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Abstract The Ryu–Takayanagi conjecture connects the
entanglement entropy in the boundary CFT to the area of
open co-dimension two minimal surfaces in the bulk. Espe-
cially in AdS4, the latter are two-dimensional surfaces, and,
thus, solutions of a Euclidean non-linear sigma model on a
symmetric target space that can be reduced to an integrable
system via Pohlmeyer reduction. In this work, we construct
static minimal surfaces in AdS4 that correspond to elliptic
solutions of the reduced system, namely the cosh-Gordon
equation, via the inversion of Pohlmeyer reduction. The con-
structed minimal surfaces comprise a two-parameter fam-
ily of surfaces that include helicoids and catenoids in H3 as
special limits. Minimal surfaces that correspond to identical
boundary conditions are discovered within the constructed
family of surfaces and the relevant geometric phase transi-
tions are studied.

1 Introduction

The AdS/CFT correspondence [1–3] is a framework that
connects theories which include gravitational dynamics in
spacetimes with AdS asymptotics to conformal field theo-
ries defined on the AdS boundary. The similarity of the laws
of black hole physics to those of thermodynamics suggests
that the emergence of gravity in the bulk theory incorporates
thermodynamics of some underlying degrees of freedom [4],
which in the context of the AdS/CFT correspondence can be
naturally selected to be the degrees of freedom of the bound-
ary theory. Then gravity can be understood as an emergent
entropic force originating from the strongly coupled CFT
degrees of freedom.

The more recent point of view of gravity as an emergent
entropic force suggests that gravity is not related with ther-
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mal statistics but rather with quantum entanglement statis-
tics. The original proposal was made by Ryu and Takayanagi
[5,6] and its basic element is the RT conjecture. This states
that the entanglement entropy of a subsystem of the degrees
of freedom of the boundary CFT is mapped through the holo-
graphic correspondence to the area of an open minimal co-
dimension two surface (Aextr) in the bulk geometry, anchored
to the entangling surface in the boundary, i.e. the surface sep-
arating the subsystem from its environment,

SEE = 1

4GN
Area(Aextr). (1.1)

This program has advanced a lot ever since [7–12], includ-
ing an understanding of Einstein equations at linear order as
directly emerging from the first law of entanglement thermo-
dynamics [13–15]. A major difficulty in these calculations
is the specification of the minimal surface for an arbitrary
entangling surface, which arises from the non-linearity of
the relevant equations. More specifically, closed forms for
the minimal surface in more than three spacetime dimen-
sions are known only for the case that the bulk geometry is
pure AdS and furthermore the entangling surface encloses a
region with the shape of a disk or an infinite strip.

Both the disk and the strip minimal surfaces are anchored
to entangling surfaces characterized by trivial curvature. Fur-
thermore, disk minimal surfaces are special in the sense that
they have vanishing Gaussian curvature. The discovery of
more general minimal surfaces, apart being interesting from
a purely mathematical point of view, can provide a useful
tool for the study of holographic entanglement entropy and
its dependence on the geometry of the entangling surface.
It can also provide a non-trivial check of the connection
between Einstein equations and entanglement thermodynam-
ics through the RT conjecture.

In the special case of AdS4, the co-dimension two min-
imal surfaces that are related to the entanglement entropy
via the RT conjecture are two-dimensional surfaces. There-
fore, their area can be considered as the Euclidean analog
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of the Nambu–Goto action describing strings propagating in
AdS4. As such, minimal surfaces correspond to solutions of
a Euclidean non-linear sigma model (NLSM) in a symmet-
ric space that can be reduced to an integrable Hamiltonian
system through Pohlmeyer reduction.

The oldest known reduction of this kind is the corre-
spondence of the O(3) NLSM to the sine-Gordon equa-
tion [16,17], which is now known to be generalizable to
sigma models defined on any symmetric space, such as O(N )

[18,19] and CP(N ) [20] sigma models. Although Pohlmeyer
reduction incorporates a non-local connection between the
degrees of freedom of the initial sigma model and the reduced
integrable system, it can be shown that the dynamics of the
reduced system emerge from a local, systematically derivable
Lagrangian density [21–24]. Pohlmeyer reduction has been
extended to sigma models describing strings propagating in
symmetric spacetime geometries [25–27], including space-
times particularly interesting in the context of holography,
such as AdS5 × S5 [28–30] or AdS4×CP3 [31].

Although the integrability of the reduced system can be
used to derive several of its solutions, the non-locality of the
relation between the original and the reduced degrees of free-
dom incommodes the inversion of the reduction and thus, the
use of Pohlmeyer reduction for the discovery of solutions of
the original sigma model. In the recent literature, a method
has been developed for the inversion of Pohlmeyer reduction
in the specific case of elliptic solutions of the reduced sys-
tem, leading to the construction of a class of classical string
solutions in AdS3 and dS3 [32]. This class of string solutions
includes the known family of spiky string solutions in AdS3

[33], as well as several new ones. In this paper, we exploit
these techniques to construct new static minimal surfaces
in AdS4, corresponding to elliptic solutions of the reduced
system.

In Sect. 2, we review the Pohlmeyer reduction of mini-
mal surfaces in AdS4, as well as the limits of the reduced
integrable system for planar and static minimal surfaces. In
Sect. 3, we study the elliptic solutions of the reduced sys-
tem, the emergence of effective Schrödinger problems in the
process of inverting Pohlmeyer reduction and the construc-
tion of the minimal surfaces adopting the techniques of [32].
In Sect. 4, we study basic properties of the derived mini-
mal surfaces, interesting limits of them, as well as their area
and consequently the corresponding entanglement entropy.
In Sect. 5, we study the global stability of the elliptic minimal
surfaces and possible geometric phase transitions between
them. Finally, there is an appendix including useful proper-
ties of Weierstrass functions that are used throughout the text.

2 Polhmayer reduction of minimal surfaces in AdS4

Pohlmeyer reduction relates in a non-local way the action of
a NLSM defined in a symmetric target space to integrable

systems of the family of the sine-Gordon equation. In this
section, following the literature [27,31,32], we review the
Pohlmeyer reduction of space-like minimal surfaces in AdS4,
resulting in a two-component integrable system, which in the
specific case of static minimal surfaces it is reduced to the
cosh-Gordon equation.

Pohlmeyer reduction of NLSMs defined on a symmetric
target space is based on the study of the embedding of the
two-dimensional NLSM solution into the symmetric target
space, which is in turn embedded into an enhanced higher-
dimensional flat space. The AdS4 can be implemented as
a submanifold in an enhanced five-dimensional flat space
with an extra time-like dimension, i.e. R(2,3). We denote the
coordinates in this enhanced space as Y−1, Y 0, Y 1, Y 2 and
Y 3. Then AdS4 is the submanifold

Y · Y = −Λ2. (2.1)

Furthermore, in the following we will use the notation

AμBμ ≡ A · B, (2.2)

where gμν = diag{−1,−1,+1,+1,+1}.

2.1 Action, equations of motion and Virasoro conditions

A two-dimensional surface in AdS4 can be parametrized with
two space-like parameters σ1 and σ2. Introducing an auxiliary
metricγ , the area that can be written in the form of a Polyakov
action as

A = 1

2

∫
dσ1dσ2

√
γ (γ ab∂aY · ∂bY + λ(Y · Y + Λ2)).

(2.3)

Selecting the conformal gauge γab = eωδab and introduc-
ing the complex coordinate z = (σ1 + iσ2) /2, the action is
written as

A =
∫

dzdz̄(∂Y · ∂̄Y + λ(Y · Y + Λ2)). (2.4)

The equations of motion for the fields Y are

∂∂̄Y = λY, (2.5)

while the equation of motion for the Lagrange multiplier λ is
the geometric constraint (2.1). We can eliminate the Lagrange
multiplier λ from the equations of motion of the fields Y (2.5)
using the geometric constraint. We find

∂∂̄Y = 1

Λ2

(
∂Y · ∂̄Y

)
Y. (2.6)

The stress-energy tensor takes the form

Tzz = ∂Y · ∂Y, (2.7)

Tz̄z̄ = ∂̄Y · ∂̄Y, (2.8)

Tzz̄ = 0. (2.9)
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Thus, the Virasoro constraints take the form

∂Y · ∂Y = 0. (2.10)

2.2 The reduced integrable system

We would like to introduce a basis in the enhanced five-
dimensional flat space, which includes the vectors Y , ∂Y and
∂̄Y . For the purposes of this section, we will name these
vectors as v1, v2 and v3 and introduce two more vectors v4

and v5 to form the basis in R
(2,3),

vi = {
Y, ∂Y, ∂̄Y, v4, v5

}
. (2.11)

The vectors ∂Y and ∂̄Y span the tangent space of the two-
dimensional surface we study. Although Virasoro conditions
suggest that they are both null, this is due to the fact that
they are actually complex. Since we study a space-like sur-
face, the tangent space contains two space-like directions and
consequently real linear combinations of ∂Y and ∂̄Y will be
space-like. It follows that one of the vectors v4 and v5 has
to be space-like and the other time-like, as the basis should
contain two time-like and three space-like vectors and fur-
thermore v1 is time-like as implied by the geometric con-
straint (2.1). We choose v4 to be space-like and v5 to be
time-like and we demand that v4 has constant norm equal to
one, v5 has constant norm equal to minus one and they are
both orthogonal to v1, v2 and v3 and to each other,

v4 · v5 = v4/5 · Y = v4/5 · ∂Y = v4/5 · ∂̄Y = 0, (2.12)

v4 · v4 = 1, v5 · v5 = −1. (2.13)

We define the reduced field a as

ea := ∂Y · ∂̄Y, (2.14)

since ∂Y · ∂̄Y is a positive quantity.
The form of the inner products of the basis vectors implies

that a general vector X in the enhanced space can be decom-
posed in the basis vi as

X = − 1

Λ2 (X · v1) v1 + e−a (X · v3) v2 + e−a (X · v2) v3

+ (X · v4) v4 − (X · v5) v5. (2.15)

We would like to decompose the rate of change of the
basis vectors with the complex coordinate z in the basis vi
itself. We do so by defining the complex 5 × 5 matrix A as

∂vi = Ai jv j . (2.16)

By definition we have ∂v1 = v2, while the equations of
motions for the field Y imply that

∂v3 = ∂∂̄Y = 1

Λ2 e
aY = 1

Λ2 e
av1. (2.17)

For the derivative of v2, in general we have

∂v2 = ∂2Y = a0v1 + a+v1 + a−v2 + a4v4 + a5v5, (2.18)

The geometric constraint (2.1) upon differentiation yields
∂Y · Y = 0, while upon another differentiation and the use
of the Virasoro constraints (2.10), we get ∂2Y · Y = 0. The
latter implies that a0 = 0. Differentiation of the Virasoro
constraint (2.10) yields ∂2Y ·∂Y = 0, implying that a− = 0.
Finally, differentiating the definition of the reduced field a
(2.14) and using the equations of motion and the fact that
Y is orthogonal to its derivative, we get ∂2Y · ∂̄Y = ∂aea ,
implying that a+ = ∂a. Summing up, we have shown that

∂v2 = ∂av2 + a4v4 + a5v5. (2.19)

Finally, the orthogonality conditions for the vectors v4 and
v5 yield their derivatives as follows:

v4/5 · v4/5 = ±1 ⇒ ∂v4 · v4 = ∂v5 · v5 = 0,

v4 · v5 = 0 ⇒ ∂v4 · v5 = −∂v5 · v4 ≡ f,

v4/5 · Y = 0 ⇒ ∂v4/5 · Y = −v4/5 · ∂Y = 0,

v4/5 · ∂Y = 0 ⇒ ∂v4/5 · ∂Y = −v4/5 · ∂2Y = ∓a4/5,

v4/5 · ∂̄Y = 0 ⇒ ∂v4/5 · ∂̄Y = −v4/5 · ∂∂̄Y = 0.

Putting everything together, the derivatives of v4 and v5 are
equal to

∂v4 = −a4e
−av3 − f v5, (2.20)

∂v5 = a5e
−av3 − f v4. (2.21)

It is important to notice that ∂̄vi �= Āi jv j , since the basis
vectors v2 and v3 are not real but rather they are complex
conjugates of each other. As a result, it is true that

∂̄vi = Ãi jv j , (2.22)

where Ã is the complex conjugate of the matrix that is pro-
duced after the interchange of the second and third lines and
rows of A. Thus, the matrices A and Ã are equal to

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 ∂a 0 a4 a5

1
Λ2 e

a 0 0 0 0
0 0 −a4e−a 0 − f
0 0 a5e−a − f 0

⎞
⎟⎟⎟⎟⎠ , (2.23)

Ã =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
1

Λ2 e
a 0 0 0 0

0 0 ∂̄a ā4 ā5

0 −ā4e−a 0 0 − f̄
0 ā5e−a 0 − f̄ 0

⎞
⎟⎟⎟⎟⎠ . (2.24)

The above matrices have to obey the compatibility condition

∂̄(Ai j e j ) = ∂( Ãi j e j )

⇒ (∂̄Ai j )e j + Aik Ãk j e j = (∂ Ãi j )e j + Ãik Ak j e j ,

(2.25)
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which in matrix form can be written as the zero-curvature
condition

∂̄A − ∂ Ã + [A, Ã] = 0. (2.26)

It is a matter of algebra to show that the zero-curvature
condition implies the equations

∂∂̄a = (|a4|2 − |a5|2)e−a + 1

Λ2 e
a, (2.27)

∂ f̄ − ∂̄ f = e−a(a4ā5 − ā4a5), (2.28)

∂̄a4 = a5 f̄ , (2.29)

∂̄a5 = a4 f̄ . (2.30)

Equations (2.29) and (2.30) yield

∂̄(a2
4 − a2

5) = 0, (2.31)

which allows for the following two inequivalent parametriza-
tions of a4 and a5:

a4 = g (z) cosh θ (z, z̄) ,

a5 = g (z) sinh θ (z, z̄) ,
or

a4 = g (z) sinh θ (z, z̄) ,

a5 = g (z) cosh θ (z, z̄) .

(2.32)

The relative magnitude of a4 and a5 determines which
parametrization is appropriate. In both cases,

f̄ = ∂̄a4

a5
= ∂̄θ. (2.33)

Then Eqs. (2.27) and (2.28) take the form

∂a = ±|g (z)|2 cosh
(
θ − θ̄

)
e−a + 1

Λ2 e
a, (2.34)

∂∂̄
(
θ − θ̄

) = ∓g (z) ḡ (z̄) sinh
(
θ − θ̄

)
e−a, (2.35)

where the sign depends on the relative magnitude of a4 and
a5. We define the fields α and β as

α := a − ln (Λ |g (z)|) , (2.36)

β := 1

2
Imθ, (2.37)

and furthermore we define the complex coordinate z′ = z′ (z)
so that

dz′

dz
= √

Λg (z). (2.38)

Then the reduced equations take the form

∂∂̄α = 1

Λ2

(± cos βe−α + eα
)
, (2.39)

∂∂̄β = ∓ 1

Λ2 sin βe−α. (2.40)

The above equations are derivable from the Lagrangian den-
sity

L = 1

2
∂α∂̄α − 1

2
∂β∂̄β + 1

Λ2

(∓ cos βe−α + eα
)
. (2.41)

Finally, none of the above parametrizations can describe
the special case, where a4 and a5 have the same magnitude.
In this case, we should parametrize a4 and a5 as

a4 = g (z) eiβ(z,z̄), (2.42)

a5 = g (z) e−iβ(z,z̄) (2.43)

and it is straightforward to show that Eqs. (2.27) and (2.28)
can directly be written as

∂∂̄α = 1

Λ2 e
a, (2.44)

∂∂̄β = 0, (2.45)

which are derivable from the Lagrangian density

L = 1

2
∂α∂̄α − 1

2
∂β∂̄β + 1

Λ2 e
α. (2.46)

2.3 The area of the minimal surface in the reduced problem

The area of the minimal surface is given by the action (2.4),
as the integral of the conformal factor ea .

A =
∫

dzdz̄ea . (2.47)

However, the reduced integrable system equations are
expressed in terms of the fields α and β defined in Eqs. (2.36)
and (2.37) and the coordinate z′ defined in (2.38). We are
interested in acquiring a simple expression for the area of the
minimal surface, in terms of the reduced degrees of freedom
to facilitate the calculation of the area of the constructed min-
imal surfaces later. It turns out that the redefinitions (2.36)–
(2.38) are nothing more than a conformal transformation,
thus, they leave the expression for the area invariant,

A =
∫

dzdz̄ea

=
∫

dz′√
Λ f (z)

dz̄′√
Λg (z̄)

Λ
√

f (z) g (z̄)eα (2.48)

=
∫

dz′dz̄′eα.

Defining the real and imaginary parts of the complex number
z′ as z′ = (u + iv) /2, the area formula takes the form

A = 1

2

∫
dudveα. (2.49)

2.4 Restricting to AdS3 or H3

We may restrict our attention to “flat” space-like surfaces
constrained in the Y3 = 0 plane, i.e. minimal surfaces in
AdS3. Such surfaces correspond to a4 = 0 implying that
a5 = g (z). After the appropriate redefinition of the fields
and the complex coordinate, we result in the equation
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∂∂̄α = 2

Λ2 sinh α, (2.50)

which is the Euclidean sinh-Gordon equation.
Similarly, we may restrict our attention to static surfaces

in AdS4, i.e. minimal surfaces in the hyperboloid H3. In this
case, we have a5 = 0 implying that a4 = g (z) yielding the
equation

∂∂̄α = 2

Λ2 cosh α, (2.51)

which is the Euclidean cosh-Gordon equation.
For both “flat” and static minimal surfaces, the special

case g (z) = 0 results in the Euclidean Liouville equation

∂∂̄α = 1

Λ2 e
α. (2.52)

3 Static elliptic minimal surfaces

In this section, we restrict our attention to static minimal sur-
faces in AdS4, which are mapped through Pohlmeyer reduc-
tion to solutions of Eq. (2.51), namely the Euclidean cosh-
Gordon equation, as shown in Sect. 2. Furthermore, we focus
on a specific class of solutions of the cosh-Gordon equation,
having the property that they depend on either the real or the
imaginary part of the complex coordinate. It turns out that
such solutions can be expressed in terms of elliptic functions.
For these elliptic solutions, it is possible to invert Pohlmeyer
reduction and find analytic expressions for the corresponding
minimal surfaces. The derivation closely follows [32], which
applies similar techniques for the construction of classical
string solutions, so the reader is encouraged to recur there
for more details.

It has to be noticed that it is not possible to find non-
trivial solutions of the reduced system with the use of Bäck-
lund transformations. Although the cosh-Gordon equation
possesses Bäcklund transformations similar to those of the
sinh-Gordon, it lacks a vacuum solution to serve as the seed
solution.

3.1 Elliptic solutions of the cosh-Gordon equation

The Pohlmeyer reduced system equation of interest (2.51),
i.e. the Euclidean cosh-Gordon equation can be expressed in
terms of the real and imaginary parts of the complex coordi-
nate z′ = (u + iv) /2 as

∂2α

∂u2 + ∂2α

∂v2 = 2

Λ2 cosh α. (3.1)

We restrict our attention to solutions of (3.1) that depend
solely on either u or v. Without loss of generality, we assume
that they depend on u,

α (u, v) = α (u) . (3.2)

Then the Euclidean cosh-Gordon equation reduces to the fol-
lowing ordinary differential equation:

d2α

du2 = 2

Λ2 cosh α, (3.3)

which can easily be integrated once to yield

1

2

(
dα

du

)2

− 2

Λ2 sinh α = E . (3.4)

Defining

eα = 2Λ2
(
y − E

6

)
, (3.5)

Equation (3.4) takes the form

(
dy

du

)2

= 4y3 −
(
E2

3
+ 1

Λ4

)
y + E

3

(
E2

9
+ 1

2Λ4

)
,

(3.6)

which is the standard form of the Weierstrass equation

(
dy

dz

)2

= 4y3 − g2y − g3, (3.7)

where the moduli g2 and g3 take the values

g2 = E2

3
+ 1

Λ4 , (3.8)

g3 = − E

3

(
E2

9
+ 1

2Λ4

)
. (3.9)

In the complex domain, Eq. (3.7) is solved by the Weier-
strass elliptic function ℘ (z; g2, g3). Several of its properties
depend on the reality of the roots e1,2,3 of the polynomial

Q (z) = 4z3 − g2z − g3. (3.10)

In our case, g2 and g3 are not arbitrary, but they are given
by the expressions (3.8) and (3.9), which imply that all three
roots are real independently of the value of the integration
constant E . It turns out that the roots are given by simple
expressions, which read

e1 = − E

12
+ 1

4

√
E2 + 4

Λ4 , (3.11)

e2 = E

6
, (3.12)

e3 = − E

12
− 1

4

√
E2 + 4

Λ4 . (3.13)

The three roots are defined so that e1 > e2 > e3.
Since the polynomial (3.10) has three real roots, indepen-

dently of the value of the constant E , the fundamental periods
of Weierstrass elliptic function ℘ (z; g2, g3) are a real one
2ω1 and a purely imaginary one 2ω2, given by Eq. (A.13).
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Fig. 1 The period of the elliptic solution as a function of the integration
constant E

Furthermore, in this case, Eq. (3.7) has two distinct real solu-
tions in the real domain, namely,

y = ℘ (x; g2, g3) , (3.14)

y = ℘ (x + ω2; g2, g3) . (3.15)

Both solutions are periodic with period equal to 2ω1. Solution
(3.14) ranges from e1 to infinity, while the second one (3.15)
ranges between e3 and e2. Equations (3.5) and (3.12) imply
that the bounded solution (3.15) does not correspond to a real
solution for the reduced field α and consequently, the only
acceptable solution for the Pohlmeyer reduced field α that
depends solely on variable u is

α = ln[2Λ2(℘ (u; g2, g3) − e2)], (3.16)

where g2 and g3 are given by Eqs. (3.8) and (3.9) and e2 is
given by Eq. (3.12).

The dependence of the period 2ω1 with the integration
constant E is plotted in Fig. 1. There is a global maximum
at a positive value of the constant E = E0. In later sections,
we will show that the existence of this maximum is related
with the stability properties of the elliptic minimal surfaces.
Using Eq. (A.3), one can show that E0 obeys

K (k0) = 2E (k0) , k0 =
√
e2 (E0) − e3 (E0)

e1 (E0) − e3 (E0)
, (3.17)

resulting in

E0 � 1.72087Λ−2. (3.18)

One can acquire a qualitative picture for the existence
of this maximum. Equation (3.4) can be understood as
the energy conservation for an one-dimensional effective
mechanical problem of one point particle, where α plays
the role of the position coordinate, u plays the role of time,
E plays the role of energy and the potential is given by
V = −(2/Λ2) sinh α. All solutions for this problem are scat-
tering solutions coming from and going to plus infinity and

for all of them the “time of flight” 2ω1 is finite due to the
exponential fall of the potential at +∞. The flattest region of
the potential is the region around u = 0 and this is the reason
the maximum “time of flight” corresponds to a given posi-
tive value of the energy constant. For this energy, the point
particle spends a relatively large amount of time with small
velocity at the flat region, where it is not violently repelled.
For energies smaller than this critical value, it does not reach
the flat region, while, for larger energies, the point particle
does reach the flat region, but it passes through with a larger
velocity and then it gets violently reflected in a region where
the potential has a steeper slope, thus spending less time with
relatively small velocities.

3.2 The effective Schrödinger problems

Given a solution α of the cosh-Gordon equation, the con-
struction of the minimal surface is a non-trivial procedure,
due to the non-local nature of the transformation relating
the embedding functions Yμ with the reduced field α (2.14).
Such a construction requires the solution of the equations of
motion,

∂2Yμ

∂u2 + ∂2Yμ

∂v2 = 1

Λ2 e
αYμ, (3.19)

simultaneously taking care that the embedding functions Yμ

obey the geometric and Virasoro constraints

Y · Y = −Λ2, (3.20)

∂Y · ∂Y = 0. (3.21)

In Sect. 3.1, we focused on solutions of the reduced system
that depend on only one of the two variables. This choice
was not arbitrary; for solutions of this kind, Eq. (3.19) can
be solved using separation of variables. Defining

Yμ (u, v) = Uμ (u) Vμ (v) (3.22)

and using the explicit form of the elliptic solutions for the
reduced field α (3.16), we arrive at four pairs of effective
Schrödinger problems with opposite eigenvalues, each pair
being of the form

−U ′′ + 2 (℘ (u; g2, g3) − e2)U = κU, (3.23)

−V̈ = −κV, (3.24)

where the prime stands for differentiation with respect to u,
while the dot stands for differentiation with respect to v. We
have dropped the indices μ for simplicity, but in general the
eigenvalue κ may have a different value for each component.
Actually, each component Yμ may in general be equal to
a linear combination of solutions corresponding to various
eigenvalues κ , however, in this work we focus on construc-
tions made of solutions corresponding to a single eigenvalue
for each component.
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Taking advantage of the geometric constraint, the real and
imaginary parts of the Virasoro constraint (3.21) can be writ-
ten in the form
(

∂2Y

∂u2 − ∂2Y

∂v2

)
· Y = 0, (3.25)

∂2Y

∂u∂v
· Y = 0, (3.26)

which are easier to deal with in the language of the effective
Schrödinger problems.

Trivially, the flat potential problem (3.24), for positive
eigenvalues κ = �2, has hyperbolic solutions of the form

V (v) = c1 cosh �v + c2 sinh �v, (3.27)

whereas, for negative eigenvalues κ = −�2, it has trigono-
metric solutions of the form

V (v) = c1 cos �v + c2 sin �v. (3.28)

3.3 The n = 1 Lamé effective Schrödinger problem

The periodic potentials of the class

V (x) = n(n + 1)℘ (x), (3.29)

are called Lamé potentials. For any integer n, it is possible
to analytically find the band structure of the problem and it
turns out that it contains up to n finite bands plus an infinite
band extending to infinite positive energies.

For the elliptic solutions of the Pohlmeyer reduced prob-
lem found in Sect. 3.1, the equations for the embedding
functions of the minimal surface take the form of effective
Schrödinger problems of the form (3.29) with n = 1,

− d2y

dx2 + 2℘ (x) y = λy. (3.30)

It is known that the eigenfunctions of the n = 1 Lamé prob-
lem are given by

y± (x; a) = σ (x ± a)

σ (x) σ (±a)
e−ζ (±α)x (3.31)

with eigenvalues

λ = −℘ (a) . (3.32)

These eigenfunctions are linearly independent, as long as
the modulus a does not coincide with any of the half-periods
of the Weierstrass function appearing in the potential, and,
thus, they provide the general solution of the problem. In the
degenerate case, both solutions tend to

y±
(
x;ω1,2,3

) = √
℘ (x) − e1,3,2, (3.33)

where ω3 = ω1 + ω2 and there is another linearly indepen-
dent solution,

ỹ(x;ω1,2,3) = √
℘(x) − e1,3,2(ζ(x + ω1,2,3) + e1,3,2x).

(3.34)

The special functions ζ (z) and σ (z) appearing in the for-
mulas above are the Weierstrass zeta and sigma functions,
respectively, which are defined as

dζ

dz
= −℘,

1

σ

dσ

dz
= ζ. (3.35)

The functions ζ and σ , unlike the elliptic function ℘, are not
periodic. More information is provided in the appendix.

It can be shown that the band structure of the n = 1 Lamé
potential is directly connected with the roots of the cubic
polynomial associated with the Weierstrass function appear-
ing in the potential. In the case there are three real roots, which
is the case of interest in this study, there is a finite “valence”
band for −e1 < λ < −e2 and an infinite “conduction” band
for λ > −e3. The eigenfunctions y± for eigenvalues within
the bands are complex conjugate to each other and upon a
shift of their argument by the period 2ω1 they acquire a com-
plex phase as expected by Bloch’s theorem. On the contrary,
for eigenvalues within the gaps of the spectrum, they are both
real and upon a shift of their argument by the period 2ω1 they
get multiplied by a real number, in general different from 1,
and consequently they diverge exponentially at either plus
or minus infinity. Exceptionally, the eigenfunctions (3.33)
corresponding to the boundaries of the bands are both real
and periodic. These eigenfunctions do not have the physical
interpretation of a wavefunction and consequently they do
not have to obey any specific normalization conditions. As a
result none of them is excluded.

The eigenfunctions (3.31) obey a set of properties that will
become useful later,

y+y− = ℘ (x) − ℘ (a) , (3.36)

y+′y− − y+y−′ = −℘′ (a) . (3.37)

3.4 Construction of elliptic minimal surfaces

At this point, there is only one step left to complete the inver-
sion of Pohlmeyer reduction for elliptic solutions of the cosh-
Gordon equation. The equations of motion are satisfied by
the solutions of the effective Schrödinger problems, but one
needs to make an appropriate arrangement of such solutions
in the components of the embedding functions, so that the
geometric and Virasoro constraints are also satisfied.

Since we are constrained to static minimal surfaces, we
may select to set Y 0 = 0. In the following, we neglect the
Y 0 component when we express Y in a matrix form.

Similarly to the construction of classical string solutions
in [32], one can show that it is not possible to construct a
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minimal surface using solutions of the effective Schrödinger
problems corresponding to a single eigenvalue. It turns out
that the simplest possible construction involves at least two
distinct eigenvalues. The form of the metric of the enhanced
space suggests that these eigenvalues should be selected to
have opposite signs. Let these eigenvalues be equal to

κ1 = �2
1 = −℘ (a1) − 2e2, (3.38)

κ2 = −�2
2 = −℘ (a2) − 2e2, (3.39)

where a1 and a2 are the moduli appearing in the correspond-
ing solutions of the n = 1 Lamé effective Schrödinger prob-
lem. The form of the eigenvalues restricts a1 and a2 so that

℘ (a2) > ℘ (a1) . (3.40)

The form of the enhanced metric and the geometric and
Virasoro constraints favor an ansatz of the form

Y =

⎛
⎜⎜⎝
c+

1 U
+
1 (u) cosh �1v + c−

1 U
−
1 (u) sinh �1v

c+
1 U

+
1 (u) sinh �1v + c−

1 U
−
1 (u) cosh �1v

c+
2 U

+
2 (u) cos �2v + c−

2 U
−
2 (u) sin �2v

c+
2 U

+
2 (u) sin �2v − c−

2 U
−
2 (u) cos �2v

⎞
⎟⎟⎠ , (3.41)

where U±
1 (u) and U±

2 (u) are in general linear combina-
tions of the eigenfunctions of the n = 1 Lamé problem,
y± (u; a1) and y± (u; a2), respectively. The geometric and
Virasoro constraints (3.20), (3.25) and (3.26) take the form

−(
c+

1 U
+
1

)2 + (
c−

1 U
−
1

)2 + (
c+

2 U
+
2

)2 + (
c−

2 U
−
2

)2 = −Λ2,

(3.42)

−
[
−(

c+
1 U

+
1

)2 + (
c−

1 U
−
1

)2
]
�2

1

+
[(
c+

2 U
+
2

)2 + (
c−

2 U
−
2

)2
]
�2

2 = (℘ (u) − e2) Λ2, (3.43)

c+
1 c

−
1

(
U+

1
′
U−

1 −U−
1

′
U+

1

)
�1

−c+
2 c

−
2

(
U+

2
′
U−

2 −U−
2

′
U+

2

)
�2 = 0. (3.44)

The geometric constraint (3.42), combined with property
(3.36) of the n = 1 Lamé eigenfunctions suggests that we
have to select

c+
1 = c−

1 ,

U+
1 (u) = 1

2
(y+ (u; a1) + y− (u; a1)) ,

U−
1 (u) = 1

2
(y+ (u; a1) − y− (u; a1)) ,

(3.45)

c+
2 = c−

2 ,

U+
2 (u) = 1

2
(y+ (u; a2) + y− (u; a2)) ,

U−
2 (u) = 1

2i
(y+ (u; a2) − y− (u; a2)) .

(3.46)

Reality of the solution directly implies that y± (u; a1) are
non-normalizable eigenstates corresponding to the gaps of
the Lamé spectrum, whereas y± (u; a2) are Bloch waves,

lying within the allowed bands of the Lamé spectrum. Since
℘ (a1) < ℘ (a2), they necessarily lie within the finite gap and
in the finite “valence” band of the Lamé spectrum, respec-
tively. Consequently,

e3 < ℘ (a1) < e2 and e2 < ℘ (a2) < e1. (3.47)

Inserting the above selections into the geometric con-
straint (3.42) yields the equation

(−c2
1 + c2

2)℘ (u) + (c2
1℘(a1) − c2

2℘(a2)) = −Λ2, (3.48)

which in turn implies that

c2
1 = c2

2 ≡ c2 = Λ2

℘ (a2) − ℘ (a1)
. (3.49)

After some algebra, the Virasoro constraint (3.43) yields

℘ (a1) + ℘ (a2) = −e2, (3.50)

while the Virasoro constraint (3.44), using property (3.37)
takes the form

℘′ (a1) �1 = i℘′ (a2) �2. (3.51)

The last equation is always satisfied, as long as (3.50) is
satisfied. To verify this, one can make use of Weierstrass
equation to rewrite (3.51) as

4 (℘ (a1) + 2e2) (℘ (a1) − e1)

× (℘ (a1) − e2) (℘ (a1) − e3)

= 4 (℘ (a2) + 2e2) (℘ (a2) − e1)

× (℘ (a2) − e2) (℘ (a2) − e3) . (3.52)

Then Eq. (3.50) connects the factors of the left and right hand
sides one by one.

Putting everything together, the construction of a mini-
mal surface solution, built from eigenstates of the effective
Schrödinger problems corresponding to two distinct eigen-
values, is equivalent to the specification of ℘ (a1) and ℘ (a2)

so that obey (3.47), (3.50) and simultaneously are such that
the eigenvalues κ1,2 as specified by (3.38) and (3.39) have
the appropriate sign. As shown in Fig. 2, for any value of the
integration constant E , there is a set of appropriate selec-
tions of ℘ (a1) and ℘ (a2), constituting a linear segment
in the (℘ (a1) , ℘ (a2)) plane. One of the two endpoints of
this linear segment is always (e3, e1), while the other one is
(e2,− 2e2) when E < 0 and (− 2e2, e2) when E > 0.

The constructed elliptic minimal surfaces are a special
case of more general hyperelliptic minimal surfaces stud-
ied in the mathematical literature in terms of Riemann theta
function [34], as well as in the physics literature in the con-
text of Wilson loops [35,36]. The advantage of our approach
is their derivation from a linear problem, resulting in much
simpler expressions in terms of Weierstrass elliptic function.
These expressions allow an analytic study of their properties,
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Fig. 2 The pairs of ℘ (a1) and ℘ (a2) that generate minimal surface solutions built from eigenstates of the effective Schrödinger problems
corresponding to two distinct eigenvalues

as well as a better understanding of their many-to-one corre-
spondence to solutions of the Pohlmeyer reduced integrable
system, namely the cosh-Gordon equation.

4 Properties of the elliptic minimal surfaces

In this section, we study basic geometric properties of the
minimal surfaces constructed in Sect. 3.4. We are particularly
interesting in the form of their trace at the AdS4 boundary
and their area, since in the language of the RT conjecture they
play the role of the entangling curve and the corresponding
entanglement entropy. Furthermore, we will investigate the
specific forms of the minimal surfaces corresponding to the
endpoints of the linear segments depicted in Fig. 2 and iden-
tify them with well known minimal surfaces in H3, such as
helicoids and catenoids.

4.1 Parameter space of elliptic minimal surfaces

The family of elliptic minimal surfaces that we have con-
structed contains two free parameters. One of those is the con-

stant of integration E , which alters the moduli of the Weier-
strass functions and consequently the roots of the associated
cubic polynomial and may take any real value. The other one
is the parameter ℘ (a1), which takes values between e3 and
min (e2,− 2e2), as shown in Fig. 2. Notice that all minimal
surfaces corresponding to the same value of E are mapped
to the same solution of the cosh-Gordon equation through
Pohlmeyer reduction, independently of the value of ℘ (a1).
The space of parameters for the elliptic minimal surfaces is
plotted in Fig. 3. The allowed parameters comprise a con-
nected region in the parameter space, bounded by the non-
smooth union of three smooth curves. Later on, we will see
that these boundary curves correspond to three qualitatively
distinct and interesting limits of the solutions.

We may simplify the expressions for the elliptic minimal
surfaces that we constructed in Sect. 3.4 taking advantage
of the fact that the functions y± (u; a1) are real, whereas the
functions y± (u; a2) are complex conjugate to each other. We
define

y± (u; a1) := r1 (u) e±ϕ1(u), (4.1)

y± (u; a2) := r2 (u) e±iϕ2(u). (4.2)
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Fig. 3 The parameter space of elliptic minimal surface solutions

A direct application of property (3.36) yields

r2
1 (u) = ℘ (u) − ℘ (a1), (4.3)

r2
2 (u) = ℘ (u) − ℘ (a2), (4.4)

while the explicit form of the n = 1 Lamé eigenfunctions
(3.31) implies that

ϕ1 (u) = 1

2
ln

(
−σ (u + a1)

σ (u − a1)

)
− ζ (a1) u, (4.5)

ϕ2 (u) = − i

2
ln

(
−σ (u + a2)

σ (u − a2)

)
+ iζ (a2) u. (4.6)

Using the above definitions, the minimal surface solution
takes the form

Y = c

⎛
⎜⎜⎜⎝

√
℘ (u) − ℘ (a1) cosh (�1v + ϕ1 (u))√
℘ (u) − ℘ (a1) sinh (�1v + ϕ1 (u))√
℘ (u) − ℘ (a2) cos (�2v − ϕ2 (u))√
℘ (u) − ℘ (a2) sin (�2v − ϕ2 (u))

⎞
⎟⎟⎟⎠ . (4.7)

In order to better visualize the form of the derived minimal
surfaces, we will use two common set of coordinates in a
constant time slice of AdS4 (i.e. the H3), the global spherical
coordinates (r, θ, ϕ), defined as

Y =

⎛
⎜⎜⎜⎜⎝

Λ

√
1 + r2

Λ2

r cos θ

r sin θ cos ϕ

r sin θ sin ϕ

⎞
⎟⎟⎟⎟⎠ (4.8)

and the Poincaré coordinates (z, r, ϕ), defined as

Y =

⎛
⎜⎜⎜⎜⎝

1
2z

(
z2 + r2 + Λ2

)
1
2z

(
z2 + r2 − Λ2

)
Λ
z r cos ϕ

Λ
z r sin ϕ

⎞
⎟⎟⎟⎟⎠ . (4.9)

In global coordinates, the metric takes the form

ds2 =
(

1 + r2

Λ2

)−1

dr2 + r2(dθ2 + sin2θdϕ2), (4.10)

whereas in Poincaré coordinates it takes the form

ds2 = Λ2

z2 (dz2 + dr2 + r2dϕ2). (4.11)

In global coordinates, the elliptic minimal surfaces take
the parametric form

r = Λ

√
℘ (u) − ℘ (a1)

℘ (a2) − ℘ (a1)
cosh2 (�1v + ϕ1 (u)) − 1, (4.12)

θ = tan−1

(√
℘ (u) − ℘ (a1)

℘ (u) − ℘ (a2)
csch (�1v + ϕ1 (u))

)
,

(4.13)

ϕ = �2v − ϕ2 (u) . (4.14)

It is simple to eliminate v to show that the minimal surface
acquires an expression of the form

f

(
ϕ − �2

�1
tanh−1 r cos θ√

r2 + Λ2
, r sin θ

)
= 0. (4.15)

Similarly, in Poincaré coordinates we arrive at the parametric
form

z = Λ

√
℘ (a2) − ℘ (a1)

℘ (u) − ℘ (a1)
e�1v+ϕ1(u), (4.16)

r = Λ

√
℘ (u) − ℘ (a2)

℘ (u) − ℘ (a1)
e�1v+ϕ1(u), (4.17)

ϕ = �2v − ϕ2 (u) . (4.18)
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Once again, it is trivial to eliminate v to show that the minimal
surface is described in closed form as

f

(
ϕ − �2

�1
tanh−1 z

2 + r2 − Λ2

z2 + r2 + Λ2 ,
r

z

)
= 0. (4.19)

Equations (4.12) and (4.16) provide a geometric expla-
nation to the exclusion of the bounded real solution of the
Pohlmeyer reduced system. Solutions built on the bounded
solution of the reduced problem would not be anchored at the
boundary, and, thus, would be compact surfaces shrinkable
to a point. As such, they could not be minimal surfaces.

The form of Eqs. (4.15) and (4.19) is not unexpected. The
analog of the elliptic minimal surfaces in NLSMs describing
string propagation in AdS3 are several classes of solutions,
some of them describing rigidly rotating strings, as shown
in [32]. Equations (4.15) and (4.19) are the analog of the
rigid rotation condition for the elliptic minimal surfaces. It
follows that the constructed elliptic minimal surfaces have in
general a “helicoid” shape, as shown in Fig. 4. In this figure,
as well as in all following figures depicting elliptic minimal
surfaces in global coordinates, the plotted radial coordinate
is proportional to the tortoise coordinate r∗ = arctan r , so
that the opaque sphere in the graphs depicts the H3 boundary.

Furthermore, Fig. 4 indicates that the elliptic minimal sur-
faces may or may not have self-intersections. Later on, we
will specify the condition that the free parameters E and
℘ (a1) must obey in order to generate an embedding mini-
mal surface.

Finally, surfaces characterized by the same integration
constant E , apart from having the same counterpart in the
Pohlmeyer reduced theory, they comprise an associate (Bon-
net) family of minimal surfaces. It is a matter of simple alge-
bra to show that parametrizing the minimal surface with u
and v, the first and second fundamental forms acquire the
simple expressions

I = Λ2 (℘ (u) − e2) diag {1, 1} , (4.20)

II = 1

2Λ
diag {1,−1} . (4.21)

The latter imply that the principal curvatures are equal to

κ1,2 = ± 1

2Λ3 (℘ (u) − e2)
. (4.22)

Therefore, the principal curvatures do not depend on the value
of ℘ (a1). As a result, changing the value of ℘ (a1) keeping
E constant has the effect of a local rotation of the principal
curvature directions of the minimal surface.

4.2 The entangling curve

The Ryu–Takayanagi conjecture relates the area of a co-di-
mension two minimal surface anchored at the boundary of
AdS on an entangling surface to the entanglement entropy of

Fig. 4 The elliptic minimal surface in global coordinates for two dis-
tinct selections of the parameters E and ℘ (a1)

the boundary CFT with respect to the regions separated by the
entangling surface (entangling curve in AdS4). Therefore, it
is very important to specify what the entangling curve for the
constructed elliptical minimal surfaces is.

The minimal surface (4.7) intersects the AdS boundary at
the points where the Weierstrass elliptic function diverges,
namely u = 2nω1. Thus, an appropriately anchored at the
boundary minimal surface is spanned by

u ∈ (2nω1, 2 (n + 1) ω1) , v ∈ R, (4.23)

where n ∈ Z.
The trace of the minimal surfaces on the boundary, i.e. the

entangling curve, can be found by taking the limit u → 2nω1.
The properties (A.14) and (A.15) of Weierstrass functions
imply that
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lim
u→2nω1

± y± (u; a) = e±2n(ζ (ω1)a−ζ (a)ω1) lim
u→0±

1

σ (u)
.

(4.24)

Notice that σ (u) = u + O
(
u5

)
and consequently, the limit

limu→2nω1
± y± (u; a) depends on whether it is taken from

larger or smaller values than 2nω1. Applying (4.24)–(4.7)
yields

lim
u→2nω1

± Y = c lim
u→0±

1

σ (u)

×

⎛
⎜⎜⎝

cosh (�1v + 2n (ζ (ω1) a1 − ζ (a1) ω1))

sinh (�1v + 2n (ζ (ω1) a1 − ζ (a1) ω1))

cos (�2v + i2n (ζ (ω1) a2 − ζ (a2) ω1))

sin (�2v + i2n (ζ (ω1) a2 − ζ (a2) ω1))

⎞
⎟⎟⎠ . (4.25)

It is convenient to define

δ1 ≡ ζ (ω1) a1 − ζ (a1) ω1, (4.26)

δ2 ≡ ζ (ω1) a2 − ζ (a2) ω1. (4.27)

The quantities δ1 and δ2 have the following properties:

Imδ1 = π

2
, lim

℘(a1)→e3
Reδ1 = 0, (4.28)

Reδ2 = 0, lim
℘(a2)→e1

Imδ2 = 0, lim
℘(a2)→e2

Imδ2 = π

2
.

(4.29)

Denoting as θ± (v) and ϕ± (v) the angular coordinates of
the trace of the extremal surface at the boundary sphere as
u → 2nω1

+ and as u → 2 (n + 1) ω1
−, respectively, we

find

cot θ+ = ± sinh (ω (ϕ+ + ϕ0)) , (4.30)

cot θ− = ± sinh (ω (ϕ− + ϕ0 − δϕ)) , (4.31)

where

ω = �1

�2
, (4.32)

δϕ = π − 2

(
Imδ2 + �2

�1
Reδ1

)
. (4.33)

Each of these curves have a spiral form and endpoints at the
north and south poles of the boundary sphere. As such, one of
them cannot split the boundary to two regions, but the union
of the two spirals does so.

Similarly, converting to Poincaré coordinates and denot-
ing as r± (v) and ϕ± (v) the polar coordinates of the trace of
the extremal surface at the boundary plane as u → 2nω1

+
and as u → 2 (n + 1) ω1

−, respectively, we find

r+ = Λeω(ϕ++ϕ0), (4.34)

r− = Λeω(ϕ−+ϕ0−δϕ). (4.35)

So in Poincaré coordinates, the trace of the minimal surface in
the boundary is the union of two logarithmic spirals with the
same exponential coefficient. The two curves comprising the

Fig. 5 The entangling curve and the corresponding boundary regions
in global and Poincaré coordinates

trace of the minimal surface at the boundary are connected
through a rotation of the angle ϕ by δϕ.

In general, the entangling curve separates the boundary
to two regions of unequal size. The ratio of the area of two
regions is simply (δϕ mod 2π) / (2π − δϕ mod 2π). The
form of the entangling curve and the corresponding boundary
regions in both global and Poincaré coordinates are displayed
in Fig. 5.

The entangling curve, which sets the Plateau problem for
the minimal surface, is solely determined by the parameters
ω and δϕ. It is an interesting question whether in the family of
elliptic minimal surfaces (4.7), there are different solutions
corresponding to the same pair of ω and δϕ and thus to the
same entangling curve. (Surfaces corresponding to the same
ω and two δϕ that sum to 2π also correspond to the same
entangling curve.)

Finally, the parameter δϕ determines whether the minimal
surface has self-intersections. Embedding minimal surfaces
have the property

δϕ < 2π. (4.36)

For E > 0 the parameter ω can become arbitrarily close
to zero as ℘ (a1) approaches − 2e2. Equation (4.33) implies
that at the same limit the angle δϕ becomes arbitrarily large
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and consequently larger than 2π . The special case ω = 0 is
an exception to this rule as we will show later.

4.3 Area and entanglement entropy

The minimal surface is spanned for u and v taking values in
the ranges defined in Eq. (4.23). Consequently, the area of
the minimal surface can be directly calculated with the use
of formula (2.49),

A = Λ2
∫ +∞

−∞
dv

∫ 2(n+1)ω1

2nω1

du (℘ (u) − e2). (4.37)

The length of the entangling curve, as u and v are isothermal
coordinates, can be expressed as

L = lim
u→2nω1

+ Λ

∫ +∞

−∞
dv

√
℘ (u) − e2

+ lim
u→2(n+1)ω1

− Λ

∫ +∞

−∞
dv

√
℘ (u) − e2. (4.38)

Straightforward application of Eqs. (A.8) and (A.14) yields

A = Λ2
∫ +∞

−∞
dv

(
lim

u→0+ ζ (u) − lim
u→0− ζ (u)

− 2ζ (ω1) − 2e2ω1) (4.39)

= 2Λ2
(

lim
u→0+

1

u
− ζ (ω1) − e2ω1

) ∫ +∞

−∞
dv,

while

L = 2Λ

∫ +∞

−∞
dv lim

u→0+
1

u
. (4.40)

Thus, we recover the usual “area law” [37,38], plus a univer-
sal constant term,

A = ΛL − 2Λ2 (ζ (ω1) + e2ω1)

∫ +∞

−∞
dv. (4.41)

The universal constant term diverges. In global coordi-
nates the divergence can be attributed to the non-smoothness
of the entangling curve at the poles [39]. In Poincaré coordi-
nates, additionally, the entangling curve is infinite, similarly
to the case of the minimal surface corresponding to an infinite
strip. This divergence introduces a subtlety in the compari-
son of the areas of two distinct surfaces corresponding to
the same entangling curve, as one may rescale v for each of
those at will. An appropriate regularization of the universal
constant term must enforce that v is connected to the physi-
cal position of a given point on the entangling curve. In both
sets of coordinates, the azimuthal angle ϕ, which specifies
uniquely a point on the spiral entangling curve, is given by
ϕ = �2v + ϕ0. Consequently, an appropriate redefinition of
the parameter v is

v = ϕ

�2
, (4.42)

Fig. 6 The coefficient a0 as a function of the integration constant E
for various ω

leading to

A = ΛL − √
2Λ2

√
1 − ω2

E

(
E

3
ω1 + 2ζ (ω1)

) ∫ +∞

−∞
dϕ.

(4.43)

We define the quantity

a0 (E, ω) := −√
2Λ2

√
1 − ω2

E

(
E

3
ω1 (E) + 2ζ (ω1 (E))

)
,

(4.44)

which can be used as a measure of comparison for the areas
corresponding to the same entangling curve. It can be shown
that a0 is always negative, it diverges to minus infinity at
E → 0 and

∂

∂E
a0 (E, ω) < 0, for E < 0,

∂

∂E
a0 (E, ω) > 0, for 0 < E < E0, (4.45)

∂

∂E
a0 (E, ω) < 0, for E > E0,

where E0 is the energy constant maximizing the real period
of the Weierstrass function, given by Eq. (3.18). Figure 6
depicts the dependence of a0 on the energy constant E .

4.4 Interesting limits

In Sect. 4.1, we showed that the space of allowed parameters
E and ℘ (a1) for elliptic minimal surfaces is bounded by
three curves, namely, ℘ (a1) = e3 (E), ℘ (a1) = e2 (E) and
℘ (a1) = − 2e2 (E). These curves correspond to interesting
limits of the elliptic minimal surfaces.
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4.4.1 The helicoid limit

One of the boundaries of the moduli space is ℘ (a1) = e3 and
℘ (a2) = e1, for all values of E . Comparing with the elliptic
classical string solutions presented in [32], this special limit
is the analog to the Gubser–Klebanov–Polyakov limit [40]
of the spiky string solutions.

At these special points of the moduli space, the solution
acquires a simpler form. All wavefunctions of the n = 1
Lamé problem that appear in the minimal surface solution
become simultaneously real and periodic as they correspond
to eigenvalues at the edges of the bands of the Lamé spectrum.
Consequently, both functions ϕ1 and ϕ2 vanish identically
and the solution acquires the simple form

Y = Λ√
e1 − e3

⎛
⎜⎜⎝

√
℘ (u) − e3 cosh

(√
e1 − e2v

)
√

℘ (u) − e3 sinh
(√

e1 − e2v
)

√
℘ (u) − e1 cos

(√
e2 − e3v

)
√

℘ (u) − e1 sin
(√

e2 − e3v
)

⎞
⎟⎟⎠ ,

(4.46)

which has the form of a helicoid in H3. It is not surprising that
the minimal surface being the analog of the GKP solution,
i.e. a rigidly rotating rod, is a ruled surface.

Converting to global coordinates on the hyperboloid H3,
the helicoid minimal surface take the following parametric
form:

r = Λ√
e1 − e3

√
(℘ (u) − e3) cosh2√e1 − e2v − (e1 − e3),

θ = tan−1

(√
℘ (u) − e1

℘ (u) − e3
csch

√
e1 − e2v

)
,

ϕ = √
e2 − e3v, (4.47)

which can be written in closed form as

r = Λ

√
1

cos2θcsch2ωϕ − sin2θ
. (4.48)

where

ω2 = e1 − e2

e2 − e3
= −E + √

E2 + 4Λ−4

E + √
E2 + 4Λ−4

. (4.49)

Similarly, in Poincaré coordinates, the helicoid takes the
parametric form

z = Λ

√
e1 − e3

℘ (u) − e3
e−√

e1−e2v, (4.50)

r = Λ

√
℘ (u) − e1

℘ (u) − e3
e−√

e1−e2v, (4.51)

ϕ = √
e2 − e3v, (4.52)

which can be written in closed form as

z =
√

Λ2e−2ωϕ − r2. (4.53)

Fig. 7 The helicoid minimal surface in global and Poincaré coordi-
nates

The helicoid minimal surface in both sets of coordinates is
depicted in Fig. 7.

As the integration constant E tends to plus infinity, ω tends
to zero and the minimal surface becomes the equatorial plane
θ = π/2 in global coordinates. In Poincaré coordinates, in
this limit the logarithmic spiral degenerates to a circle of
radius Λ and the minimal surface to the usual “semi-sphere”
z = √

Λ2 − r2. As the energy constant E tends to minus
infinity, ω tends to infinity and the minimal surface tends
to the meridian plane tan ϕ = tan ϕ0 in global coordinates,
while in the Poincaré coordinates the entangling curve degen-
erates to a straight line passing through the origin and the
minimal surface to the infinite semi-plane tan ϕ = tan ϕ0.

Finally, the properties (4.28) and (4.29) imply that the
parameter δϕ for all helicoid minimal surfaces equals

δϕhelicoid = π. (4.54)

Therefore, the entangling curve corresponding to a helicoid
minimal surface separates the boundary to two regions of
equal area.
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4.4.2 The catenoid limit

The second boundary of the moduli space that we are going
to consider is ℘ (a1) = − 2e2 and ℘ (a2) = e2 for E > 0.
In this case, only one of the two n = 1 Lamé eigenfunctions
that appear in the solution corresponds to the edge of a band
of the spectrum and thus, it becomes simultaneously periodic
and real, allowing the solution to reduce to

Y = Λ√
3e2

⎛
⎜⎜⎝

√
℘ (u) + 2e2 cosh (ϕ1 (u; a1))√
℘ (u) + 2e2 sinh (ϕ1 (u; a1))√

℘ (u) − e2 cos
(√

3e2v
)

√
℘ (u) − e2 sin

(√
3e2v

)

⎞
⎟⎟⎠ , (4.55)

where ℘ (a1) = − 2e2.
Although in this case we cannot acquire a closed form for

the solution, the shape of the minimal surface can be under-
stood by simple observations. Converting to global coordi-
nates we find

r = Λ√
3e2

√
(℘ (u) + 2e2) cosh2 ϕ1 (u; a1) − 3e2 = r (u) ,

(4.56)

θ = tan−1

(√
℘ (u) − e2

℘ (u) + 2e2
csch ϕ1 (u; a1)

)
= θ (u) ,

(4.57)

ϕ = √
3e2v = ϕ (v) . (4.58)

Therefore, the surface can be expressed in the form

f (r, θ) = 0 (4.59)

and consequently it is a surface of revolution. Since it is
both a minimal surface and a surface of revolution, it is by
definition a catenoid in H3. Similarly in Poincaré coordinates,
we acquire the expression

z = Λ

√
3e2

℘ (u) + 2e2
e−ϕ1(u;a1) = z (u) , (4.60)

r = Λ

√
℘ (u) − e2

℘ (u) + 2e2
e−ϕ1(u;a1) = r (u) , (4.61)

ϕ = √
3e2v = ϕ (v) , (4.62)

having the same interpretation of a surface by revolution.
Figure 8 depicts such a catenoid in global and Poincaré coor-
dinates.

Following the discussion of Sect. 4.2 the parameters ω

and δϕ that specify the shape of the entangling curve at the
catenoid limit acquire the values

ωcatenoid = 0, (4.63)

δϕcatenoid = +∞. (4.64)

As all catenoids are characterized by the same degener-
ate ω and δϕ, the corresponding entangling curve cannot

Fig. 8 The catenoid minimal surface in global and Poincaré coordi-
nates

be identified by these parameters for this class of surfaces.
The catenoid minimal surface in global coordinates extends
between angles

cot θ+ = (−1)n sinh (2nReδ1) , (4.65)

cot θ− = (−1)n sinh (2 (n + 1) Reδ1) , (4.66)

which define two circles parallel to the equator that comprise
the entangling curve. In Poincaré coordinates, the entangling
curve comprises two concentric circles with radii r+ and r−.
In the following, the ratio r−/r+ is used to characterize the
form of the entangling curve in the case of catenoids. This
ratio is given by

r−
r+

= e2Reδ1 (4.67)

and it is plotted versus the integration constant E in Fig. 9.
The ratio r−/r+ obeys lim

E→0
r−/r+ = lim

E→∞ r−/r+ = 1

and it acquires its minimum value(
r−
r+

)
0

� 0.367039 (4.68)

at E = E0. For ratios r−/r+ > (r−/r+)0 there are two cat-
enoids anchored at the same entangling curve, whereas for
r−/r+ < (r−/r+)0 there is none.
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Fig. 9 The ratio of the radii of the circles comprising the entangling
curve of a catenoid in Poincaré coordinates, as function of the integration
constant E

Unlike the general case, where the parameter v has to take
values in the whole real axis in order to span the minimal
surface, in the catenoid limit the range of the coordinate v

becomes finite and specifically v ∈ [
0, 2π/

√
3e2

)
. It is a

direct consequence that the universal constant term in the
area formula (4.43) becomes finite and specifically,

Acatenoid = ΛL − 2πΛ2

√
2

E

(
E

3
ω1 + 2ζ (ω1)

)
. (4.69)

In the case of catenoids it is convenient to define the quantity

acatenoid
0 (E) := −2πΛ2

√
2

E

(
E

3
ω1 (E) + 2ζ (ω1 (E))

)

= 2πa0 (E, 0) , (4.70)

which can be used to compare the area of catenoids corre-
sponding the same entangling curve. The quantity acatenoid

0
has the same monotonicity properties as a0.

4.4.3 The conical limit

The last boundary of the moduli space of the elliptic minimal
surfaces is ℘ (a1) = e2 and ℘ (a2) = − 2e2 for E < 0.
Similarly to the catenoid limit, only one of the two Lamé
eigenfunctions becomes real and periodic and the solution
reduces to

Y = Λ√−3e2

⎛
⎜⎜⎝

√
℘ (u) − e2 cosh

(√−3e2v
)

√
℘ (u) − e2 sinh

(√−3e2v
)

√
℘ (u) + 2e2 cos (ϕ2 (u; a2))

−√
℘ (u) + 2e2 sin (ϕ2 (u; a2))

⎞
⎟⎟⎠ , (4.71)

where ℘ (a2) = − 2e2.

Converting to global coordinates, we find

r = Λ√−3e2

√
(℘ (u) − e2) cosh2

(√−3e2v
)

+ 3e2,

(4.72)

θ = tan−1

(√
℘ (u) + 2e2

℘ (u) − e2
csch

(√−3e2v
))

, (4.73)

ϕ = −ϕ2 (u; a2) , (4.74)

implying that the specific case of minimal surfaces can be
written in the form

f (r sin θ, ϕ) = 0. (4.75)

In Poincaré coordinates we find

z = Λ

√
−3e2

℘ (u) − e2
e−√−3e2v, (4.76)

r = Λ

√
℘ (u) + 2e2

℘ (u) − e2
e−√−3e2v, (4.77)

ϕ = ϕ2 (u; a2) , (4.78)

implying that the minimal surface can be expressed in the
form

f

(
r

z
, ϕ

)
= 0. (4.79)

This expression describes a conical surface with the tip of the
cone placed at the origin of the boundary plane. Figure 10
depicts the conical minimal surfaces in global and Poincaré
coordinates.

At the limit of the conical minimal surfaces, the parame-
ters ω and δϕ, which specify the entangling curve, take the
values

ωconical = ∞, (4.80)

δϕconical = π − 2Imδ2. (4.81)

In the specific case of the conical minimal surfaces, the
area formula (4.43) becomes problematic. The reason is the
fact that the azimuthal angle ϕ is a function solely of u. Thus,
the substitution of v with the azimuthal angle ϕ, performed to
introduce an integration variable that is geometrically con-
nected to the points of the entangling curve, unfortunately
fails. In this case v is related with the polar angle. An appro-
priate redefinition is x = −3e2v and it yields

Aconical = ΛL + 2

3
Λ2

(
ω1 + ζ (ω1)

e2

) ∫ +∞

−∞
dx . (4.82)

The universal term is diverging due to the non-smoothness
of the entangling curve.
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Fig. 10 The conical minimal surface in global and Poincaré coordi-
nates

5 Geometric phase transitions

5.1 Spiral entangling curves

In general the entangling curve for the elliptic minimal sur-
faces separates the boundary sphere to two regions. The only
exception to this rule is the case of the catenoids, where the
entangling curve is the union of two disjoint circles and con-
sequently separates the boundary sphere to three regions.
Thus, as long as we do not study catenoid elliptic minimal
surfaces, there is no way to find two different minimal sur-
faces corresponding to the same entangling curve as a result
of topological rearrangement of the matching of minimal sur-
faces and entangling curves.

However, one has to examine whether several of the ellip-
tic minimal surfaces correspond to the same boundary curve.
As shown in Sect. 4.2, the boundary curve is determined
solely by the parameters ω and δϕ. As the dependence of δϕ

on the primary parameters E and ℘ (a1) is quite complicated,
the simpler way to determine whether there are minimal sur-
faces with the same entangling curve is plotting δϕ versus
the energy constant along constant ω curves in the moduli
space of solutions. Such constant ω curves have the form

℘ (a1) = ω2 + 2

ω2 − 1

E

6
. (5.1)

The constant ω curves for ω < 1 lie entirely in the E > 0
region, whereas the parameters ω > 1 lie entirely in the
E < 0 region. The segment of each constant ω curve within
the allowed region of parameters for elliptic minimal surface
solutions has one endpoint being a helicoid with E = Eh (ω),
where

Eh (ω) = 1

ω
− ω, (5.2)

whereas the other endpoint lies always at E = ℘ (a1) = 0.
It can be shown that δφ as a function of E and ω has the

following properties:

lim
E→0

δϕ (E, ω) = 0, lim
E→Eh(ω)

δϕ (E, ω) = π (5.3)

and

∂

∂E
δϕ (E, ω) < 0, for E < 0,

∂

∂E
δϕ (E, ω) > 0, for 0 < E < E0, (5.4)

∂

∂E
δϕ (E, ω) < 0, for E > E0.

The above properties are evident in Fig. 11, which depicts
the dependence of δϕ on E for various values of ω.

We define the critical value ω0, for the ω parameter as

Eh (ω0) = E0, (5.5)

which implies that

ω0 � 0.458787. (5.6)

Notice that δϕ and 2π −δϕ correspond to the same entan-
gling curve. The above properties of δϕ (E, ω) imply that for
a given entangling curve being characterized by given ω1 and
δϕ1 ≤ π there are the following possibilities for an elliptic
minimal surface:

Fig. 11 The dependence of δϕ on the integration constant E along
various constant ω curves in the parameter space
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Fig. 12 Two minimal surfaces corresponding to the same boundary curve defined by ω = 1/4 and δϕ = π

1. When ω1 > ω0, δϕ is a monotonous function of E rang-
ing in [0, π ]. Consequently, for every angle δϕ1 there is
a unique E , and, thus, a unique minimal surface.

2. When ω1 < ω0, δϕ is not one-to-one but it is an increas-
ing function of E for E < E0 and a decreasing function
of E for E > E0, and, thus, it acquires a maximum value
equal to δϕmax = δϕ (E0, ω1). We may distinguish two
cases:

(a) π < δϕmax < 2π . In this case, if δϕ1 > 2π − δϕmax,
there will be three distinct values of E corresponding
to an appropriate value of δϕ and consequently three
distinct minimal surfaces. Let these values be E1, E2

and E3, where E1 < E2 < E3, then δϕ(E1, ω1) =
δϕ1 and δϕ(E2,3, ω1) = 2π − δϕ1. The smaller the
value of E , the more “confined” is the appearance of
the surface as in the left part of Fig. 12. There is only
one exception to this rule when δϕ1 = π ; in this case
which there are exactly two minimal surfaces, one
being a helicoid. On the other hand, if δϕ1 < 2π −
δϕmax, there will be only one solution with E < E0.

(b) δϕmax > 2π . In this case, there are three distinct
embedding minimal surfaces for all values of δϕ1

with the same properties as described in the case
above. Depending on the value of δϕ1, there may exist
more minimal surfaces, coming in pairs, with self-in-
tersections, which correspond to δϕ = 2πn ± δϕ1 >

2π .

Summing up, if only embedding surfaces are considered,
there exist at most three selections for a minimal surface with
a given entangling curve. It is quite complicated to compare
analytically the parameter a0 for elliptic surfaces with the
same entangling curve to find which one is the globally pre-
ferred. As shown in Fig. 13, it turns out that the globally
preferred surface is always the one with the minimum value
of E , which is the only one having δϕ < π . As the entan-
gling curve separates the boundary to two unequal regions,
we could say in a humorous manner that the unstable min-
imal surfaces have lost their way and wrapped around the
wrong region of the boundary.
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Fig. 13 The coefficient a0 versus min (δϕ, 2π − δϕ) for ω = 0.25.
For this value of ω, π < δϕmax < 2π . Points on a vertical line are
surfaces with the same entangling curve

A consequence of the above is the fact that helicoids with
ω < ω0 are globally unstable. This bound coincides with the
bound for the parameter ω determined in [41] for the local
stability of a helicoid. From a purely mathematical point of
view, in this work we made progress determining ω0 ana-
lytically through Eq. (3.17). Moreover, we managed to find
the stable minimal surface to which an unstable helicoid col-
lapses.

As the members of an associate family of minimal sur-
faces share the same local stability properties and since we
showed that elliptic minimal surfaces with the same value
for E belong to such a family, the results of [41,42] imply
that all elliptic minimal surfaces with E < E0 are locally
stable, whereas those with E > E0 are locally unstable. This
implies that comparing the three elliptic minimal surfaces
with the same entangling curve, the surface with E = E1 is
both locally and globally stable, the surface with E = E2 is
locally stable but globally unstable, while the surface with
E = E3 is both locally and globally unstable.

5.2 Circular entangling curves

For catenoids, the boundary curve consists of two circles,
which are parallel to the equator and separate the boundary
sphere to three regions. As a result, there is the possibil-
ity of a geometric phase transition, between any of the two
catenoid minimal surfaces corresponding to the same ratio
of boundary circle radii and a Goldschmidt solution being
the union of two disjoint surfaces each corresponding to a
polar cap region, as those presented in [15]. Figure 14 depicts
a catenoid and a Goldschmidt minimal surface sharing the
same boundary conditions. This geometric phase transition

Fig. 14 A catenoid and a Goldschmidt minimal surface corresponding to the same boundary conditions
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Fig. 15 The coefficient acatenoid
0 as a function of the ratio of the radii

of the boundary circles. The singular point of the curve corresponds to
E = E0

has already been studied in the literature, mainly in the con-
text of Wilson loops [43–46]. However, for completeness we
study it in our language. Although the background geometry
is different, the situation is similar to the usual problem of
a soap bubble attached to two rings. Searching for a min-
imal surface in flat space that is anchored to two coaxial
circles, there are three options. Two of those are portions of
the catenoid and the third option is the Goldschmidt solu-
tion being the union of the two disks each being the minimal
surface corresponding to a single circle boundary.

We remind that the area of the minimal surface corre-
sponding to a polar cap region is A = ΛL − 2πΛ2 (see for
example [15]) and consequently, the area for the union of two
such surfaces is given by

A = ΛL − 4πΛ2. (5.7)

The catenoid is preferred to the two disjoint surfaces when
acatenoid

0 < −4π . This inequality holds when the constant E
is smaller than the critical value Ec � 0.760039 satisfying

ω1 (Ec)
Ec

6
+ ζ (ω1 (Ec)) =

√
Ec

2
. (5.8)

Consequently, since Ec < E0, when the ratio of the radii
of the two boundary circles is smaller than the critical value
(r−/r+)c � 0.416073, the disjoint surfaces are the preferred
solution, whereas, when the ratio of the radii is larger that
this critical value, the catenoid corresponding to the smaller
value of E for the given ratio is preferred. The catenoid cor-
responding to the larger value of E is never preferred in com-
parison to any of the other two options. Figure 15 depicts the
dependence of the coefficient acatenoid

0 on the ratio (r−/r+).

6 Discussion

We constructed a family of static minimal surfaces in AdS4

starting from a specific class of solutions of the Pohlmeyer

reduced system, namely the Euclidean cosh-Gordon equa-
tion. This specific class comprises of solutions depending
on only one of the two isothermal coordinates parametriz-
ing the minimal surface. For these solutions, the equations of
motion for the embedding functions are reduced to four pairs
of effective Schrödinger problem with opposite eigenvalues,
each pair consisting of a flat potential and an n = 1 Lamé
potential. An appropriate ansatz built on one eigenfunction
corresponding to the finite band and another corresponding
to the finite gap of the Lamé spectrum is shown to satisfy
the geometric and Virasoro constraints of the problem, and,
thus, provide a family of static minimal surfaces in AdS4.

The family of elliptic minimal surfaces is a two-parameter
family, having as special limits the helicoids, catenoids and
conical (cusp) minimal surfaces in H3. This two-parameter
family of solutions can be divided to one-parameter fami-
lies each containing a single helicoid surface and either a
catenoid or a conical surface and having the following prop-
erties: they are associate families of minimal surfaces and
furthermore all their members correspond to a unique solu-
tion of the Pohlmeyer reduced system.

The general minimal surface corresponds to an entangling
curve in the boundary being the union of two logarithmic spi-
rals, one being the rotation of the other by a given angle. It is
shown that in general there may exist more than one elliptic
minimal surfaces corresponding to the same boundary con-
ditions, allowing geometric phase transitions between them.
Conditions for the global and local stability of an elliptic
minimal surface are derived. Interestingly, the relevant crit-
ical values of the surface parameters are connected to the
energy that a point particle moving in one dimension under
the influence of a hyperbolic sine potential must have so that
its “time of flight” is maximum.

The constructed surfaces, being co-dimension two mini-
mal surfaces in AdS4, have particular interest in the frame-
work of holographic duality, since their area is connected
to the entanglement entropy in the boundary CFT through
the Ryu–Takayanagi conjecture. Unlike the minimal surfaces
typically used in the literature, namely those corresponding
to a disk or an infinite strip region in the boundary, these
surfaces are anchored to entangling curves characterized by
non-trivial curvature. As such, they can provide a useful tool
in the study of the relation between entanglement entropy
and the geometric characteristics of the entangling curve
[39,47]. Furthermore, the discovered geometric phase tran-
sitions between different minimal surfaces can provide light
in the role of entanglement entropy as an order parameter in
confinement/deconfinement phase transitions.

An important result in the program of holographic entan-
glement entropy is the equivalence of the first law of entan-
glement thermodynamics to Einstein equations at linear order
[13,14]. Nevertheless, these results are based on calculations
using “semi-spherical” minimal surfaces corresponding to
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spherical entangling curves, which are special in two ways:
First, the entangling curve has constant curvature. Second,
the minimal surface does not just have vanishing mean curva-
ture, but both principal curvatures vanish; they are the analog
of a plane in hyperbolic space. Since the holographic cal-
culation of the variations of entanglement entropy strongly
depends on the geometric characteristics of the minimal sur-
face, verification of this results making use of elliptic min-
imal surfaces will greatly support the idea of gravity being
an emergent entropic force related to quantum entanglement
statistics. Furthermore, such calculations are interesting in
terms of the stress-energy/Cotton tensor duality appearing in
AdS4 metric perturbations and the appropriate prescription
that has to be attached to Ryu–Tanayanagi conjecture, so that
it is valid in the case of perturbations obeying non-Dirichlet
boundary conditions [15].

The presented techniques are generalizable to higher
dimensions, where Pohlmeyer reduction results in multi-
component integrable systems of the sinh-Gordon fam-
ily. Unfortunately, such minimal surfaces will not be co-
dimension two surfaces and consequently will not be inter-
esting in the context of Ryu–Takayanagi conjecture, but only
from a more mathematical point of view. On the contrary,
generalizations of the constructed elliptic minimal surfaces
in AdS4 involving more general linear combinations of the
Lamé eigenfunctions can lead to the construction of mini-
mal surfaces with interesting geometric characteristics and
potential applications in holographic entanglement entropy.
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Appendix A: Useful formulas for the Weierstrass func-
tions

The Weierstrass function ℘ is an elliptic (doubly periodic)
function of one complex variable which satisfies the equation

(
d℘

dz

)2

= 4℘3 − g2℘ − g3. (A.1)

The periods of ℘ are connected with the roots of the cubic
polynomial

Q (y) = 4y3 − g2y − g3. (A.2)

Let the three roots be e1, e2 and e3. The absence of a quad-
ratic term implies that the roots satisfy e1 + e2 + e3 = 0. In
the following we concentrate on the case that all three roots
are real. We order the roots so that e1 > e2 > e3. Then the
fundamental periods of the function ℘ are a real one 2ω1

and an imaginary one 2ω2 which are related to the roots as
follows:

ω1 = K (k)√
e1 − e3

, ω2 = i K
(
k′)

√
e1 − e3

, (A.3)

where K (k) is the complete elliptic integral of the first kind
and

k2 = e2 − e3

e1 − e3
, k′2 = e1 − e2

e1 − e3
, k2 + k′2 = 1. (A.4)

The Weierstrass function ℘ obeys the half-period rela-
tions,

℘ (ω1) = e1, ℘ (ω2) = e3, ℘ (ω3) = e2, (A.5)

where ω3 := ω1 + ω2.
As long as all three roots are real, Eq. (A.1) has two real

solutions in the real domain,

y1 (x) = ℘ (x) , (A.6)

y2 (x) = ℘ (x + ω2) , (A.7)

the first one being unbounded and ranging between e1 and
+∞ and the second one being bounded and ranging between
e3 and e2. In the opposite case, there is only one unbounded
real solution in the real domain.

The Weierstrass ζ function is a doubly quasi-periodic
function, which is defined so that

dζ

dz
= −℘. (A.8)

Finally, the Weierstrass σ function obeys the defining relation

1

σ

dσ

dz
= ζ. (A.9)

The Weierstrass elliptic function ℘ is an even function of
z, while Weierstrass functions ζ and σ are odd functions of
z,

℘ (−z) = ℘ (z) , (A.10)

ζ (−z) = −ζ (z) , (A.11)

σ (−z) = −σ (z) . (A.12)

As mentioned above, the functions ζ and σ are not peri-
odic. Under a shift of the complex variable z in the lattice

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


797 Page 22 of 23 Eur. Phys. J. C (2017) 77 :797

defined by the periods of ℘, they transform as

℘ (z + 2mω1 + 2nω2) = ℘ (z) , (A.13)

ζ (z + 2mω1 + 2nω2) = ζ (z) + 2mζ (ω1) + 2nζ (ω2) ,

(A.14)

σ (z + 2mω1 + 2nω2)

= (−1)m+n+mne(2mζ (ω1)+2nζ (ω2))(z+mω1+nω2)σ (z) .

(A.15)

The quantities ζ (ω1) and ζ (ω2) obey the non-trivial relation

ω2ζ (ω1) − ω1ζ (ω2) = i
π

2
. (A.16)

The Weierstrass functions obey the homogeneity rela-
tions,

℘ (z; g2, g3) = μ2℘

(
μz; g2

μ4 ,
g3

μ6

)
, (A.17)

ζ (z; g2, g3) = μζ

(
μz; g2

μ4 ,
g3

μ6

)
, (A.18)

σ (z; g2, g3) = 1

μ
σ

(
μz; g2

μ4 ,
g3

μ6

)
. (A.19)

Choosing μ = i , the homogeneity relations yield

℘ (z; g2, g3) = −℘ (i z; g2,−g3) , (A.20)

ζ (z; g2, g3) = iζ (i z; g2,−g3) , (A.21)

σ (z; g2, g3) = −iσ (i z; g2,−g3) , (A.22)

which imply that on the imaginary axis of the z plane, ℘ is
real, whereas ζ and σ are imaginary.

As an elliptic function, ℘ possesses an addition formula.
The functions ζ and σ are not elliptic, however, they also
possess similar properties,

℘ (z + w) = −℘ (z) − ℘ (w) + 1

4

(
℘′ (z) − ℘′ (w)

℘ (z) − ℘ (w)

)2

,

(A.23)

ζ (z + w) = ζ (z) + ζ (w) + 1

2

℘′ (z) − ℘′ (w)

℘ (z) − ℘ (w)
, (A.24)

℘ (z) − ℘ (w) = −σ (z − w) σ (z + w)

σ 2 (z) σ 2 (w)
. (A.25)

Applying the last formula in the special case w coincides
with any of the half-periods yields

℘ (z) − e1,3,2 = −σ
(
z + ω1,2,3

)
σ

(
z − ω1,2,3

)
σ 2 (z) σ 2

(
ω1,2,3

) . (A.26)

Finally, the Weierstrass functions obey the following inte-
gral formula:

℘′ (a)

∫
dz

℘ (z) − ℘ (a)
= 2ζ (a) z + ln

σ (z − a)

σ (z + a)
. (A.27)
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