Analysis of Complex Big Data Systems and
Telecommunication Networks
Aristotle University of Thessaloniki

Sotirios K. Michos

May 2020

This research is co-financed by Greece and the European Union (European
Social Fund- ESF) through the Operational Programme <Human Resources
Development, Education and Lifelong Learning> in the context of the project
“Strengthening Human Resources Research Potential via Doctorate Research”
(MIS-5000432), implemented by the State Scholarships Foundation ().

~—
Operational Programme 5 Ez"A
Human Resources Development, =m 2014-

Education and Lifelong Learning

Evpwnaikn Evw
Elg:ean 5:3.,‘ Fung“ Co-financed by Greece and the European Union

Abstract

Coded caching is the distribution of content across a telecommunication system using techniques
from coding theory in order to create multicasting opportunities among the users receiving the
content. This enables a multiplicative improvement over the classic uncoded caching with
respect to the transmission rates required in the delivery phase of the content. Since its in-
troduction, coded caching has drawn significant research interest and several different schemes
have been proposed over the last years. In this work, we focus on the fundamental case of coded
caching with uncoded prefetching, where each user’s cache is filled with uncoded content during
a prefetching stage and, during a later delivery phase, each user’s request must be served in the
most efficient way. This important case has recently received a complete information-theoretic
characterization. However, reaching the information-theoretic optimality imposes a significant
computational imbalance among the users. To this end, we aim at mitigating this imbalance
by first performing a complete computational analysis of the two major forms of coded caching
with uncoded prefetching, namely centralized and decentralized, and then proposing a new
method for the delivery phase that achieves a significant improvement compared to the state
of the art.

ITepiAndm

To CUCTAUATH XOOLXOTIONUEVNG XEUPHC UVIUNG XVOPEQOVTOL GTNY OLVOUT TEQLEYOUEVOU EVTOG
EVOC TNAETUXOVOVLOXOU GUC THUATOS YENOWOTOLWVTAG TEYVIXES amo TN Yewpla xmdiXwy Ue oxomo
var Onuioupy oy euxotplec TOAU-EXTOUTAC UETAED TV YENOT®V ToU Aoufdvouv To TEQLEYO-
uevo. Autd odnyel o wio mohhamAaotac T Behtiworn oe oyéon PE T XAAGOIXE GUC THUOTA
UN-XOOOTOMNUEVNS XEUPHC UVAUNG ¢ TEOS TO pUUUO EXTIOUTYC TOL amauTelTaL 0Tr) QACT ToEd-
000mMC TOL TEPLEYOUEVOL. ATd TNV avamTUEY TOU, TA CUC THUOTO XWOLXOTOMNUEVNS XEUPHS UVAUNG
€)OUV TPOCEAXVOEL CNUAVTIXG EPELVNTIXO EVOLUPEQOV Xal EYOUY avamTuy Vel TOAAG BlapopeTind
OYAUATO 0T OLIEXEL TWV TEAELTUIWY YPOVKY. e auTh TNV epyacia eoTIdlouUe o1 VeUeAiddn
TEPIMTWOT EVOC CUOTAUNTOS XWOWOTONUEVNG XEUPHC UVIUNG UE UN-XOOXOTIOUUEVY] TOONVIX-
™NoM, 6OV GTNY XELEPY| VAU xdUe YeNoTN TOTOVETETOL UN-XWOLXOTONUEVO TEQLEYOUEVO XATH T
OLdEXELL TNS PAOT) TEOAUVAXTNONG KoL, AEYOTEQN, XUTA TN QACT| ToEddooNS, To afltnua xdide Yehotn
meémel va eCutneeTniel Ye Tov mo anodoTixd Teomo. AuTH 1 onuavTIXY TERITTWOT EYEL TEOCHUTA
oeytel évav TAEN TAneopoplodewenTXG yapaxTneloud. ‘Ouwe, n eniteuln tou Thnpogoptodew-
ENTWOU BEATIOTOU ELGAYEL ULl CNUOVTIXY UTONOYIO TIXY) ovicoppoTia ueTadd Tov yenotomy. T to
oxom6 aUTo, GTOYEVOUNE 0TN BEATILON AUTHC TNG AVICOPEOTIHAG aEY XA oVATTUCCOVTAS (Lo TAREN
UTOAOYIG T VEAUGT]) TwV BUO BaCIX®V HOopYOY CUCTAUNTOS XWOWMOTONUEVNS XEUPNC UVAUNG,
TNG XEVIPOTIOWUEVNE XOU TG ATOXEVIPOTOMNUEVNS HOPPNS, XKoL GTY) GUVEYELX TEOTEVOVTAG Lol VEX
uedodo Yo TN @don napddoong 1 onola TeTLYAlveL onuavTxy BeATinon ot oygon ue Ti¢ uedodoug
mou elvon dtadéoeg otn Pihoypapla.

Dedication

This thesis is dedicated to my family and especially to my brother, whose struggles through
life has been an inspiration for me.

Acknowledgements

This dissertation is the product of my research activity at the Department of Electrical and
Computer Engineering of Aristotle University of Thessaloniki, during the years 2015-2020.
Those five years were filled with a wonderful pursuit of knowledge, learning new and amazing
things and having the chance to experience the joy of reaching concrete results after a long
process of researching for them. Also, I had the opportunity to meet and work with wonderful
people, whose enthusiasm further fueled my research interests and engagement with the process
of pursuing a doctorate degree.

Firstly I would like to thank my advisor and mentor, prof. George Karagiannidis, Professor
at the Department of Electrical and Computer Engineering of Aristotle University of Thes-
saloniki and leader of the Wireless Communications Systems Group (WCSG). His guidance,
insights as well as vast experience contributed immensely in the formation of the final thesis’
contents and results. However, his father-like understanding, patience, and support were of
major importance for me and were the ones that allowed me to keep pursuing my doctorate
degree, besides some quite important difficulties that I was also facing in my personal and
family life. Furthermore, I would like to express my deepest gratitude towards my good friend
and collaborator Dr. Vassilis Kapinas, for his supportive presence in my life and the wonderful
work I had the opportunity to perform with him.

I would also like to thank the members of my advisory committee, prof. Leonidas Georgiadis,
whose contribution and advice were of insurmountable importance and prof. Niovi Pavlidou
for all her supportive comments and advice through my PhD preparation.

My best regards extend also to prof. loannis Antoniou, for allowing me to attend the Mas-
ter’s Program on Networks and Complexity, whose content contributed to the formation of my
thesis’ topic, as well as all the extremely talented members of the WCSG group I had the joy
and the honor to meet and collaborate with, including the older Dr. Diomidis Michalopoulos,
Dr. Athanasios Lioumpas, Dr. Korina Pappi, Dr. Georgia Ntouni, Dr. Alexandros Boulo-
giorgos and Dr. Dimitris Karas, all of whom are now pursuing very successful careers, as well
as the newer ones Vassilis Papanikolaou, Sotiris Tegos, Stelios Trevlakis and Pavlos Bouzinis,
with their PhD’s topics covering a quite wide domain of discourse, which made the interaction
with them quite stimulating and engaging.

I would also like to express my deepest gratitude to my family, my mother Nikoleta, my
brother Nektarios as well as my late father Konstantinos whose constant support throughout
my studies and life made this dissertation possible.

Last but not least, I would like to thank all my teachers and professors throughout my life
that shaped my personality and interests as well as the Aristotle University of Thessaloniki
itself, for all the support it provides its students.

Contents

1 Introduction

2 System Model and Preliminaries
2.1 Centralized Caching
2.2 Decentralized Caching
2.3 Hierarchical Caching
2.4 Caching with non-Uniform Demands
2.5 Device-to-Device Caching oo
2.6 Online Caching

3 Computational Analysis of ITODM
3.1 Centralized Caching
3.2 Decentralized Caching

4 Computationally Enhanced Decoding Method
4.1 Method Description for Centralized Caching
4.2 Computational Analysis
4.3 Extension to decentralized caching00

5 Comparison
5.1 Centralized Caching
5.2 Decentralized Caching

6 Conclusions

11
11
13
15
19
21
23

25
25
29

34
34
37
38

40
40
47

52

Chapter 1

Introduction

The next generation of 5G communication networks faces a number of challenges imposed by
the high requirements with respect to bandwidth and latency as well as the diverse ecosystem
of applications and services that drive these requirements and the special characteristics of the
physical medium that differ substantially from the ones in the past.

First of all, the use of radio frequencies up to 30GHz or even 60GHz, with the potential
expansion to the whole range of mmWave communications (up to 300GHz) [1] introduces an
unprecedented locality in the network due to the sheer amount of high atmospheric attenuation
and increased fading present in these frequencies. This overhauls the traditional approaches of
network design and enables a dramatic amount of frequency reuse, creating the chance for a
really consumer-centric network. The classical paradigm of large cells that cover a big area with
multiple users no longer applies and tends to be replaced by a large number of small cells each
serving a few users in their close vicinity, such as fempto and pico cells and their evolution [2].
As a matter of fact, the actual networks are expected to be a hybrid of these two paradigms,
having a multilevel structure of high heterogeneity composed of both small cells reliably serving
the low-mobility users in their range with high bandwidth and low latency communications and
large cells covering big areas with the goal to serve the high-mobility users. This multilevel
structure introduces an additional complexity in the network both with respect to its control as
well as the management of content generated and consumed by the individual users [3]. With
the additional massive device-to-device communication that is expected to be implemented in
these networks, they constitute a complex system in which the main challenge is to handle the
big amount of generated or requested data in the most efficient way possible.

Applications such as virtual and augmented reality [4], autonomous vehicles [5] and smart
cities [6] as well as the full spectrum of IoT applications [7] in the industry and the commercial
sector impose a big data challenge for the network that should be able not only to process and
deliver this data but also utilize it for its own optimization. The high bandwidth and ultra-
reliable low latency requirement [5] create a need for pushing cloud computing towards the
edge of the network so that the core network can offload the corresponding tasks and services
keeping them in close proximity to the users, in order to increase the quality of its service.

These developments are expected to create a profound convergence between communication
and computing in the form of fog computing enabled communication networks [8] or mobile
edge computing [8] networks that will manifest in every abstraction layer of the design, imple-
mentation and operation phases of these networks.

During our bibliographic research, caching [9] in general, and coded caching [10] in par-
ticular, stood out as major enablers of the above technologies. Caching is the technique of
duplicating content in distributed memories across a system with the goal of reducing the traf-

7

fic load and the service times whenever this content is requested. It is naturally comprised of
two phases [10], the placement phase where the content is placed in the system caches, and
the delivery phase where content requests are served. In essence, coded caching is the distri-
bution of content across the system using techniques from coding theory in order to create
multicasting opportunities among the users receiving the content. As we will explain in more
detail in the corresponding chapter, this creates a multiplicative improvement over the clas-
sic uncoded caching approach with respect to the transmission rates required in the delivery
phase of the content. This makes coded caching an essential candidate in order to harness the
increased complexity of these systems and mitigate the big data challenges imposed by their
specifications and modes of operation. What is more, there is a vast amount of coded caching
variations [11-37] that enable its deployment in a wide range of abstraction levels and scenarios
in and both central as well as edge nodes of the network, providing an exceptional asset to the
increasingly challenging and complex data management requirements of the system. Further,
the great ability of coded caching to be informed and self-adjust its operations based on results
coming from big data analytics taking place on the network, make it an essential ingredient
in the future 5G supported networks, like the Internet of Things, that are required to show
robustness and adaptability, support emergence [38] and self-organization [39] among its parts,
and in general, having the full spectrum of traits and behaviours [40] that are present in truly
complex systems.

Conventional caching has a long line of research [41-48], where the main goal is to either
maximize the hit rate, that is the probability that a requested content is found at the cache
memory, or to optimize the placement of contents in the caches based on various criteria, most
important of which being their popularity [49,50].

Since its introduction, coded caching has drawn significant research interest and several
different schemes have been proposed over the last years. In this work, we focus on the funda-
mental case of coded caching with uncoded prefetching, where each user’s cache is filled with
uncoded content during a prefetching stage and, during a later delivery phase, each user’s re-
quest must be served in the most efficient way. This important case has recently received a
complete information-theoretic characterization. However, reaching the information-theoretic
optimality imposes a significant computational imbalance among the users. To this end, we
aim at mitigating this imbalance by first performing a complete computational analysis of the
two major forms of coded caching with uncoded prefetching, namely centralized and decen-
tralized, and then proposing a new method for the delivery phase that achieves a significant
improvement compared to the state of the art.

In their seminal paper [10] Maddah-Ali and Niesen proposed the use of coding in the place-
ment and delivery phases in order to create simultaneous multicasting opportunities among the
users that enabled a multiplicative gain in the transmission rates over conventional caching.
One of the most striking characteristics of their approach is that it can offer this significant gain,
even for scenarios where the content popularity is unknown or it is considered uniform. Due
to its advantages, coded caching has attracted considerable research interest. More specifically,
further research on this topic has been mainly focused on the investigation of its information-
theoretic limits [51-56], as well as exploring the various forms it can take such as decentralized
caching [11], online caching [12], hierarchical caching [13-15], D2D caching [16], caching with
non-uniform demands [17-20], cache-aided interference channels [21-24] and others [25-37].

After a number of publications [10,21, 51,57, 58] that explored the optimal information-
theoretic rate-memory tradeoff in coded caching with uncoded prefetching, an exact charac-
terization for the cases of centralized and decentralized caching was provided in [59] by Yu
et al. Centralized caching is the fundamental paradigm around which all other coded caching

8

CHAPTER 1. INTRODUCTION

schemes are developed, making any results regarding it being of principal importance. In this
sense, [59] offers the potential of immediate improvement of all other relevant schemes of coded
caching by extending the insights therein to them, like in [60,61]. There has also been sig-
nificant progress towards characterizing the exact rate-memory tradeoff for the case of coded
prefetching [27,52-56,62,63] with [64] setting the state of the art to within a factor of 2 with
respect to the, as of yet unknown, optimal.

Along with these developments, research also turned towards investigating and mitigating
the implementation challenges and limitations of wireless caching. To this direction, two ma-
jor issues have been identified. The first issue is the combinatorial explosion that happens in
coded caching, where the number of subfiles the files are broken into increases exponentially
with respect to the number of users which quickly makes the subfile size corresponding to any
finite file size fall below the single bit level [65]. To this end, several finite-file packetization
schemes have been proposed [20,61,66-74] that try to contain this explosion while keeping the
multiplicative gains of the original methods. Another important issue is the increased compu-
tational complexity of the information-theoretically optimal caching methods for the specific
set of users called “non-leaders” [59]. In particular, their methods achieve information-theoretic
optimality by utilizing the so-called commonality in user requests, which is the fact that many
users may be requesting the same content. Among these users, one is arbitrarily called leader
and the rest non-leaders. The authors of [59] realized that the computational manipulations
a non-leader needs to perform impose a significant extra burden on them in comparison to
the leaders and ask for a more efficient decoding scheme. Also, in [59] a motivating example
is provided which shows that the computations performed by a non-leader can be potentially
reduced. Nevertheless, to the best of the author’s knowledge, an exact characterization of the
computational cost of the existing methods, as well as a computationally improved method,
has not been provided in the existing literature.

In this work, we aim to develop analytic expressions to precisely characterize the compu-
tational cost of coded caching with uncoded prefetching as well as to propose an improvement
over this coded caching scheme with respect to the required computational resources.

In particular, we derive the computational cost of both centralized and decentralized caching
with uncoded prefetching from a leader’s and a non-leader’s aspect as well as a system-wide
point of view. With the computational manipulations being readily translatable to energy
consumption, the same expressions provide a characterization of the schemes’ energy demands.

Furthermore, we introduce a novel algorithm that directly improves the computational
complexity of the state of the art by utilizing a shortcut in the computations performed by a
non-leader. We apply this improvement to both centralized and decentralized versions of coded
caching and observe some significant computational improvements, especially in the second
more realistic case. Due to the multi-parameter dependence of the exact analytic expressions
for the computational cost, we show that there is a particular tractable averaging procedure
that facilities a meaningful comparison between the methods.

The remainder of this text is organized as follows. Section 2 describes the system model of
centralized and decentralized caching with uncoded prefetching along with some major forms of
coded caching and describes all the relevant concepts that we will utilize throughout the text.
In section 3 we perform a computational analysis of centralized and decentralized caching, pro-
viding a complete characterization of the computational costs involved with the different parts
of the system and observe that decentralized caching has a surprisingly simpler characteriza-
tion when compared to centralized caching. We proceed with the development of our proposed
method in section 4 for both centralized and decentralized caching and a comparison of its var-
ious aspects with the state of the art in section 5 using two cases, one small user case and one

large user case. The text closes with Section 6 containing our conclusions and some comments
on future work.

10

Chapter 2

System Model and Preliminaries

2.1 Centralized Caching

A centralized caching system comprises of a server and K connected users through a shared,
error-free channel. The server contains a library of N files Wy, W, ..., Wy each of size F
bits. Also, each user has an amount of cache memory equal to M F' bits. Fig.2.1 displays, the
archetypal centralized caching system [59].

The system operates in two phases, a placement and a delivery phase. During the placement
phase, the users have free access to the library in order to fill their caches, without performing
any coding to the content. During the delivery phase, each user makes a demand for a specific
file to the server which, being the only one having access to the library, must deliver the
requested content as efficiently as possible by utilizing the shared nature of the channel.

For the delivery phase, also called the prefetching phase, the authors in [59] utilize a scheme
called symmetric batch prefetching. In the same paper, it is proved that this prefetching scheme,
along with the proposed delivery method therein, constitutes an information-theoretically opti-
mal way of delivering the content. Thus, for the rest of this work, will call the method presented
in [59] the information-theoretic optimal delivery method or ITODM for short.

The key parameter of this algorithm is a quantity ¢ equal to the ratio of the total cache
memory among the users over the size of the library:

MK
t=—. 2.1
~ (21)
When this parameter is an integer, ¢ € {0,1,..., K}, the symmetric batch prefetching

considers all the sets comprised of ¢t users:
Ay = {A, € 28| A, =t). (2.2)

Here, [K] = {1,2, ..., K} is the user set, with each user represented by its unique index, 2\% is
the user powerset, that is, all the possible user subsets and | - | is the cardinality of a set. The
case where t is not an integer is typically handled through memory sharing. An exposition of
how memory sharing can be applied is given in the section for hierarchical caching, where it is
an integral part of the scheme.

If we call the contents of A; “t-subsets”, is it easy to see that there are

A= (7) 23)

t-subsets, equal to the number of ways we can choose t users out of K.

11

2.1. CENTRALIZED CACHING

server N files

shared link

K users

caches [] [] []lsizeM

Figure 2.1: Centralized Caching System [59]. The server contains N files and connects through
a shared, error-free channel to K users each having a cache size corresponding to M files.

Then, symmetric batch prefetching breaks up each file in |4, subfiles of size F'/ (It() bit,
with each subfile corresponding to a different t-subset, and sends each subfile to the users in
that corresponding t-subset (for simplicity we assume that F is divisible by (It{), if not we can
virtually expand the end of each file by appending a number zeros to suite this condition). By
expressing the library as an N x F' bit matrix, the matrix is broken into |.4;| columns of size
FN/ (It() bit, each corresponding to at different ¢-subset A; € A;. Each column is then sent to
all the users contained in its ¢-subset. Since there are (It{:ll) subsets containing a user (as many

as the (¢ — 1)-subsets not containing that user), each user receives (1t<_—11) / (I: JEN = MF bits
fully filling up their cache.

During the delivery phase, each user makes a file request d; € [N], where [N] = {1,2,..., N}.
These requests form the demand vector d = (dy,ds,...dg) € [N]¥, on which the delivery
algorithm operates. The delivery algorithm is based on two key observations. The first is that
during the placement phase, all t-subsets A; € A; receive a particular column of the library bit
matrix. That means that for any (¢4 1)-subset A, 1 € A;11, each user u € A;,4 is requesting a
particular line (i.e. a particular subfile) from the column the rest of the users in A;;1\{u} have
received during the placement phase. We can name this subfile Wy, 4,,,\{u}- So, all user subfile
demands that correspond to a particular (¢ + 1)-subset can be served at once by XOR-ing the
subfiles and transmitting the result:

Yo = @ Wa, a,,0\{u}- (2.4)

'LLEAt+1

The second observation is that when the number N,(d) of different files requested in d is
less than the number K of users, not all transmissions Yy, , for all (¢ 4 1)-subsets 4,11 € A
need to take place. In particular, it is the realization that by arbitrarily selecting N,(d) users
U C [K], with distinct requests and calling them leaders, any transmission Yy, , corresponding
to a (t + 1)-subset Ay comprised solely of non-leaders is redundant. If we call AL, the
family of all (¢ 4 1)-subsets comprised solely of non-leaders, the above means that, in order to
have some profit from the commonality among the user requests, there must be at least one
(t + 1)-subset in A7L,. In other words, we must have:

K—N,(d)>t+1. (2.5)

12

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

The converse proof given in [59] shows that this condition is fundamental. Combining

these two observations, one reaches the conclusion that among all (tfl) (t 4+ 1)-subsets, only

(tfl) — (K _tfi(d)) correspond to actual transmissions. Since each transmission is F’ / (1:) bit long
a rate of
(i) — ()

()
is achievable. Notice that F'is not included in (2.6), since the rate corresponds to transmitted
bits per file bit. Also, we should note that although the quantity R is called rate in the
literature, it is, in fact, the transmission load on the channel during the delivery phase. In
other words, the channel should be able to support a transmission with the rate implied by
R or above. In this sense, we are interested in devising delivery schemes that make this rate
as small as possible. It has been proven [59] that (2.6) represents the best possible rate for a
centralized coded caching system with uncoded prefetching. The term centralized means that
during the placement phase, we know the K users that will be requesting a file.

In the delivery method presented in [59], each omitted transmission Yy,,, corresponding
to a non-leader (¢ + 1)-subset A,y € AP, is computed from the transmitted signals. This
computation is based on two things. First, a set B formed by the union of the leader set &/ and
the non-leaders in A;:

R(M,N,K) = (2.6)

B :Z/{UAt+1. (27)

The second thing is the family V¥ of V-subsets of B, where each V-set contains N,(d) users
of B with distinct demands.

F_ 5. [VI=N(d),
% —{VGQ ' Nuy s €V dy, £y, [(2.8)

where 28 is the powerset of B. These V-sets can be generated by starting with &/ and then
replacing one or more leaders by one of their non-leaders (having the same request) in B. Having
these two things, the authors of [59] prove that the signal Yy4,,, can be computed as

Ya= @© Yao 2.9
At VeVF\{U} BV (2.9)

This computation is the main focus of this work. In particular, we propose an alternative
expression of equal computational cost that instead of generating Yy, , it directly gives the
file requested by each user in A;,4.

2.2 Decentralized Caching

The decentralized caching, represents the more realistic scenario were the number of users that
will be requesting a file during the delivery phase is not known during the placement phase.
In other words, the archetypal systems presented in Fig. 2.2 is the same as the one in section
2.1 with the difference that the K users are not known at the placement phase. As it is shown
in [59], assuming a system with a library of N files, each of size F' bit, a random caching of
MF/N bits from each file by each user during the placement phase is enough to guarantee
optimality during the delivery phase. We do not mention the total number of users since this
does not matter during this phase.

Suppose that during the delivery phase only K users actually make a request d = (dy, ..., dg).
We can denote the set of these active users as [K] = {1, 2, ..., K'}, representing each one of them

13

2.2. DECENTRALIZED CACHING

server N files

shared link

K users

caches [] [] []lsizeM

Figure 2.2: Decentralized Caching System [59]. The server contains N files and connects
through a shared, error-free channel to K users each having a cache size corresponding to M
files. The K users are coming from an even larger pool of users and are unknown during the
placement phase.

by a suitable index. Calling the library bits B%, if we examine the way they were transferred to
these users during the random prefetching, we will see that they can be organized (partitioned)
into the following classes

b is cached by exactl
L _ L . Yy y
5; {b €b: J users among [K] } ’ (2.10)

for j = 0,1,..., K. This collection forms a partition since any bit in B* can be cached either
by no user or exactly 1 user or exactly 2 users etc. up to exactly K users. Each of these classes
can be further partitioned if we ask the question which are the particular j users caching a bit
of BJ-L . If A; € Aj is any j-subset of the K users, this leads to the following partitioning within
each BjL:

Bfl]] ={be BjL : bit b is shared among all users in A;} . (2.11)

We can see now that for each 7 € {0,..., K}, the situation is analogous to the case of
centralized caching with a file library BjL being broken to (I;) parts, each corresponding to a
distinct j-subset and being shared among the j users therein. That means that for any (j+ 1)-
subset A;1; € Aji; each user u € Aj;; will be requesting the bits of file Wy, shared among
the other v’ € A;1\{u} users.

So, for each such (j + 1)-subset A;; € A,;1, the server can transmit the signal

Y= @ Vi ac\fu (2.12)

u€Aj41

to accommodate the users in A;;;. The quantity Vj, Aj41\{u} contains the bits of file Wy, shared
exactly by the j users in A;41\{u}. A difference from centralized caching is that the size of each
Vitu, A\ fu} i (2.12) will be different due to the prefetching being random and so a padding
of the smaller terms with zeros can make the expression computable. Also, we should note
that both the server and each user should be aware of the bit positions being cached by the
other users in order for the signal in (2.12) to be computable and decodable, so some kind of
synchronization between the users and the server should take place.

14

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

As in centralized caching, if the number of distinct demands N.(d) < K — (j + 1), the
K users can be split to “leaders” and “non-leaders” and any of the (K _j]ﬁ(d)) signals Yy,
corresponding to the non-leader (j +1)-subsets A;4; € A;-”H can be omitted from transmission,
being derivable from the ones transmitted.

Since, the probability of a bit being selected by a user in the placement phase is M/N,
the probability of a single bit being exclusively selected by the users of a j-subset A; of [K]
(and thus being placed in By) is P(BS7) = (M/N)(1 — M/N)¥~7 and the probability of
a single bit being selected exclusively by any such j subset (and thus being placed in BJL) is
P(Bf) = (I]{) (M/N)i(1 — M/N)X=J. Tterating over all the F' bits in a file W, the number
|Bﬁ]7 (W)| of bits being placed in Bij” and the number of bits |B}(W)| being placed in B} will
be binomial random variables B(n,p) with parameters n = F and p = P(Bﬁ;_j) or p = P(BF),
respectively.

We can now use Bernoulli’s theorem [75] which states that if & is a binomial random variable
B(n,p) then for any e > 0

(-
n

Bernoulli’s theorem states that we can get k/n as close to p as we would like with probability
as close to one as we would like, as long as n is made high enough. In other words, if we
decompose the random variable k as k = np + e, the ratio e/n can be made arbitrarily small
with probability arbitrarily close to one, as long as n is sufficiently high. In simple words, we
can write that asymptotically & = np 4+ o(n) almost surely.

Using the above, we can write that asymptotically almost surely (a.a.s) we will have:

v = () (%) (- %)K_jp+o<p>,
BLI ()| = (%) (- %)K_jp 4 o).

which are the expressions presented in [59] with the first being (IJ() times bigger than the second,
as expected. So, we see that asymptotically, for any j the delivery phase of decentralized caching
can be implemented by the same techniques used in centralized caching.

Since the bits comprising Vg, a,,,\{u} in (2.12) are the ones contained in Bﬁil\{u}(Wdu),

ne? ne2’

ge)>1—ﬂ>1—i (2.13)

(2.14)

each transmission Yy, , will be]Bﬁf (W) bits long (a.a.s.) as given by (2.14). Multiplying this

with the number (ji(l) — (K Eﬁi(d)) of actual transmissions, summing over all j and dividing by

F gives a rate of
N-—M MM
MNK)=—[1—-[1—-—) 2.1

So, we observe that, even though the prefetching is random and the delivery phase trans-
missions are of varying size, in the limit of large file sizes F' an order arises which allows us to
explicitly compute the transmission load per file bit. We will utilize this order to compute the
computational benefits of our proposed decoding method for decentralized caching.

2.3 Hierarchical Caching

Many real systems and networks are comprised of many layers of abstraction and a high degree
of heterogeneity expressed as a hierarchy of nodes ranging from central, core-wise nodes to

15

2.3. HIERARCHICAL CACHING

server N files
rate Rq
K1 mirrors 1 size My
rate Ro rate Ro
K1 K> Cachesl | | | | | | M size Mo

K1 K> users

Figure 2.3: Hierarchical Caching System [14]. The system comprises of two levels of caching.
The server contains N files of size F' bit and connects through a shared, error-free channel to
K, intermediate nodes (mirrors) with cache memory size M;F bit. Each mirror then serves
Ky users, each having a cache memory size of MyF bit, through a another, shared, error-free
channel.

peripheral, edge-wise nodes. This creates an opportunity for concurrently utilizing caching in
many layers and across different levels of the system. Hierarchical caching [13—15] was developed
to account for these arrangements and explores how to optimally distribute and deliver cachable
content in heterogeneous networks with a hierarchical structure.

The archetypal hierarchical caching system [14] is displayed in Fig. 2.3. In this system,
the server has a library of N files, each of size F' bit. The server connects through a shared,
error-free channel to K intermediate nodes with cache memory size M;F' bit, called mirrors.
Each mirror has a cache memory size of M7 F bit and serves a separate group of Ky users, each
having a cache memory size of MyF bit, through another shared, error-free channel.

As of the time of this writing, the author is not aware of an optimal caching scheme for this
system being available. However, [14] describes a near-optimal placement and delivery method
based on decentralized caching.

According to [14], the placement and delivery method is the result of memory sharing
between two different schemes. In the first scheme, the placement of content in the mirrors
and the users follows the simple random placement approach we described in section 2.2 for
decentralized caching. During delivery, every mirror presents to the server the demands of its
users in a sequential manner. In the first step, each mirror presents the demand of its first user,
in the second the demand of its second user etc. up to the final step presenting the demand of
its Ks-th user. In each step, the files are sent to the mirrors using the decentralized delivery
scheme also presented in section 2.2, without utilizing the commonality between the demands
(sending all transmission corresponding to non-leader). After all the mirrors have acquired and
decoded the files requested by their individual users, each mirror uses the decentralized delivery
method (without utilizing commonality) to send these files to their users.

16

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

The rate R{! between the server and the mirrors and the rate R%' between each mirror and
its users, therefore, are

R%:KQ'T<M17N,K1) (216)

and

Ry = (Ma, N, Ky) (2.17)

where R(M,N,K) is the achievable rate of decentralized caching without utilizing common-
ality among the demands, which for the typical case of N > K is

K-(1-=M/N) -min{; (1—-(1—-M/N)X) £} for0<M <N
r(M,N,K) =< min{N, K} for M =0
0 for M > N
(2.18)
In the second scheme, the cache memory of the mirrors is overlooked and the mirrors act
as relays. During the placement phase, the caches of the KK, users are filled using random
placement as before. During the delivery phase, the server receives the demands of all users
and transmits all the corresponding codewords according to the decentralized delivery method
(without commonality) and each mirror just relays the codeword relevant to its user group.
Thus, the achievable rates RP and RP between the server and the mirrors and each mirror
to its users respectively are

R? =1 (My, N, K\ K>), (2.19)

and

R3 =1 (My, N, K>). (2.20)

One important remark that we should make here is the dependence of hierarchical caching
on decentralized caching. As we explained before, the quantity r in the above equations is the
rate of the decentralized caching scheme used. Thus, any improvement of the decentralized
caching leads to a direct improvement of hierarchical caching. As a matter of fact, the utiliza-
tion of commonality between user requests, a technique not available to the authors of [14],
enhances the rate from that of (2.18) to the one given by (2.15). Should the authors of [14]
used centralized instead of decentralized caching, the utilization of commonality would lead to
a similar enhancement of the achievable rates. As we discussed in the corresponding sections,
the utilization of commonality leads to the information-theoretically optimal scheme for cen-
tralized or decentralized caching. However, at the time of writing, it is not known whether this
enhancement leads hierarchical caching to a similar optimality or just an improvement.

Completing the description of the general hierarchical caching scheme, a memory sharing
between the two schemes is performed. In particular, each file in the library and the cache
memory of each user is separated into two parts. In the first part, we have

F' =aF,
MF M
1 1 o 1
My = A (2.21)
| BMyF M
M2 - Fl o 9

for some (a, 3) € [0,1]* and in the second part

17

2.3. HIERARCHICAL CACHING

F?=(1-a)F,
» (1=B)MF (1—f).M, (2.22)
M = B = (1—a) .

Then, in each part, we use the corresponding caching scheme to deliver the data. Note
that since the cache memory of the mirrors is utilized only in the first scheme, it is completely
dedicated to the first part leading to a higher number M} of cachable part-1 files (M] > M).

This memory sharing makes the achievable rates equal to

M
R} =aKy r(M{,N,K,) =ak,r (—1,N, Kl) ,
«

By k).

(2.23)
Ry=a-r(My,N,Ks) =a-r (—,N,K2
«

The selection of a and f then is a matter of optimization. The authors of [14] outline three
regimes
I) My + MyKy; > N and 0 < M; < N/4
II) My + MK, < N, (2.24)
IIT) My + MsKy > N and N/4 < M; < N,

and propose the values

(%, %) in regime I,
(", B%) = (W, O) in regime II, (2.25)
(%, %1) in regime III.

The corresponding rate values Ry (o, 5*) and Rs(a*, *) are proven to be within a constant
multiplicative and additive gap with respect to their minimum values (or to corresponding
lower bounds to be more exact). This places the above scheme very close to optimality. In
particular, it shows that if

R* (M, My) = closure {(Ry, Rs) : (My, My, Ry, Rs) is feasible } (2.26)

is the information-theoretic feasible rate region for a particular choice of M; and M, and

RC <M17 MQ) = {(R1<O‘aﬂ)a RQ(aaB» : avﬂ € [07 1]} + Ri (227)

is the achievable rate region using the above scheme then there are constants c; and cs,
independent of M; and M, such that

RC (M1> Mg) g R* (Mla MQ) g Ct- RC (Ml, Mg) — Cy (228)

We should note that in (2.27) the addition sign is the Minknowski addition between the two
sets and it is utilized in order to extend the region achievable by R; and R, for the various «
and [to the larger range values that are also achievable (for example by zero padding).

18

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

server N files

shared link

K users

caches [] [1] [1lsizeM

Figure 2.4: Caching with non-Uniform Demands [17]. The server contains N files that follow
a specific popularity distribution and connects through a shared, error-free channel to K users
each having a cache size corresponding to M files.

2.4 Caching with non-Uniform Demands

As we describe in the introduction, big data analytics on the telecommunication systems’ data
can reveal crucial information about the system. On such kind of information is the popularity
of the various contents that move around the network. Deriving such popularity distributions
is crucial to optimize the behavior of the system and properly allocate the available resources.
Caching with non-uniform demands was developed with the specific goal to take this information
into account and optimally adjust the placement and delivery phases of the caching system in
order to minimize the rate of delivery.

There have been many attempts and approaches to characterize caching with non-uniform
demands such as [17-20] with varying results. In this text, we will present the method developed
in [17] for illustration purposes as well as for highlighting the relation of this kind of caching
to the other types.

The archetypal system in Fig. 2.4 is again the one presented in section 2.2. In this system,
the server has N files of size F' bit with each file having a specific popularity score. Without
loss of generality, we assume that the files are named in a decreasing order of popularity, with
the first file having popularity p, the second p, < pq, the third p3 < py etc. The different scores
sum to 1 and thus constitute a probabilistic distribution, called popularity distribution in this
context. Each of the users is connected to the server through a shared and error-free channel.

To accommodate for the differences in popularity scores the files as grouped into groups
of 7similar” popularity. Similar means that the least popular file in each group has no less
than half the popularity of the most popular file in the group. For example, the first group
N1 will have all the files from 1 to Ny such that py, > p; and py, 41 < p1. File N; + 1 will
thus be the first file of the second group N, and so on forming L groups. The authors of [17]
call this Ny,Ns,..., N, grouping a maximal partition of the files within a popularity factor of 2.
Of course, one can use a different factor or leave the choice of groups to be a matter of some
optimization technique.

During the placement phase, a fraction of each user’s cache memory M;F is allocated to
each group N; and the user randomly caches M;F'/N; bits from each file in the group N;. Note
that the memory factions M; must sum to M so that each user’s cache memory is filled.

19

2.4. CACHING WITH NON-UNIFORM DEMANDS

In the delivery phase, the users are similarly grouped. All the users requesting a file from
group N, form the user group K, all the users requesting a file from group N, form the user
group N; etc. Since the user choices are random, the group cardinalities Ky, Ko, ... ,K; will
also be random variables. Then, the server uses the decentralized delivery scheme we have
presented in section 2.2 to deliver the requested files for each separate group.

The achievable rate of this procedure will be

R=> R(M,N,K), (2.29)

=1

where R (M;, N;, K;) is the peak rate of the decentralized delivery method used for each
group (see the end of this section for a discussion on its actual value).

Due to the randomness of the user groups, the figure of merit in this scheme cannot be the
one in (2.29) but rather the expected value of it with respect to the user group cardinalities.

E(R) =Y E(R (M, N, K))), (2.30)
where
E (R (M, N k) =Y R(M, N, K, = k) P(K). (2.31)
k=0

In the above P(K)) is the probability that the cardinality of the [-th user group is k.
This probability depends on the user’s random choices which ultimately follow the popular-

ity distribution. The authors of [17] prove that for the information-theoretic optimal rate
R* (M,N, K,{pn}) of this scheme holds that

- L
1

E (r (M, Ny, Ke)) < R (M, N, K, {ps}) < i E (r (My, Ny, K
CL; (r (M, N¢,Ke)) < B*(MN, K, {p })—{Me}:%:%:Mgl (r (Mg, Ne, Ke)) -

< ZE (r (M/L, N¢, Ky))
=1

In other words, the optimal rate is upper bounded by the expected rate of the proposed
scheme minimized among the different options for Mj,..., M}, for the user’s cache memory seg-
mentation which is further upper bounded by the expected rate that corresponds to a uniform
user cache memory segmentation where M; = ... = My = M/L. Furthermore, there is a con-
stant ¢ independent from the system parameters such that the optimal rate is lower bounded
by 1/cL the aforementioned upper bound. So we see, that for a specific popularity distribution,
the optimum rate is within a constant multiplicative gap of this scheme’s achievable rate.

We would like to stress the dependence of this caching scheme to the decentralized caching.
The quantity R (M;, N;, K;) used in the above expressions is the peak rate of the decentralized
delivery method. This shows that any improvement of the later directly induces an improvement
to the former, in a way similar to hierarchical caching. In particular, since the option to utilize
commonality was not available at the time of Niesen’s et al. paper, the authors of [17] give the
expression

20

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

K-(1-=M/N) -min{Z-(1-(1-M/N)X), &£} for0<M <N
r(M,N,K) =< min{N, K} for M =0
0 for M > N
(2.33)
However, after utilizing commonality among the user requests, this rate can improve to
the one we saw in section 2.2. What is more, assuming that the optimal file grouping is
used, the average rate cannot be further improved since the utilization of commonality achieves
optimality for decentralized caching. However, the optimal caching scheme for non-uniform
demands remains an open problem at the time of this writing.
We should also note that the proofs of the previous bounding results have not been formally
extended to the utilization of commonality, but there is no obvious reason for them not to hold.
Instead, utilizing commonality is expected to provide a tightening of these bounds.

2.5 Device-to-Device Caching

Machine type networks are expected to play an ever-increasing role in 5G communication
networks. Device-to-device (D2D) caching [16] was developed in order to enable the benefits of
coded caching in such distributed settings as a D2D network. D2D networks are systems where
the communication devices engage in direct communication with each other, without depending
on a central base station to handle the exchange of information. Such spatial networks can
exhibit highly complex behaviors that the network itself must be able to support by self-
organizing its operation. However, in order to illustrate the concept of D2D caching, we will
base our description in a rather simple setting. Nevertheless, the main ideas that we will
describe here can be extended in more general settings where user mobility is also taken into
account.

The D2D caching archetypal system we will describe is shown in Fig. 2.5. It comprises
of K nodes arranged in the unit square grid and each node is at a distance of 1/ VK from
its horizontal and vertical neighbors and can transmit in a unit disk of radius r. Any nodes
within this disk can receive its transmission, as long as they are (1 + A)r away from other
transmitting nodes. For our simple illustrating example, we assume that r > /2 so only one
node can transmit at any given time.

As usual, there is a library of N files of size F', and these files will be distributed among the
K nodes, each having a cache memory size of M F bit. Again, the key parameter here is the
ratio of the total cache memory over the library size t = % Assuming that ¢ is an integer,
during the placement phase each file is broken up into (It{) subfiles, with each different subfile
of each file corresponding to a different subset A, € 2lK]of t nodes (|A;| = t). If ¢ is not an
integer, we can apply memory sharing.

Now, each of the (};) subfiles is further broken into ¢ packets. All the packets of a particular
subfile are then placed into the caches of the nodes in the corresponding A, subset. The
procedure is exactly the same as the one we described for the placement phase of centralized
caching, with the only difference that each subfile is further broken into t packets.

During the delivery phase, each node requests a particular file. The placement phase has
guaranteed that for each set of ¢ + 1 nodes, A,4; € 2lK] with |A,41| = ¢ + 1, each node has
a subfile (with all its ¢ packets) that another node requires and, what is more, all the other
t — 1 nodes have the same information as well (the same ¢ packets). So a transmission of a

21

2.5. DEVICE-TO-DEVICE CACHING

S08e8e
Ll 4l | |
BN |
....

Figure 2.5: Device-to-device (D2D) Caching [16]. The K devices are the nodes in a grid
covering the unit square. The distance between neighboring horizontal and vertical nodes is
1/v/K. Each node transmits in a disk of radius r and in order to receive from a transmitting
node it must be at least (1 4+ A)r away from other transmitting nodes. In our system 7 > /2
so only one node is allowed to transmit at any given time. The library is comprised of N files,
each of size F' and each node has a cache memory of M F' bit.

suitable xOR among the packets that each node has is enough for all the nodes to acquire their
requested files.

To illustrate how these transmission is formed for each A;,1, let us explain the transmission
of a particular node u € A;;;. For each other node v € A;1\{u} with v # u, the placement
phase has guaranteed that all the nodes in A;;1\{v} have a subfile that v is requesting (all
its ¢t packets). Remembering that we have named all the K nodes using numbers 1,2, ..., K
node u can observe its position in the set A,;1\{v} arranged in an ascending manner. This
position can be one of 1,2, ..., ¢ since there are exactly ¢ nodes present in A;11\{v}. So node
u, among all packets that user v is requesting, can select the one corresponding to its position.
Selecting in this manner one packet for each other node in A;;; and xOR-ing them constitutes
its transmission for the particular A, ;.

So we see that the delivery method is, in essence, the same as the one for centralized caching,
with the only difference being that for each A;,; instead of having a server making a massive
transmission, we have the nodes in A;,; transmitting and exchanging the corresponding packets
themselves. The second difference is that in each node transmission, instead of having the node
xOR-ing and transmitting a whole subfile, we have it transmit just a packet that corresponds
to the 1/t of the subfile. In this way, an unfair situation where some nodes transmit a lot
of information and some other transmit nothing is avoided. In this arrangement, all ¢ nodes
having a requested subfile contribute equally in providing it to the node having requested it by
including just their corresponding packet in their xOR-ed transmission.

The rate achieved by this scheme is

R(M,N,K) = % (1 . %) (2.34)

The authors of [16] show that this rate is order optimal by proving that as K, N — oo and
t>1

22

CHAPTER 2. SYSTEM MODEL AND PRELIMINARIES

server N files

shared link

K users

caches |:I |:I I:I ¢ size M

Figure 2.6: Online Caching [12]. The server contains N files of size F' that are popular among
the system. It communicates through a shared, error-free channel with K users each of cache
memory size M F' bit. The contents of library N can change over time.

4, t=w(l),} <M =o(m)
8, n=0(m),t=06(1),5 <M =o(m)
R(M,N, K) 6, M =0O(m) (2.35)
R{(M,N,K) = | %, n=wm),M <3 '
%, n:O(m),n>m,M<%
L 2, n:O(m)7n§m,M<%

where R*(M, N, K) is the information-theoretic optimal rate and O, © and w the common
asymptotic notations [76].

We should again note the critical dependence of D2D Caching on the centralized caching
scheme showing that any result about the latter is expected to directly affect the former. Al-
though it has not been officially published, since the information that each node ultimately
receives is the same as that in a centralized caching, it is expected that the utilizing com-
monality, so that transmissions corresponding to a non-leader A;,; set do not take place, is
expected to further decrease the achievable rate of this method. However, as of the time of
this writing, this improvement has not been explored by the literature as well as neither the
question of whether the utilization of commonality would lead to an information-theoretically
optimal scheme.

2.6 Online Caching

In this section, we present a variance of coded caching tailored to the fact that as time goes
by and system traffic is constantly analyzed, different files are recognized as popular in a
system. This creates the need for updating the user caches with new content during the
system’s operation and before a new delivery phase has a chance to take place.

The archetypal system is presented in Fig. 2.6. In this system, the server contains a library
of N files of size I’ that are popular among the system. It communicates with K users, each
having a cache memory size of M F. The contents of the library may change as time goes by.

23

2.6. ONLINE CACHING

This creates the need for updating the contents of the user’s caches without going through
a new delivery phase each time the library contents change. The way online caching deals with
this situation is two-fold. First, it allows the users to keep in their caches more that N partially
cached files. In particular, at any given time the users keep in their cache

N' = aN, (2.36)

partially cached files, with @ > 1. The exact value can be chosen freely in this interval to
optimize the system. The authors of [12] suggest selecting an a € (1,2] The initial placement
is the same as the one described in decentralized caching, with each user randomly caching
MK/N' bits of N’ files.

The delivery procedure is again the same as the one we described for decentralized caching
without utilizing commonality. The difference in online caching is when a requested file is not
partially cached by the users. When this happens, the whole file is transmitted by the server
and the users take this opportunity to update their caches. In particular, they discard the
MF /N’ bits of the least frequently sent file and replace it with an equal amount of bits taken
from the transmitted file.

In this way, the users update their caches with new files that become popular or with files
that were once popular and have regained their popularity (an « > 1 assists in increasing
the probability that these files are still cached by the users). This scheme has the additional
advantage that if the popularity distribution is constant, the users slowly come to reflect this
distribution by caching the most popular files.

The rate achieved by this scheme is the same as that in decentralized caching without
utilizing commonality, which for K > N is

R(M,N,K)=K-(1—-M/N)- % (1—(1—M/N)X) (2.37)

The authors of [12] prove that this achievable rate is within a multiplicative and additive
gap with respect to the optimal rate.

1
GR(M N, K) < R <2R(M. N, K) +6 (2.38)

Of course, any improvement in decentralized caching, like the utilization of commonality, is
expected to improve online caching as well and bring its rate closer to optimality.

24

Chapter 3

Computational Analysis of ITODM

3.1 Centralized Caching

In this section, we attempt a computational analysis of ITODM presented in [59]. The com-
putational cost will be counted in “instructions” performed or “number of XORs” required to
do a calculation. We use the symbols | - |. and | - |§ to refer to the computational cost and
the number of bits, respectively. So for example, if A, B and C' are two bit blocks of size
|Als = |B|s = |C|s = n bit, then XOR~ing these three blocks, will require the execution of
|A @ B & C|. = 2n instructions (or XORs at the bit level).

Theorem 1. In a centralized coded caching system with symmetric batch prefetching, the total
computational cost for a leader under the ITODM s given by

Coy = (K - 1) % (3.1)

A

or equivalently

M\ MKF

Proof. Under ITODM, all transmissions relevant to a leader u € U take place. The number of
those transmissions equals the number of (¢ 4+ 1)-subsets A;;; € A;41 containing the user w.
But this is the number of ¢t-subsets A; € A; that do not contain the user u. So there will be

|{At+1 € At+1 U € At+1}| = |{At S At U ¢ At}|

(K -1 (3.3)
(")
transmissions relative to leader u.
Let Yy,,, be one such transmission. In order for u to recover the subfile Wy, 4, \fu}, Ya,.1
must be XORed with all the subfiles Wy , 4,,,\{w} requested by the other users v’ € Ay 41\ {u}
that are already present in u’s cache.

WduyAtJrl\{u} = YAt+1 @ Wdu/,At+1\{u’}- (34)
u'€Arp1\{u}

There are |Ay1\{u}| = t such subfiles so there will be ¢ block-XORs with each block having a
size of |(Wa, 4,1\ {u}| = F/ ([f) bit. So the computational cost of decoding the subfile Wy, 4., \fu}

25

3.1. CENTRALIZED CACHING

will be

CcWaaingu) = [Ya, @& Wa a0\
w' €A1\ {u} c <3 5)
Ft '

— (K\°
(%)
Since there are (K;I) such subfiles that need decoding, the total computational cost for a
leader will be expressed by (3.1) or, substituting the binomial coefficients, by (3.2). O

Finding an expression for the total computational cost of a non-leader v™ € [K]\{U} is
not so straightforward since for different non-leader subsets A,;1 € A, the computation of
Ya,,, according to (2.9) has different computational cost. Nevertheless, due to the importance
of such a quantity,we make an attempt to derive an expression for it starting from the cost of
calculating the subfile Wdunl‘Am\{unl} that is shared among the non-leaders in A; 1\ {u™}.

In order to give an exact expression for this computational cost, we will use some additional
terminology introduced in [59]. If A;,4 is a non-leader set, then the corresponding B = U U A4
is partitioned into sets of users having the same demand. We will call these sets the “tail” of
the corresponding leader. So we have the following definition:

Definition 1. For any non-leader set A; 1 and any leader u € B =UU A, we define the tail
of this leader as

B,={reB:d,=d,). (3.6)

Using this definition, it is easy to see that each V-set in (2.8) is, in fact, a selection of users
among the different tails, taking one from each tail. Thus, we have that

VE~ B, x By, x---x B (3.7)

UNe(d)

The symbol “~” is used to show that the two sets are not equal per se, but can be put in
a one-to-one correspondence. As a matter of fact, if we change the tuple structure to that of a
subset (by dropping the ordering) then the two become equal. We can now state the following
theorem.

Theorem 2. In a centralized coded caching system with symmetric batch prefetching, let Ayyq
be a set comprised of non-leaders. The computational cost for a non-leader u™ € [K|\{U} for

decoding a specific subfile Wdu"l,At+1\{u”l} shared among the other non-leaders v’ € Ay 1\(uy 15

_ (IVF F Ft
Cc,nl (Wd“"l’f“ﬂrl\{u”l}) o (|V | B 2) (tT) + (tT)7 (38)

where V| = H |B.|.

uelU
Proof. According to the ITODM, the computation of Wy , \funl}
uT A1\

first part is computing the signal Yy, , from the actual transmissions using (2.9). This compu-
tation involves |[VF\{U}| = |V¥| — 1 signals and thus needs |[V¥'| — 2 block-XORs. Each block
has size |Ya,,,| = F/ ([t() bit which leads to the first summand of (3.8).
The second step has to do with decoding the actual subfile Wdu”l,At+1\{u"l}
signal Yy, ,. This step is the same as the corresponding one for a leader, so its computational

cost is given directly from (3.5), leading to the second summand of (3.8). The expression for
|VE| comes directly from (3.7). O

is done in two parts. The

from the computed

26

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

We can now proceed with our attempt for a total characterization of the computational cost
of a non-leader for a particular demand. For this, we will use the following definitions.

Definition 2. Let d € [N]X a demand with N.(d) distinct file requests and U the leader set.
We call the set of the non-leaders requesting the same file as leader u; € U the pure tail of this
leader.

Qu, = {u e [K]\U : l(u) = u;}, (3.9)

where l(u) signifies the leader of .

For the rest of this section, without loss of generality (w.l.0.g.) we assume that the non-
leader we are interested in belongs in Q,,, that is [(u™) = u;. This will simplify our expressions
while still covering the general case with a simple renaming of the users. It also means that
while the cardinality of the other pure tails can be between 0 and K — N,(d) — 1, the cardinality
of Q,, is between 1 and K — N.(d).

Definition 3. For demand d € [N]¥ and leader set U, we call W(u™) the set of all non-leader

(t + 1)-sets that contain user u™.

W(um) ={Ai1 € Aﬂrl cu' e A} (3.10)

It is easy to see that [W(u™)| = (KiNEt(d)fl) because when forming a set Ay,; € W(u™)
we get to choose only t among K — N,(d) — 1 non-leaders since user u™ is always selected by
definition. We can understand that after transmission has taken place, the non-leader u™ is
missing exactly the subfiles that correspond to the sets in W(u™).

Definition 4. Let A,y € W(u™). We call the vector (|1By,|, ..., |Buy, (a)]) the profile of Aviy.

Since I(u™) = 1, we have |B,,| € {2,...,|Qu,| + 1} while for the rest we have |B,,| €
{1,...,]1Qu] +1}.

It is easy to see that all subfiles Wy Apri\funl)
ut Appr\{u

profile have the same computational costs given by (3.8). The following theorem gives the
number of non-leader sets A;,; € W(u™) that have a particular profile.

coming from sets A, that have the same

Theorem 3. Let (kyi,...,kn.(d)) € {0,...,]Qu| — 1} x {0,...,|Qu, [}V D=1 such that ki +
oo+ ky, @) =t. The number of Ayy1 € W(u™) having profile (k1 +2,ka+1,... ky,(d) + 1) is

(5 DD () @1

Proof. For i # 1, since the pure tail of leader w; has |@Q,,| elements, there are (lCi“') ways to
choose k; of them. For i = 1, user u™ is always chosen by definition. That leaves us with the
rest |Qy,| — 1 non-leaders among which to choose k; which can be done in ('Q"éi'_l) different
ways. Thus, the total number of non-leader sets Ay, € W(u™) that we can form with the
particular profile is given by the product of the above binomial coefficients. O

Now we are in a position to calculate the total computational cost for the non-leader u™

needed for deriving the non-transmitted subfiles from the transmitted ones by summing (3.8)
over all Ay, € W(u™), in effect proving the following theorem.

27

3.1. CENTRALIZED CACHING

Theorem 4. Suppose a centralized caching scheme with symmetric batch prefetching and a de-
mand d with N.(d) leaders whose pure tail sizes are |Qy,|, i € {1,...,Ne(d)}. Under ITODM,
the total computational cost of a non-leader u™ whose (w.l.o.q.) leader is u; needed for com-
puting the non-transmitted subfiles from the transmitted ones is

F K—N,(d)—1\F(t—2
crt =S— + ((d))Q (3.12)

c,nl

9 ')
where
_ |QU1| —1 |QU2| |QuNe(d)|
s= 2 ()0 ()
(41, kv) J € (3.13)
kpt Ak, (@)=t
X (/{31 + 2)(l€2 + 1) . (kNe(d) + 1)
and

R=A0,...,|Qu| — 1} x {0,...,|Qu, [}V, (3.14)
As we expected, the expression for this computational cost is quite complicated due to the
many factors affecting the end result. The difficulty lies in calculating the factor S appearing
in the above theorem. However, it is possible to further study this term and reach a somewhat
simple form.
To do so, we start from (3.13) and do the multiplications among the different k; giving us
the following result

Ne(d)

_ |Qu1’ -1 |QUNe(d)|
s=5) S (A RS Gy LT
1=0 1<io<---<i;<Ne(d) (kl ,,,,, kNe(CU)eR ¢
kit thNe (a)=

(3.15)

|Qu1| -1 |QUNe(d)|
Y 3 (L (e,
1<iy <---<i;<Ne(d) (k:l ,,,,, kNe<d))eR
kit tkne (@)=t
We should note that the set R in this expression can be generalized to the whole NVe(d) since
there are not any additional tuples in N¥¢(d) that lead to a non-zero summand. Now, using the
binomial coefficient property (Z)k = n(Zj) and the generalized Vandermonde’s identity [77],
which reads

P e N

as well as the fact that the sum of the pure tail sizes is equal to the number on non-leaders, we
can reach the following form

Ne(d)
K—N,(d)—1-1
1=0 1<iz <+ <i;<Ne(d) (3.17)
+2 > |Qui, |- 1Qu,)
1<y <--<i;<Ne(d)

28

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

This form highlights the fact that for N.(d) > ¢ the summation ends at [= ¢t. We could have
seen this in the previous form of (3.15) if we had noticed that when N,.(d) > ¢ the condition
ki1 + ...+ En.,a = t allows only for up to ¢ terms to be non-zero at the same time. However,
this is easier to see in (3.17). Also, since (|Qu,-1) + |Quy| + -+ + [Quy, | = K — Ne(d) — 1,
only up to K — N.(d) — 1 terms of the above sum can be non-zero at the same time. That
means that if N.(d) > K — N.(d) — 1, the summation stops at | = K — N.(d) — 1.

This allows us to replace N.(d) in the sum with min(¢, V.(d)) and reach (3.18).

min(t,Ne(d))

s=) (K‘Njf)l‘l‘l)(> Qul-Da.,

1=0 1<iz<-<i;<Ne(d)

e Qu,
(3.18)

2l)
1<iy <+ <i; <N (d)

Now, we can fully characterize the total computational cost of a non-leader. Theorem 4
gives us the computational cost for calculating the untransmitted subfiles. For the transmitted
ones, the situation is similar to that of a leader. The cost for decoding each transmitted subfile
is given by (3.5). Taking into account that the total transmitted subfiles requested by u™ are
(K _1) — (K - ‘;(d)_l) (the total subfiles minus the non-transmitted ones) we reach the following

t
theorem.

Theorem 5. In a centralized caching scheme with symmetric batch prefetching let d be a de-
mand with N, (d) leaders whose pure tail sizes are |Q,|, i € {1,..., Ne(d)}. Under ITODM, the
total computational cost of a non-leader u™ whose (w.l.o.g.) leader is u, needed for recovering
their requested subfiles is

Comt = (K N 1)% + {S— 2(K — Neld) - 1)} % (3.19)

tJ() ! (1)

with S given by either (3.13) or (3.18)

3.2 Decentralized Caching

For simplicity, we will assume that the choice of leaders and non-leaders is the same among
all centralized instances of decentralized caching. This is an assumption that places a big
computational burden on the users chosen as non-leaders. Alternate scenarios that seek to
distribute the extra computational burden of being a non-leader among the users can modify
this assumption and offer a more balanced computational load between the users. However,
this assumption provides a solid starting point for such further analyses, which makes it quite
important to study.

Extending the previous section analysis to decentralized caching, the exact computational
cost for this scheme is given in the three following theorems.

Theorem 6. In a decentralized coded caching system with symmetric batch prefetching, the
total computational cost for a leader under ITODM is

Cle=(K—1) <1 — %) % +o(F). (3.20)

29

3.2. DECENTRALIZED CACHING

Proof. Since decentralized caching is comprised of multiple instances of centralized caching, we
can sum up the computational cost of a leader over all these instances. The computational
cost of a single instance of centralized caching is given by (3.2) after we substitute F with the
equivalent file size given by (2.14).

So the total computational cost for a leader will be

e <K - 1> B (W)l

J (5)
S

Taking the term 1 — 2 out of the sum and using the formula [77] for the expected value the
binomial distribution B (K — 1, M/N) we reach (3.20) after plugging in the term o(F') that we
omitted for simplicity. m

(3.21)

Theorem 7. Suppose a decentralized caching scheme and a demand d with N.(d) leaders whose
pure tail sizes are |Qy,|, i € {1,...,N(d)}. Under ITODM, the total computational cost of
a non-leader u™ whose (w.l.o.g.) leader is u; needed for deriving the non-transmitted subfiles
from the transmitted ones is

Ne(d)
dec,nt M A M M
chit=(1-%) rl(F0eal-ne2) T (Floul+1
(3.22)
M
+W(K—Ne(d)—1)—2 +o(F).

Proof. We recall that the decentralized caching is, in fact, broken down to multiple instances
of centralized caching, with each instance dealing with the bits shared among j users, with
j€{0,1,...,K}. Since for j > K — N,(d), there are no (j + 1)-sets composed of solely non-
leaders, all subfile transmissions take place and there is no computational cost involved with
deriving any untransmitted subfiles. Thus, in order to find out the total cost of a non-leader
related to the computation of the non-transmitted subfiles, we just have to add the individual
computational costs for j up to K — N.(d) — 1, as given by theorem 4. If CI7,(j) is the
computational cost of v™ in the j-th instance of centralized caching, then the total cost for
non-leader u™ will be

K—N.(d)—1
dec,n n .
CYC,nl7 ' = Z Cc,ﬁzl (])
j=0
K—N(d)— K—N.(d)—
B ST L AUA (€t =) 5l
par (5) par J (5)
. | | (3.23)
S1 5
K—Ne(d)—1 (K—Ne(d)—]_) ‘BJL(WN2
_ } =
=0 J (5)
Ss

30

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

The above expression comes from (3.19) by replacing the file size F' with the equivalent file
size |BF(W)| of the j-th instance of centralized caching given by (2.14) and instead of S using
S(j), which is the value of (3.13) for ¢t = j. We should note that for j = 0 the computational cost
is actually zero since there is no derivation happening. The information in the corresponding
Y4, transmissions that take place is readily available to any non-leader that is interested in
it. However, we let j in the above expression start from zero because it will help us in our
manipulations.

We will now examine each of the three summands by itself. We should note that for
simplicity, in substituting |B}(W)|, we will omit the term o(F) of (2.14), which nevertheless is
always present. Starting with S; and using (3.18) for S(j) gives us

S (1) (Y (1)

K—N.(d)—1-1 MY’ M\ (324
= e — 1 - — F
> AT e (R) (-F) -
{i,l}eR
where
Q) = Y. (Qul=1)1Qu,l- - 1Qu,
1<io<<i;<Ne(d) (3 25)
+2 Z |QU¢1 |Qull Y
1<y < <iy<Ne(d)
and
Ny » j€{0,...,K —N.(d)—1},
R= {(“) €N e o) min(N(@)) S (3.26)
Region R can be equivalently described as
o . 2 . l€{0,7m}
R‘{(j’”eN el K—N(d)—1}[" (3.27)
where
m = min(K — N.(d) — 1, N.(d)). (3.28)
This allows us to exchange the order of summation in (3.24) and get
_ZW:K T K - N(d) -1 -1 o (M LM
N j—1 N N
=0 7=l
m ! Ne(d)+1 K—Ne(d)—1-1 _ 1
éZQ M 1_% P Z K NG(Q) 1—-1
1=0 N N /=0 7’
! (3.29)

=/

M\’ M K—=Ne(d)—-1-1—j"
X | —= 1——=
(+) (%)

3.2. DECENTRALIZED CACHING

In (a) we make the change j' = j — [and tidy up the term a bit and in (b) we apply the
binomial theorem [77]. Plugging in Q(I) from (3.25), the expression for S; becomes

M MO M M M
Si=(1-= F (1Qu | = 1) =Qu | - .. = Qu,
1 (N) lz;(l<'<§‘:<N(d)N(|Ql|)N|Q’2 N|Q”|
12<-<? S IVe
(3.30)
M M
2 Z 1@, ...N|Quil>
1<i1 <<y <Ne(d)

Recovering now the product terms from the sums of this expression gives us

M\ Ne(d)+1 M Ne(d) M
_ (1M M _ 2o, . 3.31
S (1 N) F(N(‘Qul’ 1)+2) g (N’Qul —|-1) (3.31)
The above derivation is straightforward if m = N.(d). If m = K — N.(d) — 1 then from
(|QU1’ - 1) + |Qu2| +o Tt |QuNe(d)| =K — Ne(d) -1 (332)

we have that only up to K — N.(d) — 1 summands can be concurrently non-zero. Thus we can
extend the sum of (3.30) up to N.(d) by including the zero valued terms and get (3.31).
The terms Sy and S5 are easier to handle. In particular

K—Ne(d)—

R ()

7=0
K—Nc(d)—

R ey e

MO MF
=(1—— K—-N,(d)—1)—.
(1-%) -n@-ni

In this expression, we have used the formula [77] for the expected value of the binomial
distribution B (K — N(d) — 1, M/N).
Finally, for the third term, using the binomial theorem, we can easily get

K—Nc(d)-1 - B j K—j
so-2 Y (MM 1)@) (1-%) F
= 7 N N

K—N.(d

—9 (1 - %) e F Z (K Nj(d) 1) (%)]<1 B %)K_Ne(d)_l_j (3.34)

M Ne(d)+1

Plugging back all these terms in (3.23) and re-including the term o(F') that we omitted
before, we reach (3.22) that we are trying to prove.]

We should note here that this a surprisingly simple result, especially when compared to the
corresponding expression (3.12) for the computational cost in the centralized caching scheme,
which is quite more complicated, even if we use the simplified form of (3.18) for the term S.
This fact bears the question of whether it could be possible to devise a different but information-
theoretically equivalent scheme for decentralized caching that could be more suited as the basic
paradigm of coded caching with uncoded prefetching instead of the centralized one.

32

CHAPTER 3. COMPUTATIONAL ANALYSIS OF ITODM

Theorem 8. In a decentralized caching scheme let d be a demand with N.(d) leaders whose
pure tail sizes are |Qy,|, i € {1,...,Ne(d)}. Under ITODM, the total computational cost of a
non-leader u™ whose (w.l.o.g.) leader is u; needed for recovering their requested subfiles is

Ne(d)+1 Ne(d)
Clee = (1 — %) F (%(\le—l)w) 11 (%\Qm +1>—2
=2 (3.35)
(K- 1) (1_%) %m(ﬂ.

Proof. In order to derive (3.35) we just have to make some simple observations on (3.23)
in order to extend it to the total computational cost of a non-leader. This expression gives
the computational cost of u™ in order to extract all the non-transmitted subfiles from the
transmitted ones. So in order to get the total computational cost, we have to add to this
expression the cost of decoding the transmitted subfiles.

For each j € {0,..., K — N.(d) — 1} the additional computational cost for decoding the

transmitted subfiles is
K—j K — N,(d) —1\] |BX(W)]j
) - R (2.3

J J (%)

N - =~
number of transmitted subfiles cost per
subfile

Also for each j € {K — N.(d),...,K — 1} the only computational cost is that of decoding
the transmitting subfiles, since there are no (j + 1)-subsets comprised solely of non-leaders.
This additional cost is

(' j) M (3.37)
J (5)
(j+1)—subsi§s c;)j{:)énlir

involving u

We should note that for j = K, the corresponding bits are present in the caches of all
users, and thus there is no computation (or even transmission) taking place. Adding up these
additional computational costs in (3.23) we can realize that the total computational cost of u™
will be given by this equation, if we replace the sum Sy with

ST G (-2

ko (1 2) e

~ o

~~

Using this result and following the same operations for the other terms of (3.23) as well as
re-positioning the term o(F’) that we omitted for simplicity, yields (3.35).]

33

Chapter 4

Computationally Enhanced Decoding
Method

4.1 Method Description for Centralized Caching

In this section, we propose an alternative way for a non-leader u™ € [K]\{U} to decode the
subfile of interest Wy , utl) for any t-subset A;y; comprised of non-leaders. Using this
u™ Ay \{u

method, the non-leader will perform a direct computation of the subfile from previous leader-
related transmissions without having to compute the signal Yy, , as it is normally done in [59].
Moreover, we show that the computational cost of this new method is equal to the cost of
computing Yy, ,, thus saving the last step of figuring out Wy from Yy,,,. We first

. unl, Ay g \{unl}
show the following lemma.

Lemma 1. Assume a wireless caching system with N files of size F', K users and MF cache
size per user where symmetric batch prefetching is used and t = %K € {0,1,...K}. For any
demand d = (dy,...,dg) with Ne(d) < K —t — 1, any leader set U = {uy,...,un, ()}, any
(t + 1) non-leader subset Ayiq € APL, and any non-leader u™ € Ay we have

vg?/F YB\V vg?;F Wdu"l,B\(vu{unl}) =0, (4.1)
unley u'”ZQV

where B =U U Ayy1 and Vi is the family of V-sets of B, each containing N.(d) users from B
with each one requesting a different file.

The proof will expand on the one given in [59] for Lemma 1. In addition to the family V¥
containing the V-sets of B =U U A, described in section 2, we will utilize two additional set
families defined below, before we move to the actual proof. The first also comes from [59].

Definition 5. Let u € U be any leader. We define VE to be the family of the sets formed by
selecting one user from each tail in B except B,. In particular

P BB, . V| =Ne(d) - 1,
V, —{VGQ DV £ us eV dy £dy, [(4.2)

Definition 6. Let u,u’ € U be any two leaders. We define Viu, to be the family of the sets
formed by selecting one user from each tail in B except B, and B,,. In particular

Fo_ B\(B.UB,) . V] =N(d) - 2,
Vi {VGZ Uy £ un eV dy £y, [(4.3)

34

CHAPTER 4. COMPUTATIONALLY ENHANCED DECODING METHOD

As in V¥, the sets in V)" and V., can be generated by starting with 2\ {u} or U\{u,v'}
and then replacing one or more leaders by one of their non-leaders (having the same request)
in B\B, or B\(B, U B,), respectively.

Proof. We start by studying the term

A= Yo = : 4.4
untey unley

Since the tails B, = {x € B : d, = d,} of the leaders u € U partition the set B, we have
that

A= @ © Wa, B\(vuia})
ueU VEVE ze(BNB.L)\V
untey (45)
=0 & & Winoua)-
uel VEZVJ;«“} z€BL\V
unte

If we define ug to be the leader of u™, so that u™ € B,,, then (4.5) can be written as

A= D e W z
VEVFE x€Buyy\V d= B\ VULe])
unley ,
A (4.6)
© D D Wa sl
uelU\{uo} VElVF x€BL\V
ulltey ,
As
Also, the sets of V¥ that contain u™ can be decomposed as follows
(veviuwtevi={{u"yuV:Vevi}. (4.7)
That means that the term A; can be written as
A =
1= xGBQEO\V Waes\00ap
unley
= @ © W, B\ (fur) i) (4.8)

V/GV{O 2€By, \({unl }UV/)

o EB EB W / n .
VeVl zeBuy\{un} dz B\ ({z}UV/U{unt})

We now note that the family

{{x} na l’fg]f?\’{unz}} —(VeVF ¢ V). (4.9)

since ranges over the whole tail that u™ belongs to but skips u™ itself, and V' ranges over all
the sets in V,L‘Z). So the term A; gives

A= @ Wy

Vevp u”l,B\(VU{unl}))
unlgy

(4.10)

which is the second term in (4.1) canceling it out.

35

4.1. METHOD DESCRIPTION FOR CENTRALIZED CACHING

We now focus on the term A, of (4.6). The operations we will perform here will follow the
more familiar path of the proof in [59]. So, as in [59], we focus on each leader u € U\{ug}
separately and study the term

A= @ @ Wy 2})- 4.11
2 velv,; zE€BL\V 4z B\(VO{z}) ()
unte

In this term, the sets of V¥ containing ™ can be decomposed as

eB
VeV umeyl = {{u”l,y}UV": 4 I } (4.12)
{ } VeV, .
So Az, can be written as
A u S%) S>) S¥ W n 1"
> VIEVE | ¥EBu peB,\ ({unl y}uvr) du B\ ({u"! y}LV""U{a}) o
= & e & W " " '
VIEVE |, yeBy weBu\{y) du, B\ ({ut UV
We can now observe that the set of ordered pairs
{(z,y) v € B\Myly € Bu} = {(z,y) € By 1z £y}, (4.14)
so Ay, is
Ay = n - 4.1
2, V”E%fo,u (z,yi:isg Wduﬁ\({u Lz,ytuy) (5)

Since, each subfile in the above expression is taken twice, we can deduce that Ay, = 0 which
means that
Ay= @ A, =0, (4.16)
uel\{uo}

concluding the proof. O

We can now state the following theorem that provides the means of directly calculating the
subfile Wy

unl,At+1 .

Theorem 9. Assume a wireless caching system with N files of size F';, K users and M F cache
size per user where symmetric batch prefetching is used and t = % € {0,1,...K}. For any
demand d = (di,...,dg) with Ne(d) < K —t — 1, any leader set U = {uy,...,un, ()}, any
(t + 1) non-leader subset Ay 11 € Aﬁ-l and any non-leader u™ € A,y the requested subfile

Wi . is given by
wn ’At+1
W =0 Y W, . 417
du"laAt+1\{u"l} VEG?/’F B\V VEV??\{M} dunl,B\(VU{unl}) ()
unlev unlé\/
Proof. We note that
dunl’At+1\{unl} — Wdunl,B\(b{U{unl}) ’ (418)

which means that the subfile Wy Lty 18 already present in (4.1). Multiplying both sides
u™ Apy 1\ {u
with this leads to (4.17). O

We should note that all the terms in (4.17) are either transmitted signals or subfiles requested
by u™ that are directly computable from the transmitted signals. This allows the non-leader
u™ to compute any subfile still missing from his requested file after all the leader-related
transmissions have taken place.

36

CHAPTER 4. COMPUTATIONALLY ENHANCED DECODING METHOD

4.2 Computational Analysis

In this section, we analyze the computational cost of our proposed decoding method. First, we

should note that both our proposed method and ITODM in [59] coincide when decoding the

subfiles Wy | \ul} coming from actual transmissions Yy, ., where there is at least one leader
u, Ap 1\ {u

in Ayy1. So the computational cost for these files is the same and is given by (3.5). For the rest

of the subfiles requested by u™ the cost of computing them from previous transmissions and
the subfiles collected from these transmissions is given by the following theorem.

Theorem 10. For any non-leader u™ € [K]\{U} and any non-leader (t + 1)-subset A1, the

cost of computing the subfile Wy ., \fuil} s given by the expression
ul, Ap 1\ {u

F
Cont (Wtps oy) = (VeI =2) 7 (4.19)
(%)
Proof. In order to find the cost of computing Wy we count the number of XORs

uh A \{unl}

needed to compute (4.17). From (3.7) we have that

{veVviuev) =[{V eVl u'eV}

YT : (4.20)
|Bu, |
H{veVviu ¢ v} =W —[{V eVl u'eV}
By, — 1 4.21
= &Wﬂ_ ()
B |
So the number of XORs inside each of the two block-XORs of (4.17) will be
V' F
o Yaw :< N (4.22)
vevr O oo \Bwl ()
and
’Bu0| -1 F F
= —5—F - 2| —. 4.2
VEV??\{Z/{} Wdunl,B\vu{u"l} (‘Bu()' |V ’ ([t() (3)

u"l¢V c

Summing those up, and taking into account that we have one more block-XOR between
these two parts of (4.17), introducing F'/(*) additional bit XORs, we reach (4.19). O

Comparing (4.17) to (3.8) we can see that the proposed decoding method requires F't/ (It()
fewer XORs than ITODM per non-leader (¢ + 1)-subset. Given that the number of non-leader
(t + 1)-subsets A; 1 € APl containing a particular non-leader u™ is

[{ A € ALy tu™ € A} = [{Ac € A tu™ ¢ A
_ <K — N,(d) — 1) (4.24)

t

we can state the following corollary.

37

4.3. EXTENSION TO DECENTRALIZED CACHING

Corollary 1. A non-leader using (4.17) to compute the requested subfiles Wy cor-

wnd Ay g \{unl}
responding to all A1 € Aﬁrl will have a total saving of

Somi(d) = (K — Ne(d) - 1) Ft

— (4.25)
t (%)
XORS relative to ITODM.

Since there are K — N,.(d) non-leaders, we also get that the total computational savings
throughout the whole system will be given by the following corollary.

Corollary 2. The total computational savings of using (4.17) throughout the system will be

Se(d) = (K = N.(d)) (K - 1) It

(K7 M)

t+1 ™)

() (4.26)

XORS relative to ITODM.

4.3 Extension to decentralized caching

The proposed decoding method finds applicability in any scenario that the centralized coded
caching with uncoded prefetching appears in some form. In this section, we show how the
previous results extend to the case of decentralized caching with uncoded prefetching and
derive the corresponding computational savings per user and throughout the system.

In section 2.2 we have seen that the delivery phase of a decentralized system is comprised
of multiple delivery phases that each is equivalent to the delivery phase of a centralized caching
system with file size]BﬁJ](WM a.a.s. for j € {0,1,...,K}. Also, for each j € {1,2,..., K —
N.(d) — 1} there will be non-leader sets A, whose corresponding transmissions will not take
place but instead will be computed from the ones that do take place. For each such non-leader
set, a non-leader could apply our proposed decoding method using (4.17) and save the number
of computational operations given by Corollary 1. Summing up these computational savings
forall j € {1,..., K — N.(d) — 1} we will yield the total computational savings of a non-leader
u™ for the decentralized caching system.

Theorem 11. In decentralized caching scheme with uncoded prefetching, a non-leader using
(4.17) to compute the requested subfiles Vy A\l corresponding to all non-leader (j + 1)-
u™ Ay 1 \{u

subsets Aj 1 € A7 forall j € {1,2,..., K — N(d) — 1} will have a total computational saving
of

Ne(d)+1
S&c(d) = (K — Ne(d) — 1) (1 - %) % + o(F) (4.27)

XOR operations (a.a.s.).

Proof. This quantity equals the term S in the proof of theorem 7 and is given by (3.33) after
repositioning the term o(F') that was stripped away for simplicity. [

Again, since there are K — N,(d) non-leaders, we have the following corollary.

38

CHAPTER 4. COMPUTATIONALLY ENHANCED DECODING METHOD

Corollary 3. The (a.a.s.) total computational savings of using (4.17) throughout a decentral-
1zed caching system with uncoded prefetching will be

Ne(d)+1
Sdee(d) = (K — N,(d)) (K — No(d) — 1) (1 — %) % + o(F) (4.28)

XOR operations relative to ITODM.

39

Chapter 5

Comparison

5.1 Centralized Caching

In this section, we would like to compare the efficiency of the centralized ITODM scheme with
the one we propose in this work. The problem with (3.13, 3.18) is that, although they fully
capture the computational cost involved with a particular demand, they implicate quite a big
number of parameters, namely K, t, N.(d) and the sizes of all pure tails |Q,,| for u; € U. This
makes any comparison between the two methods using just these expressions overly specific
and quite subjective (pending on the parameter choices one opts for) to bare any particular
significance. Thus we would like to have a more objective criterion and an expression that
would be more representative of the big number of different values S can take.

One approach to do this would be to average all the pure tail sizes out. In other words,
we can take into account all the different choices we have for the parameters |@Q,,| and then
calculate the average value of S. In order to do so, however, we first need to prove a very useful
lemma for our further analysis.

Lemma 2.

N4+n-—1
S = Z ql...qk:<n_1+k) Jk<n. (5.1)

Proof. Let us start with two sets. The first is the set of n-tuples of non-negative integers whose
sum is N that lead to non-zero summands in (5.1)

_ n . QI+"'+Qn:N7
A—{(ql,...,qn)eN ; Q121,-~,Qk21}. (5.2)

The second is the set of (n + k)-tuples of non-negative integers whose sum is N — k.
B = {(QIv"->Qn+k> e N"t* ¢ + Gk = N—k}. (5.3)

We should note that in order for the sum of (5.1) to be non-zero, there must be at least one
term q19...qro # 0. That means ¢; o > 1,...,qx0 > 1. Since

gl,O+"'+Qk,9+gk+1,0+"'+Qn,Q:Na

>k >0

we get & < N, which shows that the above definition of set B is always meaningful (in the
sense of it always being non-empty).

40

CHAPTER 5. COMPARISON

Now we can define a function f : B — A such that if

b=1(q1; - @, Gnt1,-- > Gnyi) € B,

then
fO) = (a1 + @1+ L@+ Guir + 1, @1, -+, Gn) € A
It is easy to see that the image f(b) lies within A by a simple addition of its components
giving N.
We further show that function f is a surjection. Let

a:(q17--'7qkaq1€+1a--'>Qn) c A

Then, if we take
b:(Q1_17"'an_1aq1€7"'7qn707"'70) €B7

it is easy to see that f(b) = a. Because ¢; > 1 for ¢ € {1,...,k} bis guaranteed to belong to B.
Since f is a surjection, we know that the sets

fa)={be B: f(b) =a} (5.4)

are equivalence classes of B. In particular, they form the quotient set with respect to the
equivalence relation by ~ by < f(b1) = f(b2).
Suppose now that
a=(qt @, s, Q) €A,
and we would like to characterize all the b € B that belong to f~!(a). The general form of a
be Bis
b= (quy s Qs ity Qs 1y .-y 0k)-

The expression f(b) = a imposes the following restrictions

(@ =q¢ —1-n
=g —1—14
dk Qk . (73 (55>
qk+1 = qr4q
L I = q;.

Here we can make three observations. First, that these conditions show that only the
quantities i; for j € {1,...,k} are actually variable. Furthermore, the value of each such i,
can be selected independently from the others from the range i; € {0,1,. .., q — 1}. The lower
end comes from the fact that 7; > 0 and the upper end from ¢; > 0. Secondly, that different
choices lead to different b € f~1(a) and thirdly that for any b € f~1(a) there is a unique choice
of i1, ...,14; giving the above form.

These three observations show that there are |f~'(a)| = ¢ ...q{ elements in f~'(a), which
are the degrees of freedom in the above system of equations.

Now, we can go back to the sum in (5.1) where we can limit the range to the non-zero terms

and write
S= > q...q=) |f)=B] (5.6)

a=(q1,...,qn)EA acA

41

5.1. CENTRALIZED CACHING

But, since B is the set of all (n + k)-tuples of non-negative integers whose sum is N — k its

size is given by [78§]
N+n-1
B| = .)
] (n -1+ k) (5:7)
completing the proof. O

We are know equipped with the result that will enable us to perform an averaging over the
pure tail sizes of (3.18). First of all, we should note that the number of ways we can choose the
pure tail sizes equals the number of ways we can distribute the K — N,.(d) — 1 non-leaders into
N,(d) sets. In other words, it is the number of N.(d)-tuples of non-negative integers whose sum
is K — N.(d)—1. This is a well know combinatorics problem and the answer can be proven [78§]

to be (]{fzdz))

Then we have to find the value of the sum of each product term in (3.18) as the pure tail
sizes move over their entire range. In particular, we have to find the following sums

>, (1Qu | = 1) [Quy, |- - [Qu,, | = >, G-o-q, (58)
(‘Qu1|*1v|Qui2‘ 7777 ‘Quil \)ER%Z (‘H »»»»» qu(d))ENl
‘Quﬂ‘HQub\+‘“+|Qul\:K*Nﬁ<d) ‘I1+“'+4N6(d>:K*Ne<d)*1
(‘Quil‘ vvvv \Quil \)ER% (ql """ qu(d))eNl
‘Quil |+“‘+\Qul\:K*N6(d>*1 41+"'+qu(d>:K*Ne<d)*1
where
R,={0,...,K — N.(d) — 1}. (5.10)

In these two sums we make the substitutions ¢; = \Qu] with the only exception of ¢; =
|Qu,| — 1 for (5.8). The generalization from R, to N is valid since it does not introduce any
additional non-zero summands. So we actually see that for the same [these sums are in effect
equal. Their value is given by the formula in Lemma 2 that we proved above which is equal to

> ql---Qz—(Ne(g:iJrl) (5.11)

<q1 ,,,,, qu(d))eNl
a1+ +ay, (a) =K~ Ne(d)—1
Thus the only difference between the two sums in (3.18), apart from the multiplication with
two in the second sum, is the number of product terms that are being summed. The first, is the
sum of products of [terms where the first term is always |@Q,,| — 1. Thus the number of these
product terms is equal to the ways we can choose [— 1 things out of N.(d) — 1, or (Nel(‘_i)l_l).
Similarly, for the second sum, since it is the sum of products of [terms whose selection excludes
|Qu, | their number will be equal to the ways we can select [things out of N.(d)—1 or (NE(‘?)_l).

So taking the average and replacing the above while doing some manipulations, we get

L ED K N 1= 1 (v@asd) [((Ne(d) — 1 No(d) - 1
5= X S)(Nﬁf_) ((27) (M) -
_ (Ne(d) — 1)K — No(d) — 1)! M’f () + (P

(K — No(d)—1—t)! (t—D)I(N(d) — L+ 1)

Note that in this expression, we choose to use N.(d) as the upper limit of the sum, instead
of min(¢, N.(d)), because it will make our derivations more natural. This does not change the

42

CHAPTER 5. COMPARISON

end result, as long as the “out of bounds” terms are taken to be zero, as they should. Also, in
the above manipulations, we have used the property

()= () - () o

In this handling, some extra care is warranted towards the first and the last terms of the
sum to make sure that the zero-valued “out of bounds” terms appearing do not lead to different
results.

We now focus on the following sums

- Ne(d) (Nel(d))
Si= 2 T 10 (5-14)
~ Ne(d) (Ne(cll)—l)
%= v 1] (5.15)

Expanding the factorials and rearranging the multiplications, we can see that after a suitable
pairing of the resulting terms, these sums can be expressed as

5= _175(3)()(w1
_ Ne(d)! (—1+t (5.16)
t(2N,(d) — 1)
1 2N 1+t
:<Ne<d>—1+t>(t >

N.(d) —1)! (QNe(d) -2+ t) (5.17)
)l

In the above, we have used Vandermonde’s identity as well as a proper pairing of the terms
appearing in the binomial coefficients. Plugging back these results to (5.12) which is the sought
after averaged value of S.

(K-2

) 140) { (2Ne(d)t— 1+t) +<2Ne<d>t—2+fﬂ (5.18)

(et 1)

We must stress here that this expression is the average over all values of S for the different
choices of |@,,| and leads to the corresponding average of the computational cost of a non-
leader with respect to these values. It does not lead to the expected computational cost of a
non-leader. The reason for this is that in deriving (5.18) we did not account for the multiplicity
of the different requests leading to the same pure tail sizes. Also, such an expected value would
require the assumption of a particular scheme by which leaders and non-leaders are assigned
during reception. Only then would one be able to compute the expectation with respect to

S=

43

5.1. CENTRALIZED CACHING

that particular scheme. We see that seeking for an expected computational cost characteriza-
tion not only makes the analysis more complicated but also re-introduces a particular level of
subjectivism (the choice of the assignment scheme) that we are trying to avoid.

Nevertheless, one might be interested in the worst-case scheme where whenever a user can
be a non-leader, it is done so and then try to calculate the expected computational costs for
such a non-leader. This might lead to a useful characterization of the computational cost and
could be the object of a future analysis.

In order to compare ITODM with our proposed method, we calculate the relative compu-
tational improvement, defined as
Sc,nl<d)

5.19
Cc,nl ()

[

The numerator is the total computational savings coming from using our proposed method
for a particular demand d, given in (4.25). The denominator is the average computational cost
of the ITODM for the particular K, ¢t and N.(d). This average computational cost is given by
(3.19) if we replace the S term with its average S given in (5.18). Note that the numerator also
depends only on K, t and N,(d), making it suitable for our comparison. We do not mention
the dependence with respect to F' as it is canceled out.

First, we will examine a small user case. Supposing we have K = 30 users and plotting a..
against V.(d) for various values of ¢, we get the results displayed in Fig. 5.1a. Note that the
different plots have different endpoints. That is because, for a specific K and a specific t, N.(d)
is allowed to vary up to K —t¢ — 1 that is the highest value for which there are non-transmitted
subsets and the ITODM can profit from our proposed method.

We observe here a significant computational improvement for most kinds of requests. As
the number of users t sharing the same information gets higher and as the number of distinct
file requests N.(d) increases, this improvement becomes lower. Overall, we can see that for
the small user case the proposed method can contribute significantly to the reduction of the
computational cost of decoding the requested subfiles.

Next, we will examine the other end, which is a large user case. If we set K = 300 and
plot a. against N,(d) for various values of ¢ we will get Fig. 5.1b. The first impression here is
similar to the small user case. We have high gains for the smaller values of ¢ and N,(d) that
decrease as these parameters get higher. The important difference is that while in the small user
case, the parameter ¢ could get as high as K — 2 = 28 (otherwise there are no non-transmitted
subfiles), in the large user case, the parameter ¢ can get as high as K — 2 = 298. That means
that only for a small region of arrangements, we actually have significant computational gains.
This region contains the cases where the total cache memory of the users (KM F') is not much
larger than the library size (NF).

So we can conclude that even for a large user set, the proposed computational method
yields significant computational gains as long as the total cache memory of the system remains
close in scale with the total library size (keeping the parameter ¢t below 10). For larger total
user cache sizes, the sheer amount of the transmissions that take place in the derivation of
the non-transmitted subfiles is so big, that overshadows any computational benefit their direct
computation offered by our method has, compared to ITODM.

Another interesting comparison we can make is to study the improvement in the computa-
tional cost related to the derivation of the non-transmitted files from the transmitted ones. The
difference is that this quantity does not include the cost for decoding the transmitted subfiles
and can give us a more direct glimpse of the improvement in the actual calculation that takes
place with respect to this derivation. Also, for the same reason, this quantity can be thought

44

CHAPTER 5. COMPARISON

S
0 & P eeq SD-D 0 . | Loy | b |
0 5 10 1 20 25 30 0 50 100 150 200 250 300
Ne(d) Ne(d)
(a) Small User Case (K = 30). (b) Large User Case (K = 300).

Figure 5.1: Relative computational improvement of a non-leader when fully decoding their
requested file. For the small user case, a significant improvement is observed for most kinds
of requests. For the large user case, we have a significant improvement in a region where the
aggregate cache memory of the users is close in scale (less than 10 times) to the size of the
library.

of as an upper bound for a.. We can define this relative improvement as

nt __ SC7nl(d)
c At
c,nl

a

(5.20)

Again, the numerator is given by (4.25) and represents the total computational gains of the
proposed method and the denominator is the average of the computational cost of deriving the
non-transmitted subfiles from the transmitted ones for specific K, t and N.(d). This quantity
is given by (3.12) by replacing the term S with its average S given in (5.18).

Plotting @™ for the small and large user cases we had before, gives us the results presented
in Fig. 5.2a and 5.2b. The main characteristics are similar to the previous plots of a. and the
comments we did there apply here as well. However, a major effect that we did not observe in
a. is the presence on an asymptotic behavior.

What these graphs show is that as K gets larger, increasing the number of distinct requests
N,(d) leads to a steady, non-vanishing improvement in the computational cost of deriving the
non-transmitted subfiles. We can find an expression for this asymptotic value by letting K go
to infinity while replacing N.(d) with its end value K —t — 1. Doing so and using’s Stirling’s
approximation [75] for the factorial leads us, after some straight forward manipulations, to the

following expression

t

)

which corresponds to the exponential drop in the relative computational improvement we see
in these figures and contributing to our understanding of the rapid decrease of the total com-
putational improvement we observed in Fig. 5.1b for the large user case where this asymptotic
behavior gets a chance to be fully expressed.

The fact that XOR operations are readily translatable to energy demands allows us to
directly translate all the previous computational improvements to corresponding improvements

45

5.1. CENTRALIZED CACHING

] - I I
05+ —t=1 |
---t=3
cet =5 ||
04y . t =10
o o 0.3 |
3 3 1
0.2 B~ e 2
S I A 1
0 e . ‘ . ‘ |
0 50 100 150 200 250 300
Ne(d) Ne(d)
(a) Small User Case (K = 30). (b) Large User Case (K = 30).

Figure 5.2: Relative computational improvement of a non-leader when deriving their untrans-
mitted subfiles from the transmitted ones. The major new characteristic we observe here is the
presence of an asymptotic behavior having an exponential drop with respect to the parameter
t.

in the system’s energy profile. In other words, we can view a. and a? either as relative
computational improvements or as relative improvements if energy efficiency. We would like to
close this subsection by performing one more comparison that will allow us to appreciate the
impact of the proposed method on the energy efficiency of the whole system.

In particular, we will examine the following relative improvement

Se(d)

=29 5.22
=, (5.22)

The numerator is the total computational savings coming from the proposed method through-
out the system, given by (4.26). The denominator is the total computational cost among all
leaders and non-leaders, and is given by

éc»t = Ne(d)OC,l + (K - Ne(d))cc,nla (523)

where C,; is given by (3.1) or (3.2) and C,,,; by (3.19) if we replace the S term with its average
S given in (5.18). Note that, as we did before, the computational cost for a non-leader is
averaged out with respect to the pure tail sizes.

This relative improvement is not very interesting from a computational point of view, as
it expresses an improvement among computations that happen in parallel among the different
users. However, it is very interesting from the energy consumption point of view, as is expresses
the relative improvement in the energy consumed by the users as they perform their decoding
task, which is an important figure of merit in the system’s energy profile.

Plotting r. against N.(d) for the small (K=30) and large (K=300) user cases gives us the
results displayed in Fig. 5.3a and 5.3b. We observe that r. displays a similar behavior as
a.. In particular, in the small user case, the relative energy consumption has a significant
improvement for most demands. It becomes lower as the number of users ¢ sharing the same
information gets higher and as the number of distinct requests N.(d) increases. In the large

46

CHAPTER 5. COMPARISON

0.5 ——t=1 | 0.5+ —t=1 |
& ---t=3
| 1 st =5 |
0.4 — 10
o 0.3 o :
& \ S
02 [#::n. 1 1
0.1 | |

30 OO 50 100 150.200 250 30

Ne(d)
(a) Small User Case (K = 30). (b) Large User Case (K = 300).

0 S-6-6-669 :-.. SBe 200003
2

Figure 5.3: Relative improvement in the energy consumed by the users during the delivery
phase. The behavior here is similar to a.. For the small user case, we have a significant
improvement for most kinds of request while for the large user case, we have a significant
improvement in a region where the aggregate cache memory of the users is close in scale (less
than 10 times) to the size of the library.

user case, the improvement is more pronounced in the region of small ¢ corresponding to the
cases where the total cache memory of the users (KM F') is not much larger than the library
size (NF).

This similarity in behavior between r. and a. was expected since the system is naturally
expected to benefit more when the separate non-leader users benefit more and vice versa, which
is another expression of the imbalance in the computational burden between the leaders and
the non-leaders.

5.2 Decentralized Caching

Like we did for centralized caching, we would like a more representative expression of the
different values ngfl and ijfl’m can take when the pure tail sizes |Q,,|, with u; € U, range
among their possible choices for specific K, N.(d), M, N and F. As we discussed in the
previous section one way to do it would be to average out the pure tail sizes in the term

Ne(d)

Siec = (%(IQull—l)Jr?) 11 (%m +1>. (5.24)

=2

To derive this average, first of all, we unfold the product terms by performing the multipli-
cations in (5.24) and get

m M l
Siec = Q1) (ﬁ) : (5.25)
1=0
where Q(I) is given by (3.25). We can repeat now the reasoning of section 5.1 to acquire the

47

5.2. DECENTRALIZED CACHING

average of each Q(l). Doing so and plugging the result back to (5.25) we get

Se= 3 (y)l (v, ret) (Ne(d)) 3 (%)l (v (&10) (Ne(d) - 1)
\Z:O N (Nelfd_){l) l l:g N (N:?d_)%l) ! ’ (5‘26)
kS 5

We can now write S, as

Ne(d)) (K—2)

=30 (3) Hbans) 2

Ne(d)—1

and recognize the expression as the sum of the probability generating function for the hyper-
geometric distribution [79], after we substitute M/N by z. Thus we get

~N(d), —K + No(d) + 1 %) _ (5.28)

Sa:2F1 < Ne(d) "N

Similarly, we can do the same for S, after we write it in the form

5=3" (y)’ () (e -1 (5.29)

K—2 d
TN (v.(@-1)
and get
B —N.(d)+1,-K+ N.(d)+1 M
Sy = oI (N,(d) N) (5.30)
Using these results in (5.26) we reach (5.31) which is the average we are looking for.
Doing so will give us the following result:
g g (Ne(d), =K+ Ne(d) +1 M
dec — 21471 Ne(d)) N
(5.31)
P —Ne(d) +1,-K + N(d) +1 M
241 Ne(d)) N .

In this expression, o F} is the Gaussian hypergeometric function [79].
We proceed now to examine the relative computational improvement as we did for central-
ized caching. Again, we can define this quantity to be

e Sim(d)
e = ééec (5.32)

c,nl

Here, Si‘jfl(d) is the computational improvement of our proposed method for the decen-

tralized caching, given by (4.27) and C’gifl the average computational cost of the decentralized
ITODM for the particular K, M, N and N.(d). This quantity is given by (3.35) by replacing
the term Sy, as given by (5.24), with its average Sz, given in (5.31). As before, we do not
take the dependence on F' into account, as for adequately large values, it is practically canceled
out.

Examining first the small user case (K = 30), plotting a%° against N.(d) for different
user-over-library (M/N) ratios, we get the results displayed in Fig. 5.4a, where we see some

quite different behavior from what we had in centralized caching. What we observe here is

48

CHAPTER 5. COMPARISON

= 0.001 || 0.6 | —

0.6 —- i N =0.001 ||
e =001 --- M — 0.005
—— 4 =0.05 —e M .01
%% =0.1 H o4t e % —0.05 4
i ——Md -03 i

-~
~.
-~
.-

(S

SN

~~
Nem.

730 0 50 100 150 200 250 300
Ne(d) Ne(d)
(a) Small User Case (K = 30). (b) Large User Case (K = 300).

Figure 5.4: Relative computational improvement of a non-leader when fully decoding their
requested file. We observe that as long as the individual user caches remain small compared
to the total library size, there is a significant computational improvement for practically the
whole range of demands.

that as long as the individual user caches M F' are small compared to the total library size N F,
our proposed method yields significant computational benefits compared to the decentralized
ITODM for all kinds of demands.

In Fig. 5.4b we plot the a%¢ for the large user case (K = 300) and we observe the same
behavior. As long as the user cache size M F’ remains low compared to the total library size N F',
our proposed method yields significant computational gains for all kinds of demands. What
these results further illustrate is that as the user count K becomes higher, the computational
gains slowly decrease. In other words, the range of values for M/N for which our method
provides significant computational gains becomes smaller as the number of users increases.
However, given that in most typical scenarios, the user caches are quite smaller compared to
the total library size of the system, our proposed method still provides significant computational
gains practically for the whole range of N,(d).

As we did in the previous section, we can also compare the computational improvement with
respect to the computational cost of deriving the untransmitted subfiles from the transmitted
ones. We can define this relative computational improvement as

dec
()

ageent = S (5.33)
c,nl

The numerator here is the same as that in (5.32) and the denominator is the average
computational cost for deriving the transmitted from the untransmitted subfiles for specific
values of K, M, N and N,.(d). This quantity is given by (3.22) by replacing the term Sg., as
given by (5.24), with its average Sz, given in (5.31).

Plotting a?“" for the small user case (K = 30) against N,(d) for different values of the
user-to-library (M/N) ratio we get Fig. 5.5a. Again, we observe that we have significant
computational gains in the whole range for N.(d) and we see an important difference. As N, (d)
increased, the relative computational improvement a?°“™ starts from value 0.5, decreases and

the increases returning to value (asymptotically) equal to 1/3. So, if we are interested in this

49

5.2. DECENTRALIZED CACHING

= 0.001 —

M M
N & =0.00
0.6 —— 4 =0.05 | 0.6 --- & =0.005 ||
M ———M
) —- M =03 . === =0.05
§" 0.4 +M:05 H S" o4+ —— M:O]_ [
Q N i Q N
= &SI 3 k) L -2 .’—",';5
0.2} 1 02T e S, =
0 | 1 | | | | 0 \ | | | _-—'r'/ | |
0 5 10 15 20 25 30 0 o0 100 150 200 250 300
N.(d) N.(d)
(a) Small User Case (K = 30). (b) Large User Case (K = 300).

Figure 5.5: Relative computational improvement of a non-leader when deriving their untrans-
mitted subfiles from the transmitted ones. We observe that as long as the individual user caches
remain small compared to the library size, we have a significant non-vanishing computational
gain that asymptotically converges to the same value.

kind of computational improvement, we can say that we have non-vanishing computational
gains, as long as the user caches size M F' remains small with respect to the total library size
NF.

As we can see in Fig. 5.5b, where we plot the same quantity for the large user case (K = 300),
this significant gain remains for all kinds of user demand, albeit for a somewhat smaller but
still quite larger than the typical range of M /N ratio values.

Finally, we would like to examine the relative improvement in energy consumption for the
system as a whole, as we did in the previous section for centralized caching. The corresponding
relative improvement for decentralized caching will be

Sdec d
Tdec _ M ()

c C_(dic : (534)
C,
The numerator is given by (4.28) and represents the total computational savings the pro-
posed method provides to the system. The denominator is the total computational cost among
all users and is given by

C*jjc = N(d)C%° + (K — N,(d))C% (5.35)

c,l c,nly

where ngc is given by (3.20) and C’gfjfl is given by (3.35) by replacing the term Sy, as given by
(5.24), with its average Sye. given in (5.31). We should note again here that the computational
cost for a non-leader is averaged out with respect to the pure tail sizes.

Examining the small (K = 30) and large (K = 300) user cases by plotting 74 against N, (d)
for various user-over-library (M/N) ratios, we get the results displayed in Fig. 5.6a and 5.6b.
As with centralized caching, the behavior of 7% closely resembles that of a?. In particular, we
observe significant improvements in energy consumption among the users for almost all kinds
of requests, both in the small as well as the large user case. The only condition is that the
user-over-library ratio remains small, with the actual range becoming smaller as the number of

users increases.

50

CHAPTER 5. COMPARISON

0.5, —e— 2 =0.001 || 0.5 — ¥ =0.001 |{
+%20.01 ---%:0.005
+E =0.06 || 0.4} SRR E =0.01
$E:0.1 | &~ =0.05 |

égu - N — 0.3 "§&u
O :'~. s |
0 50 100 150 200 250 30
Ne(d)
(a) Small User Case (K = 30). (b) Large User Case (K = 300).

Figure 5.6: Relative improvement in the energy consumed by the users during the delivery
phase. The behavior of ré closely resembles that of % having significant improvements in
energy consumption among the users, as long as the individual cache size of the users remains

small in comparison to the library size.

What the analysis of this section shows is that our proposed method provides significant
computational and energy-related advantages over the decentralized ITODM for all kinds of
system arrangements and demands, as long as the individual user cache size M F' is small when
compared to the total library size N F. This is a natural condition expected to hold for almost
all caching systems, as the available memory in a user device (UE) is typically much smaller
than the memory in a content delivery server or in a base station (BS).

51

Chapter 6

Conclusions

In this work, we have performed a complete computational analysis of the information-theoretic
optimal delivery method (ITODM) for centralized and decentralized caching, the two funda-
mental methods of coded caching, a technology that is expected to play a key role in future 5G
networks assisting them in managing their increased complexity and big data challenges. Both
methods take advantage of the commonality in the file requests among the users to reduce the
telecommunication load down to the information-theoretic optimal level. However, this is done
at an exponentially increasing computational cost. Thus, our analysis allowed us to specify
the exact amount of this computational cost down to the number of XOR operations required.
This is an important figure of merit not only because it gives us an exact expression of the
computational needs but is also readily translatable to energy demands both for the individual
users and the overall system in general.

Furthermore, we have developed an alternative method for the delivery stage of centralized
and decentralized caching that provides significant computational and energy consumption
improvements over ITODM. This is achieved by introducing a computational shortcut in the
derivation phase of the untransmitted subfiles from the transmitted ones. For centralized
caching, the improvements are more pronounced when the number of users is small, or the
total cache size among the users is comparable in scale to the total library size. For the
more realistic case of decentralized caching, however, we observed significant computational
improvements for all kinds of scenarios, as long as the individual user cache size remains small
in comparison to the total library size, a condition that naturally happens in such systems.

Due to the principal position of centralized and decentralized caching in the domain of coded
caching, any improvement or new results regarding it immediately reverberate outwards to all
other kinds of coded caching systems. Thus, future research could extend the results of this
work to other coded caching systems and could examine other ways and different aspects of
characterizing the computational costs involved. Minimizing the computational burden coming
from the utilization of commonality and finding alternative schemes to balance out this cost
among non-leader is still an open question and we aspire that this work will push the discussion
forward.

52

Bibliography

[1]

[10]

[11]

L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave com-
munications for bg wireless systems,” IEEE Wireless Communications, vol. 21, no. 6, pp.
136-143, 2014.

B. Romanous, N. Bitar, A. Imran, and H. Refai, “Network densification: Challenges and
opportunities in enabling 5g,” in 2015 IEEE 20th International Workshop on Computer
Aided Modelling and Design of Communication Links and Networks (CAMAD), 2015, pp.
129-134.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User
association in bg networks: A survey and an outlook,” IEEE Communications Surveys
Tutorials, vol. 18, no. 2, pp. 1018-1044, 2016.

M. Erol-Kantarci and S. Sukhmani, “Caching and computing at the edge for mobile aug-
mented reality and virtual reality (ar/vr) in 5g,” in Ad Hoc Networks, Y. Zhou and T. Kunz,
Eds. Cham: Springer International Publishing, 2018, pp. 169-177.

Chih-Ping Li, Jing Jiang, W. Chen, Tingfang Ji, and J. Smee, “5g ultra-reliable and low-
latency systems design,” in 2017 European Conference on Networks and Communications
(EuCNC), 2017, pp. 1-5.

K. E. Skouby and P. Lynggaard, “Smart home and smart city solutions enabled by 5g, iot,
aai and cot services,” in 2014 International Conference on Contemporary Computing and
Informatics (1C31), 2014, pp. 874-878.

S. Li, L. D. Xu, and S. Zhao, “5g internet of things: A survey,” Journal of
Industrial Information Integration, vol. 10, pp. 1 — 9, 2018. [Online]. Available:
http://www.sciencedirect.com /science/article/pii/S2452414X18300037

Y. Zhou, L. Tian, L. Liu, and Y. Qi, “Fog computing enabled future mobile communica-

tion networks: A convergence of communication and computing,” IEEE Communications
Magazine, vol. 57, no. 5, pp. 20-27, 2019.

P. Lin, K. S. Khan, Q. Song, and A. Jamalipour, “Caching in heterogeneous ultradense 5g
networks: A comprehensive cooperation approach,” IEEE Vehicular Technology Magazine,
vol. 14, no. 2, pp. 22-32, 2019.

M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IFEE Transactions
on Information Theory, vol. 60, no. 5, pp. 28562867, May 2014.

——, “Decentralized coded caching attains order-optimal memory-rate tradeoff,”
IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp. 1029-1040, Aug 2015.

53

http://www.sciencedirect.com/science/article/pii/S2452414X18300037

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,” IEEE/ACM
Transactions on Networking, vol. 24, no. 2, pp. 836-845, April 2016.

J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded caching,” in 2014 IEEE
International Symposium on Information Theory, June 2014, pp. 56—60.

N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hierarchical coded
caching,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3212-3229, June
2016.

J. Hachem, N. Karamchandani, and S. Diggavi, “Effect of number of users in multi-level
coded caching,” in 2015 IEEE International Symposium on Information Theory (ISIT),
June 2015, pp. 1701-1705.

M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless d2d net-
works,” IEEFE Transactions on Information Theory, vol. 62, no. 2, pp. 849-869, Feb 2016.

U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” IEEFE
Transactions on Information Theory, vol. 63, no. 2, pp. 1146-1158, Feb 2017.

J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distributions,”
IEEFE Transactions on Information Theory, vol. 64, no. 1, pp. 349-366, Jan 2018.

M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and coded
multicasting with random demands,” IEEE Transactions on Information Theory, vol. 63,
no. 6, pp. 3923-3949, June 2017.

A. Ramakrishnan, C. Westphal, and A. Markopoulou, “An efficient delivery scheme for
coded caching,” in 2015 27th International Teletraffic Congress, Sep. 2015, pp. 46-54.

M. A. Maddah-Ali and U. Niesen, “Cache-aided interference channels,” in 2015 IEEE
International Symposium on Information Theory (ISIT), June 2015, pp. 809-813.

N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Fundamental limits of
cache-aided interference management,” IEEFE Transactions on Information Theory, vol. 63,
no. 5, pp. 3092-3107, May 2017.

J. Hachem, U. Niesen, and S. Diggavi, “A layered caching architecture for the interference
channel,” in 2016 IEEE International Symposium on Information Theory (ISIT), July
2016, pp. 415-419.

J. Hachem, U. Niesen, and S. N. Diggavi, “Degrees of freedom of cache-aided wireless
interference networks,” IEEE Transactions on Information Theory, vol. 64, no. 7, pp.
5359-5380, July 2018.

C. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching,” in 2015 IEEE
International Symposium on Information Theory (ISIT), June 2015, pp. 1776-1780.

——, “Information-theoretic caching: Sequential coding for computing,” IFEE Transac-
tions on Information Theory, vol. 62, no. 11, pp. 6393-6406, Nov 2016.

S. H. Lim, C. Wang, and M. Gastpar, “Information-theoretic caching: The multi-user
case,” IEFE Transactions on Information Theory, vol. 63, no. 11, pp. 7018-7037, Nov
2017.

54

BIBLIOGRAPHY

28]

[29]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

R. Timo and M. Wigger, “Joint cache-channel coding over erasure broadcast channels,” in
2015 International Symposium on Wireless Communication Systems (ISWCS), Aug 2015,
pp- 201-205.

S. S. Bidokhti, M. Wigger, and R. Timo, “Erasure broadcast networks with receiver
caching,” in 2016 IEEE International Symposium on Information Theory (ISIT), July
2016, pp. 1819-1823.

S. Saeedi Bidokhti, M. Wigger, and R. Timo, “Noisy broadcast networks with receiver
caching,” IEFEFE Transactions on Information Theory, vol. 64, no. 11, pp. 6996-7016, Nov
2018.

S. S. Bidokhti, M. Wigger, and R. Timo, “An upper bound on the capacity-memory
tradeoff of degraded broadcast channels,” in 2016 9th International Symposium on Turbo
Codes and Iterative Information Processing (ISTC), Sep. 2016, pp. 350-354.

J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless be: Interplay of coded-
caching and csit feedback,” IEEE Transactions on Information Theory, vol. 63, no. 5, pp.
3142-3160, May 2017.

J. Zhang, F. Engelmann, and P. Elia, “Coded caching for reducing csit-feedback in wireless
communications,” in 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), Sep. 2015, pp. 1099-1105.

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff be-
tween computation and communication in distributed computing,” IEFE Transactions on
Information Theory, vol. 64, no. 1, pp. 109-128, Jan 2018.

S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Edge-facilitated wireless dis-
tributed computing,” in 2016 IEEE Global Communications Conference (GLOBECOM),
Dec 2016, pp. 1-7.

——, “A scalable framework for wireless distributed computing,” IEEE/ACM Transac-
tions on Networking, vol. 25, no. 5, pp. 26432654, Oct 2017.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed fog computing,”
IEEE Communications Magazine, vol. 55, no. 4, pp. 34-40, April 2017.

D. Roca, D. Nemirovsky, M. Nemirovsky, R. Milito, and M. Valero, “Emergent behaviors
in the internet of things: The ultimate ultra-large-scale system,” IEEE Micro, vol. 36,
no. 6, pp. 36-44, 2016.

J. Xu, J. Yao, L. Wang, K. Wu, L. Chen, and W. Lou, “Revolution of self-organizing net-
work for 5g mmwave small cell management: From reactive to proactive,” IEEE Wireless
Communzications, vol. 25, no. 4, pp. 66-73, 2018.

M. E. Newman, “Complex systems: A survey,” arXiv preprint arXiv:1112.1440, 2011.

D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,”
Commun. ACM, vol. 28, no. 2, pp. 202-208, Feb. 1985.

L. W. Dowdy and D. V. Foster, “Comparative models of the file assignment problem,”
ACM Comput. Surv., vol. 14, no. 2, pp. 287-313, Jun. 1982.

%)

BIBLIOGRAPHY

[43]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to provide a scalable and
interactive video-on-demand service,” IEEFE Journal on Selected Areas in Communications,
vol. 14, no. 6, pp. 1110-1122, Aug 1996.

D.S. P. Dan, Asitand Sitaram, “Dynamic batching policies for an on-demand video server,”
Multimedia Systems, vol. 4, no. 3, pp. 112-121, Jun 1996.

M. R. Korupolu, C. Plaxton, and R. Rajaraman, “Placement algorithms for hierarchical
cooperative caching,” Journal of Algorithms, vol. 38, no. 1, pp. 260 — 302, 2001.

A. Meyerson, K. Munagala, and S. Plotkin, “Web caching using access statistics,” in
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA ’01. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2001, pp. 354-363.

[. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for data placement
problems,” SIAM J. Comput., vol. 38, no. 4, pp. 1411-1429, Aug. 2008.

S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution
networks,” in 2010 Proceedings IEEE INFOCOM, March 2010, pp. 1-9.

Y. Birk and T. Kol, “Coding on demand by an informed source (iscod) for efficient broad-
cast of different supplemental data to caching clients,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2825-2830, June 2006.

7. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side information,”
IEEFE Transactions on Information Theory, vol. 57, no. 3, pp. 1479-1494, March 2011.

Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: improved bounds for
users with small buffers,” IET Communications, vol. 10, no. 17, pp. 2315-2318, 2016.

K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users than files,” in 2016
IEEFE International Symposium on Information Theory (ISIT), July 2016, pp. 135-1309.

S. Sahraei and M. Gastpar, “K users caching two files: An improved achievable rate,” in
2016 Annual Conference on Information Science and Systems (CISS), March 2016, pp.
620-624.

C. Tian and J. Chen, “Caching and delivery via interference elimination,” IEEFE Transac-
tions on Information Theory, vol. 64, no. 3, pp. 1548-1560, March 2018.

M. Mohammadi Amiri and D. Giindiiz, “Fundamental limits of coded caching: Improved

delivery rate-cache capacity tradeoff,” IEEE Transactions on Communications, vol. 65,
no. 2, pp. 806-815, Feb 2017.

M. M. Amiri, Q. Yang, and D. Giindiiz, “Coded caching for a large number of users,” in
2016 IEEE Information Theory Workshop (ITW), Sep. 2016, pp. 171-175.

A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of storage-rate
tradeoff for caching via new outer bounds,” in 2015 IEEE International Symposium on
Information Theory (ISIT), June 2015, pp. 1691-1695.

C. Wang, S. H. Lim, and M. Gastpar, “A new converse bound for coded caching,” in 2016
Information Theory and Applications Workshop (ITA), Jan 2016, pp. 1-6.

56

BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff for
caching with uncoded prefetching,” IEEE Transactions on Information Theory, vol. 64,
no. 2, pp. 1281-1296, Feb 2018.

C. H. H. Suthan, I. Chugh, and P. Krishnan, “An improved secretive coded caching scheme
exploiting common demands,” in 2017 IEEE Information Theory Workshop (ITW), Nov
2017, pp. 66—70.

Kai Wan, D. Tuninetti, and P. Piantanida, “Novel delivery schemes for decentralized
coded caching in the finite file size regime,” in 2017 IEEE International Conference on
Communications Workshops (ICC Workshops), May 2017, pp. 1183-1188.

H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,” IEEFE
Transactions on Information Theory, vol. 63, no. 7, pp. 4388-4413, July 2017.

J. Gémez-Vilardebd, “Fundamental limits of caching: Improved rate-memory tradeoff with
coded prefetching,” IEEE Transactions on Communications, vol. 66, no. 10, pp. 4488-4497,
Oct 2018.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory tradeoff
in cache networks within a factor of 2,” IEEE Transactions on Information Theory, vol. 65,
no. 1, pp. 647-663, Jan 2019.

K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis., “Finite-length analysis
of caching-aided coded multicasting,” IFEE Transactions on Information Theory, vol. 62,
no. 10, pp. 5524-5537, Oct 2016.

L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced subpacketization
from linear block codes,” IEEFE Transactions on Information Theory, vol. 64, no. 4, pp.
3099-3120, April 2018.

Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery array design for
centralized coded caching scheme,” IFEE Transactions on Information Theory, vol. 63,
no. 9, pp. 5821-5833, Sep. 2017.

C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching schemes: A hypergraph
theoretical approach,” IEFE Transactions on Information Theory, vol. 64, no. 8, pp. 5755—
5766, Aug 2018.

K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with linear subpacke-
tization is possible using ruzsa-szeméredi graphs,” in 2017 IEEE International Symposium
on Information Theory (ISIT), June 2017, pp. 1237-1241.

G. Vettigli, M. Ji, A. M. Tulino, J. Llorca, and P. Festa, “An efficient coded multicasting
scheme preserving the multiplicative caching gain,” in 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), April 2015, pp. 251-256.

M. Ji, K. Shanmugam, G. Vettigli, J. Llorca, A. M. Tulino, and G. Caire, “An efficient

multiple-groupcast coded multicasting scheme for finite fractional caching,” in 2015 IEEE
International Conference on Communications (ICC), June 2015, pp. 3801-3806.

57

BIBLIOGRAPHY

[72] S. Jin, Y. Cui, H. Liu, and G. Caire, “A new order-optimal decentralized coded caching
scheme with good performance in the finite file size regime,” IEEFE Transactions on Com-
munications, vol. 67, no. 8, pp. 5297-5310, Aug 2019.

[73] S. M. Asghari, Y. Ouyang, A. Nayyar, and A. S. Avestimehr, “Optimal coded multicast in
cache networks with arbitrary content placement,” in 2018 IEEFE International Conference
on Communications (ICC), May 2018, pp. 1-6.

[74] G. Vettigli, M. Ji, K. Shanmugam, J. Llorca, A. M. Tulino, and G. Caire, “Efficient
algorithms for coded multicasting in heterogeneous caching networks,” FEntropy, vol. 21,
no. 3, 2019.

[75] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes,
4th ed. McGraw Hill, 2002.

[76] D. E. Knuth, “Big omicron and big omega and big theta,” SIGACT News, vol. 8, no. 2,
p. 1824, Apr. 1976.

[77] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for
Computer Science, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1994.

[78] R. P. Stanley, Enumerative Combinatorics: Volume 1, 2nd ed. New York, NY, USA:
Cambridge University Press, 2011.

[79] C. Walck, Hand-book on statistical distributions for experimentalists, 1996. [Online].
Available: http://staff.fysik.su.se/~walck/

58

http://staff.fysik.su.se/~walck/

	Introduction
	System Model and Preliminaries
	Centralized Caching
	Decentralized Caching
	Hierarchical Caching
	Caching with non-Uniform Demands
	Device-to-Device Caching
	Online Caching

	Computational Analysis of ITODM
	Centralized Caching
	Decentralized Caching

	Computationally Enhanced Decoding Method
	Method Description for Centralized Caching
	Computational Analysis
	Extension to decentralized caching

	Comparison
	Centralized Caching
	Decentralized Caching

	Conclusions

