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We present a three-dimensional Field-Flux eigenmode Finite Element formulation, able to provide an accurate approximation of the 
propagation characteristics of periodic structures featuring graphene. The proposed formulation leads to a linear eigenmode problem, 
where the effective refractive index is the eigenvalue and the electric field intensity and magnetic flux density are the state variables, 
while graphene’s contribution is incorporated via a finite conductivity boundary condition. The formulation is spurious free and can 
provide accurate dispersion diagrams for an arbitrary propagation direction. 
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I. INTRODUCTION 

N THE past decade, graphene, the two-dimensional carbon 
allotrope has attracted significant interest due to its 

infinitesimally small thickness and its unique characteristics, 
such as the ability to support highly confined surface plasmon 
polariton (SPP) propagation at the far infrared regime. In 
particular, there has been significant interest for applications 
utilizing the plasmonic properties of graphene with the most 
prevalent examples being THz waveguides and antennas [1]-
[3]. Moreover, structures featuring some kind of periodicity on 
graphene, either in the form of periodically modulated 
conductivity or in the form of discontinuities in the graphene 
surface, have shown great potential in tailoring propagation 
characteristics and improving the excitation techniques of the 
graphene plasmonic modes [4]. The purpose of the proposed 
formulation is to provide a numerical tool for accurate 
approximation of the propagation characteristics of these 
periodic structures in terms of the dispersion diagram. 

II. FIELD-FLUX EIGENMODE FORMULATION FOR PERIODIC 

GRAPHENE STRUCTURES 

A. The Field Flux Formulation 

The finite element field flux formulation is based on the 
system of Maxwell’s equations solving for both the electric 
field E  and the magnetic flux B and follows the framework 
that has been proposed in [5]. The intrinsic ill-conditioning of 
this system due to the presence of the 1

0
  and 0  coefficients 

in the Ampere differential equation is improved by scaling the 
magnetic flux B  using the vacuum wave velocity. 

0jc B B .                                         (1) 

Introducing the scaled magnetic flux into Maxwell’s equations 
results in the scaled system of equations  

0k E B ,                                   (2a) 

1
0r rk  B E ,                           (2b) 

 
 

where 0k  is the vacuum wavenumber and r , r the relative 

dielectric permittivity and magnetic permeability tensors. The 
symmetry of structures featuring periodic variances along the 
propagation axis allows us to reduce the computational space 
to three-dimensional periodic cell by imposing the Bloch peri-
odic boundary condition on the corresponding port. In addi-
tion, by taking into account that graphene’s conductivity is a 
function of the radial frequency and that the lossy nature of 
graphene renders the propagation length a very important part 
of the dispersion, we arrive at the conclusion that for the cur-
rent problem it is much more convenient to calculate the 
wavenumber as a function of frequency rather than the oppo-

site. Assuming arbitrary propagation direction k̂ , the corre-

sponding wave vector can be expressed as 0
ˆ

effk nk k ,where 

effn  the unknown effective refractive index of the wave. Re-

stricting the computational space in the unitary cell of the 
periodic structure allows us to cast the electric and magnetic 
fields in Bloch form. 

 0
ˆ

effjk ne  k rE e ,                                  (3a) 

 0
ˆ

effjk ne  k rB b  ,                                (3b) 

where e  and b  the vectorial periodic envelopes of the electric 
and magnetic fields. The periodic envelopes, along with the 
effective refractive index constitute the state variables of the 
problem. Restating (2a) and (2b) with respect to the Bloch 
transformation leads to the modified system of Maxwell’s 
Equations. 

0 0
ˆ

effjk n k   e k e b ,                        (4a) 

1 1
0 0

ˆ
r eff r rjk n k      b k b e  ,               (4b) 

This system defines a generalized linear eigenvalue problem 
in terms of effn , for which the known operating frequency is 

inserted via 0k . To apply the Galerkin method on the modi-

fied Maxwellian system, equation (4a) is weighed with testing 
functions for the magnetic flux while equation (4b) is weighed 
with the testing functions for the electric field: 

0 0
ˆ 0effdv k dv jn k dv

  

          b e b b b k e    ,    (5a) 
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 1 1
0

ˆ
r ext r r

d

dv ds k dv   

  

          e b e n b e e   

1
0

ˆ 0eff rjn k dv 



    e k b ,   (5b) 

where ˆ extn  is the normal unit vector pointing outward from the 

boundary surface.  

B. Implementation of graphene 

Owing to its extremely small thickness, graphene can be 
regarded as an ideal two-dimensional surface. This allows 
interpreting its contribution to the overall electromagnetic 
system as surface current density, which in turn can be treated 
computationally as a finite conductivity boundary condition, 
which can be written in the form 

1 1
0

ˆ ˆ
g r g r g tgj          n b n b e  ,                  (6) 

where ˆ
gn  is the unit vector normal to the graphene surface, 

g  is graphene’s conductivity and 0  the intrinsic impedance 

of free space. The subscript “t” denotes field components that 
are tangent on graphene’s surface. This interface condition is 
inserted in the overall problem by substituting (6) in the 
surface integral term of (5b): 

1
0ˆ ˆ( )

g g

ext r tg g tg

S S

n ds j ds       e b e e .                  (7) 

 
 
Fig. 1. Dispersion curves of the first two modes of a 5um graphene 
microribbon compared to the infinite layer. 

III. COMPUTATIONAL RESULTS 

To validate the proposed formulation we examine the well- 
documented case of a free standing graphene ribbon of 5um 
width. Graphene’s conductivity was evaluated via the Kubo 
formula at room’s temperature 300KT   with the energy 
independent scattering rate  equal to 0.1meV , the chemical 
potential equal to 0.2eV . The dispersion diagram of the first 
two modes supported by the graphene ribbon, compared with 
the theoretical dispersion of the infinite layer [2] is shown in 
Fig. 1. Examination of the dispersion of these modes reveals 
the highly confined nature of the graphene SPPs, as the higher 
effective index is related with the confinement of moving 
charges. The distribution of normal and tangential E-field 
components at the transverse plane on the propagation axis for 
the first and the second mode are depicted in Fig. 2 and Fig. 3 
respectively.  In both cases, the concentration of the electric 
field on the graphene surface is evident. Finally, the dispersion 
diagram as well as the distribution of the electric field are in 
accordance with the existing literature [1], [6] and thus 
validate the accuracy of the proposed formulation.    

 

Fig. 2. Distribution of the normal (a) and tangential (b) electric field at the 
transverse plane on the propagation axis of the first mode at 1 THz. 

 
Fig. 3. Distribution of the normal (a) and the tangential (b) electric field at the 
transverse plane on the propagation axis of the second mode at 4.5 THz.  

ACKNOWLEDGEMENT 

This research is carried out/funded in the context of the 
project “Development and implementation of an integrated 
platform for fully planar low-cost circuits for 5G, Internet-of-
Things and THz Communications technologies” (MIS 
5005207) under the call for proposals “Supporting researchers 
with emphasis on new researchers” (EDULLL 34). The project 
is co-financed by Greece and the European Union (European 
Social Fund-ESF) by the Operational Programme Human 
Resources Development, Education and Lifelong Learning 
2014-2020. 

 

REFERENCES 
[1] A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, 

"Edge and waveguide terahertz surface plasmon modes in graphene mi-
croribbons," Physical Review B 84, 114076, 2011. 

[2] G. W. Hanson, "Dyadic Green’s functions and guided surface waves for 
a surface conductivity model of graphene." Journal of Applied Phys-
ics 103, 064302, 2008. 

[3] S. A. Amanatiadis et al., "A loss-controllable absorbing boundary condi-
tion for surface plasmon polaritons propagating onto graphene," IEEE 
Trans. Magnetics, vol. 51, no. 3, 2015. 

[4]   M. Ben Rhouma, M. Oueslati, and B. Guizal, "Surface plasmons on a 
doped graphene sheet with periodically modulated conductivi-
ty," Superlattices and Microstructures, vol. 96, pp. 212-219, 2016. 

[5]   Μ. Nitas, C. S. Antonopoulos, and T. V. Yioultsis, "E-B eigenmode 
formulation for the analysis of lossy and evanescent modes in periodic 
structures and metamaterials," IEEE Trans. Magnetics, vol. 53, no. 6, 
June 2017. 

[6]   V. Salonikios, S. Amanatiadis, N. V. Kantartzis, and T V. Yioultsis, 
"Modal analysis of graphene microtubes utilizing a two-dimensional 
vectorial FEM," Applied Physics A, 122:351, March 2016. 


