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Abstract

We study classical string solutions on Rt×S2 that correspond to elliptic solutions

of the sine-Gordon equation. In this work, these solutions are systematically de-

rived inverting Pohlmeyer reduction and classified with respect to their Pohlmeyer

counterparts. These solutions include the spiky strings and other well-known so-

lutions, such as the BMN particle, the GKP string or the giant magnons, which

arise as special limits, and reveal many interesting features of the AdS/CFT corre-

spondence. A mapping of the physical properties of the string solutions to those

of their Pohlmeyer counterparts is established. An interesting element of this map-

ping is the correspondence of the number of spikes of the string to the topologi-

cal charge in the sine-Gordon theory. In the context of the sine-Gordon/Thirring

duality, the latter is mapped to the Thirring model fermion number, leading to

a natural classification of the solutions to fermionic objects and bosonic conden-

sates. Finally, the convenient parametrization of the solutions, enforced by the in-

version of the Pohlmeyer reduction, facilitates the study of the string dispersion re-

lation. This leads to the identification of an infinite set of trajectories in the moduli

space of solutions, where the dispersion relation can be expressed in a closed form

by means of some algebraic operations, arbitrarily far from the infinite size limit.
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1 Introduction

Classical string solutions have played an important role in the understanding of the

AdS/CFT correspondence [1–3]. According to the dictionary of the holographic du-

ality, the dispersion relations of classical strings are related to the anomalous dimen-

sions of gauge theory operators in the strong coupling limit. Matching the spectra

on both sides of the holographic duality was a non-trivial quantitative test [4–8] of

the AdS/CFT correspondence and classical string solutions were necessary in order

to perform such calculations. The standard methodology in the literature for this

purpose, has been the use of an appropriate ansatz in order to reduce the classical

string equations of motion and the Virasoro constraints to a system of equations for

a set of unknown functions or parameters [9, 10] (for a review see [11]).

The matching of the spectra of the classical string in AdS5×S5 and the N = 4 SYM

has also been studied with the help of methods from algebraic geometry. The sigma

model [12] of the Green-Schwarz superstring possesses a spectral curve, which is a

manifestation of integrability [13]. On the field theory side, the anomalous dimensions

of operators at strong coupling can be calculated using the Bethe ansatz [14]. It has

been shown that at specific limits, the spectra of the dual theories indeed match upon

the identification of some parameters [15,16] (for a review see [17]). In this language,

the classical string solutions are provided in terms of abstract hyperelliptic functions,

that can be expressed in terms of conventional functions (algebraic or elliptic) only

in the genus one case. Thus, although the problem of spectrum matching is formally

understood, it is difficult to study and comprehend the generic structure.

A method for the construction of classical solutions in non-linear sigma models

(NLSM) with a symmetric target space that is more systematic than the use of an

arbitrary ansatz, but yet leads to solutions expressed in terms of functions with well

understood properties, was initiated in [18,19]. In this approach, NLSM solutions are

derived through the inversion of the Pohlmeyer reduction. Two-dimensional NLSMs

with symmetric target spaces can be reduced to integrable systems, the so called sym-

metric space sine-Gordon systems (SSSG), which are multicomponent generalizations

of the sine-Gordon equation. The older and most well-known example is the reduction

of the O(3) NSLM, which leads to the sine-Gordon equation [20, 21]. The Pohlmeyer

reduced system can always be derived from a local Lagrangian, which is a gauged

Wess-Zumino-Witten model with an integrable potential [22–25]. The Pohlmeyer re-

duction is equivalent to the Gauss-Codazzi equations for the embedding of the string

worldsheet into the target space, which is in turn embedded into a flat enhanced

space [26]. In this context, the fact that the target space is a symmetric space is

directly connected to the integrability of the reduced model [27,28].

Even though it is straightforward to calculate the solution of the reduced the-
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ory that corresponds to a given solution of the original NLSM, the inversion of the

Pohlmeyer reduction is a highly non-trivial process. This can be attributed to the

non-local nature of the Pohlmeyer reduction, as well as to the fact that the map-

ping is many-to-one. Construction of NLSM solutions based on the inversion of the

Pohlmeyer reduction has been performed in [18] for strings propagating on AdS3 and

dS3, and in [19] for minimal surfaces in H3. These techniques can be applied for a

particular class of solutions of the reduced system, which depend on a sole world-sheet

coordinate. Given such a solution of the reduced system, the NLSM equations of mo-

tion become linear and solvable via separation of variables. Then, the geometric and

Virasoro constraints are imposed and NLSM solutions are obtained. This procedure

enables a systematic investigation of this class of NLSM solutions. In this work, we

apply this method for strings that propagate on Rt×S2. We argue that this study can

be extended in a trivial manner to higher dimensional spheres.

String solutions belonging to this specific sector probe several interesting regimes

of the spectrum of the AdS/CFT duality at specific limits. Berenstein, Maldacena

and Nastase [29] studied a particle moving at the equator of S5 at the speed of light.

Gubser, Klebanov and Polyakov [30] studied a closed folded string that rotates around

the north pole of the S2 and its counter part, a string that is a rotating great circle. A

few years later, Hofman and Maldacena [31] introduced the giant magnons. These are

open strings, whose ends lie at the equator of the S2 and move at the speed of light.

They are the strong coupling, string theory counterpart of infinite size single-trace

operators that contain one impurity. In [32–37] more general spiky string solutions

are constructed. All these known solutions emerge naturally in our construction. We

give a unified description and classification of all these string solutions in terms of

their Pohlmeyer counterpart.

The paper is organized as follows. In section 2, we revisit the Pohlmeyer reduction

of the NLSM describing strings propagating on Rt×S2 that results in the sine-Gordon

equation. In section 3, we review the class of solutions of the sine-Gordon equation that

can be expressed in terms of elliptic functions. In section 4, it is shown that for these

solutions of the sine-Gordon equation, the equations of motion of the NLSM separate

into pairs of effective Schrödinger problems. Each pair contains one flat potential,

whereas the other one is the n = 1 Lamé potential. We obtain the general solution

for this system of equations and impose the appropriate constraints to effectively

invert Pohlmeyer reduction. In section 5, we study various properties of the elliptic

strings, with emphasis to the mapping of their properties to those of their Pohlmeyer

counterparts. In section 6, we study the dispersion relations of the string solutions and

finally, in section 7, we discuss our results. Throughout the text, various properties of

the Weierstrass elliptic and related functions are used. All the necessary formulae can

be found in standard mathematical literature, e.g. [38], or in the appendix of [18].
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2 The Pohlmeyer Reduction of Strings Propagating on Rt×S2

In this section, we revisit the Pohlmeyer reduction of strings propagating on Rt×S2 (Rt

stands for the time dimension). The main difference of our approach to the original

treatment [20] is the implementation of a more general gauge, instead of the static

gauge, which will facilitate the construction of the elliptic string solutions via the

inversion of the Pohlmeyer reduction, in section 4. This is the main reason we review

the well-known Pohlmeyer reduction of strings propagating on the sphere here.

The basic ingredient of Pohlmeyer reduction is the embedding of the string world-

sheet in a symmetric target space, which is in turn embedded in an enhanced higher-

dimensional flat space. In the case of strings propagating on Rt×S2, the higher di-

mensional flat space is R(1,3). We denote the coordinates in the enhanced space as

X0, X1, X2 and X3. Throughout this text, we use the following notation:

A ·B ≡ −A0B0 +A1B1 +A2B2 +A3B3, (2.1)

~A · ~B ≡ A1B1 +A2B2 +A3B3. (2.2)

Using this notation, the target space of the non-linear sigma model describing the

propagation of strings on Rt×S2 is simply the submanifold of the enhanced space:

~X · ~X = R2. (2.3)

Writing the string action as a Polyakov action, we find,

S = T

∫
dξ+dξ−

(
(∂+X) · (∂−X) + λ

(
~X · ~X −R2

))
, (2.4)

where ξ± are the right- and left-moving coordinates, ξ± ≡
(
ξ1 ± ξ0

)
/2 and T is the

tension of the string.

The equations of motion that emerge from the action (2.4) read

∂+∂−X
0 = 0, (2.5)

∂+∂− ~X = λ ~X. (2.6)

Obviously, the equation for the X0 coordinate implies

X0 = f+

(
ξ+
)

+ f−
(
ξ−
)
. (2.7)

We may eliminate the Lagrange multiplier λ from the equations of motion (2.6). The

geometric constraint (2.3) implies that ∂± ~X · ~X = 0. Upon another differentiation

and the use of the equations of motion (2.6), we obtain

λ = − 1

R2

(
∂+

~X
)
·
(
∂− ~X

)
. (2.8)
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Therefore, the equations of motion for the embedding functions Xi assume the form

∂+∂− ~X = − 1

R2

((
∂+

~X
)
·
(
∂− ~X

))
~X. (2.9)

The stress-energy tensor can be obtained by variation of the action with respect

to the world-sheet metric. The off-diagonal components vanish identically, T+− = 0,

as a result of Weyl invariance. The diagonal elements equal

T±± = (∂±X) · (∂±X) . (2.10)

It follows that the Virasoro constraints assume the form, (∂±X)·(∂±X) = 0. Using the

general solution for the embedding function X0 given by equation (2.7), the Virasoro

constraints can be written as(
∂± ~X

)
·
(
∂± ~X

)
=
(
f±
′)2 . (2.11)

The classical treatment of Pohlmeyer reduction takes advantage of the diffeomor-

phism invariance to set a specific form for the functions f±, in particular selecting the

static gauge, X0 = µ (ξ+ − ξ−). For our purposes, it is more convenient to proceed

without selecting a gauge and leave the advantage of this freedom for later use.

We define a basis in the enhanced three-dimensional space (the R3 subspace of

R(1,3)),

~vi =
{
~X, ∂+

~X, ∂− ~X
}
. (2.12)

The magnitude of the vectors ~vi are fixed by the geometric and Virasoro constraints,

~v2
1 = R2, ~v2

2 =
(
f+
′)2 , ~v2

3 =
(
f−
′)2 . (2.13)

Furthermore, the geometric constraint upon differentiation yields ∂± ~X · ~X = 0 imply-

ing that ~v1 is perpendicular to ~v2 and ~v3,

~v1 · ~v2 = ~v1 · ~v3 = 0. (2.14)

The only parameter that is not fixed by the constraints of the system is the angle

between ~v2 and ~v3. We define it, as the Pohlmeyer field ϕ,(
∂+

~X
)
·
(
∂− ~X

)
:= f+

′f−
′ cosϕ. (2.15)

The relations (2.13), (2.14) and (2.15) for the base vectors ~vi can be used in order

to decompose any vector ~V in the three-dimensional enhanced space in the base ~vi, as

~V =
1

R2

(
~V · ~v1

)
~v1 +

f−
′
(
~V · ~v2

)
− f+

′
(
~V · ~v3

)
cosϕ(

f+
′)2f−′ ~v2

+
f+
′
(
~V · ~v3

)
− f−′

(
~V · ~v2

)
cosϕ(

f−
′)2f+

′
~v3. (2.16)

6



We decompose the derivatives of the base vectors into the base itself by introducing

the 3× 3 matrices A±,

∂±~vi = A±ij~vj . (2.17)

By definition ∂+~v1 = ~v2, ∂−~v1 = ~v3, while the equations of motion imply that

∂+~v3 = ∂−~v2 = −f+
′f−
′/R2 cosϕ~v1. So, the only basis vector derivatives left to calcu-

late are ∂+v2 = ∂2
+X and ∂−v3 = ∂2

−X. The geometric constraint, upon two differenti-

ations with respect to the same variable yields (∂2
±
~X)· ~X = −(∂± ~X)·(∂± ~X) = −(f±

′)2.

Furthermore, differentiating the Virasoro constraints, we get (∂2
±
~X) ·(∂± ~X) = f±

′f±
′′.

Finally, differentiation of the Pohlmeyer field definition (2.15) yields (∂2
±
~X) · (∂∓ ~X) =

f±
′′f∓

′ cosϕ − f+
′f−
′∂±ϕ sinϕ. Plugging the above into the decomposition formula

(2.16), we get

∂+~v2 = −
(
f+
′)2

R2
~v1 +

(
f+
′′

f+
′ + ∂+ϕ cotϕ

)
~v2 −

f+
′

f−
′ sinϕ

~v3, (2.18)

∂−~v3 = −
(
f−
′)2

R2
~v1 +

(
f−
′′

f−
′ + ∂−ϕ cotϕ

)
~v3 −

f−
′

f+
′ sinϕ

~v2. (2.19)

Putting everything together, the matrices A± assume the form,

A+ =

 0 1 0

− (f+
′)2

R2
f+
′′

f+
′ + ∂+ϕ cotϕ − f+

′

f−
′ sinϕ

−f+
′f−
′

R2 cos a 0 0

 , (2.20)

A− =

 0 0 1

−f+
′f−
′

R2 cos a 0 0

− (f−
′)2

R2
f−
′′

f−
′ + ∂−ϕ cotϕ − f−

′

f+
′ sinϕ

 . (2.21)

The matrices A± must obey the compatibility condition ∂+∂−~vi = ∂−∂+~vi, which can

be written as the zero-curvature condition

∂−A
+ − ∂+A

− +
[
A+, A−

]
= 0. (2.22)

Plugging the matrices (2.20) and (2.21) into the zero curvature condition yields

∂+∂−ϕ = −f+
′f−
′

R2
sinϕ. (2.23)

The above equation can get simplified with the use of diffeomorphism invariance.

We will not select the static gauge f±(ξ±) := ±µξ±, but we will restrict ourselves to

only what is necessary to put (2.23) to the form of the sine-Gordon equation, i.e. a

more general “linear” gauge. We redefine the coordinates ξ±, so that

f±
(
ξ±
)

:= m±ξ
±. (2.24)
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The static and linear gauges are obviously connected via a worldsheet boost. In

the following, we will construct classical string solutions, inverting the Pohlmeyer

reduction, using the techniques of [18]. The latter require solutions of the reduced

system that depend solely on either ξ0 or ξ1. The freedom of the linear gauge selection

allows the construction of classical string solutions, whose Pohlmeyer counterpart

depends on a general linear combination of the worldsheet coordinates in the static

gauge. Furthermore, it turns out that this freedom also facilitates the classification of

the obtained solutions. Once the string solutions are found, one can always perform

a boost to express them in the static gauge.

Calculating the induced metric on the world-sheet, using the Virasoro constraints

(2.11) and the Pohlmeyer field definition (2.15), we find

ds2 = −m+m−sin2ϕ

2

((
dξ1
)2 − (dξ0

)2)
. (2.25)

Therefore, demanding that ξ0 is the time-like parameter and ξ1 is the space-like pa-

rameter sets m+m− < 0. Then, the reduced system equation (2.23) assumes the

form

∂+∂−ϕ = µ2 sinϕ, (2.26)

where µ2 := −m+m−/R
2.

3 Elliptic Solutions of the Sine-Gordon Equation

In this section, we are going to find the solutions of the sine-Gordon equation (2.26)

that depend solely on one of the two world-sheet coordinates, i.e. they are either

static or translationally invariant. In the following, the dot denotes differentiation

with respect to ξ0 and the prime denotes differentiation with respect to ξ1.

Without loss of generality, we consider a solution that depends only on ξ0, namely

ϕ
(
ξ0, ξ1

)
= ϕ0

(
ξ0
)
. In this case, the sine-Gordon equation reduces to

ϕ̈0 = −µ2 sinϕ0. (3.1)

This equation can be integrated once to yield

1

2
ϕ̇2

0 − µ2 cosϕ0 = E. (3.2)

Similarly, had one considered static solutions that depend only on ξ1, the only

difference would be an overall sign. This sign can be absorbed defining ϕ
(
ξ0, ξ1

)
=

π + ϕ1

(
ξ1
)
, which leads to

ϕ1
′′ = −µ2 sinϕ1. (3.3)

It follows that static solutions can be produced by translationally invariant ones via

an interchange of the coordinates and a shift of ϕ by π.
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Despite the simple symmetry that connects the translationally invariant solutions

to the static ones, the two classes of solutions are characterized by qualitatively dif-

ferent Hamiltonian densities. The latter equals

H =
1

2
ϕ̇2 +

1

2
ϕ′2 − µ2 cosϕ. (3.4)

In the case of translationally invariant solutions, the Hamiltonian density is constant

in both space and time and is equal to the integration constant E,

H = E. (3.5)

On the contrary, in the case of static solutions, the Hamiltonian density is not constant,

but it is a non-trivial function of ξ1,

H =
1

2
ϕ1
′2 − µ2 cosϕ1 = E − 2µ2 cosϕ1 = ϕ1

′2 − E. (3.6)

The momentum density is given by

P = −ϕ′ϕ̇ (3.7)

and it vanishes for both translationally invariant and static solutions.

It is clear that equation (3.2) can be regarded as the conservation of energy of the

simple pendulum. It is well known that the solutions to this problem can be expressed

analytically in terms of elliptic functions. Indeed, performing the change of variable

2y +
E

3
= −µ2 cosϕ0, (3.8)

the equation (3.2) assumes the form

y′
2

= 4y3 −
(
E2

3
+ µ4

)
y − E

3

((
E

3

)2

− µ4

)
. (3.9)

This is the standard form of the Weierstrass equation y′2 = 4y3−g2y−g3, with specific

values for the moduli equal to

g2 =
E2

3
+ µ4, g3 =

E

3

((
E

3

)2

− µ4

)
. (3.10)

The general solution of the Weierstrass equation in the complex domain is provided

by the Weierstrass elliptic function ℘. However, we are interested only in real solutions

defined in the real domain. When the moduli g2 and g3 are real, the Weierstrass

equation has one or two independent real solutions in the real domain, depending on

the reality of the roots of the cubic polynomial Q (y) = 4y3 − g2y − g3. It turns out
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that the latter, with the moduli g2 and g3 given by (3.10), has always three real roots,

namely,

x1 =
E

3
, x2 = −E

6
+
µ2

2
, x3 = −E

6
− µ2

2
. (3.11)

The ordering of the three roots depends on the value of the integration constant E,

as shown in figure 1. Defining the ordered roots as ei, where e1 > e2 > e3, we have

−µ2

µ2

µ2/3

−µ2/3

x1

x2

x3

xi

E

Figure 1 – The roots of the cubic polynomial as function of the integration con-

stant E

the identification between xi and ei that is shown in table 1.

ordering of roots

E > µ2 e1 = x1, e2 = x2, e3 = x3

|E| < µ2 e1 = x2, e2 = x1, e3 = x3

E < −µ2 e1 = x2, e2 = x3, e3 = x1

Table 1 – The ordering of the roots

When Q (y) has three real roots, the fundamental periods of the Weierstrass elliptic

function can be defined so that one of them is real and the other is purely imaginary.

Let 2ω1 be the real one and 2ω2 be the imaginary one. Then, there are two distinct

real solutions of the Weierstrass equation in the real domain, which read

y = ℘ (x− x0) , (3.12)

y = ℘ (x− x0 + ω2) . (3.13)
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The first solution ranges between the largest of the roots and infinity, while the second

one oscillates between the two smaller roots.

In order to acquire a real solution for ϕ, it is necessary that y is real, but also it

must satisfy ∣∣∣∣2y +
E

3

∣∣∣∣ < µ2, (3.14)

so that the change of variables (3.8) maps a real y to a real ϕ. The table 2 shows the

range of 2y+E/3 for each of the two solutions. It is clear that the unbounded solution

range of 2℘(x) + E/3 range of 2℘(x+ ω2) + E/3

E > µ2 2y + E/3 > E −µ2 < 2y + E/3 < µ2

|E| < µ2 2y + E/3 > µ2 −µ2 < 2y + E/3 < E

E < −µ2 2y + E/3 > µ2 E < 2y + E/3 < −µ2

Table 2 – The range of −µ2 cosϕ0 for both real solutions of the Weierstrass

equation

does not correspond to a real solution for ϕ, as it does not satisfy the constraint (3.14).

The bounded solution does correspond to a real solution for ϕ, as long as E > −µ2.

This is expected from the physics of the simple pendulum. In all cases, the solution

assumes the form

cosϕ0

(
ξ0;E

)
= − 1

µ2

(
2℘
(
ξ0 − τ0 + ω2; g2 (E) , g3 (E)

)
+
E

3

)
. (3.15)

Had one desired to find the solution for ϕ0 itself, they would have to connect ap-

propriate patches of ϕ0, obeying equation (3.15), so that the solution is continuous and

smooth. The appropriate combination of patches, which satisfies the initial conditions

ϕ0 (τ0) = 0 and ϕ̇0 (τ0) =
√

2 (E + µ2), turns out to be

ϕ0

(
ξ0 + τ0

)
=


(−1)

⌊
ξ0

2ω1

⌋
arccos

[
− 1
µ2

(
2℘
(
ξ0 + ω2

)
+ E

3

)]
, E < µ2,

(−1)

⌊
ξ0

ω1

⌋
arccos

[
− 1
µ2

(
2℘
(
ξ0 + ω2

)
+ E

3

)]
+ 2π

⌊
ξ0+ω1

2ω1

⌋
, E > µ2,

(3.16)

where arccosx is assumed to take values in [0, π]. These solutions are plotted for

various values of the energy constant E in figure 2.

Similarly, the static elliptic solutions ϕ1

(
ξ1
)

of the sine-Gordon equation, with
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π

2π

3π

4π

−π

E = −9µ2/10

E = 0

E = 9µ2/10

E = 99µ2/100

E = µ2

E = 101µ2/100

E = 5µ2/4

E = 3µ2/2

ϕ0

ξ0

Figure 2 – The translationally invariant elliptic solutions of the sine-Gordon equa-

tion (3.16), for various values of the energy constant E

boundary conditions ϕ0 (σ0) = π and ϕ1
′ (σ0) =

√
2 (E + µ2), are

ϕ1

(
ξ1 + σ0

)
=


(−1)

⌊
ξ1

2ω1

⌋
arccos

[
− 1
µ2

(
2℘
(
ξ1 + ω2

)
+ E

3

)]
+ π, E < µ2,

(−1)

⌊
− ξ1

ω1

⌋
arccos

[
1
µ2

(
2℘
(
ξ1 + ω2

)
+ E

3

)]
+ 2π

⌊
ξ1+2ω1

2ω1

⌋
, E > µ2.

(3.17)

The solutions with E < µ2 are periodic, obeying ϕ0/1

(
ξ0/1 + 4ω1

)
= ϕ0/1

(
ξ0/1

)
.

We will call them the “oscillatory” solutions, inspired by the simple pendulum ana-

logue of equation (3.2). The solutions with E > µ2 are quasi-periodic, obeying

ϕ0/1

(
ξ0/1 + 2ω1

)
= ϕ0/1

(
ξ0/1

)
+ 2π. We will call them the “rotating” solutions.

3.1 Double Root Limits

When E = ±µ2, two of the roots coincide, giving rise to some special limits of the

elliptic solutions. In the case E = −µ2, the two smaller roots are both equal to

e2 = e3 = −µ2/3, and, thus, ℘
(
ξ0/1 + ω2

)
tends to a constant equal to the double

root. It follows that

ϕ0

(
ξ0;−µ2

)
= 0, (3.18)

ϕ1

(
ξ1;−µ2

)
= π. (3.19)

Translationally invariant solutions tend to the stable vacuum of the sine-Gordon equa-

tion, whereas the static ones tend to the unstable vacuum.
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For E = µ2, the two larger roots are both equal to e1 = e2 = µ2/3. In this case

the real period of the Weierstrass elliptic function diverges and the latter degenerates

to a simply periodic hyperbolic function. It turns out that

ϕ0

(
ξ0;µ2

)
= 4 arctan eµ(ξ

0−τ0) + π, (3.20)

ϕ1

(
ξ1;µ2

)
= 4 arctan eµ(ξ

1−σ0). (3.21)

The first one is an instanton solution evolving from the unstable vacuum ϕ = −π
to the unstable vacuum ϕ = +π. The second one is the usual kink solution of the

sine-Gordon equation, in the frame where it is static and localized in position ξ1 = σ0.

4 Elliptic String Solutions

4.1 The Building Blocks of Elliptic Solutions

Given a string configuration, it is a straightforward process to find the corresponding

solution of the Pohlmeyer reduced system. The inverse problem is highly non-trivial

due to the non-local nature of the Pohlmeyer reduction. This procedure comprises

of using a given solution ϕ of the reduced system and then solving the equations of

motion

− ∂2
0
~X + ∂2

1
~X = µ2 cosϕ ~X, (4.1)

while simultaneously satisfying both the geometric

~X · ~X = R2 (4.2)

and the Virasoro constraints

∂± ~X · ∂± ~X = m2
±. (4.3)

There is an advantage in finding a string solution starting from a given solution of the

reduced system; the equations of motion have taken the form of the linear differential

equations (4.1). Using a solution of the reduced system that depends on only one

world-sheet coordinate provides an extra advantage; these linear differential equations

are solvable using separation of variables [18,19],

Xi(ξ0, ξ1) := Σi(ξ1)Ti(ξ0). (4.4)

It is easy to show that in the case of a solution of the sine-Gordon equation that

depends solely on ξ1, the equations of motion (4.1) are written as pairs of effective

Schrödinger problems of the form,

−Σi′′ +
(
2℘
(
ξ1 + ω2

)
+ x1

)
Σi = κiΣi, (4.5)

−T̈i = κiTi. (4.6)

13



Similarly, in the case of solutions depending solely on ξ0,

−Σi′′ = κiΣi, (4.7)

−T̈i +
(
2℘
(
ξ0 + ω2

)
+ x1

)
Ti = κiTi. (4.8)

The form of the elliptic solutions of the sine-Gordon equation (3.15) implies that

in both cases, the non-trivial effective Schrödinger problem (4.5) or (4.8) assumes the

form of the bounded n = 1 Lamé problem,

− d2y

dx2
+ 2℘ (x+ ω2) y = λy. (4.9)

The eigenfunctions of this problem are given by

y± (x; a) =
σ (x+ ω2 ± a)σ (ω2)

σ (x+ ω2)σ (ω2 ± a)
e−ζ(±a)x, (4.10)

where the Weierstrass quasi-periodic functions ζ and σ are defined as ζ ′ = −℘ and

σ′/σ = ζ. The corresponding eigenvalue of both solutions y± is

λ = −℘ (a) . (4.11)

As long as −λ is not equal to any of the roots, the pair of solutions (4.10) are

linearly independent, and, thus, the general solution of (4.9) can be written as a

linear combination of the latter. At the limit −λ becomes equal to any of the roots,

both y± tend to

y± (x;ω2) =
√
℘ (x+ ω2)− e3, (4.12)

y± (x;ω1,3) =
√
e1,2 − ℘ (x+ ω2). (4.13)

In these cases, there is another linearly independent solution,

ỹ (x;ω2) =
√
℘ (x+ ω2)− e3 (ζ (x+ 2ω2) + e3x) , (4.14)

ỹ (x;ω1,3) =
√
e1,2 − ℘ (x+ ω2) (ζ (x+ ω2 + ω1,3) + e1,2x) . (4.15)

When, the eigenvalue obeys λ < −e1 or −e2 < λ < −e3, the eigenfunctions y±
are real and they diverge exponentially at either plus or minus infinity. When the

eigenvalue lies in the complementary segments, λ > −e3 or −e1 < λ < −e2, the

eigenfunctions y± are complex conjugate to each other and they are delta function

normalizable Bloch waves.

Finally, the eigenfunctions y± obey the “normalization” relations

y+y− =
℘ (x+ ω2)− ℘ (a)

e3 − ℘ (a)
(4.16)
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and

y+
′y− − y+y−

′ = − ℘′ (a)

e3 − ℘ (a)
. (4.17)

Summing up, there are three classes of solutions of the pair of effective Schrödinger

problems (4.5) and (4.6), depending on the sign of the corresponding eigenvalue κi.

Positive eigenvalues lead to embedding functions of the form

X =
[
c1

+y+

(
ξ1; a

)
+ c1
−y−

(
ξ1; a

)]
cos `ξ0 +

[
c2

+y+

(
ξ1; a

)
+ c2
−y−

(
ξ1; a

)]
sin `ξ0,

(4.18)

where κ = `2 = −℘ (a) + x1. Negative eigenvalues lead to embedding functions

X =
[
c1

+y+

(
ξ1; a

)
+ c1
−y−

(
ξ1; a

)]
cosh `ξ0 +

[
c2

+y+

(
ξ1; a

)
+ c2
−y−

(
ξ1; a

)]
sinh `ξ0,

(4.19)

where κ = −`2 = −℘ (a) + x1. Vanishing eigenvalue means that ℘ (a) equals to the

root x1, i.e. a is one of the half-periods. Thus, the corresponding Lamé eigenfunctions

degenerate to the form of eigenfunctions lying at the edge of the allowed bands. In

general the solution is

X =
[
c1

+y
(
ξ1; a

)
+ c1
−ỹ
(
ξ1; a

)]
+
[
c2

+y
(
ξ1; a

)
+ c2
−ỹ
(
ξ1; a

)]
ξ0, (4.20)

where ℘ (a) = x1. For “normalization” reasons that will become apparent later, we

will consider only the part of this solution that can be taken as the limit of positive

or negative eigenvalue solutions, i.e.

X = c
√
x1 − ℘ (ξ1 + ω2). (4.21)

The embedding functions for the case of translationally invariant Pohlmeyer coun-

terparts are identical to the above after an interchange of ξ0 and ξ1.

4.2 Construction of Elliptic String Solutions

In section 4.1, we took advantage of the special form of the elliptic solutions of the

sine-Gordon equation to solve the equations of motion via separation of variables. The

general embedding function can then be written as a linear combination of the forms

(4.18), (4.19) and (4.21). Then, in order to find a classical string solution, we need to

find appropriate expressions for the three embedding functions X1, X2, and X3 that

satisfy the geometric constraint (4.2) and the Virasoro constraints (4.3). The latter,

expressed in terms of the coordinates ξ0 and ξ1, assume the form(
∂0
~X
)
·
(
∂0
~X
)

+
(
∂1
~X
)
·
(
∂1
~X
)

=
m2

+ +m2
−

2
, (4.22)

2
(
∂0
~X
)
·
(
∂1
~X
)

=
m2

+ −m2
−

2
. (4.23)
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Since the embedding functions are solutions to the effective Schrödinger problems (4.5)

and (4.6), we take advantage of the geometric constraint to write down the Virasoro

constraints in the more handy form

−
(
∂2

0
~X
)
· ~X −

(
∂2

1
~X
)
· ~X =

m2
+ +m2

−
2

, (4.24)

−2
(
∂0∂1

~X
)
· ~X =

m2
+ −m2

−
2

. (4.25)

In this work, we focus on the simplest choice, namely the use of a single eigenvalue

for each component. The form of the geometric constraint enforces the two of the

three components to correspond to the same positive eigenvalue and the third one to

correspond to a vanishing one, i.e.

~X =

 c+
1 U

+
1

(
ξ1; a

)
cos `ξ0 + c−1 U

−
1

(
ξ1; a

)
sin `ξ0

c+
2 U

+
2

(
ξ1; a

)
cos `ξ0 + c−2 U

−
2

(
ξ1; a

)
sin `ξ0

c3

√
x1 − ℘ (ξ1 + ω2)

 , (4.26)

where `2 = −℘ (a) + x1 and U±1,2
(
ξ1; a

)
are real linear combinations of y±

(
ξ1; a

)
.

Substituting the above into the geometric constraint (4.2) and demanding that the

terms proportional to sin `ξ0 cos `ξ0, sin2 `ξ0 and cos2 `ξ0 vanish, yields

c+
2 = −c−1 , c−2 = c+

1 , (4.27)

U+
2 = U−1 , U−2 = U+

1 . (4.28)

Then, the geometric constraint assumes the form(
c+

1 U
+
1

)2
+
(
c−1 U

−
1

)2
+ c2

3

(
x1 − ℘

(
ξ1 + ω2

))
= R2. (4.29)

The normalization properties of the Lamé eigenfunctions (4.16) imply that

c+
1 =c−1 ≡ c1, (4.30)

U+
1 =

1

2
(y+ + y−) , U−1 =

1

2i
(y+ − y−) . (4.31)

It follows that in order to get a real solution, y± must be complex conjugate to each

other, i.e. they must be Bloch wave eigenfunctions of the n = 1 Lamé problem.

This constraints the parameter ℘ (a) to obey ℘ (a) < −e3, or −e1 < ℘ (a) < −e2.

Incorporating this into the geometric constraint, further simplifies it to the form

c2
1y+y− + c2

3

(
x1 − ℘

(
ξ1 + ω2

))
= R2. (4.32)

The normalization property (4.16) has an overall sign depending on whether the eigen-

state belongs to the infinite “conduction” band ℘ (a) < −e3 or not. The only way
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that the ξ1 dependence in the geometric constraint disappears is that y± are indeed

such states, thus,

℘ (a) < −e3. (4.33)

This also implies that a lies on the imaginary axis. Finally, absorbing the e3 − ℘ (a)

factor of (4.16) into the definition of y±, the geometric constraint reduces to

c1 = c3 ≡ c, c2 =
R2

x1 − ℘ (a)
=
R2

`2
. (4.34)

Taking the above into account, the ansatz (4.26) assumes the form

~X = c

 Rey+

(
ξ1; a

)
cos `ξ0 + Imy+

(
ξ1; a

)
sin `ξ0

−Imy+

(
ξ1; a

)
cos `ξ0 + Rey+

(
ξ1; a

)
sin `ξ0√

x1 − ℘ (ξ1 + ω2)

 . (4.35)

Substituting the above to the Virasoro constraint (4.24) yields

`2 =
m2

+ +m2
−

4R2
+

3x1

2
. (4.36)

Notice that the above equation implies that

− ℘ (a) + e3 =

(
m+ +m−

2R

)2

> 0, (4.37)

as required in order for the Lamé eigenstates y± to lie in the infinite conduction

band. The bound is saturated for m+ + m− = 0. In this case, which corresponds

to the special selection of the static gauge, the Lamé eigenfunctions y± are real and

periodic functions that lie at the edge of the infinite conduction band. This limit is

the equivalent to the GKP limit [30].

It is left to satisfy the Virasoro constraint (4.25). With the use of formula (4.17),

the latter assumes the form

− ic2`℘′ (a) =
m2

+ −m2
−

2
. (4.38)

The Weierstrass equation implies that

−c4`2℘′2 (a) = −4c4`2 (℘ (a)− x1) (℘ (a)− x2) (℘ (a)− x3)

= 4c4`4
(
x1 − x2 − `2

) (
x1 − x3 − `2

)
= 4R4

[(
x1 −

x2 + x3

2
− `2

)2

−
(
x2 − x3

2

)2
]

= 4R4

[(
x1 + x2 + x3

2
+
m2

+ +m2
−

4R2

)2

−
(
µ2

2

)2
]

=

(
m2

+ −m2
−

2

)2

(4.39)
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and thus the Virasoro constraint (4.25) is automatically satisfied without demand-

ing further constraints in the free parameters of the solution. The subtlety in the

sign can always by corrected by reflecting the parameter a, which corresponds to the

transformation y± → y∓ or equivalently interchanging m+ and m−.

Putting everything together, the elliptic string solutions corresponding to static

solutions of the sine-Gordon equation are written as

~X =
R√

x1 − ℘ (a)


Re
(
y+

(
ξ1; a

)
e−i`ξ

0
)

−Im
(
y+

(
ξ1; a

)
e−i`ξ

0
)

x1 − ℘
(
ξ1 + ω2

)
 . (4.40)

5 Properties of the Elliptic String Solutions

In this section, we proceed to study the geometric characteristics of the string solutions

derived in section 4 and their relation to the features of their Pohlmeyer counterparts.

We indicate with index 0, the elliptic string solutions that correspond to a transla-

tionally invariant solution of the sine-Gordon equation and with index 1, the solutions

with a static sine-Gordon counterpart. It turns out that the natural parametrization

of our construction, which is based on the Weierstrass elliptic function, facilitates the

study of the properties of the elliptic string solutions.

We take advantage of the fact that Bloch wave eigenfunctions of the Lamé potential

are complex conjugates to each other and write them as

y± (ξ; a) =
√
℘ (ξ + ω2)− ℘ (a)e±iΦ(ξ;a), (5.1)

where

Φ (ξ; a) = − i
2

ln
σ (ξ + ω2 + a)σ (ω2 − a)

σ (ξ + ω2 − a)σ (ω2 + a)
+ iζ (a) ξ. (5.2)

Notice that this function possesses the quasi-periodicity property

Φ (ξ + 2ω1; a) = Φ (ξ; a)− 2i (ζ (ω1) a− ζ (a)ω1) . (5.3)

Thus, the elliptic string solutions assume the form

~X0/1 =
R√

x1 − ℘ (a)


√
℘
(
ξ0/1 + ω2

)
− ℘ (a) cos

(
`ξ1/0 − Φ

(
ξ0/1; a

))√
℘
(
ξ0/1 + ω2

)
− ℘ (a) sin

(
`ξ1/0 − Φ

(
ξ0/1; a

))√
x1 − ℘

(
ξ0/1 + ω2

)
 . (5.4)
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Adopting spherical coordinates

X0 = t, (5.5)

X1 = R sin θ cosϕ, (5.6)

X2 = R sin θ sinϕ, (5.7)

X3 = R cos θ, (5.8)

we acquire a parametric expression for the elliptic string solutions,

t0/1 = R
√
x2 − ℘ (a)ξ0 +R

√
x3 − ℘ (a)ξ1, (5.9)

cos θ0/1 =

√
x1 − ℘

(
ξ0/1 + ω2

)
x1 − ℘ (a)

, (5.10)

ϕ0/1 = −sgn(Ima)
√
x1 − ℘ (a)ξ1/0 − Φ

(
ξ0/1; a

)
. (5.11)

Notice, that we have made the selection m+ +m− > 0 and m+−m− > 0. The first

choice is equivalent to the physical time t being an increasing function of the time-

like worldsheet coordinate ξ0. Having selected one of the two above quantities to be

negative, requires taking the opposite value of a according to the Virasoro constraint

(4.38). We have restricted a to take values in the segment of the imaginary axis with

endpoints ±ω2. Then, equation (4.38) implies that ` = −sgn(Ima)
√
x1 − ℘(a). From

now on, for simplicity, we make the choice ` > 0.

5.1 Angular Velocity

Both classes of elliptic string solutions can be written in the form

f (θ, ϕ− ωt) = 0. (5.12)

where

ω0/1 =
`

m+ ±m−
, or

∣∣ω0/1

∣∣ =
1

R

√
x1 − ℘ (a)

x3/2 − ℘ (a)
. (5.13)

This angular velocity is a function of the gauge selection that we performed at the

process of Pohlmeyer reduction.

Each class of elliptic string solutions is comprised of two subclasses, one corre-

sponding to oscillating solutions of the sine-Gordon equation and one corresponding

to rotating solutions of the latter. These are the well-known four classes of helical

string solutions on the two-dimensional sphere [36] (see also [32–35]). These two sub-

classes have some qualitative differences:

1. The solutions with rotating counterparts obey x1 > x2. Such solutions do not

cross the equator; they lie between two circles, which are parallel to the equator
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and in the same semi-sphere. For example, in the case this is the north semi-

sphere, these solutions obey

θ− < θ < θ+, (5.14)

where

θ± = arccos

√
x1 − x2/3

x1 − ℘ (a)
. (5.15)

Both classes of such solutions are characterized by ω0/1 > 1/R. The angles θ±
that constrain the string on the sphere are also function of the gauge selection,

since

sin θ∓ =
1

Rω0/1
. (5.16)

2. The solutions with oscillating counterparts obey x1 < x2. These solutions pe-

riodically cross the equator. They lie between two parallel circles, which are

symmetrically placed above and below the equator, namely,

θ− < θ < π − θ−. (5.17)

The angular velocity for solutions with static counterparts obeys ω1 < 1/R. On

the contrary, solutions with translationally invariant counterparts have ω0 >

1/R. Notice that smoothness of the solution requires that cos θ changes sign

every time the string crosses the equator. Thus, the argument of the Weierstrass

elliptic function should be altered by 4ω1 in order to complete a whole period

for θ, in analogy to the period of the corresponding oscillating solutions of the

sine-Gordon equation.

In the static counterpart cases, the angular velocity tends to the critical value

ω0/1 = 1/R, in the positive double root limit (E → µ2), namely the limit of string

solutions with a kink counterpart. The latter are the giant magnons [31]. In the

translationally invariant counterpart cases, the angular velocity tends to the same

critical value in the negative double root limit (E → −µ2), namely the limit of string

solutions corresponding to the stable vacuum of the sine-Gordon equation. This is the

BMN particle solution [29].

Although, elliptic solutions with either static or translationally invariant counter-

parts accept a description of the form f (θ, ϕ− ωt) = 0, it is not clear whether this

property should be conceived as a manifestation of rigid rotation or wave propagation.

The fundamental difference between these two classes of solutions is that they can be

written in a parametric form as

θ0/1 = f
(
ξ0/1

)
, (5.18)

ϕ0/1 − ω0/1t0/1 = g
(
ξ0/1

)
. (5.19)
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In other words, θ and ϕ − ωt are parametrized in terms of the spacelike worldsheet

coordinate in the static case. Thus, in this case, we may consider a given point of the

string to be characterized by constant values of θ and ϕ−ωt, implying rigidly rotating

motion of the string. On the contrary, this is not the case for string solutions with

translationally invariant counterparts, since in this case θ and ϕ−ωt are parametrized

in terms of the timelike worldsheet coordinate. These solutions should be understood

as wave propagation solutions.

5.2 Periodicity Conditions

In order to better understand the form of the solutions, we may perform a worldsheet

boost to convert to the static gauge,

ξ0 = γ
(
σ0 − βσ1

)
, (5.20)

ξ1 = γ
(
σ1 − βσ0

)
, (5.21)

where

γβ =
1

µ

√
x3 − ℘ (a), (5.22)

γ =
1

µ

√
x2 − ℘ (a). (5.23)

Then, the elliptic string solutions assume the form

t0/1 = Rµσ0, (5.24)

cos θ0/1 =

√
x1 − ℘

(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
x1 − ℘ (a)

, (5.25)

ϕ0/1 =
√
x1 − ℘ (a)γ

(
σ1/0 − βσ0/1

)
− Φ

(
γ
(
σ0/1 − βσ1/0

)
; a
)
. (5.26)

Equations (5.24), (5.25) and (5.26) allow the visualization of a snapshot of the

solution, as freezing the target space time X0 is equivalent to freezing the worldsheet

coordinate σ0. The form of the four classes of elliptic string solutions defined in section

5.1 is depicted in figure 3.

Clearly, equation (5.25) implies that the angle θ is a periodic function of σ1 in all

cases. The period δσ depends on the type of the solution. More specifically,

δσ0 =
δξ

γβ
, (5.27)

δσ1 =
δξ

γ
, (5.28)
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static oscillating
counterpart

static rotating
counterpart

translationally invariant oscillating
counterpart

translationally invariant rotating
counterpart

Figure 3 – The four classes of elliptic string solutions

where δξ is the real period/quasi-period of the corresponding sine-Gordon solution,

namely

δξ =

{
4ω1, E < µ2,

2ω1, E > µ2.
(5.29)

Within a period δσ, the azimuthal coordinate ϕ runs monotonically and its value

changes by δϕ, which is determined by the quasiperiodicity property (5.3) of the
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function Φ. It equals

δϕ0/1 = ∓δξ
(
i

ω1
(ζ (ω1) a− ζ (a)ω1) +

` (m+ ∓m−)

m+ ±m−

)
= ∓δξ

(
iζ (ω1)

a

ω1
−

(
iζ (a) +

√
(x1 − ℘ (a))

(
x2/3 − ℘ (a)

)
x3/2 − ℘ (a)

))

= ∓iδξ
(
ζ (ω1)

a

ω1
+ ζ

(
ωx3/2

)
− ζ

(
a+ ωx3/2

))
,

(5.30)

where ωxi is the half-period corresponding to the root xi, i.e. ℘(ωxi) = xi. The

quantity δϕ0/1 has two contributions; one coming directly from the quasiperiodicity

properties of the phase of the Bloch wave eigenfunctions of the n = 1 Lamé potential

and another one coming from the boost relating the static and linear gauges. Thus,

the appropriate periodicity condition for closed elliptic string solutions without self-

intersections is

in0/1ω1

(
ζ (ω1)

a

ω1
+ ζ

(
ωx3/2

)
− ζ

(
a+ ωx3/2

))
= π, (5.31)

where n0/1 is an integer when E > µ2 and an even integer when E < µ2.

5.3 Spikes

In order to study the shape of the string, we differentiate the altitude θ and the

azimuthal angle ϕ with respect to the spacelike worldsheet variable σ1. This yields

∂θ0/1

∂σ1
= ∓

√
x3/2 − ℘ (a)℘′

(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
2µ
√
x1 − ℘ (a)

√
℘
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
− ℘ (a)

, (5.32)

∂ϕ0/1

∂σ1
= ∓

√
(x1 − ℘ (a))

(
x2/3 − ℘ (a)

) (
x3/2 − ℘

(
γ
(
σ0/1 − βσ1/0

)
+ ω2

))
µ
(
℘
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
− ℘ (a)

) . (5.33)

For solutions with static counterparts, ∂ϕ0/1/∂σ
1 vanishes only if x2 is equal to e2, i.e.

only for rotating solutions of the sine-Gordon equation. In this case, it vanishes when

γ
(
σ1 − βσ0

)
= (2n+ 1)ω1, where n ∈ Z. For solutions with translationally invariant

counterparts, it vanishes when γ
(
σ1 − βσ0

)
= 2nω1, where n ∈ Z. The locations

where ∂ϕ0/1/∂σ
1 vanishes are lying at altitude

sin θspike
0/1 = sin θ∓. (5.34)

Therefore, in such locations the altitude θ acquires an extremal value implying that

its derivative changes sign. Indeed, ∂θ0/1/∂σ
1 also vanishes at these positions. At this
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points, ∂θ/∂ϕ diverges as∣∣∣∣ ∂θ∂ϕ
∣∣∣∣ ∼

∣∣∣∣∣ ℘′
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
℘
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
− x3/2

∣∣∣∣∣ ∼ 1√∣∣℘ (γ (σ0/1 − βσ1/0
)

+ ω2

)
− x3/2

∣∣ .
(5.35)

It follows that these positions are positions of spikes.

The Pohlmeyer field in the position of a spike assumes the value

ϕspike
Pohlmeyer = 2nπ, n ∈ Z. (5.36)

This justifies the form of the elliptic string solutions presented in figure 3. Translation-

ally invariant oscillatory solutions of the sine-Gordon equation oscillate around ϕ = 0.

For this reason, the corresponding strings have spikes that appear periodically. Half

of those spikes point towards the north pole of the sphere and half of them towards

the south pole, corresponding to the Pohlmeyer field being equal to zero with positive

or negative derivative. On the contrary, static oscillatory solutions of the sine-Gordon

equation oscillate around ϕ = π and as a result, the corresponding strings do not

have spikes. Both classes of rotating solutions of the sine-Gordon equation are always

increasing (or decreasing) functions and therefore periodically cross positions with

ϕ = 2nπ with the same derivative. For this reason, the string solutions with rotating

counterparts present spikes periodically, which point to the same pole of the sphere.

It is easy to show that

Rω0/1 sin θspike
0/1 = 1, (5.37)

i.e. the spikes are moving at the speed of light. In the static counterpart case, the

spike may have the interpretation of a given point of the string, which due to initial

conditions, is moving at the speed of light and therefore cannot change velocity no

matter what forces are exerted on it. In the translationally invariant counterpart case,

which has the interpretation of wave propagation, a given point of the string is spiky

at a given time instant, when this point reaches the speed of light, as a result of the

propagation of a wave pattern along the string, and gets violently reflected. Since the

elliptic strings preserve their shape as time evolves, spikes cannot get in contact, in

order to study their interactions. It would be interesting to study the outcome of the

collision of such spiky points; this requires the investigation of string solutions with

more complicated Pohlmeyer counterparts.

The fact that spikes appear at locations where the Pohlmeyer field is a multiple

of 2π is not a coincidence. Writing down the Virasoro constraints in the static gauge

yields ∣∣∣∂0
~X
∣∣∣2 = R2µ2cos2ϕ

2
, (5.38)∣∣∣∂1

~X
∣∣∣2 = R2µ2sin2ϕ

2
. (5.39)

24



Thus, any singular point of the string, i.e. a spike, which necessarily is characterized by

vanishing ∂1
~X, is a point where the Pohlmeyer field is a multiple of 2π. Furthermore,

the Virasoro constraints imply that these points have
∣∣∣∂0

~X
∣∣∣ = Rµ, which combined to

the fact that at the static gauge t = Rµσ0 implies that the spikes move at the speed of

light. Notice that the Virasoro constraints do not imply that any point of the string

where the Pohlmeyer field is a multiple of 2π, is necessarily a singular spiky point.

However, the latter is also true in the class of elliptic string solutions.

5.4 Topological Charge and the Sine-Gordon/Thirring Duality

The limit of the elliptic solutions of the sine-Gordon equation at plus and minus spatial

infinity is well-defined only in the vacuum and kink limits. Therefore, a topological

charge can be naturally defined only in these cases. However, in the case of string con-

figurations with appropriate periodicity conditions, the Pohlmeyer field obeys periodic

and not asymptotic conditions, namely,

ϕ
(
σ0, σ1 + δσ

)
− ϕ

(
σ0, σ1

)
= 2nπ, n ∈ Z. (5.40)

Therefore, a topological charge in the Pohlmeyer reduced theory can be defined in

such solutions, which obviously equals n. We have seen that a spike appears whenever

the Pohlmeyer field assumes a value that is an integer multiple of 2π. It follows that

n = number of spikes. (5.41)

Notice that spikes pointing to opposite poles of the sphere have opposite contributions

to this conserved charge, i.e. they function as spikes and “anti-spikes”. This is evident

in the case of string solutions with translationally invariant oscillating counterparts

(see figure 3). Conservation of the topological charge in the Pohlmeyer reduced theory

implies some kind of “conservation of the number of spikes”, which should also apply

in more complicated string solutions, where spikes may get in touch and interact.

It is well known that the sine-Gordon equation is S-dual to the Thirring model [45].

The Lagrangian densities of the two theories are

LSG =
1

2
∂µϕ∂

µϕ+
α0

β2
cosβϕ, (5.42)

LTh = iΨ̄γµ∂µΨ−m0Ψ̄Ψ− g

2

(
Ψ̄γµΨ

) (
Ψ̄γµΨ

)
. (5.43)

The Thirring model possesses a global symmetry, namely

Ψ→ eiaΨ. (5.44)

This gives rise to a conserved current

jµ = Ψ̄γµΨ (5.45)
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and a conserved charge, namely the fermion number,

N =

∫
dσ1Ψ̄γ0Ψ. (5.46)

The duality implies that the parameters and fields of the two dual theories are

connected as,

4π

β2
= 1 +

g

π
, (5.47)

− β

2π
εµν∂νϕ = Ψ̄γµΨ, (5.48)

α0

β2
cosβϕ = −m0Ψ̄Ψ. (5.49)

The classical limit corresponds to β = 1 [46]. According to the above, the conserved

current of the Thirring model can be expressed in terms of the sine-Gordon field as

j0 = − 1

2π
∂1ϕ, (5.50)

j1 =
1

2π
∂0ϕ, (5.51)

and, thus, the fermion number assumes the form

N = − 1

2π

∫
dσ1∂1ϕ = −n, (5.52)

which equals the opposite of the topological charge in the Pohlmeyer reduced theory,

and, thus, the number of spikes.

The above correspondence naively implies that in the picture of the Thirring

model, the string solutions with rotating counterparts can be considered as multi-

fermion states. On the contrary, solutions with oscillating Pohlmeyer counterparts

have the natural interpretation of bosonic condensates. However, notice that the sine-

Gordon/Thirring duality is a full quantum weak to strong duality. Thus, the above

statement should be viewed cautiously, since taking the classical limit of a strongly

coupled quantum theory is in general non-trivial.

It would be interesting to investigate this duality in the framework of string theory.

Type IIB superstring theory in AdSn×Sn is self-S-dual, with the closed strings being

S-dual to D1-branes [47, 48]. This hints that the spiky elliptic strings should be S-

dual to D1-brane configurations, whose Pohlmeyer counterpart has non-trivial fermion

number equal to the number of spikes of the original string solutions. The investi-

gation of this correspondence requires the derivation of elliptic superstring solutions

propagating on the full AdSn×Sn space and their parallel study in the corresponding

supersymmetric Pohlmeyer reduced theory.
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5.5 Interesting Limits and the Moduli Space of Solutions

The elliptic string solutions have some very well known special limits, which are very

simple to study in our parametrization. We do so for the completeness of our presen-

tation. At these limits, two of the three roots x1, x2 and x3 coincide, and, thus, the

Weierstrass elliptic function degenerates to a simply periodic function, either trigono-

metric or hyperbolic. There are two such cases:

In the limit E → −µ2, the two negative roots coincide and the solutions reduce to

cos θ0/1 = 0, (5.53)

ϕ0/1 = −µσ0/1. (5.54)

being a hoop around the equator [8] in the static counterpart case and the BMN

particle [29] travelling along the equator at the speed of light in the translationally

invariant counterpart case. Notice that in this limit, the string worldsheet degenerates

to a one-dimensional manifold. This is not unexpected, since in this limit, the solution

of the Pohlmeyer reduced system degenerates to the vacuum solution of the sine-

Gordon equation, meaning that the vectors ∂+X and ∂−X become parallel. This

property is present to other NLSMs (e.g. see [39]).

Similarly, in the limit E → µ2, the two positive roots coincide and the solutions

degenerate to

cos θ0/1 = i sinh (µa) sech
[
iµ
(

csch (µa)σ0/1 − coth (µa)σ1/0
)]
, (5.55)

ϕ0/1 = µσ1/0 +
i

2
ln

cosh
[
iµ
(
csch (µa)σ0/1 − coth (µa)σ1/0 − ia

)]
cosh

[
iµ
(
csch (µa)σ0/1 − coth (µa)σ1/0 + ia

)] , (5.56)

being the giant magnon [31] with angular opening δϕ = 2iµa in the case of solu-

tions with static counterparts and the single spike [32] in the case of solutions with

translationally invariant counterparts.

The above two limits are specific values for the integration constant E. For a given

value of this constant, the parameter a may take any value on the imaginary axis on

the linear segment defined by the origin and the half-period ω2. Another interesting

limit is the special selection a = −ω2 or ℘ (a) = x3. This is the case where the linear

gauge coincides with the static gauge. Had we restricted Pohlmeyer reduction to the

static gauge, the method applied in section 4 for the construction of the elliptic string

solutions would have resulted to these special solutions only. In this limit, the solution

assumes the form

cos θ0/1 =

√
x1 − ℘

(
σ0/1 + ω2

)
x1 − x3

, (5.57)

ϕ0/1 =
√
x1 − x3σ

1/0. (5.58)
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In the case of static oscillating counterparts, this is a great circle crossing the two

poles and rotating with angular velocity ω1, whereas in the case of a static rotating

counterpart this is an arc of a great circle centered at one of the two poles and rotating

with angular velocity ω1 so that its endpoints have the speed of light. This is the well

known GKP string solution [30]. Notice that this limit is always compatible with the

periodicity conditions corresponding to the value n1 = 2.

In the case of solutions with translationally invariant counterparts, the above so-

lution describes a hoop being always parallel to the equator which shrinks to a point

at the pole of the sphere and then extends again. In the case of oscillating solutions it

extends further than the equator and then shrinks again to the opposite pole before

it starts re-extending, whereas in the case of rotating solutions it extends up to a

maximum size and then it shrinks again to the same pole. These solutions, although

they have a translationally invariant Pohlmeyer counterpart are spikeless. This is due

to the coincidence of the static gauge to the linear one. As there is no need for a

worldsheet boost to convert to the static gauge, the singular behaviour characterizes

solely the time evolution of the string and not its shape. These solutions satisfy the pe-

riodicity conditions with n0 = 0. The coordinate σ1 takes values in [0, 2π/
√
x1 − x3 )

to complete one hoop.

The opposite limit to the above is a/ω2 → 0. In this limit the solution assumes

the form

cos θ0/1 = |a|

√
x1 − ℘

(
σ0/1 − σ1/0

µ |a|
+ ω2

)
, (5.59)

ϕ0/1 =
x2

µ
σ0/1 − x3

µ
σ1/0 + |a|

(
ζ

(
1

µ |a|

(
σ0/1 − σ1/0

)
+ ω2

)
− ζ (ω2)

)
. (5.60)

This describes strings that have the shape of the general solution, lying very close to

the equator and being characterized by a small angular opening δϕ. In this limit, the

static gauge and the linear one are connected via a boost by a velocity close to the

speed of light. These string solutions are the “speeding strings” limit [40].

The elliptic string solutions are a two-parameter family of solutions, in our language

being the parameters E and a. The advantage of our parametrization is that only one

of the two parameters (the integration constant E) affects the corresponding solution of

the Pohlmeyer reduced system. The worldsheets of the solutions being characterized

by the same constant E comprise an associate (Bonnet) family [19]. Demanding

appropriate periodicity conditions, restricts one of the two parameters to be discrete,

or in other words the moduli space of the elliptic string solutions with appropriate

periodicity conditions is a discretely infinite set of one-dimensional curves. Figure 4

depicts the moduli space of elliptic string solutions and visualises their classification

according to their Pohlmeyer counterpart.
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static counterparts translationally invariant counterparts

E−µ2 µ2℘ (a)

n1

2
3
4
5
6
7
8
9

10

E−µ2 µ2℘ (a)

n0

0
1
2
3
4
5
6

7

GKP limit/oscillating hoops

giant magnons/single spikes
hoop/BMN partiple

rotating counterparts

oscillating counterparts

Figure 4 – The moduli space of elliptic string solutions

6 Energy and Angular Momentum

The Rt×S2 target space has the symmetry of time translations, leading to a conserved

energy and that of SO(3) rotations, leading to a conserved angular momentum.

Considering solutions with appropriate periodic conditions, the string energy is

given by

E0/1 =

∣∣∣∣ δLδ∂0t

∣∣∣∣ = T

∫ n0/1δσ0/1

0

∂t0/1

∂σ0
dσ1 = Tn0/1Rµδσ0/1 =

2Tn0/1Rµ
2ω1√

x3/2 − ℘ (a)
, (6.1)

where n0/1 ∈ Z when E > µ2 and n0/1 ∈ 2Z when E < µ2. The above expres-

sion is indeterminate in the GKP limit of solutions with translationally invariant

counterparts (℘(a) = x3, n0 = 0). In this case, the energy assumes the value

E0 = 2πTRµ/
√
x1 − x3.

Similarly, the z-component of the angular momentum is given by

J0/1 =
δL

δ∂0ϕ
= TR2

∫ n0/1δσ0/1

0
sin2θ0/1

∂ϕ0/1

∂σ0
dσ1

= ∓TR
2

µ

√
x2/3 − ℘ (a)

x1 − ℘ (a)

∫ n0/1δσ0/1

0

(
℘
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
− x2/3

)
dσ1

= ±
2Tn0/1R

2
(
ζ (ω1) + x2/3ω1

)√
x1 − ℘ (a)

.

(6.2)
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In the following, we define E0/1 := E0/1/(2TR) and J0/1 := J0/1/(2TR
2). The

mismatch of the R factors in these definitions is due to the fact that we have consid-

ered time as an independent dimension not related to the radius of the sphere. Had

we considered Rt×S2 as a submanifold of an AdSn×Sn space with a dual boundary

description, the time would have been part of the AdSn, which has the same radius

as that of the sphere, effectively measuring time in units of R. We also recall that the

angular opening δϕ, which is associated to the quasi-momentum in the dual theory is

given by

δϕ0/1 = ∓2ω1

(
iζ (ω1)

a

ω1
−

(
iζ (a) +

√
(x1 − ℘ (a))

(
x2/3 − ℘ (a)

)
x3/2 − ℘ (a)

))
. (6.3)

In the positive double root limit, the Weierstrass functions degenerate to simple

trigonometric functions. It is a matter of algebra to show that in this limit and in

the case of static counterparts, the energy and angular momentum diverge, due to the

divergence of ω1 and it holds that

E0 +
δϕ0

2
= −2iµa = − arcsinJ , (6.4)

E1 − J1 = n1 sin (−iµa) = n1 sin
δϕ1

2
, (6.5)

which is the very well known dispersion relations of the single spikes and giant magnons.

In this parametrization, it is also simple to study the limit of the speeding strings.

As a/ω2 → 0 the angular opening δϕ tends to zero. whereas the energy and angular

momentum remain finite. In this limit, the angular opening, energy and angular

momentum assume the form

δϕ0/1 ' ∓2
(
ζ (ω1) + x3/2ω1

)
(ia) +O

(
a3
)
, (6.6)

E0/1 ' n0/1µ
2ω1 (ia) +O

(
a3
)
, (6.7)

J0/1 ' ±n0/1

(
ζ (ω1) + x2/3ω1

)
(ia) +O

(
a3
)
, (6.8)

implying that

E0/1 − J0/1 '
1

2
n0/1δϕ. (6.9)

This is compatible to the giant magnon case since in this limit δϕ→ 0.

The expressions (6.1) and (6.2) that provide the energy and angular momentum

of the string in terms of the Weierstrass functions can be used to convert the problem

of the specification of the dispersion relation to an algebraic problem with the help of

appropriate properties of the latter functions. For example, let us consider the special

case a = −ω2/2. This is a one-dimensional family of solutions, which in the case of
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static counterparts, contains the giant magnon with angular opening equal to π/2.

The Weierstrass functions obey the following quarter period relations

℘
(ω2

2

)
= e3 −

√
(e3 − e1) (e3 − e2) = −E

6
− µ2

2
− µ

√
E + µ2

2
(6.10)

and

ζ
(ω2

2

)
=

1

2

(
ζ (ω2)− i

√
2
√

(e3 − e1) (e3 − e2)− 3e3

)
=

1

2

(
ζ (ω2)− i

(√
E + µ2

2
+ µ

))
.

(6.11)

Using the above properties, the angular opening of the string assumes the form

δϕ0/1

(
E,−ω2

2

)
= ±

(
−π

2
+ ω1

(√
E + µ2

2
± µ

))
, (6.12)

whereas the energy of the string is written as

E0

(
E,−ω2

2

)
= µω1

(
E + µ2

2µ2

)− 1
4

, (6.13)

E1

(
E,−ω2

2

)
= µω1

((
E + µ2

2µ2

) 1
2

+ 1

)− 1
2

. (6.14)

This implies that the integration constant E can be expressed as the algebraic function

of the quantity (δϕ0/1 ± π/2)/E0/1, which solves the equation,

δϕ0 + π/2

E0
=

(
E + µ2

2µ2

) 3
4

+

(
E + µ2

2µ2

) 1
4

, (6.15)

δϕ1 − π/2
E1

=

(
1−

(
E + µ2

2µ2

) 1
2

)(
1 +

(
E + µ2

2µ2

) 1
2

) 1
2

. (6.16)

These equations are equivalent to cubic equations for E/µ2. Once this function is

specified, it can be substituted in the expression (6.2) in order to acquire an analytic

dispersion relation connecting E , J and δϕ that characterises the string solutions with

a = −ω2/2, arbitrarily far from the infinite size limit. Notice that the real period ω1

can be expressed as an algebraic function of E and δϕ through equation (6.1). So the

only transcendental part of the dependence of the angular momentum on E and δϕ is

through ζ(ω1) or equivalently the complete elliptic integral of the second kind, which

is finite everywhere in [0, 1].
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This procedure can be generalized. Consider the more general case a = −2qω2,

q ∈ Q. This is a one-dimensional sector of the moduli space, which, in the case of

static counterparts, contains a giant magnon solution obeying appropriate periodicity

conditions with δϕ = 2qπ (of course this is going to have self-intersections unless q

is of the form 1/n, n ∈ Z). The functions ℘ (2mz/n) with m,n ∈ Z and ℘ (z) are

both elliptic functions with periods 2nω1 and 2nω2. Therefore they are algebraically

related. The above argument for z = ω2 implies that ℘ (2qω2) is an algebraic function

of the root e3.

Furthermore, the Weierstrass zeta function obeys

ζ (z + w) = ζ (z) + ζ (w) +
1

2

℘′ (z)− ℘′ (w)

℘ (z)− ℘ (w)
, ζ (2z) = 2ζ (z) +

℘′′ (z)

2℘′ (z)
. (6.17)

As a result of the Weierstrass equation (℘′)2 = 4℘3 − g2℘ − g3 and its derivative

℘′′ = 6℘2 − g2/2, ℘′ (z) and ℘′′ (z) are algebraic functions of ℘ (z). Iterative use of

the above formulas implies that ζ (nz) = nζ (z) + fn (℘ (z)), where fn is an algebraic

function. Applying the above for z = 2mω2/n results in the zeta Weierstrass function

ζ (2mω2/n) being equal to 2mζ (ω2) /n plus an algebraic function of the root e3, or

equivalently an algebraic function of the ratio E/µ2, i.e.

ζ (2qω2) = 2qζ (ω2) + fq
(
E/µ2

)
, (6.18)

The specification of these algebraic functions may be a difficult task in practice. In-

dicatively in the case q = 1/3, ℘ (2ω2/3) is the smallest root of the quartic equation

48P 4 − 24g2P
2 − 48g3P − g2

2 = 0 and ζ (2ω2/3) = 2ζ (ω2)/3− (℘ (2ω2/3))1/2.

Once these functions have been specified, the angular opening and the energy of

the string assume the form

δϕ0/1 (E,−2qω2) = ±
(
−qπ + µω1gq

(
E/µ2

))
, (6.19)

E0/1 (E,−2qω2) = µω1hq
(
E/µ2

)
, (6.20)

where gq
(
E/µ2

)
and hq

(
E/µ2

)
are algebraic functions of E/µ2. Therefore, the ratio

E/µ2 is an algebraic function of the quantity (δϕ0 ± qπ)/E0/1, i.e.

E = µ2Fq

(
δϕ0/1 ± qπ
E0/1

)
. (6.21)

Once this algebraic function is specified, it can be substituted in (6.2) to provide a

closed formula for the dispersion relation of elliptic strings that satisfy a = −2qω2.

Since the set of rational numbers is a dense subset of the real numbers, the union

of the trajectories a = −2qω2, where the dispersion relation assumes an analytic form,

is a dense subset of the moduli space of the elliptic string solutions. Figure 5 shows

how the a = −2qω2 trajectories lie in the moduli space.
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static counterparts translationally invariant counterparts

E−µ2 µ2℘ (a)

q

1/2
1/3

1/4

1/5
...

E−µ2 µ2℘ (a)

q

1/2
1/3

1/4

1/5
...

Figure 5 – The trajectories in the moduli space where the dispersion relation can

be specified analytically

The above process cannot be applied in the case of the GKP limit, i.e. the specific

selection q = 1/2. In this case, the angular opening is not a function of the integration

constant E, but it simply equals δϕ1 = π, i.e. the algebraic function gq in equation

(6.19) vanishes. Therefore, the integration constant E cannot be specified algebraically

by an appropriate linear combination of the energy and the angular opening, but it

requires the inversion of the elliptic integral that relates it to the string energy. This

cannot be performed analytically; usually this inversion is performed perturbatively

around the infinite size limit [41–44].

7 Discussion

We applied a systematic approach to the construction of classical string solutions on

Rt×S2. Using a specific class of solutions of the Pohlmeyer reduced theory, i.e. the

sine-Gordon equation, which are expressed in terms of elliptic functions, we were able

to develop a unified description of all known genus one string solutions on Rt×S2.

Our approach is based on a clever choice of the worldsheet parametrization that leads

to equations of motion for the classical string, which are solvable via separation of

variables.

The fact that our method can be applied successfully, reproducing all known genus

one solutions and providing a unified framework is not accidental. The NLSM is

integrable, and, thus, it can be solved using finite gap integration. It is known that any

smooth one-gap potential is equivalent to an appropriate n = 1 Lamé potential [49].

Thus, in the case of elliptic solutions, the equations of motion are in principle reducible

to the n = 1 Lamé problem. This is precisely what it is achieved via the application
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of the Pohlmeyer reduction inversion technique. Since the spiky strings and their

various special limits are the most general genus one classical string solutions [50,51],

our approach achieves the inversion of the Pohlmeyer reduction and it is equivalent to

the finite gap integration in the case of genus one.

An advantage of our unified description is the convenience in studying and com-

paring the properties of the string solutions to those of their Pohlmeyer counterparts.

For example, rigidly rotating strings have counterparts which can be set static after

an appropriate worldsheet boost. On the other hand, wave propagating solutions have

counterparts that can be set translationally invariant after an appropriate worldsheet

boost. Spikes occur at points where the Pohlmeyer field assumes a value equal to an

integer multiple of 2π. These points are always moving at the speed of light. Finally,

the topological charge in the sine-Gordon theory is mapped to the number of spikes

of the string. This mapping of properties provides a nice geometric picture to the

Pohlmeyer reduction and enhances our intuition on the dynamics of string propaga-

tion on Rt×S2. Table 3 summarizes the mapping of the properties of the strings to

those of their Pohlemeyer counterparts.

NLSM sine-Gordon

two-parameter family of solutions only one of the two parameters af-

fects the solution

angular frequency

extremal altitudes

gauge in which the solution is either

static or translationally invariant

degenerate one-dimensional world-

sheet (BMN particle, hoops)

vacuum solution

strings asymptotically reaching the

equator (giant magnons, single

spikes)

kink or instanton solutions

rigid rotation/wave propagation static/translationally invariant solu-

tions (at some frame)

spike ϕ = 2nπ, n ∈ Z
number of spikes topological charge

spiky strings/non-spiky strings or

strings with equal number of spikes

and anti-spikes

rotating/oscillating solutions —

multi fermion states/bosonic con-

densate states in the dual Thirring

model

Table 3 – A dictionary between the NLSM and the sine-Gordon model

The Weierstrass elliptic function is the natural parametrization for the study of
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genus one solutions, since it uniformizes the torus. The manifestation of the latter

is the simple unified description of this class of classical string solutions in terms of

the “effective energy” E of the sine-Gordon reduced system and the purely imaginary

parameter a. Adopting this parametrization significantly simplifies the expressions

for the conserved charges of the string and facilitates the study of the corresponding

dispersion relation. In particular, we identify a set of one-dimensional trajectories in

the moduli space, where it is possible to express the moduli as an algebraic function

of the ratio of the energy and the angular opening, allowing the expression of the

dispersion relation in a closed form, arbitrarily far away from the infinite size limit.

These trajectories compose a dense subset of the moduli space.

Another interesting feature that emerges from the properties of the sine-Gordon

equation has to do with its well known duality with the Thirring model. The topo-

logical charge of the sine-Gordon theory is mapped to the fermion number in the

Thirring model. Therefore, the number of spikes has a naive interpretation as a

fermion number. In this picture, the strings with rotating Pohlmeyer counterparts

have the natural interpretation of fermionic objects of the theory, whereas the strings

with oscillating counterparts have the interpretation of bosonic condensates of the

latter. The study of elliptic strings in this context would have an enhanced interest in

view of the S-duality of the type IIB superstring theory in AdSn×Sn spaces. In this

case, such elliptic solutions could provide a quantitative tool to understand the role

of the sine-Gordon/Thirring duality as S-duality in the Pohlmeyer reduced theory.

The presented techniques can be directly generalized to higher dimensional spheres

and to AdSn×Sn spaces. As long as Sn is concerned, when n is even, the eigenvalues

of the problem will have the same structure as in the presented S2 case: there will

be an odd number of enhanced space embedding functions, which will be organised

in several pairs, each being associated to a positive eigenvalue connected to a Bloch

wave eigenstate of the associated n = 1 Lamé problem and a single one that will

be associated with a vanishing eigenvalue, and, thus, connected to an eigenstate of

the n = 1 Lamé problem lying at the margin of a band. When n is odd, there will

be an even number of enhanced space coordinates, which will be simply organised in

pairs each associated with a positive eigenvalue. Such solutions have been constructed

with other methods in the literature [37]. Further extending to AdSn×Sn, which is

of particular interest towards holographic applications, requires the combination of

the results presented in this work with those of [18]. The elliptic strings on AdS

spaces form some qualitatively distinct classes due to the form of the metric in the

enhanced space (which is R(2,n−1)). It would be interesting to study how these classes

get combined with the elliptic strings on the sphere and how they differ in terms of

their dispersion relation or other geometric characteristics.
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