. However, reaching the information-theoretic
optimality imposes a significant computational imbalance among the users. To this end, we
aim at mitigating this imbalance by first performing a complete computational analysis of the
two major forms of coded caching with uncoded prefetching, namely centralized and decen-
tralized, and then proposing a new method for the delivery phase that achieves a significant
improvement compared to the state of the art.

In their seminal paper [10] Maddah-Ali and Niesen proposed the use of coding in the place-
ment and delivery phases in order to create simultaneous multicasting opportunities among the
users that enabled a multiplicative gain in the transmission rates over conventional caching.
One of the most striking characteristics of their approach is that it can o↵er this significant gain,
even for scenarios where the content popularity is unknown or it is considered uniform. Due
to its advantages, coded caching has attracted considerable research interest. More specifically,
further research on this topic has been mainly focused on the investigation of its information-
theoretic limits [51–56], as well as exploring the various forms it can take such as decentralized
caching [11], online caching [12], hierarchical caching [13–15], D2D caching [16], caching with
non-uniform demands [17–20], cache-aided interference channels [21–24] and others [25–37].

After a number of publications [10, 21, 51, 57, 58] that explored the optimal information-
theoretic rate-memory tradeo↵ in coded caching with uncoded prefetching, an exact charac-
terization for the cases of centralized and decentralized caching was provided in [59] by Yu
et al. Centralized caching is the fundamental paradigm around which all other coded caching

8

CHAPTER 1. INTRODUCTION

schemes are developed, making any results regarding it being of principal importance. In this
sense, [59] o↵ers the potential of immediate improvement of all other relevant schemes of coded
caching by extending the insights therein to them, like in [60, 61]. There has also been sig-
nificant progress towards characterizing the exact rate-memory tradeo↵ for the case of coded
prefetching [27, 52–56, 62, 63] with [64] setting the state of the art to within a factor of 2 with
respect to the, as of yet unknown, optimal.

Along with these developments, research also turned towards investigating and mitigating
the implementation challenges and limitations of wireless caching. To this direction, two ma-
jor issues have been identified. The first issue is the combinatorial explosion that happens in
coded caching, where the number of subfiles the files are broken into increases exponentially
with respect to the number of users which quickly makes the subfile size corresponding to any
finite file size fall below the single bit level [65]. To this end, several finite-file packetization
schemes have been proposed [20,61,66–74] that try to contain this explosion while keeping the
multiplicative gains of the original methods. Another important issue is the increased compu-
tational complexity of the information-theoretically optimal caching methods for the specific
set of users called “non-leaders” [59]. In particular, their methods achieve information-theoretic
optimality by utilizing the so-called commonality in user requests, which is the fact that many
users may be requesting the same content. Among these users, one is arbitrarily called leader
and the rest non-leaders. The authors of [59] realized that the computational manipulations
a non-leader needs to perform impose a significant extra burden on them in comparison to
the leaders and ask for a more e�cient decoding scheme. Also, in [59] a motivating example
is provided which shows that the computations performed by a non-leader can be potentially
reduced. Nevertheless, to the best of the author’s knowledge, an exact characterization of the
computational cost of the existing methods, as well as a computationally improved method,
has not been provided in the existing literature.

In this work, we aim to develop analytic expressions to precisely characterize the compu-
tational cost of coded caching with uncoded prefetching as well as to propose an improvement
over this coded caching scheme with respect to the required computational resources.

In particular, we derive the computational cost of both centralized and decentralized caching
with uncoded prefetching from a leader’s and a non-leader’s aspect as well as a system-wide
point of view. With the computational manipulations being readily translatable to energy
consumption, the same expressions provide a characterization of the schemes’ energy demands.

Furthermore, we introduce a novel algorithm that directly improves the computational
complexity of the state of the art by utilizing a shortcut in the computations performed by a
non-leader. We apply this improvement to both centralized and decentralized versions of coded
caching and observe some significant computational improvements, especially in the second
more realistic case. Due to the multi-parameter dependence of the exact analytic expressions
for the computational cost, we show that there is a particular tractable averaging procedure
that facilities a meaningful comparison between the methods.

The remainder of this text is organized as follows. Section 2 describes the system model of
centralized and decentralized caching with uncoded prefetching along with some major forms of
coded caching and describes all the relevant concepts that we will utilize throughout the text.
In section 3 we perform a computational analysis of centralized and decentralized caching, pro-
viding a complete characterization of the computational costs involved with the di↵erent parts
of the system and observe that decentralized caching has a surprisingly simpler characteriza-
tion when compared to centralized caching. We proceed with the development of our proposed
method in section 4 for both centralized and decentralized caching and a comparison of its var-
ious aspects with the state of the art in section 5 using two cases, one small user case and one

9

large user case. The text closes with Section 6 containing our conclusions and some comments
on future work.

10

Chapter 2

System Model and Preliminaries

2.1 Centralized Caching

A centralized caching system comprises of a server and K connected users through a shared,
error-free channel. The server contains a library of N files W1,W2, . . . ,WN each of size F

bits. Also, each user has an amount of cache memory equal to MF bits. Fig.2.1 displays, the
archetypal centralized caching system [59].

The system operates in two phases, a placement and a delivery phase. During the placement
phase, the users have free access to the library in order to fill their caches, without performing
any coding to the content. During the delivery phase, each user makes a demand for a specific
file to the server which, being the only one having access to the library, must deliver the
requested content as e�ciently as possible by utilizing the shared nature of the channel.

For the delivery phase, also called the prefetching phase, the authors in [59] utilize a scheme
called symmetric batch prefetching. In the same paper, it is proved that this prefetching scheme,
along with the proposed delivery method therein, constitutes an information-theoretically opti-
mal way of delivering the content. Thus, for the rest of this work, will call the method presented
in [59] the information-theoretic optimal delivery method or ITODM for short.

The key parameter of this algorithm is a quantity t equal to the ratio of the total cache
memory among the users over the size of the library:

t =
MK

N
. (2.1)

When this parameter is an integer, t 2 {0, 1, . . . , K}, the symmetric batch prefetching
considers all the sets comprised of t users:

At = {At 2 2[K] : |At| = t}. (2.2)

Here, [K] = {1, 2, ..., K} is the user set, with each user represented by its unique index, 2[K] is
the user powerset, that is, all the possible user subsets and | · | is the cardinality of a set. The
case where t is not an integer is typically handled through memory sharing. An exposition of
how memory sharing can be applied is given in the section for hierarchical caching, where it is
an integral part of the scheme.

If we call the contents of At “t-subsets”, is it easy to see that there are

|At| =
✓
K

t

◆
(2.3)

t-subsets, equal to the number of ways we can choose t users out of K.

11

2.1. CENTRALIZED CACHING
1282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

the average rate and the peak rate. We exploit commonality
among user demands by showing that the scheme in [10] may
introduce redundancy in the delivery phase, and proposing a
new scheme that effectively removes all such redundancies in
a systematic way.

In addition, we demonstrate the exact optimality of the
proposed scheme through a matching converse. The main idea
is to divide the set of all demands into smaller subsets (referred
to as types), and derive tight lower bounds for the mini-
mum peak rate and the minimum average rate on each type
separately. We show that, when the prefetching is uncoded,
the rate-memory tradeoff can be completely characterized
using this technique, and the placement phase in the proposed
caching scheme universally achieves those minimum rates on
all types.

Moreover, we extend the techniques we developed for the
centralized caching problem to characterize the exact rate-
memory tradeoff in the decentralized setting (i.e. where the
users cache the contents independently without any coordina-
tion, as considered in [17]). Based on the proposed centralized
caching scheme, we develop a new decentralized caching
scheme that strictly improves the state of the art [16], [17].
In addition, we formally define the framework of decentralized
caching, and prove matching converses given the framework,
showing that the proposed scheme is optimal.

To summarize, the main contributions of this paper are as
follows:

• Characterizing the rate-memory tradeoff for average rate,
by developing a novel caching design and proving a
matching information theoretic converse.

• Characterizing the rate-memory tradeoff for peak rate,
by extending the achievability and converse proofs to
account for the worst case demands.

• Characterizing the rate-memory tradeoff for both average
rate and peak rate in a decentralized setting, where
the users cache the contents independently without
coordination.

Furthermore, in one of our recent works [50], we have shown
that the achievablity scheme we developed in this paper also
leads to the yet known tightest characterization (within factor
of 2) in the general problem with coded prefetching, for
both average rate and peak rate, in both centralized and
decentralized settings.

The problem of caching with uncoded prefetching was
initiated in [12] and [51], which showed that the scheme
in [10] is optimal when considering peak rate and centralized
caching, if there are more files than users. Although not stated
in [12] and [51], the converse bound in our paper for the
special case of peak rate and centralized setting could have
also been derived using their approach. In this paper however,
we introduce the novel idea of demand types, which allows
us to go beyond and characterize the rate-memory tradeoff
for both peak rate and average rate for all possible parameter
values, in both centralized and decentralized settings. Our
result covers the peak rate centralized setting, as well as strictly
improves the bounds in all other cases. More importantly, we
introduce a new achievability scheme, which strictly improves
the scheme in [10].

Fig. 1. Caching system considered in this paper. The figure illustrates the
case where K = N = 3, M = 1.

The rest of this paper is organized as follows. Section II
formally establishes a centralized caching framework, and
defines the main problem studied in this paper. Section III
summarizes the main result of this paper for the central-
ized setting. Section IV describes and demonstrates the
optimal centralized caching scheme that achieves the minimum
expected rate and the minimum peak rate. Section V proves
matching converses that show the optimality of the proposed
centralized caching scheme. Section VI extends the techniques
we developed for the centralized caching problem to character-
ize the exact rate-memory tradeoff in the decentralized setting.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we formally introduce the system model
for the centralized caching problem. Then, we define the rate-
memory tradeoff based on the introduced framework, and state
the main problem studied in this paper.

A. System Model

We consider a system with one server connected to K
users through a shared, error-free link (see Fig. 1). The server
has access to a database of N files W1, ..., WN , each of size
F bits.1 We denote the j th bit in file i by Bi, j , and we assume
that all bits in the database are i.i.d. Bernoulli random variables
with p = 0.5. Each user has an isolated cache memory of
size M F bits, where M ∈ [0, N]. For convenience, we define
parameter t = K M

N .
The system operates in two phases, a placement phase and

a delivery phase. In the placement phase, users are given
access to the entire database, and each user can fill their cache
using the database. However, instead of allowing coding in
prefetching [10], we focus on an important class of prefetching
schemes, referred to as uncoded prefetching schemes:

Definition 1: An uncoded prefetching scheme is where each
user k selects no more than M F bits from the database and
stores them in its own cache, without coding. Let Mk denote
the set of indices of the bits chosen by user k, then we denote
the prefetching as

M = (M1, . . . ,MK).

1Although we only focus on binary files, the same techniques developed in
this paper can also be used for cases of q-ary files and files using a mixture
of different alphabets, to prove that same rate-memory trade off holds.

Figure 2.1: Centralized Caching System [59]. The server contains N files and connects through
a shared, error-free channel to K users each having a cache size corresponding to M files.

Then, symmetric batch prefetching breaks up each file in |At| subfiles of size F
��

K
t

�
bit,

with each subfile corresponding to a di↵erent t-subset, and sends each subfile to the users in
that corresponding t-subset (for simplicity we assume that F is divisible by

�
K
t

�
, if not we can

virtually expand the end of each file by appending a number zeros to suite this condition). By
expressing the library as an N ⇥ F bit matrix, the matrix is broken into |At| columns of size
FN/

�
K
t

�
bit, each corresponding to at di↵erent t-subset At 2 At. Each column is then sent to

all the users contained in its t-subset. Since there are
�

K�1
t�1

�
subsets containing a user (as many

as the (t � 1)-subsets not containing that user), each user receives
�

K�1
t�1

�
/
�

K
t

�
FN = MF bits

fully filling up their cache.
During the delivery phase, each user makes a file request di 2 [N], where [N] = {1, 2, . . . , N}.

These requests form the demand vector d = (d1, d2, . . . dK) 2 [N]K , on which the delivery
algorithm operates. The delivery algorithm is based on two key observations. The first is that
during the placement phase, all t-subsets At 2 At receive a particular column of the library bit
matrix. That means that for any (t+1)-subset At+1 2 At+1, each user u 2 At+1 is requesting a
particular line (i.e. a particular subfile) from the column the rest of the users in At+1\{u} have
received during the placement phase. We can name this subfile Wdu,At+1\{u}. So, all user subfile
demands that correspond to a particular (t+ 1)-subset can be served at once by XOR-ing the
subfiles and transmitting the result:

YAt+1 = �
u2At+1

Wdu,At+1\{u}. (2.4)

The second observation is that when the number Ne(d) of di↵erent files requested in d is
less than the number K of users, not all transmissions YAt+1 for all (t+ 1)-subsets At+1 2 At+1

need to take place. In particular, it is the realization that by arbitrarily selecting Ne(d) users
U ⇢ [K], with distinct requests and calling them leaders, any transmission YAt+1 corresponding
to a (t + 1)-subset At+1 comprised solely of non-leaders is redundant. If we call Anl

t+1 the
family of all (t+ 1)-subsets comprised solely of non-leaders, the above means that, in order to
have some profit from the commonality among the user requests, there must be at least one
(t+ 1)-subset in Anl

t+1. In other words, we must have:

K � Ne(d) � t+ 1. (2.5)

12

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

The converse proof given in [59] shows that this condition is fundamental. Combining
these two observations, one reaches the conclusion that among all

�
K

t+1

�
(t + 1)-subsets, only�

K
t+1

�
�
�

K�Ne(d)
t+1

�
correspond to actual transmissions. Since each transmission is F

��
K
t

�
bit long

a rate of

R(M,N,K) =

�
K

t+1

�
�
�

K�Ne(d)
t+1

�
�

K
t

� (2.6)

is achievable. Notice that F is not included in (2.6), since the rate corresponds to transmitted
bits per file bit. Also, we should note that although the quantity R is called rate in the
literature, it is, in fact, the transmission load on the channel during the delivery phase. In
other words, the channel should be able to support a transmission with the rate implied by
R or above. In this sense, we are interested in devising delivery schemes that make this rate
as small as possible. It has been proven [59] that (2.6) represents the best possible rate for a
centralized coded caching system with uncoded prefetching. The term centralized means that
during the placement phase, we know the K users that will be requesting a file.

In the delivery method presented in [59], each omitted transmission YAt+1 corresponding
to a non-leader (t + 1)-subset At+1 2 Anl

t+1 is computed from the transmitted signals. This
computation is based on two things. First, a set B formed by the union of the leader set U and
the non-leaders in At+1:

B = U [At+1. (2.7)

The second thing is the family VF of V-subsets of B, where each V-set contains Ne(d) users
of B with distinct demands.

VF =

⇢
V 2 2B :

|V| = Ne(d),
8u1 6= u2 2 V du1 6= du2

�
, (2.8)

where 2B is the powerset of B. These V-sets can be generated by starting with U and then
replacing one or more leaders by one of their non-leaders (having the same request) in B. Having
these two things, the authors of [59] prove that the signal YAt+1 can be computed as

YAt+1 = �
V2VF \{U}

YB\V . (2.9)

This computation is the main focus of this work. In particular, we propose an alternative
expression of equal computational cost that instead of generating YAt+1 , it directly gives the
file requested by each user in At+1.

2.2 Decentralized Caching

The decentralized caching, represents the more realistic scenario were the number of users that
will be requesting a file during the delivery phase is not known during the placement phase.
In other words, the archetypal systems presented in Fig. 2.2 is the same as the one in section
2.1 with the di↵erence that the K users are not known at the placement phase. As it is shown
in [59], assuming a system with a library of N files, each of size F bit, a random caching of
MF/N bits from each file by each user during the placement phase is enough to guarantee
optimality during the delivery phase. We do not mention the total number of users since this
does not matter during this phase.

Suppose that during the delivery phase onlyK users actually make a request d = (d1, . . . , dK).
We can denote the set of these active users as [K] = {1, 2, ..., K}, representing each one of them

13

2.2. DECENTRALIZED CACHING
1282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

the average rate and the peak rate. We exploit commonality
among user demands by showing that the scheme in [10] may
introduce redundancy in the delivery phase, and proposing a
new scheme that effectively removes all such redundancies in
a systematic way.

In addition, we demonstrate the exact optimality of the
proposed scheme through a matching converse. The main idea
is to divide the set of all demands into smaller subsets (referred
to as types), and derive tight lower bounds for the mini-
mum peak rate and the minimum average rate on each type
separately. We show that, when the prefetching is uncoded,
the rate-memory tradeoff can be completely characterized
using this technique, and the placement phase in the proposed
caching scheme universally achieves those minimum rates on
all types.

Moreover, we extend the techniques we developed for the
centralized caching problem to characterize the exact rate-
memory tradeoff in the decentralized setting (i.e. where the
users cache the contents independently without any coordina-
tion, as considered in [17]). Based on the proposed centralized
caching scheme, we develop a new decentralized caching
scheme that strictly improves the state of the art [16], [17].
In addition, we formally define the framework of decentralized
caching, and prove matching converses given the framework,
showing that the proposed scheme is optimal.

To summarize, the main contributions of this paper are as
follows:

• Characterizing the rate-memory tradeoff for average rate,
by developing a novel caching design and proving a
matching information theoretic converse.

• Characterizing the rate-memory tradeoff for peak rate,
by extending the achievability and converse proofs to
account for the worst case demands.

• Characterizing the rate-memory tradeoff for both average
rate and peak rate in a decentralized setting, where
the users cache the contents independently without
coordination.

Furthermore, in one of our recent works [50], we have shown
that the achievablity scheme we developed in this paper also
leads to the yet known tightest characterization (within factor
of 2) in the general problem with coded prefetching, for
both average rate and peak rate, in both centralized and
decentralized settings.

The problem of caching with uncoded prefetching was
initiated in [12] and [51], which showed that the scheme
in [10] is optimal when considering peak rate and centralized
caching, if there are more files than users. Although not stated
in [12] and [51], the converse bound in our paper for the
special case of peak rate and centralized setting could have
also been derived using their approach. In this paper however,
we introduce the novel idea of demand types, which allows
us to go beyond and characterize the rate-memory tradeoff
for both peak rate and average rate for all possible parameter
values, in both centralized and decentralized settings. Our
result covers the peak rate centralized setting, as well as strictly
improves the bounds in all other cases. More importantly, we
introduce a new achievability scheme, which strictly improves
the scheme in [10].

Fig. 1. Caching system considered in this paper. The figure illustrates the
case where K = N = 3, M = 1.

The rest of this paper is organized as follows. Section II
formally establishes a centralized caching framework, and
defines the main problem studied in this paper. Section III
summarizes the main result of this paper for the central-
ized setting. Section IV describes and demonstrates the
optimal centralized caching scheme that achieves the minimum
expected rate and the minimum peak rate. Section V proves
matching converses that show the optimality of the proposed
centralized caching scheme. Section VI extends the techniques
we developed for the centralized caching problem to character-
ize the exact rate-memory tradeoff in the decentralized setting.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we formally introduce the system model
for the centralized caching problem. Then, we define the rate-
memory tradeoff based on the introduced framework, and state
the main problem studied in this paper.

A. System Model

We consider a system with one server connected to K
users through a shared, error-free link (see Fig. 1). The server
has access to a database of N files W1, ..., WN , each of size
F bits.1 We denote the j th bit in file i by Bi, j , and we assume
that all bits in the database are i.i.d. Bernoulli random variables
with p = 0.5. Each user has an isolated cache memory of
size M F bits, where M ∈ [0, N]. For convenience, we define
parameter t = K M

N .
The system operates in two phases, a placement phase and

a delivery phase. In the placement phase, users are given
access to the entire database, and each user can fill their cache
using the database. However, instead of allowing coding in
prefetching [10], we focus on an important class of prefetching
schemes, referred to as uncoded prefetching schemes:

Definition 1: An uncoded prefetching scheme is where each
user k selects no more than M F bits from the database and
stores them in its own cache, without coding. Let Mk denote
the set of indices of the bits chosen by user k, then we denote
the prefetching as

M = (M1, . . . ,MK).

1Although we only focus on binary files, the same techniques developed in
this paper can also be used for cases of q-ary files and files using a mixture
of different alphabets, to prove that same rate-memory trade off holds.

Figure 2.2: Decentralized Caching System [59]. The server contains N files and connects
through a shared, error-free channel to K users each having a cache size corresponding to M
files. The K users are coming from an even larger pool of users and are unknown during the
placement phase.

by a suitable index. Calling the library bits BL, if we examine the way they were transferred to
these users during the random prefetching, we will see that they can be organized (partitioned)
into the following classes

BL
j =

⇢
b 2 BL :

b is cached by exactly
j users among [K]

�
, (2.10)

for j = 0, 1, . . . , K. This collection forms a partition since any bit in BL can be cached either
by no user or exactly 1 user or exactly 2 users etc. up to exactly K users. Each of these classes
can be further partitioned if we ask the question which are the particular j users caching a bit
of BL

j . If Aj 2 Aj is any j-subset of the K users, this leads to the following partitioning within
each BL

j :

BL,j
Aj

=
�
b 2 BL

j : bit b is shared among all users in Aj

. (2.11)

We can see now that for each j 2 {0, . . . , K}, the situation is analogous to the case of
centralized caching with a file library BL

j being broken to
�

K
j

�
parts, each corresponding to a

distinct j-subset and being shared among the j users therein. That means that for any (j+1)-
subset Aj+1 2 Aj+1 each user u 2 Aj+1 will be requesting the bits of file Wdu shared among
the other u0 2 Aj+1\{u} users.

So, for each such (j + 1)-subset Aj+1 2 Aj+1, the server can transmit the signal

YAj+1 = �
u2Aj+1

Vdu,At+1\{u} (2.12)

to accommodate the users in Aj+1. The quantity Vdu,Aj+1\{u} contains the bits of file Wdu shared
exactly by the j users in At+1\{u}. A di↵erence from centralized caching is that the size of each
Vdu,Aj+1\{u} in (2.12) will be di↵erent due to the prefetching being random and so a padding
of the smaller terms with zeros can make the expression computable. Also, we should note
that both the server and each user should be aware of the bit positions being cached by the
other users in order for the signal in (2.12) to be computable and decodable, so some kind of
synchronization between the users and the server should take place.

14

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

As in centralized caching, if the number of distinct demands Ne(d) K � (j + 1), the
K users can be split to “leaders” and “non-leaders” and any of the

�
K�Ne(d)

j+1

�
signals YAj+1

corresponding to the non-leader (j+1)-subsets Aj+1 2 A
nl
j+1 can be omitted from transmission,

being derivable from the ones transmitted.
Since, the probability of a bit being selected by a user in the placement phase is M/N ,

the probability of a single bit being exclusively selected by the users of a j-subset Aj of [K]
(and thus being placed in BL,j

Aj
) is P (BL,j

Aj
) = (M/N)j(1 � M/N)K�j and the probability of

a single bit being selected exclusively by any such j subset (and thus being placed in BL
j) is

P (BL
j) =

�
K
j

�
(M/N)j(1 � M/N)K�j. Iterating over all the F bits in a file W , the number

|BL,j
Aj

(W)| of bits being placed in BL,j
Aj

and the number of bits |BL
j (W)| being placed in BL

j will

be binomial random variables B(n, p) with parameters n = F and p = P (BL,j
Aj

) or p = P (BL
j),

respectively.
We can now use Bernoulli’s theorem [75] which states that if k is a binomial random variable

B(n, p) then for any ✏ > 0

P

✓����
k

n
� p

���� ✏

◆
> 1 � pq

n✏2
� 1 � p

n✏2
. (2.13)

Bernoulli’s theorem states that we can get k/n as close to p as we would like with probability
as close to one as we would like, as long as n is made high enough. In other words, if we
decompose the random variable k as k = np + e, the ratio e/n can be made arbitrarily small
with probability arbitrarily close to one, as long as n is su�ciently high. In simple words, we
can write that asymptotically k = np+ o(n) almost surely.

Using the above, we can write that asymptotically almost surely (a.a.s) we will have:

|BL
j (W)| =

✓
K

j

◆✓
M

N

◆j ✓
1 � M

N

◆K�j

F + o(F),

|BL,j
Aj

(W)| =
✓
M

N

◆j ✓
1 � M

N

◆K�j

F + o(F).

(2.14)

which are the expressions presented in [59] with the first being
�

K
j

�
times bigger than the second,

as expected. So, we see that asymptotically, for any j the delivery phase of decentralized caching
can be implemented by the same techniques used in centralized caching.

Since the bits comprising Vdu,At+1\{u} in (2.12) are the ones contained in BL,j
Aj+1\{u}(Wdu),

each transmission YAj+1 will be |BL,j
Aj

(W)| bits long (a.a.s.) as given by (2.14). Multiplying this

with the number
�

K
j+1

�
�
�

K�Ne(d)
j+1

�
of actual transmissions, summing over all j and dividing by

F gives a rate of

R(M,N,K) =
N � M

N

1 �

✓
1 � M

N

◆Ne(d)
!
. (2.15)

So, we observe that, even though the prefetching is random and the delivery phase trans-
missions are of varying size, in the limit of large file sizes F an order arises which allows us to
explicitly compute the transmission load per file bit. We will utilize this order to compute the
computational benefits of our proposed decoding method for decentralized caching.

2.3 Hierarchical Caching

Many real systems and networks are comprised of many layers of abstraction and a high degree
of heterogeneity expressed as a hierarchy of nodes ranging from central, core-wise nodes to

15

2.3. HIERARCHICAL CACHING

0018-9448 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2016.2557804, IEEE
Transactions on Information Theory

2

server N files

K1 mirrors size M1

K1K2 caches

K1K2 users

size M2

rate R1

rate R2 rate R2

Fig. 1. System setup for the hierarchical caching problem: A server hosting
N files is connected to K1 mirrors each able to store M1 of the files. Each
of the mirrors, in turn, is connected to K2 caches each able to store M2 of
the files. A single user is attached to each of these caches. Once the mirrors
and caches are filled, each user requests one of the N files. The aim is to
minimize the rate R1 from the server to the mirrors and the rate R2 from
the mirrors to the caches. In the figure, N = 4, K1 = K2 = 2, M1 = 2,
and M2 = 1.

over the link connecting the origin server to the mirrors and
also in the link connecting each mirror to the user caches.
The second type involves two layers at a time. These two-
layer opportunities are available between the origin server and
the user caches. We show that, by striking the right balance
between these two types of coded caching opportunities, the
proposed caching scheme attains the approximately optimal
memory-rate tradeoff to within a constant additive and multi-
plicative gap. Due to the possible interaction between the two
cache layers, the network admits many different prefetching
and delivery approaches. It is thus perhaps surprising that a
combination of these two basic schemes is sufficient to achieve
the approximately optimal memory-rate tradeoff. Furthermore,
investigating the achievable rates also reveals that there is no
tension between the rates over the first and second layers
up to the same aforementioned gap. Thus, both layers can
simultaneously operate at approximately minimum rate.

The remainder of the paper is organized as follows. We
describe the problem setting in Section II and provide some
preliminaries in Section III. Section IV presents our main
results and discusses their engineering implications. Section V
introduces the proposed caching scheme and characterizes its
performance. The proof of our main result is discussed in Sec-
tion VI and we conclude in Section VII. The proof details are
provided in the appendices. Appendix A proves information-
theoretic bounds on the performance of any caching scheme.
The proof of the constant multiplicative and additive gap
between the performance of the proposed scheme and the
optimal caching scheme is provided in Appendices B and C.

II. PROBLEM SETTING

We consider a hierarchical content delivery network as
illustrated in Fig. 1 in Section I. The system consists of a single

origin server hosting a collection of N files each of size F bits.
The server is connected through an error-free broadcast link
to K1 mirror sites, each with memory of size M1F bits. Each
mirror, in turn, is connected through an error-free broadcast
link to K2 users. Thus, the system has a total of K1K2 users.
Each user has an associated cache memory of size M2F bits.
The quantities M1 and M2 are the normalized memory sizes
of the mirrors and user caches, respectively. We refer to the jth
user attached to mirror i as “user (i, j)” and the corresponding
cache as “cache (i, j)”. Throughout, we will focus on the most
relevant case where the number of files N is larger than the
total number of users K1K2 in the system1, i.e., N � K1K2.

The content delivery system operates in two phases: a
placement phase followed by a delivery phase. The placement
phase occurs during a period of low network traffic. In this
phase, all the mirrors and user caches store content related
to the N files (possibly using randomized strategies), while
satisfying the corresponding memory constraints. Crucially,
this is done without any prior knowledge of future user
requests. The delivery phase occurs during a period of high
network traffic. In this phase, each user requests one of the
N files from the server. Formally, the user requests can be
represented as a matrix D with entry di,j 2 {1, 2, . . . , N}
denoting the request of user (i, j). The user requests are
forwarded to the corresponding mirrors and further on to the
server. Based on the requests and the stored contents of the
mirrors and the user caches during the placement phase, the
server transmits a message XD of size at most R1F bits over
the broadcast link to the mirrors. Each mirror i receives the
server message and, using its own memory content, transmits
a message Y D

i of size at most R2F bits over its broadcast
link to users (i, 1), (i, 2), . . . , (i, K2). Using only the contents
of its cache (i, j) and the received message Y D

i from mirror i,
each user (i, j) attempts to reconstruct its requested file di,j .

For a given request matrix D, we say that the tuple
(M1, M2, R1, R2) is feasible for request matrix D if, for large
enough file size F , each user (i, j) is able to recover its
requested file di,j with probability2 arbitrarily close to one. We
say that the tuple (M1, M2, R1, R2) is feasible if it is feasible
for all possible request matrices D. The object of interest in
the remainder of this paper is the feasible rate region:

Definition. For memory sizes M1, M2 � 0, the feasible rate
region is defined as

R�(M1, M2)

� closure
�
(R1, R2) : (M1, M2, R1, R2) is feasible

. (1)

III. PRELIMINARIES

The proposed achievable scheme for the hierarchical
caching setting makes use of the coded caching scheme
developed for networks with a single layer of caches. In this
section, we recall this single-layer caching scheme.

1For example, in a video application such as Netflix, each “file” corresponds
to a short segment of a video, perhaps a few seconds to a minute long. If
there are 1000 different popular movies of length 100 minutes each, this
would correspond to more than 100, 000 different files.

2The feasibility of a tuple corresponds to a random variable because of the
possible randomization of the placement and delivery phases.

Figure 2.3: Hierarchical Caching System [14]. The system comprises of two levels of caching.
The server contains N files of size F bit and connects through a shared, error-free channel to
K1 intermediate nodes (mirrors) with cache memory size M1F bit. Each mirror then serves
K2 users, each having a cache memory size of M2F bit, through a another, shared, error-free
channel.

peripheral, edge-wise nodes. This creates an opportunity for concurrently utilizing caching in
many layers and across di↵erent levels of the system. Hierarchical caching [13–15] was developed
to account for these arrangements and explores how to optimally distribute and deliver cachable
content in heterogeneous networks with a hierarchical structure.

The archetypal hierarchical caching system [14] is displayed in Fig. 2.3. In this system,
the server has a library of N files, each of size F bit. The server connects through a shared,
error-free channel to K1 intermediate nodes with cache memory size M1F bit, called mirrors.
Each mirror has a cache memory size of M1F bit and serves a separate group of K2 users, each
having a cache memory size of M2F bit, through another shared, error-free channel.

As of the time of this writing, the author is not aware of an optimal caching scheme for this
system being available. However, [14] describes a near-optimal placement and delivery method
based on decentralized caching.

According to [14], the placement and delivery method is the result of memory sharing
between two di↵erent schemes. In the first scheme, the placement of content in the mirrors
and the users follows the simple random placement approach we described in section 2.2 for
decentralized caching. During delivery, every mirror presents to the server the demands of its
users in a sequential manner. In the first step, each mirror presents the demand of its first user,
in the second the demand of its second user etc. up to the final step presenting the demand of
its K2-th user. In each step, the files are sent to the mirrors using the decentralized delivery
scheme also presented in section 2.2, without utilizing the commonality between the demands
(sending all transmission corresponding to non-leader). After all the mirrors have acquired and
decoded the files requested by their individual users, each mirror uses the decentralized delivery
method (without utilizing commonality) to send these files to their users.

16

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

The rate R
A
1 between the server and the mirrors and the rate R

A
2 between each mirror and

its users, therefore, are

R
1
1 = K2 · r (M1, N,K1) (2.16)

and
R

1
2 = r (M2, N,K2) (2.17)

where R(M,N,K) is the achievable rate of decentralized caching without utilizing common-
ality among the demands, which for the typical case of N > K is

r(M,N,K) =

8
<

:

K · (1 � M/N) · min
�

N
KM

�
1 � (1 � M/N)K

�
,

N
K

for 0 < M N

min{N,K} for M = 0
0 for M > N

(2.18)
In the second scheme, the cache memory of the mirrors is overlooked and the mirrors act

as relays. During the placement phase, the caches of the K1K2 users are filled using random
placement as before. During the delivery phase, the server receives the demands of all users
and transmits all the corresponding codewords according to the decentralized delivery method
(without commonality) and each mirror just relays the codeword relevant to its user group.

Thus, the achievable rates RB
1 and R

B
2 between the server and the mirrors and each mirror

to its users respectively are

R
2
1 = r (M2, N,K1K2) , (2.19)

and

R
2
2 = r (M2, N,K2) . (2.20)

One important remark that we should make here is the dependence of hierarchical caching
on decentralized caching. As we explained before, the quantity r in the above equations is the
rate of the decentralized caching scheme used. Thus, any improvement of the decentralized
caching leads to a direct improvement of hierarchical caching. As a matter of fact, the utiliza-
tion of commonality between user requests, a technique not available to the authors of [14],
enhances the rate from that of (2.18) to the one given by (2.15). Should the authors of [14]
used centralized instead of decentralized caching, the utilization of commonality would lead to
a similar enhancement of the achievable rates. As we discussed in the corresponding sections,
the utilization of commonality leads to the information-theoretically optimal scheme for cen-
tralized or decentralized caching. However, at the time of writing, it is not known whether this
enhancement leads hierarchical caching to a similar optimality or just an improvement.

Completing the description of the general hierarchical caching scheme, a memory sharing
between the two schemes is performed. In particular, each file in the library and the cache
memory of each user is separated into two parts. In the first part, we have

F
1 = ↵F,

M
1
1 =

M1F

F 1
=

M1

↵
,

M
1
2 =

�M2F

F 1
=

�M2

↵
,

(2.21)

for some (↵, �) 2 [0, 1]2 and in the second part

17

2.3. HIERARCHICAL CACHING

F
2 = (1 � ↵)F,

M
2
2 =

(1 � �)M2F

F 2
=

(1 � �).M2

(1 � ↵)
.

(2.22)

Then, in each part, we use the corresponding caching scheme to deliver the data. Note
that since the cache memory of the mirrors is utilized only in the first scheme, it is completely
dedicated to the first part leading to a higher number M1

1 of cachable part-1 files (M1
1 > M1).

This memory sharing makes the achievable rates equal to

R
1
1 = ↵K2 · r

�
M

1
1 , N,K1

�
= ↵K2 · r

✓
M1

↵
, N,K1

◆
,

R
1
2 = ↵ · r

�
M

1
2 , N,K2

�
= ↵ · r

✓
�M2

↵
, N,K2

◆
.

(2.23)

The selection of ↵ and � then is a matter of optimization. The authors of [14] outline three
regimes

I) M1 +M2K2 � N and 0 M1 N/4

II) M1 +M2K2 < N,

III) M1 +M2K2 � N and N/4 < M1 N,

(2.24)

and propose the values

(↵?
, �

?) =

8
><

>:

�
M1
N ,

M1
N

�
in regime I,⇣

M1
M1+M2K2

, 0
⌘

in regime II,
�

M1
N ,

1
4

�
in regime III.

(2.25)

The corresponding rate values R1(↵?
, �

?) and R2(↵?
, �

?) are proven to be within a constant
multiplicative and additive gap with respect to their minimum values (or to corresponding
lower bounds to be more exact). This places the above scheme very close to optimality. In
particular, it shows that if

R? (M1,M2) = closure {(R1, R2) : (M1,M2, R1, R2) is feasible } (2.26)

,
is the information-theoretic feasible rate region for a particular choice of M1 and M2 and

RC (M1,M2) = {(R1(↵, �), R2(↵, �)) : ↵, � 2 [0, 1]} + R2
+ (2.27)

is the achievable rate region using the above scheme then there are constants c1 and c2,
independent of M1 and M2, such that

RC (M1,M2) ✓ R? (M1,M2) ✓ c1 · RC (M1,M2) � c2 (2.28)

We should note that in (2.27) the addition sign is the Minknowski addition between the two
sets and it is utilized in order to extend the region achievable by R1 and R2 for the various ↵
and � to the larger range values that are also achievable (for example by zero padding).

18

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES
1282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

the average rate and the peak rate. We exploit commonality
among user demands by showing that the scheme in [10] may
introduce redundancy in the delivery phase, and proposing a
new scheme that effectively removes all such redundancies in
a systematic way.

In addition, we demonstrate the exact optimality of the
proposed scheme through a matching converse. The main idea
is to divide the set of all demands into smaller subsets (referred
to as types), and derive tight lower bounds for the mini-
mum peak rate and the minimum average rate on each type
separately. We show that, when the prefetching is uncoded,
the rate-memory tradeoff can be completely characterized
using this technique, and the placement phase in the proposed
caching scheme universally achieves those minimum rates on
all types.

Moreover, we extend the techniques we developed for the
centralized caching problem to characterize the exact rate-
memory tradeoff in the decentralized setting (i.e. where the
users cache the contents independently without any coordina-
tion, as considered in [17]). Based on the proposed centralized
caching scheme, we develop a new decentralized caching
scheme that strictly improves the state of the art [16], [17].
In addition, we formally define the framework of decentralized
caching, and prove matching converses given the framework,
showing that the proposed scheme is optimal.

To summarize, the main contributions of this paper are as
follows:

• Characterizing the rate-memory tradeoff for average rate,
by developing a novel caching design and proving a
matching information theoretic converse.

• Characterizing the rate-memory tradeoff for peak rate,
by extending the achievability and converse proofs to
account for the worst case demands.

• Characterizing the rate-memory tradeoff for both average
rate and peak rate in a decentralized setting, where
the users cache the contents independently without
coordination.

Furthermore, in one of our recent works [50], we have shown
that the achievablity scheme we developed in this paper also
leads to the yet known tightest characterization (within factor
of 2) in the general problem with coded prefetching, for
both average rate and peak rate, in both centralized and
decentralized settings.

The problem of caching with uncoded prefetching was
initiated in [12] and [51], which showed that the scheme
in [10] is optimal when considering peak rate and centralized
caching, if there are more files than users. Although not stated
in [12] and [51], the converse bound in our paper for the
special case of peak rate and centralized setting could have
also been derived using their approach. In this paper however,
we introduce the novel idea of demand types, which allows
us to go beyond and characterize the rate-memory tradeoff
for both peak rate and average rate for all possible parameter
values, in both centralized and decentralized settings. Our
result covers the peak rate centralized setting, as well as strictly
improves the bounds in all other cases. More importantly, we
introduce a new achievability scheme, which strictly improves
the scheme in [10].

Fig. 1. Caching system considered in this paper. The figure illustrates the
case where K = N = 3, M = 1.

The rest of this paper is organized as follows. Section II
formally establishes a centralized caching framework, and
defines the main problem studied in this paper. Section III
summarizes the main result of this paper for the central-
ized setting. Section IV describes and demonstrates the
optimal centralized caching scheme that achieves the minimum
expected rate and the minimum peak rate. Section V proves
matching converses that show the optimality of the proposed
centralized caching scheme. Section VI extends the techniques
we developed for the centralized caching problem to character-
ize the exact rate-memory tradeoff in the decentralized setting.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we formally introduce the system model
for the centralized caching problem. Then, we define the rate-
memory tradeoff based on the introduced framework, and state
the main problem studied in this paper.

A. System Model

We consider a system with one server connected to K
users through a shared, error-free link (see Fig. 1). The server
has access to a database of N files W1, ..., WN , each of size
F bits.1 We denote the j th bit in file i by Bi, j , and we assume
that all bits in the database are i.i.d. Bernoulli random variables
with p = 0.5. Each user has an isolated cache memory of
size M F bits, where M ∈ [0, N]. For convenience, we define
parameter t = K M

N .
The system operates in two phases, a placement phase and

a delivery phase. In the placement phase, users are given
access to the entire database, and each user can fill their cache
using the database. However, instead of allowing coding in
prefetching [10], we focus on an important class of prefetching
schemes, referred to as uncoded prefetching schemes:

Definition 1: An uncoded prefetching scheme is where each
user k selects no more than M F bits from the database and
stores them in its own cache, without coding. Let Mk denote
the set of indices of the bits chosen by user k, then we denote
the prefetching as

M = (M1, . . . ,MK).

1Although we only focus on binary files, the same techniques developed in
this paper can also be used for cases of q-ary files and files using a mixture
of different alphabets, to prove that same rate-memory trade off holds.

Figure 2.4: Caching with non-Uniform Demands [17]. The server contains N files that follow
a specific popularity distribution and connects through a shared, error-free channel to K users
each having a cache size corresponding to M files.

2.4 Caching with non-Uniform Demands

As we describe in the introduction, big data analytics on the telecommunication systems’ data
can reveal crucial information about the system. On such kind of information is the popularity
of the various contents that move around the network. Deriving such popularity distributions
is crucial to optimize the behavior of the system and properly allocate the available resources.
Caching with non-uniform demands was developed with the specific goal to take this information
into account and optimally adjust the placement and delivery phases of the caching system in
order to minimize the rate of delivery.

There have been many attempts and approaches to characterize caching with non-uniform
demands such as [17–20] with varying results. In this text, we will present the method developed
in [17] for illustration purposes as well as for highlighting the relation of this kind of caching
to the other types.

The archetypal system in Fig. 2.4 is again the one presented in section 2.2. In this system,
the server has N files of size F bit with each file having a specific popularity score. Without
loss of generality, we assume that the files are named in a decreasing order of popularity, with
the first file having popularity p1, the second p2 p1, the third p3 p2 etc. The di↵erent scores
sum to 1 and thus constitute a probabilistic distribution, called popularity distribution in this
context. Each of the users is connected to the server through a shared and error-free channel.

To accommodate for the di↵erences in popularity scores the files as grouped into groups
of ”similar” popularity. Similar means that the least popular file in each group has no less
than half the popularity of the most popular file in the group. For example, the first group
N1 will have all the files from 1 to N1 such that pN1 � p1 and pN1+1 < p1. File Nl + 1 will
thus be the first file of the second group N2 and so on forming L groups. The authors of [17]
call this N1,N2,...,NL grouping a maximal partition of the files within a popularity factor of 2.
Of course, one can use a di↵erent factor or leave the choice of groups to be a matter of some
optimization technique.

During the placement phase, a fraction of each user’s cache memory MlF is allocated to
each group Nl and the user randomly caches MlF/Nl bits from each file in the group N1. Note
that the memory factions Ml must sum to M so that each user’s cache memory is filled.

19

2.4. CACHING WITH NON-UNIFORM DEMANDS

In the delivery phase, the users are similarly grouped. All the users requesting a file from
group N1 form the user group K1, all the users requesting a file from group N2 form the user
group N2 etc. Since the user choices are random, the group cardinalities K1, K2, ... ,KL will
also be random variables. Then, the server uses the decentralized delivery scheme we have
presented in section 2.2 to deliver the requested files for each separate group.

The achievable rate of this procedure will be

R =
LX

l=1

R (Ml, Nl, Kl) , (2.29)

where R (Ml, Nl, Kl) is the peak rate of the decentralized delivery method used for each
group (see the end of this section for a discussion on its actual value).

Due to the randomness of the user groups, the figure of merit in this scheme cannot be the
one in (2.29) but rather the expected value of it with respect to the user group cardinalities.

E(R) =
LX

l=1

E (R (Ml, Nl, Kl)) , (2.30)

where

E (R (Ml, Nl, k)) =
KX

k=0

R (Ml, Nl, Kl = k)P (Kl) . (2.31)

In the above P (Kl) is the probability that the cardinality of the l-th user group is k.
This probability depends on the user’s random choices which ultimately follow the popular-
ity distribution. The authors of [17] prove that for the information-theoretic optimal rate
R

? (M,N , K, {pn}) of this scheme holds that

1

cL

LX

`=1

E (r (M,N`,K`)) R
? (M,N , K, {pn}) min

{M`}:
P

` M`=M

LX

`=1

E (r (M`, N`,K`))

LX

`=1

E (r (M/L,N`,K`))

(2.32)

In other words, the optimal rate is upper bounded by the expected rate of the proposed
scheme minimized among the di↵erent options for M1,...,ML for the user’s cache memory seg-
mentation which is further upper bounded by the expected rate that corresponds to a uniform
user cache memory segmentation where M1 = ... = ML = M/L. Furthermore, there is a con-
stant c independent from the system parameters such that the optimal rate is lower bounded
by 1/cL the aforementioned upper bound. So we see, that for a specific popularity distribution,
the optimum rate is within a constant multiplicative gap of this scheme’s achievable rate.

We would like to stress the dependence of this caching scheme to the decentralized caching.
The quantity R (Ml, Nl, Kl) used in the above expressions is the peak rate of the decentralized
delivery method. This shows that any improvement of the later directly induces an improvement
to the former, in a way similar to hierarchical caching. In particular, since the option to utilize
commonality was not available at the time of Niesen’s et al. paper, the authors of [17] give the
expression

20

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

r(M,N,K) =

8
<

:

K · (1 � M/N) · min
�

N
KM

�
1 � (1 � M/N)K

�
,

N
K

for 0 < M N

min{N,K} for M = 0
0 for M > N

(2.33)
However, after utilizing commonality among the user requests, this rate can improve to

the one we saw in section 2.2. What is more, assuming that the optimal file grouping is
used, the average rate cannot be further improved since the utilization of commonality achieves
optimality for decentralized caching. However, the optimal caching scheme for non-uniform
demands remains an open problem at the time of this writing.

We should also note that the proofs of the previous bounding results have not been formally
extended to the utilization of commonality, but there is no obvious reason for them not to hold.
Instead, utilizing commonality is expected to provide a tightening of these bounds.

2.5 Device-to-Device Caching

Machine type networks are expected to play an ever-increasing role in 5G communication
networks. Device-to-device (D2D) caching [16] was developed in order to enable the benefits of
coded caching in such distributed settings as a D2D network. D2D networks are systems where
the communication devices engage in direct communication with each other, without depending
on a central base station to handle the exchange of information. Such spatial networks can
exhibit highly complex behaviors that the network itself must be able to support by self-
organizing its operation. However, in order to illustrate the concept of D2D caching, we will
base our description in a rather simple setting. Nevertheless, the main ideas that we will
describe here can be extended in more general settings where user mobility is also taken into
account.

The D2D caching archetypal system we will describe is shown in Fig. 2.5. It comprises
of K nodes arranged in the unit square grid and each node is at a distance of 1/

p
K from

its horizontal and vertical neighbors and can transmit in a unit disk of radius r. Any nodes
within this disk can receive its transmission, as long as they are (1 + �)r away from other
transmitting nodes. For our simple illustrating example, we assume that r >

p
2 so only one

node can transmit at any given time.
As usual, there is a library of N files of size F , and these files will be distributed among the

K nodes, each having a cache memory size of MF bit. Again, the key parameter here is the
ratio of the total cache memory over the library size t = MK

N . Assuming that t is an integer,
during the placement phase each file is broken up into

�
K
t

�
subfiles, with each di↵erent subfile

of each file corresponding to a di↵erent subset At 2 2[
K]of t nodes (|At| = t). If t is not an

integer, we can apply memory sharing.
Now, each of the

�
K
t

�
subfiles is further broken into t packets. All the packets of a particular

subfile are then placed into the caches of the nodes in the corresponding At subset. The
procedure is exactly the same as the one we described for the placement phase of centralized
caching, with the only di↵erence that each subfile is further broken into t packets.

During the delivery phase, each node requests a particular file. The placement phase has
guaranteed that for each set of t + 1 nodes, At+1 2 2[

K] with |At+1| = t + 1, each node has
a subfile (with all its t packets) that another node requires and, what is more, all the other
t � 1 nodes have the same information as well (the same t packets). So a transmission of a

21

2.5. DEVICE-TO-DEVICE CACHING
852 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Fig. 1. a) Grid network with n = 49 nodes (black circles) with minimum
separation 1√

n
. The red area is the disk where the protocol model allows

no other concurrent transmission. r is the worst case transmission range
and � is the interference parameter. We assume a common r for all the
transmitter-receiver pairs. b) An example of single-cell layout and the inter-
ference avoidance spatial reuse scheme. In this figure, each square represents
a cluster. The gray squares represent the concurrent transmitting clusters.
In this particular example, the reuse factor is K = 9.

messages and its own cache, i.e., we have

Ŵu,f � �u({Xv,f : v ∈ Du}, Zu, f). (1)

�
As anticipated in Section I, in video on-demand the proba-

bility that two users wish to stream simultaneously a file at the
same time is essentially zero, although there is a large redun-
dancy in the demands when n # m. A rigorous mathematical
model for asynchronous content reuse is introduced in [15].
This involves the request of random segments, each formed
by L ′ packets of F bits each, from files of L packets, and
then letting L → ∞ while keeping L ′ fixed to some arbitrary
constant. Here, for the sake of brevity, we simply forbid the
possibility of naive multicasting. The interested reader may
look at the extended report version of this work [51], where
the model of [15] is adopted and a superset of these results,
including naive multicasting (when possible), is provided.

With this in mind, we move on and define the worst-case
error probability as

Pe = max
f∈Fn

max
u∈U

P
�

Ŵu,f '= W fu

�
. (2)

For given number of users n and library size m, letting
R = �

u∈U Ru , we say that the cache-rate pair (M, R) is
achievable if ∀ � > 0 there exist a sequence indexed by the
file size F → ∞ of cache encoding functions {�u}, delivery
functions {�u} and decoding functions {�u}, with rate R(F)

and probability of error P(F)
e such that lim supF→∞ R(F) ≤ R

and lim supF→∞ P(F)
e ≤ �. The optimal achievable rate5 is

given by

R∗(M) � inf{R : (M, R) is achievable}. (3)

In order to relate this definition of rate to the throughput of
the network, defined later, we borrow from [6] and [15] the
definition of transmission policy:

Definition 4 (Transmission Policy): The transmission pol-
icy � is a rule to activate the D2D links in the network.
Let L denote the set of all directed links. Let A ⊆ 2L the set
of all possible feasible subsets of links (this is a subset of the
power set of L, formed by all sets of links forming independent
sets in the network interference graph induced by the protocol
model). Let A ⊂ A denote a feasible set of simultaneously
active links. Then, � is a conditional probability mass function
over A given f (requests) and the caching functions, assigning
probability �(A) to A ∈ A. �

All the achievability results of this work are obtained using
deterministic transmission policies, which are obviously a
special case of Definition 4. Suppose that (M, R) is achievable
and that there exists a transmission policy that can deliver
to each user the coded symbols necessary to decode its
requested file in the worst-case demand case in no more than
D channel uses. Then, the throughput per user, measured in
useful information bits per channel use, is given by

T � F
D

. (4)

We say that the pair (M, T) is achievable if (M, R) is
achievable and if there exists a transmission policy � such
that the RF encoded bits can be delivered to their destinations
in D ≤ F/T channel uses. Then, the optimal achievable
throughput is defined as

T ∗(M) � sup{T : (M, T) is achievable}. (5)

Notice that while in the case of the single bottleneck link
network [17] obviously D = 1/(RF), such that T = 1/R,
here we may have concurrent transmissions due to the inherent
spatial reuse of D2D networks [15], therefore we need to
distinguish between rate (in a sense consistent with [17]) and
throughput.

In the following we assume that t �= Mn
m ≥ 1. Notice that

this is a necessary condition in order to satisfy any arbitrary
demand vector. In fact, if t < 1, then the aggregate cache
in the entire network cannot cache the file library, such that
some files or part of files are missing and cannot be delivered.
This requirement is not needed when there is an omniscient

5As a matter of fact, this is the min-max number of packet transmissions
where min is over the caching/delivery scheme and max is over the demand
vectors, and thus intuitively is the inverse of the “rate” commonly used in
communications theory. We use the term “rate” in order to stay compliant
with the terminology introduced in [17].

Figure 2.5: Device-to-device (D2D) Caching [16]. The K devices are the nodes in a grid
covering the unit square. The distance between neighboring horizontal and vertical nodes is
1/

p
K. Each node transmits in a disk of radius r and in order to receive from a transmitting

node it must be at least (1 +�)r away from other transmitting nodes. In our system r >
p
2

so only one node is allowed to transmit at any given time. The library is comprised of N files,
each of size F and each node has a cache memory of MF bit.

suitable xOR among the packets that each node has is enough for all the nodes to acquire their
requested files.

To illustrate how these transmission is formed for each At+1, let us explain the transmission
of a particular node u 2 At+1. For each other node v 2 At+1\{u} with v 6= u, the placement
phase has guaranteed that all the nodes in At+1\{v} have a subfile that v is requesting (all
its t packets). Remembering that we have named all the K nodes using numbers 1, 2, ..., K
node u can observe its position in the set At+1\{v} arranged in an ascending manner. This
position can be one of 1, 2, ..., t since there are exactly t nodes present in At+1\{v}. So node
u, among all packets that user v is requesting, can select the one corresponding to its position.
Selecting in this manner one packet for each other node in At+1 and xOR-ing them constitutes
its transmission for the particular At+1.

So we see that the delivery method is, in essence, the same as the one for centralized caching,
with the only di↵erence being that for each At+1 instead of having a server making a massive
transmission, we have the nodes in At+1 transmitting and exchanging the corresponding packets
themselves. The second di↵erence is that in each node transmission, instead of having the node
xOR-ing and transmitting a whole subfile, we have it transmit just a packet that corresponds
to the 1/t of the subfile. In this way, an unfair situation where some nodes transmit a lot
of information and some other transmit nothing is avoided. In this arrangement, all t nodes
having a requested subfile contribute equally in providing it to the node having requested it by
including just their corresponding packet in their xOR-ed transmission.

The rate achieved by this scheme is

R(M,N,K) =
N

M

✓
1 � M

N

◆
(2.34)

The authors of [16] show that this rate is order optimal by proving that as K, N ! 1 and
t � 1

22

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

,(((�$&0 75$16$&7,216 21 1(7:25.,1* �

2QOLQH &RGHG &DFKLQJ
5DPWLQ 3HGDUVDQL� 0RKDPPDG $OL 0DGGDK�$OL, Member, IEEE� DQG 8UV 1LHVHQ, Member, IEEE

Abstract—:H FRQVLGHU D EDVLF FRQWHQW GLVWULEXWLRQ VFHQDULR FRQ�
VLVWLQJ RI D VLQJOH RULJLQ VHUYHU FRQQHFWHG WKURXJK D VKDUHG ERWWOH�
QHFN OLQN WR D QXPEHU RI XVHUV HDFK HTXLSSHG ZLWK D FDFKH RI ¿QLWH
PHPRU\� 7KH XVHUV LVVXH D VHTXHQFH RI FRQWHQW UHTXHVWV IURP D VHW
RI SRSXODU ¿OHV� DQG WKH JRDO LV WR RSHUDWH WKH FDFKHV DV ZHOO DV
WKH VHUYHU VXFK WKDW WKHVH UHTXHVWV DUH VDWLV¿HG ZLWK WKH PLQLPXP
QXPEHU RI ELWV VHQW RYHU WKH VKDUHG OLQN� $VVXPLQJ D EDVLF0DUNRY
PRGHO IRU UHQHZLQJ WKH VHW RI SRSXODU ¿OHV� ZH FKDUDFWHUL]H DSSUR[�
LPDWHO\ WKH RSWLPDO ORQJ�WHUP DYHUDJH UDWH RI WKH VKDUHG OLQN� :H
IXUWKHU SURYH WKDW WKH RSWLPDO RQOLQH VFKHPH KDV DSSUR[LPDWHO\
WKH VDPH SHUIRUPDQFH DV WKH RSWLPDO RIÀLQH VFKHPH� LQ ZKLFK WKH
FDFKH FRQWHQWV FDQ EH XSGDWHG EDVHG RQ WKH HQWLUH VHW RI SRSXODU
¿OHV EHIRUH HDFK QHZ UHTXHVW� 7R VXSSRUW WKHVH WKHRUHWLFDO UHVXOWV�
ZH SURSRVH DQ RQOLQH FRGHG FDFKLQJ VFKHPH WHUPHG coded least-re-
cently sent �/56� DQG VLPXODWH LW IRU D GHPDQG WLPH VHULHV GHULYHG
IURP WKH GDWDVHW PDGH DYDLODEOH E\ 1HWÀL[IRU WKH 1HWÀL[3UL]H�)RU
WKLV WLPH VHULHV� ZH VKRZ WKDW WKH SURSRVHG FRGHG /56 DOJRULWKP
VLJQL¿FDQWO\ RXWSHUIRUPV WKH SRSXODU OHDVW�UHFHQWO\ XVHG FDFKLQJ
DOJRULWKP�

Index Terms—&RGHG FDFKLQJ� FRQWHQW GLVWULEXWLRQ� RQOLQH
VFKHPH�

,� ,1752'8&7,21

7 +(GHPDQG IRU YLGHR VWUHDPLQJ VHUYLFHV VXFK DV WKRVH
RIIHUHG E\ 1HWÀL[� <RX7XEH� $PD]RQ� DQG RWKHUV LV

JURZLQJ UDSLGO\� 7KLV SODFHV D VLJQL¿FDQW EXUGHQ RQ QHWZRUNV�
2QH ZD\ WR PLWLJDWH WKLV EXUGHQ LV WR SODFH PHPRULHV LQWR WKH
QHWZRUN WKDW FDQ EH XVHG WR FDFKH ¿OHV WKDW XVHUV PD\ UHTXHVW�
,Q WKLV SDSHU� ZH LQYHVWLJDWH KRZ WR RSWLPDOO\ XVH WKHVH FDFKHV�
,Q SDUWLFXODU� ZH DUH LQWHUHVWHG LQ online DOJRULWKPV IRU WKLV
SUREOHP� LQ ZKLFK WKH RSHUDWLRQV RI WKH FDFKHV KDYH WR EH
SHUIRUPHG RQ WKH À\ DQG ZLWKRXW NQRZOHGJH RI IXWXUH UHTXHVWV�
7KH RQOLQH FDFKLQJ SUREOHP �DOVR NQRZQ DV WKH SDJLQJ

SUREOHP LQ WKH FRQWH[W RI YLUWXDO PHPRU\ V\VWHPV� KDV D ORQJ
KLVWRU\� GDWLQJ EDFN WR WKH ZRUN E\ %HODG\ LQ ���� >�@� 7KLV
SUREOHP KDV EHHQ LQYHVWLJDWHG ERWK IRU V\VWHPV ZLWK D VLQJOH
FDFKH >�@±>��@ DV ZHOO DV IRU V\VWHPV ZLWK PXOWLSOH GLVWULEXWHG

0DQXVFULSW UHFHLYHG)HEUXDU\ ��� ����� UHYLVHG 2FWREHU ��� ����� DFFHSWHG
'HFHPEHU ��� ����� DSSURYHG E\ ,(((�$&075$16$&7,216 21 1(7:25.,1*
(GLWRU 7� -DYLGL� 7KH ZRUN RI 8� 1LHVHQ ZDV VXSSRUWHG LQ SDUW E\ $)265 XQGHU
*UDQW)$��������������� 7KLV SDSHU ZDV SUHVHQWHG LQ SDUW DW WKH ,QWHUQDWLRQDO
&RQIHUHQFH RQ &RPPXQLFDWLRQV� -XQH �����
5� 3HGDUVDQL LV ZLWK WKH 8QLYHUVLW\ RI &DOLIRUQLD� %HUNHOH\� &$ ����� 86$

�H�PDLO� UDPWLQ#HHFV�EHUNHOH\�HGX��
0� $� 0DGGDK�$OL LV ZLWK %HOO /DEV� $OFDWHO�/XFHQW� +ROPGHO� 1- �����

86$ �H�PDLO� PRKDPPDGDOL�PDGGDK�DOL#DOFDWHO�OXFHQW�FRP��
8� 1LHVHQ ZDV ZLWK %HOO /DEV� $OFDWHO�/XFHQW� +ROPGHO� 1- ����� 86$� +H

LV QRZ ZLWK 4XDOFRPP
V 1HZ -HUVH\ 5HVHDUFK &HQWHU� 0XUUD\ +LOO� 1- �����
86$ �H�PDLO� XUV�QLHVHQ#LHHH�RUJ��
&RORU YHUVLRQV RI RQH RU PRUH RI WKH ¿JXUHV LQ WKLV SDSHU DUH DYDLODEOH RQOLQH

DW KWWS���LHHH[SORUH�LHHH�RUJ�
'LJLWDO 2EMHFW ,GHQWL¿HU ��������71(7�������������

)LJ� �� &DFKLQJ V\VWHP FRQVLGHUHG LQ WKLV SDSHU� $ VHUYHU FRQWDLQLQJ ¿OHV
RI VL]H ELWV HDFK LV FRQQHFWHG WKURXJK D VKDUHG OLQN WR XVHUV HDFK ZLWK D
FDFKH RI VL]H ELWV� ,Q WKH ¿JXUH� DQG �

FDFKHV >��@±>��@� 2QH VROXWLRQ WR WKH FDFKLQJ SUREOHP WKDW LV
SRSXODU LQ SUDFWLFH DQG IRU ZKLFK VWURQJ RSWLPDOLW\ JXDUDQWHHV
FDQ EH SURYHG >�@� >�@� >�@� >��@±>��@ LV WKH least-recently used
�/58� HYLFWLRQ SROLF\� ,Q /58� HDFK FDFKH LV FRQWLQXRXVO\
XSGDWHG WR KROG WKH PRVW UHFHQWO\ UHTXHVWHG ¿OHV� DOORZLQJ LW WR
H[SORLW WKH WHPSRUDO ORFDOLW\ RI FRQWHQW UHTXHVWV�
7KH ¿JXUH RI PHULW DGRSWHG E\ WKH SDSHUV PHQWLRQHG VR IDU

LV WKH FDFKH�PLVV UDWH �RU SDJH�IDXOW UDWH LQ WKH FRQWH[W RI WKH
SDJLQJ SUREOHP�� VRPHWLPHV ZHLJKWHG E\ WKH ¿OH VL]H� 7KLV
FDFKH�PLVV UDWH LV XVHG DV D SUR[\ IRU WKH QHWZRUN ORDG�)RU
V\VWHPV ZLWK D single FDFKH� WKH ZHLJKWHG FDFKH�PLVV UDWH
DQG WKH QHWZRUN ORDG DUH LQGHHG SURSRUWLRQDO WR HDFK RWKHU�
DQG KHQFH PLQLPL]LQJ WKH IRUPHU DOVR PLQLPL]HV WKH ODWWHU�
+RZHYHU� WKLV SURSRUWLRQDOLW\ QR ORQJHU KROGV IRU V\VWHPV
ZLWK multiple FDFKHV�)RU VXFK V\VWHPV ZLWK PXOWLSOH FDFKHV�
D IXQGDPHQWDOO\ GLIIHUHQW VR�FDOOHG coded caching DSSURDFK
LV UHTXLUHG� 7KLV FRGHG FDFKLQJ DSSURDFK KDV EHHQ UHFHQWO\
LQWURGXFHG LQ >��@±>��@ IRU WKH offline FDFKLQJ SUREOHP�
,Q WKLV SDSHU� ZH LQYHVWLJDWH online FRGHG FDFKLQJ� IRFXVLQJ

RQ D EDVLF FRQWHQW GLVWULEXWLRQ VFHQDULR FRQVLVWLQJ RI D VLQJOH
RULJLQ VHUYHU FRQQHFWHG WKURXJK D VKDUHG �ERWWOHQHFN� OLQN WR D
QXPEHU RI XVHUV HDFK HTXLSSHG ZLWK D FDFKH RI ¿QLWH PHPRU\
�VHH)LJ� ��� 7KH XVHUV LVVXH D VHTXHQFH RI FRQWHQW UHTXHVWV IURP
D VHW RI SRSXODU ¿OHV� DQG WKH JRDO LV WR RSHUDWH WKH FDFKHV DV ZHOO
DV WKH VHUYHU VXFK DV WR VDWLVI\ WKHVH UHTXHVWV ZLWK WKH PLQLPXP
QXPEHU RI ELWV VHQW RYHU WKH VKDUHG OLQN� :H FRQVLGHU WKH FDVH
ZKHUH WKH VHW RI SRSXODU ¿OHV HYROYH DFFRUGLQJ WR D 0DUNRY
PRGHO DQG XVHUV VHOHFW WKHLU GHPDQG XQLIRUPO\ IURP WKLV VHW�
:H DSSUR[LPDWHO\ FKDUDFWHUL]H WKH RSWLPDO ORQJ�WHUP DY�

HUDJH UDWH RI WKH VKDUHG OLQN IRU WKLV VHWWLQJ� :H VKRZ IXUWKHU
WKDW WKH RSWLPDO RQOLQH VFKHPH SHUIRUPV DSSUR[LPDWHO\ WKH
VDPH DV WKH RSWLPDO RIÀLQH VFKHPH� 7KLV LV SHUKDSV VXUSULVLQJ�
VLQFH LQ WKH RIÀLQH VFKHPH FDFKHV DUH DOORZHG WR EH XSGDWHG
LQ DQ RIÀLQH IDVKLRQ HDFK WLPH WKH VHW RI SRSXODU ¿OHV FKDQJHV�

��������� � ���� ,(((� 3HUVRQDO XVH LV SHUPLWWHG� EXW UHSXEOLFDWLRQ�UHGLVWULEXWLRQ UHTXLUHV ,(((SHUPLVVLRQ�
6HH KWWS���ZZZ�LHHH�RUJ�SXEOLFDWLRQVBVWDQGDUGV�SXEOLFDWLRQV�ULJKWV�LQGH[�KWPO IRU PRUH LQIRUPDWLRQ�

Figure 2.6: Online Caching [12]. The server contains N files of size F that are popular among
the system. It communicates through a shared, error-free channel with K users each of cache
memory size MF bit. The contents of library N can change over time.

R(M,N,K)

R⇤(M,N,K)

8
>>>>>><

>>>>>>:

4, t = !(1), 1
2 M = o(m)

8, n = O(m), t = ⇥(1), 1
2 M = o(m)

6, M = ⇥(m)
2
M , n = !(m),M <

1
2

4
M , n = O(m), n > m,M <

1
2

2, n = O(m), n m,M <
1
2

(2.35)

where R
⇤(M,N,K) is the information-theoretic optimal rate and O,⇥ and ! the common

asymptotic notations [76].
We should again note the critical dependence of D2D Caching on the centralized caching

scheme showing that any result about the latter is expected to directly a↵ect the former. Al-
though it has not been o�cially published, since the information that each node ultimately
receives is the same as that in a centralized caching, it is expected that the utilizing com-
monality, so that transmissions corresponding to a non-leader At+1 set do not take place, is
expected to further decrease the achievable rate of this method. However, as of the time of
this writing, this improvement has not been explored by the literature as well as neither the
question of whether the utilization of commonality would lead to an information-theoretically
optimal scheme.

2.6 Online Caching

In this section, we present a variance of coded caching tailored to the fact that as time goes
by and system tra�c is constantly analyzed, di↵erent files are recognized as popular in a
system. This creates the need for updating the user caches with new content during the
system’s operation and before a new delivery phase has a chance to take place.

The archetypal system is presented in Fig. 2.6. In this system, the server contains a library
of N files of size F that are popular among the system. It communicates with K users, each
having a cache memory size of MF . The contents of the library may change as time goes by.

23

2.6. ONLINE CACHING

This creates the need for updating the contents of the user’s caches without going through
a new delivery phase each time the library contents change. The way online caching deals with
this situation is two-fold. First, it allows the users to keep in their caches more that N partially
cached files. In particular, at any given time the users keep in their cache

N
0 = ↵N, (2.36)

partially cached files, with ↵ � 1. The exact value can be chosen freely in this interval to
optimize the system. The authors of [12] suggest selecting an ↵ 2 (1, 2] The initial placement
is the same as the one described in decentralized caching, with each user randomly caching
MK/N

0 bits of N 0 files.
The delivery procedure is again the same as the one we described for decentralized caching

without utilizing commonality. The di↵erence in online caching is when a requested file is not
partially cached by the users. When this happens, the whole file is transmitted by the server
and the users take this opportunity to update their caches. In particular, they discard the
MF/N

0 bits of the least frequently sent file and replace it with an equal amount of bits taken
from the transmitted file.

In this way, the users update their caches with new files that become popular or with files
that were once popular and have regained their popularity (an ↵ > 1 assists in increasing
the probability that these files are still cached by the users). This scheme has the additional
advantage that if the popularity distribution is constant, the users slowly come to reflect this
distribution by caching the most popular files.

The rate achieved by this scheme is the same as that in decentralized caching without
utilizing commonality, which for K � N is

R(M,N,K) = K · (1 � M/N) · N

KM

�
1 � (1 � M/N)K

�
(2.37)

The authors of [12] prove that this achievable rate is within a multiplicative and additive
gap with respect to the optimal rate.

1

12
R(M,N,K) R

? 2R(M,N,K) + 6 (2.38)

Of course, any improvement in decentralized caching, like the utilization of commonality, is
expected to improve online caching as well and bring its rate closer to optimality.

24

Chapter 3

Computational Analysis of ITODM

3.1 Centralized Caching

In this section, we attempt a computational analysis of ITODM presented in [59]. The com-
putational cost will be counted in “instructions” performed or “number of XORs” required to
do a calculation. We use the symbols | · |c and | · |s to refer to the computational cost and
the number of bits, respectively. So for example, if A, B and C are two bit blocks of size
|A|s = |B|s = |C|s = n bit, then XOR-ing these three blocks, will require the execution of
|A � B � C|c = 2n instructions (or XORs at the bit level).

Theorem 1. In a centralized coded caching system with symmetric batch prefetching, the total
computational cost for a leader under the ITODM is given by

Cc,l =

✓
K � 1

t

◆
Ft�
K
t

� , (3.1)

or equivalently

Cc,l =

✓
1 � M

N

◆
MKF

N
. (3.2)

Proof. Under ITODM, all transmissions relevant to a leader u 2 U take place. The number of
those transmissions equals the number of (t + 1)-subsets At+1 2 At+1 containing the user u.
But this is the number of t-subsets At 2 At that do not contain the user u. So there will be

|{At+1 2 At+1 : u 2 At+1}| = |{At 2 At : u /2 At}|

=

✓
K � 1

t

◆
(3.3)

transmissions relative to leader u.
Let YAt+1 be one such transmission. In order for u to recover the subfile Wdu,At+1\{u}, YAt+1

must be XORed with all the subfiles Wdu0 ,At+1\{u0} requested by the other users u0 2 At+1\{u}
that are already present in u’s cache.

Wdu,At+1\{u} = YAt+1 �
u02At+1\{u}

Wdu0 ,At+1\{u0}. (3.4)

There are |At+1\{u}| = t such subfiles so there will be t block-XORs with each block having a
size of |Wdu,At+1\{u}| = F

��
K
t

�
bit. So the computational cost of decoding the subfileWdu,At+1\{u}

25

3.1. CENTRALIZED CACHING

will be

Cc(Wdu,At+1\{u}) =

����YAt+1 �
u02At+1\{u}

Wd0u,At+1\{u0}

����
c

=
Ft�
K
t

� .
(3.5)

Since there are
�

K�1
t

�
such subfiles that need decoding, the total computational cost for a

leader will be expressed by (3.1) or, substituting the binomial coe�cients, by (3.2).

Finding an expression for the total computational cost of a non-leader u
nl 2 [K]\{U} is

not so straightforward since for di↵erent non-leader subsets At+1 2 Anl
t+1, the computation of

YAt+1 according to (2.9) has di↵erent computational cost. Nevertheless, due to the importance
of such a quantity,we make an attempt to derive an expression for it starting from the cost of
calculating the subfile Wdunl,At+1\{unl}

that is shared among the non-leaders in At+1\{unl}.
In order to give an exact expression for this computational cost, we will use some additional

terminology introduced in [59]. If At+1 is a non-leader set, then the corresponding B = U [At+1

is partitioned into sets of users having the same demand. We will call these sets the “tail” of
the corresponding leader. So we have the following definition:

Definition 1. For any non-leader set At+1 and any leader u 2 B = U [At+1 we define the tail
of this leader as

Bu = {x 2 B : du = dx}. (3.6)

Using this definition, it is easy to see that each V-set in (2.8) is, in fact, a selection of users
among the di↵erent tails, taking one from each tail. Thus, we have that

VF ' Bu1 ⇥ Bu2 ⇥ · · · ⇥ BuNe(d)
. (3.7)

The symbol “'” is used to show that the two sets are not equal per se, but can be put in
a one-to-one correspondence. As a matter of fact, if we change the tuple structure to that of a
subset (by dropping the ordering) then the two become equal. We can now state the following
theorem.

Theorem 2. In a centralized coded caching system with symmetric batch prefetching, let At+1

be a set comprised of non-leaders. The computational cost for a non-leader u
nl 2 [K]\{U} for

decoding a specific subfile Wdunl,At+1\{unl}
shared among the other non-leaders u

0 2 At+1\{u} is

Cc,nl

⇣
Wdunl,At+1\{unl}

⌘
=
�
|VF | � 2

� F�
K
t

� + Ft�
K
t

� , (3.8)

where |VF | =
Y

u2U

|Bu|.

Proof. According to the ITODM, the computation of Wdunl,At+1\{unl}
is done in two parts. The

first part is computing the signal YAt+1 from the actual transmissions using (2.9). This compu-
tation involves |VF \{U}| = |VF | � 1 signals and thus needs |VF | � 2 block-XORs. Each block
has size |YAt+1 | = F

��
K
t

�
bit which leads to the first summand of (3.8).

The second step has to do with decoding the actual subfileWdunl,At+1\{unl}
from the computed

signal YAt+1 . This step is the same as the corresponding one for a leader, so its computational
cost is given directly from (3.5), leading to the second summand of (3.8). The expression for
|VF | comes directly from (3.7).

26

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

We can now proceed with our attempt for a total characterization of the computational cost
of a non-leader for a particular demand. For this, we will use the following definitions.

Definition 2. Let d 2 [N]K a demand with Ne(d) distinct file requests and U the leader set.
We call the set of the non-leaders requesting the same file as leader ui 2 U the pure tail of this
leader.

Qui = {u 2 [K]\U : l(u) = ui}, (3.9)

where l(u) signifies the leader of u.

For the rest of this section, without loss of generality (w.l.o.g.) we assume that the non-
leader we are interested in belongs in Qu1 , that is l(u

nl) = u1. This will simplify our expressions
while still covering the general case with a simple renaming of the users. It also means that
while the cardinality of the other pure tails can be between 0 and K�Ne(d)�1, the cardinality
of Qu1 is between 1 and K � Ne(d).

Definition 3. For demand d 2 [N]K and leader set U , we call W(unl) the set of all non-leader
(t+ 1)-sets that contain user u

nl.

W(unl) = {At+1 2 Anl
t+1 : u

nl 2 At+1}. (3.10)

It is easy to see that |W(unl)| =
�

K�Ne(d)�1
t

�
because when forming a set At+1 2 W(unl)

we get to choose only t among K � Ne(d) � 1 non-leaders since user unl is always selected by
definition. We can understand that after transmission has taken place, the non-leader u

nl is
missing exactly the subfiles that correspond to the sets in W(unl).

Definition 4. Let At+1 2 W(unl). We call the vector (|Bu1 |, . . . , |BuNe (d)|) the profile of At+1.

Since l(unl) = 1, we have |Bu1 | 2 {2, . . . , |Qu1 | + 1} while for the rest we have |Bui | 2
{1, . . . , |Qui | + 1}.

It is easy to see that all subfiles Wdunl,At+1\{unl}
coming from sets At+1 that have the same

profile have the same computational costs given by (3.8). The following theorem gives the
number of non-leader sets At+1 2 W(unl) that have a particular profile.

Theorem 3. Let (k1, . . . , kNe(d)) 2 {0, . . . , |Qu1 | � 1} ⇥ {0, . . . , |Qui |}Ne(d)�1 such that k1 +
· · ·+ kNe(d) = t. The number of At+1 2 W(unl) having profile (k1 +2, k2 +1, . . . , kNe(d) + 1) is

✓
|Qu1 | � 1

k1

◆✓
|Qu2 |
k2

◆
. . .

✓
|QuNe (d)|
kNe(d)

◆
. (3.11)

Proof. For i 6= 1, since the pure tail of leader ui has |Qui | elements, there are
�|Qui |

ki

�
ways to

choose ki of them. For i = 1, user unl is always chosen by definition. That leaves us with the
rest |Qu1 | � 1 non-leaders among which to choose k1 which can be done in

�|Qu1 |�1
ki

�
di↵erent

ways. Thus, the total number of non-leader sets At+1 2 W(unl) that we can form with the
particular profile is given by the product of the above binomial coe�cients.

Now we are in a position to calculate the total computational cost for the non-leader u
nl

needed for deriving the non-transmitted subfiles from the transmitted ones by summing (3.8)
over all At+1 2 W(unl), in e↵ect proving the following theorem.

27

3.1. CENTRALIZED CACHING

Theorem 4. Suppose a centralized caching scheme with symmetric batch prefetching and a de-
mand d with Ne(d) leaders whose pure tail sizes are |Qui |, i 2 {1, . . . , Ne(d)}. Under ITODM,
the total computational cost of a non-leader u

nl whose (w.l.o.g.) leader is u1 needed for com-
puting the non-transmitted subfiles from the transmitted ones is

C
nt
c,nl = S

F�
K
t

� +
✓
K � Ne(d) � 1

t

◆
F (t � 2)�

K
t

� , (3.12)

where

S =
X

(k1,...,kNe(d))2R

k1+···+kNe(d)=t

✓
|Qu1 | � 1

k1

◆✓
|Qu2 |
k2

◆
. . .

✓
|QuNe (d)|
kNe(d)

◆

⇥ (k1 + 2)(k2 + 1) . . . (kNe(d) + 1)

(3.13)

and

R = {0, . . . , |Qu1 | � 1} ⇥ {0, . . . , |Qui |}Ne(d)�1
. (3.14)

As we expected, the expression for this computational cost is quite complicated due to the
many factors a↵ecting the end result. The di�culty lies in calculating the factor S appearing
in the above theorem. However, it is possible to further study this term and reach a somewhat
simple form.

To do so, we start from (3.13) and do the multiplications among the di↵erent ki giving us
the following result

S =
Ne(d)X

l=0

0

BBB@
X

1<i2<···<ilNe(d)

X

(k1,...,kNe(d))2R

k1+···+kNe(d)=t

✓
|Qu1 | � 1

k1

◆
. . .

✓
|QuNe (d)|

kNe

◆
k1ki1 . . . kil

+2
X

1<i1<···<ilNe(d)

X

(k1,...,kNe(d))2R

k1+···+kNe(d)=t

✓
|Qu1 | � 1

k1

◆
. . .

✓
|QuNe (d)|

kNe

◆
ki1 . . . kil

1

CCCA
.

(3.15)

We should note that the set R in this expression can be generalized to the whole NNe(d) since
there are not any additional tuples in NNe(d) that lead to a non-zero summand. Now, using the
binomial coe�cient property

�
n
k

�
k = n

�
n�1
k�1

�
and the generalized Vandermonde’s identity [77],

which reads X

(k1,...,kp)2Np
k1+···+kp=m

✓
n1

k1

◆
. . .

✓
np

kp

◆
=

✓
n1 + · · · + np

m

◆
, (3.16)

as well as the fact that the sum of the pure tail sizes is equal to the number on non-leaders, we
can reach the following form

S =
Ne(d)X

l=0

✓
K � Ne(d) � 1 � l

t � l

◆ X

1<i2<···<ilNe(d)

(|Qu1 | � 1) |Qui2
| . . . |Quil

|

+2
X

1<i1<···<ilNe(d)

|Qui1
| . . . |Quil

|
! (3.17)

28

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

This form highlights the fact that for Ne(d) > t the summation ends at l = t. We could have
seen this in the previous form of (3.15) if we had noticed that when Ne(d) > t the condition
k1 + ... + kNe(d) = t allows only for up to t terms to be non-zero at the same time. However,
this is easier to see in (3.17). Also, since (|Qu1�1) + |Qu2 | + · · · + |QuNe(d)

| = K � Ne(d) � 1,
only up to K � Ne(d) � 1 terms of the above sum can be non-zero at the same time. That
means that if Ne(d) > K � Ne(d) � 1, the summation stops at l = K � Ne(d) � 1.

This allows us to replace Ne(d) in the sum with min(t, Ne(d)) and reach (3.18).

S =
min(t,Ne(d))X

l=0

✓
K � Ne(d) � 1 � l

t � l

◆ X

1<i2<···<ilNe(d)

(|Qu1 | � 1) |Qui2
| . . . |Quil

|

+2
X

1<i1<···<ilNe(d)

|Qui1
| . . . |Quil

|
!
.

(3.18)

Now, we can fully characterize the total computational cost of a non-leader. Theorem 4
gives us the computational cost for calculating the untransmitted subfiles. For the transmitted
ones, the situation is similar to that of a leader. The cost for decoding each transmitted subfile
is given by (3.5). Taking into account that the total transmitted subfiles requested by u

nl are�
K�1

t

�
�
�

K�Ne(d)�1
t

�
(the total subfiles minus the non-transmitted ones) we reach the following

theorem.

Theorem 5. In a centralized caching scheme with symmetric batch prefetching let d be a de-
mand with Ne(d) leaders whose pure tail sizes are |Qui |, i 2 {1, . . . , Ne(d)}. Under ITODM, the
total computational cost of a non-leader u

nl whose (w.l.o.g.) leader is u1 needed for recovering
their requested subfiles is

Cc,nl =

✓
K � 1

t

◆
Ft�
K
t

� +

S � 2

✓
K � Ne(d) � 1

t

◆�
F�
K
t

� , (3.19)

with S given by either (3.13) or (3.18)

3.2 Decentralized Caching

For simplicity, we will assume that the choice of leaders and non-leaders is the same among
all centralized instances of decentralized caching. This is an assumption that places a big
computational burden on the users chosen as non-leaders. Alternate scenarios that seek to
distribute the extra computational burden of being a non-leader among the users can modify
this assumption and o↵er a more balanced computational load between the users. However,
this assumption provides a solid starting point for such further analyses, which makes it quite
important to study.

Extending the previous section analysis to decentralized caching, the exact computational
cost for this scheme is given in the three following theorems.

Theorem 6. In a decentralized coded caching system with symmetric batch prefetching, the
total computational cost for a leader under ITODM is

C
dec
c,l = (K � 1)

✓
1 � M

N

◆
MF

N
+ o(F). (3.20)

29

3.2. DECENTRALIZED CACHING

Proof. Since decentralized caching is comprised of multiple instances of centralized caching, we
can sum up the computational cost of a leader over all these instances. The computational
cost of a single instance of centralized caching is given by (3.2) after we substitute F with the
equivalent file size given by (2.14).

So the total computational cost for a leader will be

C
dec
c,l =

K�1X

j=0

✓
K � 1

j

◆ |BL
j (W)|j
�

K
j

�

=
K�1X

j=0

✓
K � 1

j

◆✓
M

N

◆j ✓
1 � M

N

◆K�j

jF.

(3.21)

Taking the term 1� M
N out of the sum and using the formula [77] for the expected value the

binomial distribution B (K � 1,M/N) we reach (3.20) after plugging in the term o(F) that we
omitted for simplicity.

Theorem 7. Suppose a decentralized caching scheme and a demand d with Ne(d) leaders whose
pure tail sizes are |Qui |, i 2 {1, . . . , Ne(d)}. Under ITODM, the total computational cost of
a non-leader u

nl whose (w.l.o.g.) leader is u1 needed for deriving the non-transmitted subfiles
from the transmitted ones is

C
dec,nt
c,nl =

✓
1 � M

N

◆Ne(d)+1

F

0

@
✓
M

N
(|Qu1| � 1) + 2

◆Ne(d)Y

i=2

✓
M

N
|Qui | + 1

◆

+
M

N
(K � Ne(d) � 1) � 2

1

A+ o(F).

(3.22)

Proof. We recall that the decentralized caching is, in fact, broken down to multiple instances
of centralized caching, with each instance dealing with the bits shared among j users, with
j 2 {0, 1, . . . , K}. Since for j � K � Ne(d), there are no (j + 1)-sets composed of solely non-
leaders, all subfile transmissions take place and there is no computational cost involved with
deriving any untransmitted subfiles. Thus, in order to find out the total cost of a non-leader
related to the computation of the non-transmitted subfiles, we just have to add the individual
computational costs for j up to K � Ne(d) � 1, as given by theorem 4. If C

nt
c,nl(j) is the

computational cost of unl in the j-th instance of centralized caching, then the total cost for
non-leader unl will be

C
dec,nt
c,nl =

K�Ne(d)�1X

j=0

C
nt
c,nl(j)

=
K�Ne(d)�1X

j=0

S(j)
|BL

j (W)|
�

K
j

�

| {z }
S1

+
K�Ne(d)�1X

j=0

✓
K � Ne(d) � 1

j

◆ |BL
j (W)|j
�

K
j

�

| {z }
S2

�
K�Ne(d)�1X

j=0

✓
K � Ne(d) � 1

j

◆ |BL
j (W)|2
�

K
j

�

| {z }
S3

.

(3.23)

30

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

The above expression comes from (3.19) by replacing the file size F with the equivalent file
size |BL

j (W)| of the j-th instance of centralized caching given by (2.14) and instead of S using
S(j), which is the value of (3.13) for t = j. We should note that for j = 0 the computational cost
is actually zero since there is no derivation happening. The information in the corresponding
YA1 transmissions that take place is readily available to any non-leader that is interested in
it. However, we let j in the above expression start from zero because it will help us in our
manipulations.

We will now examine each of the three summands by itself. We should note that for
simplicity, in substituting |BL

j (W)|, we will omit the term o(F) of (2.14), which nevertheless is
always present. Starting with S1 and using (3.18) for S(j) gives us

S1 =
K�Ne(d)�1X

j=0

min(j,Ne(d))X

l=0

✓
K � Ne(d) � 1 � l

j � l

◆
Q(l)

✓
M

N

◆j ✓
1 � M

N

◆K�j

F

=
X

{j,l}2R

✓
K � Ne(d) � 1 � l

j � l

◆
Q(l)

✓
M

N

◆j ✓
1 � M

N

◆K�j

F,

(3.24)

where

Q(l) =
X

1<i2<···<ilNe(d)

(|Qu1 | � 1) |Qui2
| . . . |Quil

|

+ 2
X

1<i1<···<ilNe(d)

|Qui1
| . . . |Quil

|,
(3.25)

and

R =

⇢
(j, l) 2 N2 :

j 2 {0, . . . , K � Ne(d) � 1},
l 2 {0, . . . ,min(j,Ne(d))}

�
. (3.26)

Region R can be equivalently described as

R =

⇢
(j, l) 2 N2 :

l 2 {0, . . . ,m}
j 2 {1, . . . , K � Ne(d) � 1}

�
, (3.27)

where
m = min(K � Ne(d) � 1, Ne(d)). (3.28)

This allows us to exchange the order of summation in (3.24) and get

S1 =
mX

l=0

K�Ne(d)�1X

j=l

✓
K � Ne(d) � 1 � l

j � l

◆
Q(l)

✓
M

N

◆j ✓
1 � M

N

◆K�j

F

(a)
=

mX

l=0

Q(l)

✓
M

N

◆l✓
1 � M

N

◆Ne(d)+1

F

8
<

:

K�Ne(d)�1�lX

j0=0

✓
K � Ne(d) � 1 � l

j0

◆

⇥
✓
M

N

◆j0 ✓
1 � M

N

◆K�Ne(d)�1�l�j0
9
=

;

(b)
=

mX

l=0

Q(l)

✓
M

N

◆l✓
1 � M

N

◆Ne(d)+1

F.

(3.29)

31

3.2. DECENTRALIZED CACHING

In (a) we make the change j
0 = j � l and tidy up the term a bit and in (b) we apply the

binomial theorem [77]. Plugging in Q(l) from (3.25), the expression for S1 becomes

S1 =

✓
1 � M

N

◆Ne(d)+1

F

mX

l=0

X

1<i2<···<ilNe(d)

M

N
(|Qu1 | � 1)

M

N
|Qui2

| . . . M
N

|Quil
|

+2
X

1<i1<···<ilNe(d)

M

N
|Qui1

| . . . M
N

|Quil
|
!
.

(3.30)

Recovering now the product terms from the sums of this expression gives us

S1 =

✓
1 � M

N

◆Ne(d)+1

F

✓
M

N
(|Qu1| � 1) + 2

◆Ne(d)Y

i=2

✓
M

N
|Qui | + 1

◆
. (3.31)

The above derivation is straightforward if m = Ne(d). If m = K � Ne(d) � 1 then from

(|Qu1 | � 1) + |Qu2 | + · · · + |QuNe(d)
| = K � Ne(d) � 1 (3.32)

we have that only up to K �Ne(d)� 1 summands can be concurrently non-zero. Thus we can
extend the sum of (3.30) up to Ne(d) by including the zero valued terms and get (3.31).

The terms S2 and S3 are easier to handle. In particular

S2 =
K�Ne(d)�1X

j=0

✓
K � Ne(d) � 1

j

◆✓
M

N

◆j✓
1 � M

N

◆K�j

jF

=

✓
1 � M

N

◆Ne(d)+1

F

K�Ne(d)�1X

j=0

✓
K � Ne(d) � 1

j

◆✓
M

N

◆j✓
1 � M

N

◆K�Ne(d)�1�j

j

=

✓
1 � M

N

◆Ne(d)+1

(K � Ne(d) � 1)
MF

N
.

(3.33)

In this expression, we have used the formula [77] for the expected value of the binomial
distribution B (K � Ne(d) � 1,M/N).

Finally, for the third term, using the binomial theorem, we can easily get

S3 = 2
K�Ne(d)�1X

j=0

✓
K � Ne(d) � 1

j

◆✓
M

N

◆j✓
1 � M

N

◆K�j

F

= 2

✓
1 � M

N

◆Ne(d)+1

F

K�Ne(d)�1X

j=0

✓
K � Ne(d) � 1

j

◆✓
M

N

◆j✓
1 � M

N

◆K�Ne(d)�1�j

= 2

✓
1 � M

N

◆Ne(d)+1

F.

(3.34)

Plugging back all these terms in (3.23) and re-including the term o(F) that we omitted
before, we reach (3.22) that we are trying to prove.

We should note here that this a surprisingly simple result, especially when compared to the
corresponding expression (3.12) for the computational cost in the centralized caching scheme,
which is quite more complicated, even if we use the simplified form of (3.18) for the term S.
This fact bears the question of whether it could be possible to devise a di↵erent but information-
theoretically equivalent scheme for decentralized caching that could be more suited as the basic
paradigm of coded caching with uncoded prefetching instead of the centralized one.

32

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

Theorem 8. In a decentralized caching scheme let d be a demand with Ne(d) leaders whose
pure tail sizes are |Qui |, i 2 {1, . . . , Ne(d)}. Under ITODM, the total computational cost of a
non-leader u

nl whose (w.l.o.g.) leader is u1 needed for recovering their requested subfiles is

C
dec
c,nl =

✓
1 � M

N

◆Ne(d)+1

F

0

@
✓
M

N
(|Qu1|�1)+2

◆Ne(d)Y

i=2

✓
M

N
|Qui |+1

◆
�2

1

A

+ (K � 1)

✓
1 � M

N

◆
MF

N
+ o(F).

(3.35)

Proof. In order to derive (3.35) we just have to make some simple observations on (3.23)
in order to extend it to the total computational cost of a non-leader. This expression gives
the computational cost of u

nl in order to extract all the non-transmitted subfiles from the
transmitted ones. So in order to get the total computational cost, we have to add to this
expression the cost of decoding the transmitted subfiles.

For each j 2 {0, . . . , K � Ne(d) � 1} the additional computational cost for decoding the
transmitted subfiles is

✓
K � j

j

◆
�
✓
K � Ne(d) � 1

j

◆�

| {z }
number of transmitted subfiles

|BL
j (W)|j
�

K
j

�
| {z }

cost per
subfile

. (3.36)

Also for each j 2 {K � Ne(d), . . . , K � 1} the only computational cost is that of decoding
the transmitting subfiles, since there are no (j + 1)-subsets comprised solely of non-leaders.
This additional cost is ✓

K � j

j

◆

| {z }
(j+1)�subsets
involving unl

|BL
j (W)|j
�

K
j

�
| {z }

cost per
subfile

. (3.37)

We should note that for j = K, the corresponding bits are present in the caches of all
users, and thus there is no computation (or even transmission) taking place. Adding up these
additional computational costs in (3.23) we can realize that the total computational cost of unl

will be given by this equation, if we replace the sum S2 with

S
0
2 =

K�1X

j=0

✓
K � 1

j

◆ |BL
j (W)|j
�

K
j

�

=
K�1X

j=0

✓
K � 1

j

◆✓
M

N

◆j ✓
1 � M

N

◆K�j

jF

= (K � 1)

✓
1 � M

N

◆
MF

N
.

(3.38)

Using this result and following the same operations for the other terms of (3.23) as well as
re-positioning the term o(F) that we omitted for simplicity, yields (3.35).

33

Chapter 4

Computationally Enhanced Decoding
Method

4.1 Method Description for Centralized Caching

In this section, we propose an alternative way for a non-leader u
nl 2 [K]\{U} to decode the

subfile of interest Wdunl,At+1\{unl}
for any t-subset At+1 comprised of non-leaders. Using this

method, the non-leader will perform a direct computation of the subfile from previous leader-
related transmissions without having to compute the signal YAt+1 as it is normally done in [59].
Moreover, we show that the computational cost of this new method is equal to the cost of
computing YAt+1 , thus saving the last step of figuring out Wdunl,At+1\{unl}

from YAt+1 . We first

show the following lemma.

Lemma 1. Assume a wireless caching system with N files of size F , K users and MF cache
size per user where symmetric batch prefetching is used and t = MK

N 2 {0, 1, . . . K}. For any
demand d = (d1, . . . , dK) with Ne(d) K � t � 1, any leader set U = {u1, . . . , uNe(d)}, any
(t+ 1) non-leader subset At+1 2 Anl

t+1 and any non-leader u
nl 2 At+1 we have

�
V2VF
unl2V

YB\V �
V2VF
unl /2V

Wdunl,B\(V[{unl})
= 0, (4.1)

where B = U [At+1 and VF is the family of V-sets of B, each containing Ne(d) users from B
with each one requesting a di↵erent file.

The proof will expand on the one given in [59] for Lemma 1. In addition to the family VF

containing the V-sets of B = U [At+1 described in section 2, we will utilize two additional set
families defined below, before we move to the actual proof. The first also comes from [59].

Definition 5. Let u 2 U be any leader. We define VF
u to be the family of the sets formed by

selecting one user from each tail in B except Bu. In particular

VF
u =

⇢
V 2 2B\Bu :

|V| = Ne(d) - 1,
8u1 6= u2 2 V du1 6= du2

�
. (4.2)

Definition 6. Let u, u0 2 U be any two leaders. We define VF
u,u0 to be the family of the sets

formed by selecting one user from each tail in B except Bu and Bu0. In particular

VF
u,u0 =

⇢
V 2 2B\(Bu[Bu0) :

|V| = Ne(d) - 2,
8u1 6= u2 2 V du1 6= du2

�
. (4.3)

34

CHAPTER 4. COMPUTATIONALLY ENHANCED DECODING METHOD

As in VF , the sets in VF
u and VF

u,u0 can be generated by starting with U\{u} or U\{u, u0}
and then replacing one or more leaders by one of their non-leaders (having the same request)
in B\Bu or B\(Bu [Bu0), respectively.

Proof. We start by studying the term

A = �
V2VF
unl2V

YB\V = �
V2VF
unl2V

�
x2B\V

Wdx,B\(V[{x}). (4.4)

Since the tails Bu = {x 2 B : dx = du} of the leaders u 2 U partition the set B, we have
that

A = �
u2U

�
V2VF
unl2V

�
x2(B\Bu)\V

Wdx,B\(V[{x})

= �
u2U

�
V2VF
unl2V

�
x2Bu\V

Wdx,B\(V[{x}).
(4.5)

If we define u0 to be the leader of unl, so that unl 2 Bu0 , then (4.5) can be written as

A = �
V2VF
unl2V

�
x2Bu0\V

Wdx,B\(V[{x})

| {z }
A1

�
u2U\{u0}

�
V2VF
unl2V

�
x2Bu\V

Wdx,B\(V[{x})

| {z }
A2

.
(4.6)

Also, the sets of VF that contain u
nl can be decomposed as follows

�
V 2 VF : unl 2 V

=
�
{unl} [V 0 : V 0 2 VF

u0

. (4.7)

That means that the term A1 can be written as

A1 = �
V2VF
unl2V

�
x2Bu0\V

Wdx,B\(V[{x})

= �
V 02VF

u0

�
x2Bu0\({unl}[V 0)

Wdx,B\({unl}[V 0[{x})

= �
V 02VF

u0

�
x2Bu0\{unl}

Wdx,B\({x}[V 0[{unl}).

(4.8)

We now note that the family

⇢
{x} [V 0 :

V 0 2 VF
u0
,

x 2 Bu0\{unl}

�
=
�
V 2 VF : unl

/2 V

. (4.9)

since x ranges over the whole tail that unl belongs to but skips unl itself, and V 0 ranges over all
the sets in VF

u0
. So the term A1 gives

A1 = �
V2VF
unl /2V

Wdunl,B\(V[{unl})
, (4.10)

which is the second term in (4.1) canceling it out.

35

4.1. METHOD DESCRIPTION FOR CENTRALIZED CACHING

We now focus on the term A2 of (4.6). The operations we will perform here will follow the
more familiar path of the proof in [59]. So, as in [59], we focus on each leader u 2 U\{u0}
separately and study the term

A2,u = �
V2VF
unl2V

�
x2Bu\V

Wdx,B\(V[{x}). (4.11)

In this term, the sets of VF containing u
nl can be decomposed as

�
V 2 VF : unl 2 V

=

⇢
{unl

, y} [V 00 :
y 2 Bu,
V 00 2 VF

u0,u

�
. (4.12)

So A2,u can be written as

A2,u = �
V 002VF

u0,u

�
y2Bu

�
x2Bu\({unl,y}[V 00)

Wdu,B\({unl,y}[V 00[{x})

= �
V 002VF

u0,u

�
y2Bu

�
x2Bu\{y}

Wdu,B\({unl,x,y}[V 00).
(4.13)

We can now observe that the set of ordered pairs

{(x, y) : x 2 Bu\{y}, y 2 Bu} =
�
(x, y) 2 B2

u : x 6= y

, (4.14)

so A2,u is
A2,u = �

V 002VF
u0,u

�
(x,y)2B2

u
x 6=y

Wdu,B\({unl,x,y}[V 00). (4.15)

Since, each subfile in the above expression is taken twice, we can deduce that A2,u = 0 which
means that

A2 = �
u2U\{u0}

A2,u = 0, (4.16)

concluding the proof.

We can now state the following theorem that provides the means of directly calculating the
subfile Wdunl,At+1

.

Theorem 9. Assume a wireless caching system with N files of size F , K users and MF cache
size per user where symmetric batch prefetching is used and t = MK

N 2 {0, 1, . . . K}. For any
demand d = (d1, . . . , dK) with Ne(d) K � t � 1, any leader set U = {u1, . . . , uNe(d)}, any
(t + 1) non-leader subset At+1 2 Anl

t+1 and any non-leader u
nl 2 At+1 the requested subfile

Wdunl,At+1
is given by

Wdunl,At+1\{unl}
= �

V2VF
unl2V

YB\V �
V2VF \{U}

unl /2V

Wdunl,B\(V[{unl})
. (4.17)

Proof. We note that
Wdunl,At+1\{unl}

= Wdunl,B\(U[{unl})
, (4.18)

which means that the subfile Wdunl,At+1\{unl}
is already present in (4.1). Multiplying both sides

with this leads to (4.17).

We should note that all the terms in (4.17) are either transmitted signals or subfiles requested
by u

nl that are directly computable from the transmitted signals. This allows the non-leader
u

nl to compute any subfile still missing from his requested file after all the leader-related
transmissions have taken place.

36

CHAPTER 4. COMPUTATIONALLY ENHANCED DECODING METHOD

4.2 Computational Analysis

In this section, we analyze the computational cost of our proposed decoding method. First, we
should note that both our proposed method and ITODM in [59] coincide when decoding the
subfiles Wdunl,At+1\{unl}

coming from actual transmissions YAt+1 where there is at least one leader

in At+1. So the computational cost for these files is the same and is given by (3.5). For the rest
of the subfiles requested by u

nl the cost of computing them from previous transmissions and
the subfiles collected from these transmissions is given by the following theorem.

Theorem 10. For any non-leader u
nl 2 [K]\{U} and any non-leader (t + 1)-subset At+1, the

cost of computing the subfile Wdunl,At+1\{unl}
is given by the expression

Cc,nl

⇣
Wdunl,At+1\{unl}

⌘
= (|VF | � 2)

F�
K
t

� . (4.19)

Proof. In order to find the cost of computing Wdunl,At+1\{unl}
we count the number of XORs

needed to compute (4.17). From (3.7) we have that

���V 2 VF : unl 2 V
 �� =

���V 0 2 VF
unl : unl 2 V

 ��

=
|VF |
|Bu0 |

, (4.20)

���V 2 VF : unl
/2 V
 �� = |VF | �

���V 0 2 VF
unl : unl 2 V

 ��

=
|Bu0 | � 1

|Bu0 |
|VF |.

(4.21)

So the number of XORs inside each of the two block-XORs of (4.17) will be

������
�

V2VF
unl2V

YB\V

������
c

=

✓
|VF |
|Bu0 |

� 1

◆
F�
K
t

� , (4.22)

and ������
�

V2VF \{U}
unl /2V

Wdunl,B\V[{unl}

������
c

=

✓
|Bu0 | � 1

|Bu0 |
|VF | � 2

◆
F�
K
t

� . (4.23)

Summing those up, and taking into account that we have one more block-XOR between
these two parts of (4.17), introducing F

��
K
t

�
additional bit XORs, we reach (4.19).

Comparing (4.17) to (3.8) we can see that the proposed decoding method requires Ft/
�

K
t

�

fewer XORs than ITODM per non-leader (t+ 1)-subset. Given that the number of non-leader
(t+ 1)-subsets At+1 2 Anl

t+1 containing a particular non-leader unl is

���At+1 2 Anl
t+1 : u

nl 2 At+1

 �� =
���At 2 Anl

t : unl
/2 At

 ��

=

✓
K � Ne(d) � 1

t

◆
(4.24)

we can state the following corollary.

37

4.3. EXTENSION TO DECENTRALIZED CACHING

Corollary 1. A non-leader using (4.17) to compute the requested subfiles Wdunl,At+1\{unl}
cor-

responding to all At+1 2 Anl
t+1 will have a total saving of

Sc,nl(d) =

✓
K � Ne(d) � 1

t

◆
Ft�
K
t

� (4.25)

XORS relative to ITODM.

Since there are K � Ne(d) non-leaders, we also get that the total computational savings
throughout the whole system will be given by the following corollary.

Corollary 2. The total computational savings of using (4.17) throughout the system will be

Sc(d) =
�
K � Ne(d)

�✓K � Ne(d) � 1

t

◆
Ft�
K
t

�

=

✓
K � Ne(d)

t+ 1

◆
Ft(t+ 1)�

K
t

�
(4.26)

XORS relative to ITODM.

4.3 Extension to decentralized caching

The proposed decoding method finds applicability in any scenario that the centralized coded
caching with uncoded prefetching appears in some form. In this section, we show how the
previous results extend to the case of decentralized caching with uncoded prefetching and
derive the corresponding computational savings per user and throughout the system.

In section 2.2 we have seen that the delivery phase of a decentralized system is comprised
of multiple delivery phases that each is equivalent to the delivery phase of a centralized caching
system with file size |BL,j

Aj
(W)| a.a.s. for j 2 {0, 1, . . . , K}. Also, for each j 2 {1, 2, . . . , K �

Ne(d) � 1} there will be non-leader sets Aj+1 whose corresponding transmissions will not take
place but instead will be computed from the ones that do take place. For each such non-leader
set, a non-leader could apply our proposed decoding method using (4.17) and save the number
of computational operations given by Corollary 1. Summing up these computational savings
for all j 2 {1, . . . , K �Ne(d)� 1} we will yield the total computational savings of a non-leader
u

nl for the decentralized caching system.

Theorem 11. In decentralized caching scheme with uncoded prefetching, a non-leader using
(4.17) to compute the requested subfiles Vdunl,At+1\{unl}

corresponding to all non-leader (j + 1)-

subsets Aj+1 2 Anl
j+1 for all j 2 {1, 2, . . . , K�Ne(d)�1} will have a total computational saving

of

S
dec
c,nl(d) = (K � Ne(d) � 1)

✓
1 � M

N

◆Ne(d)+1
MF

N
+ o(F) (4.27)

XOR operations (a.a.s.).

Proof. This quantity equals the term S2 in the proof of theorem 7 and is given by (3.33) after
repositioning the term o(F) that was stripped away for simplicity.

Again, since there are K � Ne(d) non-leaders, we have the following corollary.

38

CHAPTER 4. COMPUTATIONALLY ENHANCED DECODING METHOD

Corollary 3. The (a.a.s.) total computational savings of using (4.17) throughout a decentral-
ized caching system with uncoded prefetching will be

S
dec
c (d) = (K � Ne(d)) (K � Ne(d) � 1)

✓
1 � M

N

◆Ne(d)+1
MF

N
+ o(F) (4.28)

XOR operations relative to ITODM.

39

Chapter 5

Comparison

5.1 Centralized Caching

In this section, we would like to compare the e�ciency of the centralized ITODM scheme with
the one we propose in this work. The problem with (3.13, 3.18) is that, although they fully
capture the computational cost involved with a particular demand, they implicate quite a big
number of parameters, namely K, t, Ne(d) and the sizes of all pure tails |Qui | for ui 2 U . This
makes any comparison between the two methods using just these expressions overly specific
and quite subjective (pending on the parameter choices one opts for) to bare any particular
significance. Thus we would like to have a more objective criterion and an expression that
would be more representative of the big number of di↵erent values S can take.

One approach to do this would be to average all the pure tail sizes out. In other words,
we can take into account all the di↵erent choices we have for the parameters |Qui | and then
calculate the average value of S. In order to do so, however, we first need to prove a very useful
lemma for our further analysis.

Lemma 2.

S =
X

(q1,...,qn)2Nn
q1+···+qn=N

q1 . . . qk =

✓
N + n � 1

n � 1 + k

◆
, k n. (5.1)

Proof. Let us start with two sets. The first is the set of n-tuples of non-negative integers whose
sum is N that lead to non-zero summands in (5.1)

A =

⇢
(q1, . . . , qn) 2 Nn :

q1 + · · · + qn = N ,
q1 � 1, . . . , qk � 1

�
. (5.2)

The second is the set of (n+ k)-tuples of non-negative integers whose sum is N � k.

B =
�
(q1, . . . , qn+k) 2 Nn+k : q1 + . . . qn+k = N � k

. (5.3)

We should note that in order for the sum of (5.1) to be non-zero, there must be at least one
term q1,0 . . . qk,0 6= 0. That means q1,0 � 1, . . . , qk,0 � 1. Since

q1,0 + · · · + qk,0| {z }
�k

+ qk+1,0 + · · · + qn,0| {z }
�0

= N,

we get k N , which shows that the above definition of set B is always meaningful (in the
sense of it always being non-empty).

40

CHAPTER 5. COMPARISON

Now we can define a function f : B ! A such that if

b = (q1, . . . , qn, qn+1, . . . , qn+k) 2 B,

then
f(b) = (q1 + qn+1 + 1, . . . , qk + qn+k + 1, qk+1, . . . , qn) 2 A.

It is easy to see that the image f(b) lies within A by a simple addition of its components
giving N .

We further show that function f is a surjection. Let

a = (q1, . . . , qk, qk+1, . . . , qn) 2 A.

Then, if we take
b = (q1 � 1, . . . , qk � 1, qk, . . . , qn, 0, . . . , 0) 2 B,

it is easy to see that f(b) = a. Because qi � 1 for i 2 {1, . . . , k} b is guaranteed to belong to B.
Since f is a surjection, we know that the sets

f
�1(a) = {b 2 B : f(b) = a} (5.4)

are equivalence classes of B. In particular, they form the quotient set with respect to the
equivalence relation b1 ⇠ b2 , f(b1) = f(b2).

Suppose now that
a = (qa

1 , . . . , qk,
a
q

a
k+1, . . . , q

a
n) 2 A,

and we would like to characterize all the b 2 B that belong to f
�1(a). The general form of a

b 2 B is
b = (q1, . . . , qk, qk+1, . . . , qn, i1, . . . , ik).

The expression f(b) = a imposes the following restrictions

8
>>>>>>><

>>>>>>>:

q1 = q
a
1 � 1 � i1

...
qk = q

a
k � 1 � ik

qk+1 = q
a
k+1

...
qn = q

a
n.

(5.5)

Here we can make three observations. First, that these conditions show that only the
quantities ij for j 2 {1, . . . , k} are actually variable. Furthermore, the value of each such ij

can be selected independently from the others from the range ij 2 {0, 1, . . . , qa
j � 1}. The lower

end comes from the fact that ij � 0 and the upper end from qj � 0. Secondly, that di↵erent
choices lead to di↵erent b 2 f

�1(a) and thirdly that for any b 2 f
�1(a) there is a unique choice

of i1, . . . , ik giving the above form.
These three observations show that there are |f�1(a)| = q

a
1 . . . q

a
k elements in f

�1(a), which
are the degrees of freedom in the above system of equations.

Now, we can go back to the sum in (5.1) where we can limit the range to the non-zero terms
and write

S =
X

a=(q1,...,qn)2A

q1 . . . qk =
X

a2A

|f�1(a)| = |B|. (5.6)

41

5.1. CENTRALIZED CACHING

But, since B is the set of all (n+ k)-tuples of non-negative integers whose sum is N � k its
size is given by [78]

|B| =
✓
N + n � 1

n � 1 + k

◆
. (5.7)

completing the proof.

We are know equipped with the result that will enable us to perform an averaging over the
pure tail sizes of (3.18). First of all, we should note that the number of ways we can choose the
pure tail sizes equals the number of ways we can distribute the K �Ne(d)� 1 non-leaders into
Ne(d) sets. In other words, it is the number of Ne(d)-tuples of non-negative integers whose sum
is K�Ne(d)�1. This is a well know combinatorics problem and the answer can be proven [78]
to be

�
K�2
Ne(d)

�
.

Then we have to find the value of the sum of each product term in (3.18) as the pure tail
sizes move over their entire range. In particular, we have to find the following sums

X

(|Qu1 |�1,|Qui2
|,...,|Quil

|)2Rl
q

|Qu1 |+|Qui2
|+···+|Qul |=K�Ne(d)

(|Qu1 | � 1) |Qui2
| . . . |Quil

| =
X

(q1,...,qNe(d))2Nl

q1+···+qNe(d)=K�Ne(d)�1

q1 . . . ql, (5.8)

X

(|Qui1
|,...,|Quil

|)2Rl
q

|Qui1
|+···+|Qul |=K�Ne(d)�1

|Qui1
| . . . |Quil

| =
X

(q1,...,qNe(d))2Nl

q1+···+qNe(d)=K�Ne(d)�1

q1 . . . ql, (5.9)

where
Rq = {0, . . . , K � Ne(d) � 1}. (5.10)

In these two sums we make the substitutions qi = |Quii
| with the only exception of q1 =

|Qu1 | � 1 for (5.8). The generalization from Rq to N is valid since it does not introduce any
additional non-zero summands. So we actually see that for the same l these sums are in e↵ect
equal. Their value is given by the formula in Lemma 2 that we proved above which is equal to

X

(q1,...,qNe(d))2Nl

q1+···+qNe(d)=K�Ne(d)�1

q1 . . . ql =

✓
K � 2

Ne(d) � 1 + l

◆
(5.11)

Thus the only di↵erence between the two sums in (3.18), apart from the multiplication with
two in the second sum, is the number of product terms that are being summed. The first, is the
sum of products of l terms where the first term is always |Qu1 | � 1. Thus the number of these
product terms is equal to the ways we can choose l � 1 things out of Ne(d) � 1, or

�
Ne(d)�1

l�1

�
.

Similarly, for the second sum, since it is the sum of products of l terms whose selection excludes
|Qu1 | their number will be equal to the ways we can select l things out of Ne(d)�1 or

�
Ne(d)�1

l

�
.

So taking the average and replacing the above while doing some manipulations, we get

S̄ =
min(t,Ne(d))X

l=0

✓
K � Ne(d) � 1 � l

t � l

◆� K�2
Ne(d)�1+l

�
�

K�2
Ne(d)�1

�
✓✓

Ne(d) � 1

l � 1

◆
+ 2

✓
Ne(d) � 1

l

◆◆

=
(Ne(d) � 1)!(K � Ne(d) � 1)!

(K � Ne(d) � 1 � t)!

Ne(d)X

l=0

�
Ne(d)

l

�
+
�

Ne(d)�1
l

�

(t � l)!(Ne(d) � 1 + l)!
.

(5.12)

Note that in this expression, we choose to use Ne(d) as the upper limit of the sum, instead
of min(t, Ne(d)), because it will make our derivations more natural. This does not change the

42

CHAPTER 5. COMPARISON

end result, as long as the “out of bounds” terms are taken to be zero, as they should. Also, in
the above manipulations, we have used the property

✓
Ne(d) � 1

l � 1

◆
+

✓
Ne(d) � 1

l

◆
=

✓
Ne(d)

l

◆
. (5.13)

In this handling, some extra care is warranted towards the first and the last terms of the
sum to make sure that the zero-valued “out of bounds” terms appearing do not lead to di↵erent
results.

We now focus on the following sums

S̄1 =
Ne(d)X

l=0

�
Ne(d)

l

�

(t � l)!(Ne(d) � 1 + l)!
, (5.14)

S̄2 =
Ne(d)X

l=0

�
Ne(d)�1

l

�

(t � l)!(Ne(d) � 1 + l)!
. (5.15)

Expanding the factorials and rearranging the multiplications, we can see that after a suitable
pairing of the resulting terms, these sums can be expressed as

S̄1 =
Ne(d)!

t!(2Ne(d) � 1)!

Ne(d)X

l=0

✓
t

l

◆✓
2Ne(d) � 1

Ne(d) � l

◆

=
Ne(d)!

t!(2Ne(d) � 1)!

✓
2Ne(d) � 1 + t

Ne(d)

◆

=
1

(Ne(d) � 1 + t)!

✓
2Ne(d) � 1 + t

t

◆
,

(5.16)

S̄2 =
(Ne(d) � 1)!

t!(2Ne(d) � 2)!

Ne(d)X

l=0

✓
t

l

◆✓
2Ne(d) � 2

Ne(d) � 1 � l

◆

=
(Ne(d) � 1)!

t!(2Ne(d) � 2)!

✓
2Ne(d) � 2 + t

Ne(d) � 1

◆

=
1

(Ne(d) � 1 + t)!

✓
2Ne(d) � 2 + t

t

◆
.

(5.17)

In the above, we have used Vandermonde’s identity as well as a proper pairing of the terms
appearing in the binomial coe�cients. Plugging back these results to (5.12) which is the sought
after averaged value of S.

S̄=

�
K�2

Ne(d)�1+t

�
�

K�2
Ne(d)�1

�
✓

2Ne(d) � 1 + t

t

◆
+

✓
2Ne(d) � 2 + t

t

◆�
(5.18)

We must stress here that this expression is the average over all values of S for the di↵erent
choices of |Qui | and leads to the corresponding average of the computational cost of a non-
leader with respect to these values. It does not lead to the expected computational cost of a
non-leader. The reason for this is that in deriving (5.18) we did not account for the multiplicity
of the di↵erent requests leading to the same pure tail sizes. Also, such an expected value would
require the assumption of a particular scheme by which leaders and non-leaders are assigned
during reception. Only then would one be able to compute the expectation with respect to

43

5.1. CENTRALIZED CACHING

that particular scheme. We see that seeking for an expected computational cost characteriza-
tion not only makes the analysis more complicated but also re-introduces a particular level of
subjectivism (the choice of the assignment scheme) that we are trying to avoid.

Nevertheless, one might be interested in the worst-case scheme where whenever a user can
be a non-leader, it is done so and then try to calculate the expected computational costs for
such a non-leader. This might lead to a useful characterization of the computational cost and
could be the object of a future analysis.

In order to compare ITODM with our proposed method, we calculate the relative compu-
tational improvement, defined as

ac =
Sc,nl(d)

C̄c,nl
. (5.19)

The numerator is the total computational savings coming from using our proposed method
for a particular demand d, given in (4.25). The denominator is the average computational cost
of the ITODM for the particular K, t and Ne(d). This average computational cost is given by
(3.19) if we replace the S term with its average S̄ given in (5.18). Note that the numerator also
depends only on K, t and Ne(d), making it suitable for our comparison. We do not mention
the dependence with respect to F as it is canceled out.

First, we will examine a small user case. Supposing we have K = 30 users and plotting ac

against Ne(d) for various values of t, we get the results displayed in Fig. 5.1a. Note that the
di↵erent plots have di↵erent endpoints. That is because, for a specific K and a specific t, Ne(d)
is allowed to vary up to K � t� 1 that is the highest value for which there are non-transmitted
subsets and the ITODM can profit from our proposed method.

We observe here a significant computational improvement for most kinds of requests. As
the number of users t sharing the same information gets higher and as the number of distinct
file requests Ne(d) increases, this improvement becomes lower. Overall, we can see that for
the small user case the proposed method can contribute significantly to the reduction of the
computational cost of decoding the requested subfiles.

Next, we will examine the other end, which is a large user case. If we set K = 300 and
plot ac against Ne(d) for various values of t we will get Fig. 5.1b. The first impression here is
similar to the small user case. We have high gains for the smaller values of t and Ne(d) that
decrease as these parameters get higher. The important di↵erence is that while in the small user
case, the parameter t could get as high as K � 2 = 28 (otherwise there are no non-transmitted
subfiles), in the large user case, the parameter t can get as high as K � 2 = 298. That means
that only for a small region of arrangements, we actually have significant computational gains.
This region contains the cases where the total cache memory of the users (KMF) is not much
larger than the library size (NF).

So we can conclude that even for a large user set, the proposed computational method
yields significant computational gains as long as the total cache memory of the system remains
close in scale with the total library size (keeping the parameter t below 10). For larger total
user cache sizes, the sheer amount of the transmissions that take place in the derivation of
the non-transmitted subfiles is so big, that overshadows any computational benefit their direct
computation o↵ered by our method has, compared to ITODM.

Another interesting comparison we can make is to study the improvement in the computa-
tional cost related to the derivation of the non-transmitted files from the transmitted ones. The
di↵erence is that this quantity does not include the cost for decoding the transmitted subfiles
and can give us a more direct glimpse of the improvement in the actual calculation that takes
place with respect to this derivation. Also, for the same reason, this quantity can be thought

44

CHAPTER 5. COMPARISON

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

a
c

t = 1
t = 3
t = 5
t = 10
t = 25

(a) Small User Case (K = 30).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

a
c

t = 1
t = 3
t = 5
t = 10

(b) Large User Case (K = 300).

Figure 5.1: Relative computational improvement of a non-leader when fully decoding their
requested file. For the small user case, a significant improvement is observed for most kinds
of requests. For the large user case, we have a significant improvement in a region where the
aggregate cache memory of the users is close in scale (less than 10 times) to the size of the
library.

of as an upper bound for ac. We can define this relative improvement as

a
nt
c =

Sc,nl(d)

C̄nt
c,nl

. (5.20)

Again, the numerator is given by (4.25) and represents the total computational gains of the
proposed method and the denominator is the average of the computational cost of deriving the
non-transmitted subfiles from the transmitted ones for specific K, t and Ne(d). This quantity
is given by (3.12) by replacing the term S with its average S̄ given in (5.18).

Plotting a
nl
c for the small and large user cases we had before, gives us the results presented

in Fig. 5.2a and 5.2b. The main characteristics are similar to the previous plots of ac and the
comments we did there apply here as well. However, a major e↵ect that we did not observe in
ac is the presence on an asymptotic behavior.

What these graphs show is that as K gets larger, increasing the number of distinct requests
Ne(d) leads to a steady, non-vanishing improvement in the computational cost of deriving the
non-transmitted subfiles. We can find an expression for this asymptotic value by letting K go
to infinity while replacing Ne(d) with its end value K � t � 1. Doing so and using’s Stirling’s
approximation [75] for the factorial leads us, after some straight forward manipulations, to the
following expression

a
nt
c,l =

t

2t+1
, (5.21)

which corresponds to the exponential drop in the relative computational improvement we see
in these figures and contributing to our understanding of the rapid decrease of the total com-
putational improvement we observed in Fig. 5.1b for the large user case where this asymptotic
behavior gets a chance to be fully expressed.

The fact that XOR operations are readily translatable to energy demands allows us to
directly translate all the previous computational improvements to corresponding improvements

45

5.1. CENTRALIZED CACHING

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

a
n
t

c
t = 1
t = 3
t = 5
t = 25

(a) Small User Case (K = 30).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

a
n
t

c

t = 1
t = 3
t = 5
t = 10

(b) Large User Case (K = 30).

Figure 5.2: Relative computational improvement of a non-leader when deriving their untrans-
mitted subfiles from the transmitted ones. The major new characteristic we observe here is the
presence of an asymptotic behavior having an exponential drop with respect to the parameter
t.

in the system’s energy profile. In other words, we can view ac and a
nt
c either as relative

computational improvements or as relative improvements if energy e�ciency. We would like to
close this subsection by performing one more comparison that will allow us to appreciate the
impact of the proposed method on the energy e�ciency of the whole system.

In particular, we will examine the following relative improvement

rc =
Sc(d)

C̄c,t
. (5.22)

The numerator is the total computational savings coming from the proposed method through-
out the system, given by (4.26). The denominator is the total computational cost among all
leaders and non-leaders, and is given by

C̄c,t = Ne(d)Cc,l + (K � Ne(d))C̄c,nl, (5.23)

where Cc,l is given by (3.1) or (3.2) and C̄n,nl by (3.19) if we replace the S term with its average
S̄ given in (5.18). Note that, as we did before, the computational cost for a non-leader is
averaged out with respect to the pure tail sizes.

This relative improvement is not very interesting from a computational point of view, as
it expresses an improvement among computations that happen in parallel among the di↵erent
users. However, it is very interesting from the energy consumption point of view, as is expresses
the relative improvement in the energy consumed by the users as they perform their decoding
task, which is an important figure of merit in the system’s energy profile.

Plotting rc against Ne(d) for the small (K=30) and large (K=300) user cases gives us the
results displayed in Fig. 5.3a and 5.3b. We observe that rc displays a similar behavior as
ac. In particular, in the small user case, the relative energy consumption has a significant
improvement for most demands. It becomes lower as the number of users t sharing the same
information gets higher and as the number of distinct requests Ne(d) increases. In the large

46

CHAPTER 5. COMPARISON

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

r
c

t = 1
t = 3
t = 5
t = 10
t = 25

(a) Small User Case (K = 30).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

a
c

t = 1
t = 3
t = 5
t = 10

(b) Large User Case (K = 300).

Figure 5.3: Relative improvement in the energy consumed by the users during the delivery
phase. The behavior here is similar to ac. For the small user case, we have a significant
improvement for most kinds of request while for the large user case, we have a significant
improvement in a region where the aggregate cache memory of the users is close in scale (less
than 10 times) to the size of the library.

user case, the improvement is more pronounced in the region of small t corresponding to the
cases where the total cache memory of the users (KMF) is not much larger than the library
size (NF).

This similarity in behavior between rc and ac was expected since the system is naturally
expected to benefit more when the separate non-leader users benefit more and vice versa, which
is another expression of the imbalance in the computational burden between the leaders and
the non-leaders.

5.2 Decentralized Caching

Like we did for centralized caching, we would like a more representative expression of the
di↵erent values C

dec
c,nl and C

dec,nt
c,nl can take when the pure tail sizes |Qui |, with ui 2 U , range

among their possible choices for specific K, Ne(d), M , N and F . As we discussed in the
previous section one way to do it would be to average out the pure tail sizes in the term

Sdec =

✓
M

N
(|Qu1| � 1) + 2

◆Ne(d)Y

i=2

✓
M

N
|Qui | + 1

◆
. (5.24)

To derive this average, first of all, we unfold the product terms by performing the multipli-
cations in (5.24) and get

Sdec =
mX

l=0

Q(l)

✓
M

N

◆l

, (5.25)

where Q(l) is given by (3.25). We can repeat now the reasoning of section 5.1 to acquire the

47

5.2. DECENTRALIZED CACHING

average of each Q(l). Doing so and plugging the result back to (5.25) we get

S̄dec =
mX

l=0

✓
M

N

◆l
�

K�2
Ne(d)�1+l

�
�

K�2
Ne(d)�1

�
✓
Ne(d)

l

◆

| {z }
Sa

+
mX

l=0

✓
M

N

◆l
�

K�2
Ne(d)�1+l

�
�

K�2
Ne(d)�1

�
✓
Ne(d) � 1

l

◆

| {z }
Sb

,
(5.26)

We can now write Sa as

Sa =
mX

l

✓
M

N

◆l
�

Ne(d)
l

��
K�2

K�Ne(d)�1�l

�
�

K�2
Ne(d)�1

� , (5.27)

and recognize the expression as the sum of the probability generating function for the hyper-
geometric distribution [79], after we substitute M/N by z. Thus we get

Sa = 2F1

✓
�Ne(d),�K +Ne(d) + 1

Ne(d)
;
M

N

◆
. (5.28)

Similarly, we can do the same for Sb after we write it in the form

Sb =
mX

l

✓
M

N

◆l
�

Ne(d)�1
l

��
K�2

K�Ne(d)�1�l

�
�

K�2
Ne(d)�1

� , (5.29)

and get

Sb = 2F1

✓
�Ne(d) + 1,�K +Ne(d) + 1

Ne(d)
;
M

N

◆
. (5.30)

Using these results in (5.26) we reach (5.31) which is the average we are looking for.
Doing so will give us the following result:

S̄dec = 2F1

✓
�Ne(d),�K +Ne(d) + 1

Ne(d)
;
M

N

◆

+ 2F1

✓
�Ne(d) + 1,�K +Ne(d) + 1

Ne(d)
;
M

N

◆
.

(5.31)

In this expression, 2F1 is the Gaussian hypergeometric function [79].
We proceed now to examine the relative computational improvement as we did for central-

ized caching. Again, we can define this quantity to be

a
dec
c =

S
dec
c,nl(d)

C̄dec
c,nl

. (5.32)

Here, Sdec
c,nl(d) is the computational improvement of our proposed method for the decen-

tralized caching, given by (4.27) and C̄
dec
c,nl the average computational cost of the decentralized

ITODM for the particular K, M , N and Ne(d). This quantity is given by (3.35) by replacing
the term Sdec, as given by (5.24), with its average S̄dec given in (5.31). As before, we do not
take the dependence on F into account, as for adequately large values, it is practically canceled
out.

Examining first the small user case (K = 30), plotting a
dec
c against Ne(d) for di↵erent

user-over-library (M/N) ratios, we get the results displayed in Fig. 5.4a, where we see some
quite di↵erent behavior from what we had in centralized caching. What we observe here is

48

CHAPTER 5. COMPARISON

0 5 10 15 20 25 30
0

0.2

0.4

0.6

Ne(d)

a
d
ec

c

M
N = 0.001
M
N = 0.01
M
N = 0.05
M
N = 0.1
M
N = 0.3

(a) Small User Case (K = 30).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

Ne(d)

a
d
ec

c

M
N = 0.001
M
N = 0.005
M
N = 0.01
M
N = 0.05

(b) Large User Case (K = 300).

Figure 5.4: Relative computational improvement of a non-leader when fully decoding their
requested file. We observe that as long as the individual user caches remain small compared
to the total library size, there is a significant computational improvement for practically the
whole range of demands.

that as long as the individual user caches MF are small compared to the total library size NF ,
our proposed method yields significant computational benefits compared to the decentralized
ITODM for all kinds of demands.

In Fig. 5.4b we plot the a
dec
c for the large user case (K = 300) and we observe the same

behavior. As long as the user cache sizeMF remains low compared to the total library size NF ,
our proposed method yields significant computational gains for all kinds of demands. What
these results further illustrate is that as the user count K becomes higher, the computational
gains slowly decrease. In other words, the range of values for M/N for which our method
provides significant computational gains becomes smaller as the number of users increases.
However, given that in most typical scenarios, the user caches are quite smaller compared to
the total library size of the system, our proposed method still provides significant computational
gains practically for the whole range of Ne(d).

As we did in the previous section, we can also compare the computational improvement with
respect to the computational cost of deriving the untransmitted subfiles from the transmitted
ones. We can define this relative computational improvement as

a
dec,nt
c =

S
dec
c,nl(d)

C̄
dec,nt
c,nl

. (5.33)

The numerator here is the same as that in (5.32) and the denominator is the average
computational cost for deriving the transmitted from the untransmitted subfiles for specific
values of K, M , N and Ne(d). This quantity is given by (3.22) by replacing the term Sdec, as
given by (5.24), with its average S̄dec given in (5.31).

Plotting a
dec,nt
c for the small user case (K = 30) against Ne(d) for di↵erent values of the

user-to-library (M/N) ratio we get Fig. 5.5a. Again, we observe that we have significant
computational gains in the whole range for Ne(d) and we see an important di↵erence. As Ne(d)
increased, the relative computational improvement adec,nt

c starts from value 0.5, decreases and
the increases returning to value (asymptotically) equal to 1/3. So, if we are interested in this

49

5.2. DECENTRALIZED CACHING

0 5 10 15 20 25 30
0

0.2

0.4

0.6

Ne(d)

a
d
ec

,n
t

c
M
N = 0.001
M
N = 0.05
M
N = 0.1
M
N = 0.3
M
N = 0.5

(a) Small User Case (K = 30).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

Ne(d)

a
d
ec

,n
t

c

M
N = 0.001
M
N = 0.005
M
N = 0.01
M
N = 0.05
M
N = 0.1

(b) Large User Case (K = 300).

Figure 5.5: Relative computational improvement of a non-leader when deriving their untrans-
mitted subfiles from the transmitted ones. We observe that as long as the individual user caches
remain small compared to the library size, we have a significant non-vanishing computational
gain that asymptotically converges to the same value.

kind of computational improvement, we can say that we have non-vanishing computational
gains, as long as the user caches size MF remains small with respect to the total library size
NF .

As we can see in Fig. 5.5b, where we plot the same quantity for the large user case (K = 300),
this significant gain remains for all kinds of user demand, albeit for a somewhat smaller but
still quite larger than the typical range of M/N ratio values.

Finally, we would like to examine the relative improvement in energy consumption for the
system as a whole, as we did in the previous section for centralized caching. The corresponding
relative improvement for decentralized caching will be

r
dec
c =

S
dec
c (d)

C̄dec
c,t

. (5.34)

The numerator is given by (4.28) and represents the total computational savings the pro-
posed method provides to the system. The denominator is the total computational cost among
all users and is given by

C̄
dec
c,t = Ne(d)C

dec
c,l + (K � Ne(d))C̄

dec
c,nl, (5.35)

where Cdec
c,l is given by (3.20) and C̄

dec
c,nl is given by (3.35) by replacing the term Sdec, as given by

(5.24), with its average S̄dec given in (5.31). We should note again here that the computational
cost for a non-leader is averaged out with respect to the pure tail sizes.

Examining the small (K = 30) and large (K = 300) user cases by plotting rdec
c against Ne(d)

for various user-over-library (M/N) ratios, we get the results displayed in Fig. 5.6a and 5.6b.
As with centralized caching, the behavior of rdec

c closely resembles that of adec
c . In particular, we

observe significant improvements in energy consumption among the users for almost all kinds
of requests, both in the small as well as the large user case. The only condition is that the
user-over-library ratio remains small, with the actual range becoming smaller as the number of
users increases.

50

CHAPTER 5. COMPARISON

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

r
d
ec

c

M
N = 0.001
M
N = 0.01
M
N = 0.05
M
N = 0.1
M
N = 0.3

(a) Small User Case (K = 30).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

Ne(d)

r
d
ec

c

M
N = 0.001
M
N = 0.005
M
N = 0.01
M
N = 0.05

(b) Large User Case (K = 300).

Figure 5.6: Relative improvement in the energy consumed by the users during the delivery
phase. The behavior of rdec

c closely resembles that of adec
c having significant improvements in

energy consumption among the users, as long as the individual cache size of the users remains
small in comparison to the library size.

What the analysis of this section shows is that our proposed method provides significant
computational and energy-related advantages over the decentralized ITODM for all kinds of
system arrangements and demands, as long as the individual user cache size MF is small when
compared to the total library size NF . This is a natural condition expected to hold for almost
all caching systems, as the available memory in a user device (UE) is typically much smaller
than the memory in a content delivery server or in a base station (BS).

51

Chapter 6

Conclusions

In this work, we have performed a complete computational analysis of the information-theoretic
optimal delivery method (ITODM) for centralized and decentralized caching, the two funda-
mental methods of coded caching, a technology that is expected to play a key role in future 5G
networks assisting them in managing their increased complexity and big data challenges. Both
methods take advantage of the commonality in the file requests among the users to reduce the
telecommunication load down to the information-theoretic optimal level. However, this is done
at an exponentially increasing computational cost. Thus, our analysis allowed us to specify
the exact amount of this computational cost down to the number of XOR operations required.
This is an important figure of merit not only because it gives us an exact expression of the
computational needs but is also readily translatable to energy demands both for the individual
users and the overall system in general.

Furthermore, we have developed an alternative method for the delivery stage of centralized
and decentralized caching that provides significant computational and energy consumption
improvements over ITODM. This is achieved by introducing a computational shortcut in the
derivation phase of the untransmitted subfiles from the transmitted ones. For centralized
caching, the improvements are more pronounced when the number of users is small, or the
total cache size among the users is comparable in scale to the total library size. For the
more realistic case of decentralized caching, however, we observed significant computational
improvements for all kinds of scenarios, as long as the individual user cache size remains small
in comparison to the total library size, a condition that naturally happens in such systems.

Due to the principal position of centralized and decentralized caching in the domain of coded
caching, any improvement or new results regarding it immediately reverberate outwards to all
other kinds of coded caching systems. Thus, future research could extend the results of this
work to other coded caching systems and could examine other ways and di↵erent aspects of
characterizing the computational costs involved. Minimizing the computational burden coming
from the utilization of commonality and finding alternative schemes to balance out this cost
among non-leader is still an open question and we aspire that this work will push the discussion
forward.

52

Bibliography

[1] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave com-
munications for 5g wireless systems,” IEEE Wireless Communications, vol. 21, no. 6, pp.
136–143, 2014.

[2] B. Romanous, N. Bitar, A. Imran, and H. Refai, “Network densification: Challenges and
opportunities in enabling 5g,” in 2015 IEEE 20th International Workshop on Computer
Aided Modelling and Design of Communication Links and Networks (CAMAD), 2015, pp.
129–134.

[3] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User
association in 5g networks: A survey and an outlook,” IEEE Communications Surveys
Tutorials, vol. 18, no. 2, pp. 1018–1044, 2016.

[4] M. Erol-Kantarci and S. Sukhmani, “Caching and computing at the edge for mobile aug-
mented reality and virtual reality (ar/vr) in 5g,” inAd Hoc Networks, Y. Zhou and T. Kunz,
Eds. Cham: Springer International Publishing, 2018, pp. 169–177.

[5] Chih-Ping Li, Jing Jiang, W. Chen, Tingfang Ji, and J. Smee, “5g ultra-reliable and low-
latency systems design,” in 2017 European Conference on Networks and Communications
(EuCNC), 2017, pp. 1–5.

[6] K. E. Skouby and P. Lynggaard, “Smart home and smart city solutions enabled by 5g, iot,
aai and cot services,” in 2014 International Conference on Contemporary Computing and
Informatics (IC3I), 2014, pp. 874–878.

[7] S. Li, L. D. Xu, and S. Zhao, “5g internet of things: A survey,” Journal of
Industrial Information Integration, vol. 10, pp. 1 – 9, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2452414X18300037

[8] Y. Zhou, L. Tian, L. Liu, and Y. Qi, “Fog computing enabled future mobile communica-
tion networks: A convergence of communication and computing,” IEEE Communications
Magazine, vol. 57, no. 5, pp. 20–27, 2019.

[9] P. Lin, K. S. Khan, Q. Song, and A. Jamalipour, “Caching in heterogeneous ultradense 5g
networks: A comprehensive cooperation approach,” IEEE Vehicular Technology Magazine,
vol. 14, no. 2, pp. 22–32, 2019.

[10] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Transactions
on Information Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[11] ——, “Decentralized coded caching attains order-optimal memory-rate tradeo↵,”
IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp. 1029–1040, Aug 2015.

53

http://www.sciencedirect.com/science/article/pii/S2452414X18300037

BIBLIOGRAPHY

[12] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,” IEEE/ACM
Transactions on Networking, vol. 24, no. 2, pp. 836–845, April 2016.

[13] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded caching,” in 2014 IEEE
International Symposium on Information Theory, June 2014, pp. 56–60.

[14] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hierarchical coded
caching,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3212–3229, June
2016.

[15] J. Hachem, N. Karamchandani, and S. Diggavi, “E↵ect of number of users in multi-level
coded caching,” in 2015 IEEE International Symposium on Information Theory (ISIT),
June 2015, pp. 1701–1705.

[16] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless d2d net-
works,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 849–869, Feb 2016.

[17] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” IEEE
Transactions on Information Theory, vol. 63, no. 2, pp. 1146–1158, Feb 2017.

[18] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distributions,”
IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 349–366, Jan 2018.

[19] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and coded
multicasting with random demands,” IEEE Transactions on Information Theory, vol. 63,
no. 6, pp. 3923–3949, June 2017.

[20] A. Ramakrishnan, C. Westphal, and A. Markopoulou, “An e�cient delivery scheme for
coded caching,” in 2015 27th International Teletra�c Congress, Sep. 2015, pp. 46–54.

[21] M. A. Maddah-Ali and U. Niesen, “Cache-aided interference channels,” in 2015 IEEE
International Symposium on Information Theory (ISIT), June 2015, pp. 809–813.

[22] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Fundamental limits of
cache-aided interference management,” IEEE Transactions on Information Theory, vol. 63,
no. 5, pp. 3092–3107, May 2017.

[23] J. Hachem, U. Niesen, and S. Diggavi, “A layered caching architecture for the interference
channel,” in 2016 IEEE International Symposium on Information Theory (ISIT), July
2016, pp. 415–419.

[24] J. Hachem, U. Niesen, and S. N. Diggavi, “Degrees of freedom of cache-aided wireless
interference networks,” IEEE Transactions on Information Theory, vol. 64, no. 7, pp.
5359–5380, July 2018.

[25] C. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching,” in 2015 IEEE
International Symposium on Information Theory (ISIT), June 2015, pp. 1776–1780.

[26] ——, “Information-theoretic caching: Sequential coding for computing,” IEEE Transac-
tions on Information Theory, vol. 62, no. 11, pp. 6393–6406, Nov 2016.

[27] S. H. Lim, C. Wang, and M. Gastpar, “Information-theoretic caching: The multi-user
case,” IEEE Transactions on Information Theory, vol. 63, no. 11, pp. 7018–7037, Nov
2017.

54

BIBLIOGRAPHY

[28] R. Timo and M. Wigger, “Joint cache-channel coding over erasure broadcast channels,” in
2015 International Symposium on Wireless Communication Systems (ISWCS), Aug 2015,
pp. 201–205.

[29] S. S. Bidokhti, M. Wigger, and R. Timo, “Erasure broadcast networks with receiver
caching,” in 2016 IEEE International Symposium on Information Theory (ISIT), July
2016, pp. 1819–1823.

[30] S. Saeedi Bidokhti, M. Wigger, and R. Timo, “Noisy broadcast networks with receiver
caching,” IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 6996–7016, Nov
2018.

[31] S. S. Bidokhti, M. Wigger, and R. Timo, “An upper bound on the capacity-memory
tradeo↵ of degraded broadcast channels,” in 2016 9th International Symposium on Turbo
Codes and Iterative Information Processing (ISTC), Sep. 2016, pp. 350–354.

[32] J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless bc: Interplay of coded-
caching and csit feedback,” IEEE Transactions on Information Theory, vol. 63, no. 5, pp.
3142–3160, May 2017.

[33] J. Zhang, F. Engelmann, and P. Elia, “Coded caching for reducing csit-feedback in wireless
communications,” in 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), Sep. 2015, pp. 1099–1105.

[34] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeo↵ be-
tween computation and communication in distributed computing,” IEEE Transactions on
Information Theory, vol. 64, no. 1, pp. 109–128, Jan 2018.

[35] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Edge-facilitated wireless dis-
tributed computing,” in 2016 IEEE Global Communications Conference (GLOBECOM),
Dec 2016, pp. 1–7.

[36] ——, “A scalable framework for wireless distributed computing,” IEEE/ACM Transac-
tions on Networking, vol. 25, no. 5, pp. 2643–2654, Oct 2017.

[37] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed fog computing,”
IEEE Communications Magazine, vol. 55, no. 4, pp. 34–40, April 2017.

[38] D. Roca, D. Nemirovsky, M. Nemirovsky, R. Milito, and M. Valero, “Emergent behaviors
in the internet of things: The ultimate ultra-large-scale system,” IEEE Micro, vol. 36,
no. 6, pp. 36–44, 2016.

[39] J. Xu, J. Yao, L. Wang, K. Wu, L. Chen, and W. Lou, “Revolution of self-organizing net-
work for 5g mmwave small cell management: From reactive to proactive,” IEEE Wireless
Communications, vol. 25, no. 4, pp. 66–73, 2018.

[40] M. E. Newman, “Complex systems: A survey,” arXiv preprint arXiv:1112.1440, 2011.

[41] D. D. Sleator and R. E. Tarjan, “Amortized e�ciency of list update and paging rules,”
Commun. ACM, vol. 28, no. 2, pp. 202–208, Feb. 1985.

[42] L. W. Dowdy and D. V. Foster, “Comparative models of the file assignment problem,”
ACM Comput. Surv., vol. 14, no. 2, pp. 287–313, Jun. 1982.

55

BIBLIOGRAPHY

[43] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to provide a scalable and
interactive video-on-demand service,” IEEE Journal on Selected Areas in Communications,
vol. 14, no. 6, pp. 1110–1122, Aug 1996.

[44] D. S. P. Dan, Asitand Sitaram, “Dynamic batching policies for an on-demand video server,”
Multimedia Systems, vol. 4, no. 3, pp. 112–121, Jun 1996.

[45] M. R. Korupolu, C. Plaxton, and R. Rajaraman, “Placement algorithms for hierarchical
cooperative caching,” Journal of Algorithms, vol. 38, no. 1, pp. 260 – 302, 2001.

[46] A. Meyerson, K. Munagala, and S. Plotkin, “Web caching using access statistics,” in
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA ’01. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2001, pp. 354–363.

[47] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for data placement
problems,” SIAM J. Comput., vol. 38, no. 4, pp. 1411–1429, Aug. 2008.

[48] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution
networks,” in 2010 Proceedings IEEE INFOCOM, March 2010, pp. 1–9.

[49] Y. Birk and T. Kol, “Coding on demand by an informed source (iscod) for e�cient broad-
cast of di↵erent supplemental data to caching clients,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2825–2830, June 2006.

[50] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side information,”
IEEE Transactions on Information Theory, vol. 57, no. 3, pp. 1479–1494, March 2011.

[51] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: improved bounds for
users with small bu↵ers,” IET Communications, vol. 10, no. 17, pp. 2315–2318, 2016.

[52] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users than files,” in 2016
IEEE International Symposium on Information Theory (ISIT), July 2016, pp. 135–139.

[53] S. Sahraei and M. Gastpar, “K users caching two files: An improved achievable rate,” in
2016 Annual Conference on Information Science and Systems (CISS), March 2016, pp.
620–624.

[54] C. Tian and J. Chen, “Caching and delivery via interference elimination,” IEEE Transac-
tions on Information Theory, vol. 64, no. 3, pp. 1548–1560, March 2018.

[55] M. Mohammadi Amiri and D. Gündüz, “Fundamental limits of coded caching: Improved
delivery rate-cache capacity tradeo↵,” IEEE Transactions on Communications, vol. 65,
no. 2, pp. 806–815, Feb 2017.

[56] M. M. Amiri, Q. Yang, and D. Gündüz, “Coded caching for a large number of users,” in
2016 IEEE Information Theory Workshop (ITW), Sep. 2016, pp. 171–175.

[57] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of storage-rate
tradeo↵ for caching via new outer bounds,” in 2015 IEEE International Symposium on
Information Theory (ISIT), June 2015, pp. 1691–1695.

[58] C. Wang, S. H. Lim, and M. Gastpar, “A new converse bound for coded caching,” in 2016
Information Theory and Applications Workshop (ITA), Jan 2016, pp. 1–6.

56

BIBLIOGRAPHY

[59] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeo↵ for
caching with uncoded prefetching,” IEEE Transactions on Information Theory, vol. 64,
no. 2, pp. 1281–1296, Feb 2018.

[60] C. H. H. Suthan, I. Chugh, and P. Krishnan, “An improved secretive coded caching scheme
exploiting common demands,” in 2017 IEEE Information Theory Workshop (ITW), Nov
2017, pp. 66–70.

[61] Kai Wan, D. Tuninetti, and P. Piantanida, “Novel delivery schemes for decentralized
coded caching in the finite file size regime,” in 2017 IEEE International Conference on
Communications Workshops (ICC Workshops), May 2017, pp. 1183–1188.

[62] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,” IEEE
Transactions on Information Theory, vol. 63, no. 7, pp. 4388–4413, July 2017.

[63] J. Gómez-Vilardebó, “Fundamental limits of caching: Improved rate-memory tradeo↵ with
coded prefetching,” IEEE Transactions on Communications, vol. 66, no. 10, pp. 4488–4497,
Oct 2018.

[64] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory tradeo↵
in cache networks within a factor of 2,” IEEE Transactions on Information Theory, vol. 65,
no. 1, pp. 647–663, Jan 2019.

[65] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis., “Finite-length analysis
of caching-aided coded multicasting,” IEEE Transactions on Information Theory, vol. 62,
no. 10, pp. 5524–5537, Oct 2016.

[66] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced subpacketization
from linear block codes,” IEEE Transactions on Information Theory, vol. 64, no. 4, pp.
3099–3120, April 2018.

[67] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery array design for
centralized coded caching scheme,” IEEE Transactions on Information Theory, vol. 63,
no. 9, pp. 5821–5833, Sep. 2017.

[68] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching schemes: A hypergraph
theoretical approach,” IEEE Transactions on Information Theory, vol. 64, no. 8, pp. 5755–
5766, Aug 2018.

[69] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with linear subpacke-
tization is possible using ruzsa-szeméredi graphs,” in 2017 IEEE International Symposium
on Information Theory (ISIT), June 2017, pp. 1237–1241.

[70] G. Vettigli, M. Ji, A. M. Tulino, J. Llorca, and P. Festa, “An e�cient coded multicasting
scheme preserving the multiplicative caching gain,” in 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), April 2015, pp. 251–256.

[71] M. Ji, K. Shanmugam, G. Vettigli, J. Llorca, A. M. Tulino, and G. Caire, “An e�cient
multiple-groupcast coded multicasting scheme for finite fractional caching,” in 2015 IEEE
International Conference on Communications (ICC), June 2015, pp. 3801–3806.

57

BIBLIOGRAPHY

[72] S. Jin, Y. Cui, H. Liu, and G. Caire, “A new order-optimal decentralized coded caching
scheme with good performance in the finite file size regime,” IEEE Transactions on Com-
munications, vol. 67, no. 8, pp. 5297–5310, Aug 2019.

[73] S. M. Asghari, Y. Ouyang, A. Nayyar, and A. S. Avestimehr, “Optimal coded multicast in
cache networks with arbitrary content placement,” in 2018 IEEE International Conference
on Communications (ICC), May 2018, pp. 1–6.

[74] G. Vettigli, M. Ji, K. Shanmugam, J. Llorca, A. M. Tulino, and G. Caire, “E�cient
algorithms for coded multicasting in heterogeneous caching networks,” Entropy, vol. 21,
no. 3, 2019.

[75] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes,
4th ed. McGraw Hill, 2002.

[76] D. E. Knuth, “Big omicron and big omega and big theta,” SIGACT News, vol. 8, no. 2,
p. 18–24, Apr. 1976.

[77] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for
Computer Science, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1994.

[78] R. P. Stanley, Enumerative Combinatorics: Volume 1, 2nd ed. New York, NY, USA:
Cambridge University Press, 2011.

[79] C. Walck, Hand-book on statistical distributions for experimentalists, 1996. [Online].
Available: http://sta↵.fysik.su.se/⇠walck/

58

http://staff.fysik.su.se/~walck/

	Introduction
	System Model and Preliminaries
	Centralized Caching
	Decentralized Caching
	Hierarchical Caching
	Caching with non-Uniform Demands
	Device-to-Device Caching
	Online Caching

	Computational Analysis of ITODM
	Centralized Caching
	Decentralized Caching

	Computationally Enhanced Decoding Method
	Method Description for Centralized Caching
	Computational Analysis
	Extension to decentralized caching

	Comparison
	Centralized Caching
	Decentralized Caching

	Conclusions

