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Abstract 

Objectives: We report a transcriptome acquisition for the bath sponge Spongia officinalis, a non-model marine 
organism that hosts rich symbiotic microbial communities. To this end, a pipeline was developed to efficiently sepa-
rate between bacterial expressed genes from those of eukaryotic origin. The transcriptome was produced to sup-
port the assessment of gene expression and, thus, the response of the sponge, to elevated temperatures, replicating 
conditions currently occurring in its native habitat.

Data description: We describe the assembled transcriptome along with the bioinformatic pipeline used to discrimi-
nate between signals of metazoan and prokaryotic origin. The pipeline involves standard read pre-processing steps 
and incorporates extra analyses to identify and filter prokaryotic reads out of the analysis. The proposed pipeline 
can be followed to overcome the technical RNASeq problems characteristic for symbiont-rich metazoan organisms 
with low or non-existent tissue differentiation, such as sponges and cnidarians. At the same time, it can be valuable 
towards the development of approaches for parallel transcriptomic studies of symbiotic communities and the host.
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Objective
Sponges are organisms with simple body plan, lack-
ing true tissue differentiation [1]. Moreover, they often 
host rich symbiotic bacterial communities, thus creat-
ing complex holobionts [2, 3]. These traits, combined 
with the diverse nature of the poriferan phylum and their 
vulnerability to global change makes them ideal case-
study species (e.g. [4–6]). Although transcriptomic stud-
ies facilitated through NGS can provide sound answers 
to ecological questions, the lack of a reference genome 
makes the building a de novo assembly necessary, as for 
all non-model organisms. This becomes more challenging 

in sponges, as it is often difficult to discriminate between 
signals of metazoan and prokaryotic origin [7, 8], thus 
introducing biases to interpretation.

Here, we constructed the transcriptome of the Medi-
terranean bath sponge Spongia officinalis, an organism 
that has suffered a substantial decline in the past dec-
ades due to the combined impact of harvesting and mass 
mortalities attributed to extreme climatic events [9, 10]. 
The acquisition of the transcriptome was used to assess 
gene expression within a manipulative experiment, where 
individuals of the sponge were subjected to a gradient of 
elevated temperatures simulating extreme climatic events 
currently occurring during the warm season in its native 
habitats (see Table 1 data file 1 for experimental design). 
The results of the study are published in [4] and all data 
files are presented in Table 1.
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The built transcriptome assembly comprises the only 
transcriptome reference available for S. officinalis and can 
serve as a baseline for further studies on the species. This 
transcriptome reference has already been used in studies 
of different focus (see [11]) indicating the importance of 
this transcriptome generation in various study fields. The 
proposed pipeline can be followed to overcome the tech-
nical RNASeq problems characteristic for symbiont-rich 
metazoan organisms with low or non-existent tissue dif-
ferentiation, such as sponges and cnidarians.

Data description
Four S. officinalis individuals collected from natural pop-
ulations from the island of Crete, Greece, were reared 
in closed tanks and experimentally exposed to elevated 
temperatures approximate an extreme climate event 
naturally occurring in the sponge’s habitat during sum-
mer. The 50 m3 rearing tanks contained natural seawater 
collected from a pristine open-sea area, with tempera-
ture and salinity adjusted to reflect typical local condi-
tions for the time of year (24 °C and 39 ppt, respectively). 
Two experimental tanks were employed, one as control 
(24 °C) and one as treatment with increasing temperature 
(up to 30 °C). Five sampling points initiated after 5 days 
acclimatization in the tanks and over a span of 6  days, 
resulted in 20 samples. RNA was extracted with TRIZOL 
(TRIzol™ Reagent, Thermo Fisher Scientific, Cat. num-
ber 15596026) following the manufacturer’s protocol. 
The quality control of the RNA revealed a unique profile. 
Apart from the expected 28 s, 18 s ribosomal bands two 
extra bands, possibly of 23  s, 16  s characteristic of the 
microbial ribosomal RNA, appeared at the agarose gel, 
which reflected a remarkably large proportion of prokar-
yotes in the extracted RNA (data file 2). For the library 

preparation we used the TruSeq Stranded mRNA LT 
Sample Prep Kit (Illumina, Cat. Number 20020594) and 
followed the protocol of the manufacturer for sequenc-
ing using the shortest possible fragmentation time and 
applying 13 cycles instead of 15 in the amplification 
library PCR at the very last step of the protocol. In total, 
20 RNA libraries were sequenced on an Illumina HiSeq 
2000 platform. Τhe amount of prokaryotic RNA in our 
extraction urged us to implement extra steps for exclud-
ing the prokaryotic sequences from our dataset (data file 
3).

Sequencing yielded on average 12,933,232 raw paired 
reads per library (data set 1). Raw reads were quality con-
trolled using multiple software in a workflow described 
in [12] and run through bash scripts (data file 4 and 5). 
The used software included scythe (version 0.994 BETA; 
https ://githu b.com/vs.buffa lo/scyth e), sickle (version 
1.33; https ://githu b.com/najos hi/sickl e), prinseq (version 
0.20.4; http://prins eq.sourc eforg e.net/) and trimmomatic 
version 0.32 [13]. The quality-controlled data were used 
to build an initial Trinity (v2.1.1) [14] assembly (data file 
6). However, given that a great percentage of sponge tran-
scriptome is comprised of bacterial sequences, we down-
loaded all bacterial sequences from NCBI (data file 7) and 
removed all reads (2.2 to 17.6% of the reads of each sam-
ple) that were successfully mapped on them using riboP-
icker (ribopicker-standalone-0.4.3 version; https ://sourc 
eforg e.net/proje cts/ribop icker /files /stand alone /; com-
mand ribopicker.pl -c 47 -i 75 -l 40 -z 3). Then, we built 
another assembly with the remaining reads (data file 8). 
The reconstructed transcripts were then used for a simi-
larity search through NOBLAST [15] against the Swiss-
Prot database (e-value: 1.0E−5). Transcripts that had as 
best hit prokaryotic sequences (17.1% of the assembly) 

Table 1 Overview of data files/data sets

Label Name of data file/data set File types 
(file 
extension)

Data repository and identifier (DOI or accession number)

Data file 1 Figure 1—Experimental design png Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3) [16]

Data file 2 Figure 2—Sponge RNA extraction on gel agarose png Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 3 Figure 3—Bioinformatic pipeline png Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 4 Scythe_batch sh Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 5 PE_sickle_prinseq_trimmomatic_batch sh Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 6 allreads_trinity .fasta Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 7 getit_bacteria .pl Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 8 assembly_nobacteria_pass1 .fasta Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 9 assembly_nobacteria_final .fasta Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data file 10 Extract_reads_from_bam .sh Figshare (https ://doi.org/10.6084/m9.figsh are.10001 870.v3)

Data set 1 All raw reads from the 20 libraries .fastq.gz SRA (SRP150632) https ://www.ncbi.nlm.nih.gov/sra/?term=SRP15 0632 
[17]
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were eliminated leading to the final assembly (data file 9). 
Their corresponding reads were eliminated from the bam 
files as well (data file 10) and were excluded from down-
stream analyses.

Limitations
The proposed pipeline eliminates effectively most prokar-
yotic sequences within the sequenced dataset, however, it 
does not filter out non-sponge eukaryotic sequences that 
are often present due to existence of symbiotic eukary-
otes as well, e.g. fungi and dinoflagellates.

Abbreviations
RNASeq: RNA-sequencing the use of next-generation sequencing to assess 
the presence and quantity of the expressed RNA in a biological sample; NGS: 
next-generation sequencing.
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