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Abstract

We extend the calculations of holographic entanglement entropy in AdS4 for entan-

gling curves with singular non-smooth points that generalize cusps. Our calculations

are based on minimal surfaces that correspond to elliptic solutions of the corresponding

Pohlmeyer reduced system. For these minimal surfaces, the entangling curve contains

singular points that are not cusps, but the joint point of two logarithmic spirals one

being the rotation of the other by a given angle δϕ. It turns out that, similarly to

the case of cusps, the entanglement entropy contains a logarithmic term, which is

absent when the entangling curve is smooth. The latter depends solely on the ge-

ometry of the singular points and not on the global characteristics of the entangling

curve. The results suggest that a careful definition of the geometric characteristic of

such a singular point that determines the logarithmic term is required, which does not

always coincide with the definition of the angle. Furthermore, it is shown that the

smoothness of the dependence of the logarithmic terms on this characteristic is not in

general guaranteed, depending on the uniqueness of the minimal surface for the given

entangling curve.
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1 Introduction

The Ryu-Takayanagi conjecture [1, 2] (see also [3–9]) is a deep link between theories

interrelated through the holographic duality. The conjecture relates quantitatively

quantum entanglement in the boundary CFT to the geometry of the bulk theory.

Considering a closed surface ∂A (the entangling surface) on the AdS boundary sepa-

rating it to regions A and AC , the associated entanglement entropy (EE)

SEE := −trρA ln ρA, ρA = trACρ (1.1)

is connected to the area of an extremal co-dimension two open surface in the bulk

geometry, whose boundary coincides with the entangling surface ∂A. More quantita-

tively, the entanglement entropy associated to region A is given by

SEE =
1

4GN
Area

(
Aextr

)
, (1.2)

where Aextr is the extremal co-dimension two surface in the bulk. This striking con-

jecture has opened many paths to the understanding of the emergence of gravity in

theories with holographic duals, as well as to the understanding of the role of entan-

glement in strongly coupled systems, following the opposite direction of the duality.

The area of the minimal surface is divergent as one could easily guess due to the

divergence of the bulk metric at the boundary. Introducing a radial cut-off scale L, the

2



entanglement entropy for a spherical entangling surface of radius R in the boundary

of AdSd+1 is given by the expressions

SEE '

{
a1(R/L)d−2 + a3(R/L)d−4 + . . .+ ad−2R/L+ a0, d odd,

a1(R/L)d−2 + a3(R/L)d−4 + . . .+ ad−3(R/L)2 + a0lnR/L, d even.
(1.3)

The first and most divergent term is the usual “area law” term [10, 11], which is

proportional to the area of the entangling surface. When d is even, the logarithmic

term is universal and it is connected to the conformal anomaly [1, 2, 12–15]. When d

is odd, the constant term is universal and it obeys a holographic “c-theorem” [13, 14].

The coefficients ai of the expansion (1.3) strongly depend on the geometric features

of the entangling surface. It has been shown [16] that the presence of non-smooth

points in the entangling surface has some even more significant consequences in the

form of the expansion of the entanglement entropy (1.3), as new terms arise. These

terms are not dependent on the global characteristics of the entangling surface, but

rather only on the features of the non-smooth points. This kind of terms is particularly

interesting, as they are universal, and they are connected to the central charge of the

boundary CFT theory [16–19].

Focusing to the case of AdS4, the expansion of the entanglement entropy with the

cut-off radial scale L for an arbitrary smooth entangling curve reads,

SEE = c1 (L0/L) + c0 +O
(

(L0/L)−1
)
, (1.4)

where L0 is some characteristic scale of the entangling curve. The linear term is

the “area law”, in this case a “length law”, since the entangling surface is a one-

dimensional closed curve, whereas the constant term is the universal one, which is

independent of the renormalization scheme. However, when the entangling curve has

non-smooth cusps, a logarithmic term emerges,

SEE = c1 (L0/L) + a ln (L0/L) + c0 +O
(

(L0/L)−1
)
. (1.5)

The coefficient a of the logarithmic term depends solely on the angular openings Ω of

the cusps of the entangling curve and it is universal.

An obstacle to the study of the Ryu-Takayanagi conjecture is the limited number of

analytically calculable open minimal surfaces in AdS geometries. The non-linearity of

the equations specifying an extremal surface limits the majority of the literature to the

study of minimal surfaces corresponding to spherical entangling surfaces. Recently,

non-trivial minimal surfaces have been explicitly constructed in AdS4 [20, 21]. These

constructions are based on the inversion of Pohlmeyer reduction for the specific class of

elliptic solutions of the reduced integrable system, namely the Euclidean cosh-Gordon

equation. The elliptic minimal surfaces in general correspond to entangling curves with
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some singular non-smooth points, thus, they are an appropriate tool for the study of

the contributions of such points to the entanglement entropy and its dependence on

the geometric properties of the singular points.

The structure of this paper is as follows. In section 2, we review some basic features

of the elliptic minimal surfaces in AdS4. In section 3, we calculate the holographic

entanglement entropy for elliptic minimal surfaces and identify the terms that emerge

due to the existence of the singular points. In section 4, we study the properties of

these terms and identify the geometric feature of the singular points that determines

their contribution to the entanglement entropy. In section 5, we discuss our results.

Finally, there is an appendix with the properties of the elliptic minimal surfaces that

are used throughout the main text.

2 Review of Elliptic Minimal Surfaces in AdS4

The elliptic minimal surfaces comprise a two-parameter family of minimal surfaces. A

convenient choice for these two parameters are the quantities E and ℘ (a1), as defined

in [20]. The first one determines the corresponding solution of the Pohlmeyer reduced

system. The second one corresponds to the choice of a surface among the members of

an associate (Bonnet) family of minimal surfaces, i.e. a family of surfaces that have

identical principal curvatures, and, thus, the same Pohlmeyer counterpart.

In global coordinates, the elliptic minimal surfaces accept the following parametric

form in terms of isothermal coordinates u and v

r = Λ

√
℘ (u)− ℘ (a1)

℘ (a2)− ℘ (a1)
cosh2 (`1v + ϕ1 (u))− 1, (2.1)

θ = tan−1

(√
℘ (u)− ℘ (a1)

℘ (u)− ℘ (a2)
csch (`1v + ϕ1 (u))

)
, (2.2)

ϕ = `2v − ϕ2 (u) . (2.3)

All quantities in the above equations, as well as the moduli of the Weierstrass elliptic

and related functions are expressed in terms of the parameters E and ℘ (a1). More

information is provided in the appendix and in [20].

The minimal surface intersects the AdS boundary when u → 2nω1, where n ∈ Z.

Therefore, an appropriately anchored to the boundary minimal surface is spanned by

u ∈ (2nω1, 2 (n+ 1)ω1) , v ∈ R, (2.4)

where n ∈ Z.
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The corresponding entangling curve, is the union of two spiral curves of the form

cot θ+ = sinh (ω (ϕ+ + ϕ0)) , (2.5)

cot θ− = sinh (ω (ϕ− + ϕ0 − δϕ)) , (2.6)

where ω and δϕ are functions of E and ℘ (a1) (See appendix A). In Poincaré coordi-

nates, the two curves above assume of the form of two logarithmic spirals.

The parameters ω and δϕ completely determine the form of the entangling curve.

The latter has a simple geometrical meaning. If one of the two curves comprising the

entangling curve is rotated about axis z by an angle δϕ then, it would coincide with

the other. Notice that δϕ may be larger that 2π, but then the minimal surface has

self-intersections; in the following, we will not consider such cases. The form of the

entangling curve and the corresponding boundary regions are depicted in figure 1.

Figure 1 – The entangling curve and the corresponding boundary regions in global

(left) and Poincaré (right) coordinates

The entangling curve separates the AdS boundary to two regions of unequal size.

The ratios of the area of each of these two regions to the total area of the boundary

are δϕ/2π and 1− δϕ/2π. In this sense, the parameter δϕ plays the same role as the

angle in the case of cusps. However, the two curves comprising the entangling curve

meet in a non-smooth way that does not look like a cusp of finite angle Ω, but to a

cusp of vanishing angle, i.e. a spike. This follows from the fact that the length of

a segment of the entangling curve between any given point and the singular point is

infinite. Actually, the angular opening at the singular point is not well defined, since

the direction of the two curves at the singular point is also not well defined. There

are two exceptions to this rule. The first one is the ω → 0 limit, where the elliptic

surfaces degenerate to catenoids for whom the entangling curve is disconnected but

smooth. The second one is the ω →∞ limit, where the elliptic surfaces degenerate to

simple cusps with Ω = δϕ. In the following, we will call the non-smooth points of the

general elliptic minimal surface as “spiral spikes”.
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3 “Spiral Spike” Contributions to EE

3.1 Terms Emerging from Non-smooth Points

As we have already commented in section 1, in AdS4, if an entangling curve contains

non-smooth cusps, the associated entanglement entropy will acquire a logarithmic

term that is absent when the entangling curve is smooth [16]. The coefficient of this

term depends solely on the angular openings of the non-smooth points; it does not

depend at all on the rest of the geometry of the entangling curve.

This logarithmic term must obey some properties that emerge from the geometry

of the entangling curve. A cusp of angular opening Ω is obviously identical to a cusp

of angular opening 2π − Ω. Thus, it is expected that the coefficient a (Ω) of the

logarithmic term has the symmetry property

a (Ω) = a (2π − Ω) . (3.1)

Furthermore, at the limit Ω → π, the cusp ceases to exist, the entangling curve

becomes smooth and so the logarithmic term vanishes,

a (π) = 0. (3.2)

The symmetry property (3.1) combined with the limit (3.2) implies that if the coeffi-

cient a is a smooth function of Ω, then

a (π + Ω) = O
(
Ω2
)
. (3.3)

Finally, it turns out that for small angles, the coefficient of the logarithmic term

diverges as [16]

lim
Ω→0

a (Ω) ' κ

Ω
. (3.4)

The existence of the pair of spiral spikes in the entangling curves of the elliptic

minimal surfaces is expected to generate non-trivial terms in the entanglement entropy

that do not appear in the case of smooth entangling curves. Such terms could include

a logarithmic term in a similar manner to the case of cusps. Additionally, bearing in

mind that in the case of cusps the coefficient of the logarithmic term diverges for small

cusp angular openings, it would not be surprising to discover a more divergent term

(e.g. L lnL), due to the spiky nature of the non-smooth points. Before proceeding

to calculating the entanglement entropy for the elliptic minimal surfaces, we will use

purely geometric arguments to deduce some basic properties of the coefficients a of

the terms under study, in analogy to the relations (3.1), (3.2) and (3.3).

Similarly to the case of cusps, entangling curves corresponding to δϕ and 2π − δϕ
are identical and thus the coefficient a of a term emerging due to the existence of a

spiral spike must obey,

a (δϕ) = a (2π − δϕ) , (3.5)
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Similarities to the case of cusps are limited to the above symmetry property. In

the case of elliptic minimal surfaces, the entangling curve does not have a smooth

limit as δϕ → π. At this limit, the elliptic minimal surfaces degenerate to a helicoid

which is also characterized by the existence of spiral spikes. Consequently, we should

not expect that a vanishes at this limit in general,

a (π) 6= 0. (3.6)

Whether the derivative of the coefficient a with respect to δϕ at δϕ = π is vanishing,

as in the case of cusps, is a more complicated question that we will face later.

Finally, there is no obvious reason to expect an expansion for small δϕ similar to

equation (3.4).

3.2 Holographic EE for Elliptic Minimal Surfaces

We may now proceed to derive the entanglement entropy for the elliptic minimal

surfaces and specify the terms related to the existence of the spiral spikes. The area

of the minimal surface is given by [20]

A = Λ2

∫
dvdu (℘ (u)− e2), (3.7)

where e2 is the intermediate root of the cubic polynomial associated with the Weier-

strass elliptic function and is given by equation (A.8). We introduce a radial cut-off

L. Then, the cut-off area is given by

A (L) = Λ2

∫
r<L

dudv (℘ (u)− e2). (3.8)

The radial coordinate r is given by equation (2.1) implying that for any given value

of the coordinate u, the inequality r < L is equivalent to

v− (u) < v < v+ (u) , (3.9)

where

v± (u) =
1

`1

[
−ϕ1 (u)± arccosh

√
℘ (a2)− ℘ (a1)

℘ (u)− ℘ (a1)

(
L2

Λ2
+ 1

)]
. (3.10)

Therefore, the cut-off area is given by

A (L) =
2Λ2

`1

∫ umax

umin

du (℘ (u)− e2) arccosh

√
℘ (a2)− ℘ (a1)

℘ (u)− ℘ (a1)

(
L2

Λ2
+ 1

)
, (3.11)
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where umin and umax are the values of u that set the range of v to zero, namely,

℘
(
umin /max

)
= ℘ (a2) + (℘ (a2)− ℘ (a1))

L2

Λ2
. (3.12)

As the Weierstrass elliptic function is periodic, the equation (3.12) does not uniquely

determine umin and umax. Assuming that the range of the coordinate u spanning

the whole minimal surface is (2nω1, 2 (n+ 1)ω1), the appropriate selection for the

quantities umin and umax is unique and their values would obey

umin ∈ (2nω1, (2n+ 1)ω1) , umax ∈ ((2n+ 1)ω1, (2n+ 2)ω1) , (3.13)

so that

umin + umax = 2 (2n+ 1)ω1. (3.14)

Since, the only function of u appearing in the expression (3.11) for the cutoff area

is the Weierstrass elliptic function ℘, one may shift u by an integer multiple of 2ω1, so

that both umin and umax lie within (0, 2ω1), and, thus, they obey umin + umax = 2ω1.

Furthermore, taking advantage of the fact that ℘ is even and periodic, we may express

equation (3.11) as

A (L) =
4Λ2

`1

∫ ω1

umin

du (℘ (u)− e2) arccosh

√
℘ (a2)− ℘ (a1)

℘ (u)− ℘ (a1)

(
L2

Λ2
+ 1

)
. (3.15)

By parts integration of the above expression yields

A (L) = −4Λ2

`1
(ζ (ω1) + e2ω1) arccosh

√
℘ (umin)− ℘ (a1)

℘ (ω1)− ℘ (a1)

− 2Λ2

`1

∫ ω1

umin

du (ζ (u) + e2u)

℘′(u)
℘(u)−℘(a1)√
℘(umin)−℘(u)
℘(umin)−℘(a1)

. (3.16)

In the above formula, we may consider as the parameter of expansion the quantity

℘ (umin) instead of L, which is of order L2. It is clear that only the first term of (3.16)

may provide a logarithmic term; the integral can only provide polynomial terms. The

expansion of the integral in powers of L cannot be directly carried out, as the latter

appears in both the integrand and the limits of integration. This problem can be

bypassed by performing the change of variable,

x =
℘ (umin)− ℘ (u)

℘ (umin)− ℘ (ω1)
. (3.17)
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Then, the cut-off area assumes the form

A (L) = −4Λ2

`1
(ζ (ω1) + e2ω1) arccosh

√
℘ (umin)− ℘ (a1)

℘ (ω1)− ℘ (a1)

+
2Λ2

`1

∫ 1

0
dx
{
ζ
(
℘−1 ((1− x)℘ (umin) + x℘ (ω1))

)
+e2℘

−1 ((1− x)℘ (umin) + x℘ (ω1))
} ℘(umin)−℘(ω1)

(1−x)℘(umin)+x℘(ω1)−℘(a1)√
x℘(umin)−℘(ω1)
℘(umin)−℘(a1)

. (3.18)

It is a matter of algebra to show that

A (L) =
2Λ2

`1

√
℘ (umin)

∫ 1

0

dx√
x (1− x)

− 4Λ2

`1
(ζ (ω1) + e2ω1) ln

2
√
℘ (umin)√

℘ (ω1)− ℘ (a1)
+O

(
1√

℘ (umin)

)
(3.19)

or in terms of the radial cutoff L,

A (L) = 2πΛ

√
ω2 + 1

ω2
L

− 4Λ2

√
1− ω2

3e2ω2
(ζ (ω1) + e2ω1) ln

2L

Λ

√
ω2 + 1

ω2 + (1− ω2) e2−e3
3e2

+O
(
L−1

)
. (3.20)

The first term is the usual “area law” term [10, 11]. The second term is the

universal logarithmic term emerging from the “spiral spikes” of the entangling surface.

Despite the spiky nature of the singular points, it turns out that no terms more

divergent than the logarithmic one are present. The coefficient of the logarithmic

term is

a = −4Λ2

√
1− ω2

3e2ω2
(ζ (ω1) + e2ω1) . (3.21)

In the cusp limit (ω →∞), the entanglement entropy equals

A (L) = 2πΛL+ 4Λ2

√
− 1

3e2
(ζ (ω1) + e2ω1) ln

L

2Λ

√
3e2

2e2 + e3
+O

(
L−1

)
, (3.22)

implying that the logarithmic term coefficient equals

a = 4Λ2

√
− 1

3e2
(ζ (ω1) + e2ω1) . (3.23)
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4 Properties of the Logarithmic Term

4.1 Small δϕ Limit

It is not difficult to acquire an asymptotic expression for the coefficient of the log-

arithmic term (3.21) in the limit of small values of the parameter δϕ, in order to

compare with equation (3.4). The angle δϕ gets arbitrarily small at the limit E → 0.

At this limit, both a1 and a2 approach ω3, which is the sum of the real and purely

imaginary half-periods of the associated Weierstrass elliptic function. The properties

of the elliptic minimal surfaces (A.12), (A.13) and (A.17) imply that

℘ (a1) = e2 −
1

1− ω2

E

2
, ℘ (a2) = e2 +

ω2

1− ω2

E

2
. (4.1)

Expanding the Weierstrass elliptic function around ω3 yields

℘ (ω3 + x) = e2 −
1

4Λ4
x2 +O

(
x3
)
, (4.2)

which in turn implies that

a1 = ω3 − 2Λ2

√
1

1− ω2

E

2
+O

(
E3/2

)
, (4.3)

a2 = ω3 − 2iΛ2

√
ω2

1− ω2

E

2
+O

(
E3/2

)
. (4.4)

Substituting the above in the formula for the parameter δϕ (A.18), we get

δϕ = 4Λ2ζ
(
ω1; Λ−4, 0

)√ 1

1− ω2

E

2

(
ω +

1

ω

)
+O

(
E3/2

)
. (4.5)

Similarly, expanding the formula providing the coefficient of the logarithmic term

(3.21) yields

a = −4Λ2ζ
(
ω1; Λ−4, 0

)√1− ω2

ω2

2

E
+O

(
E1/2

)
. (4.6)

The latter means that at the limit δϕ→ 0,

a ' κ

δϕ
, (4.7)

where

κ = −16Λ4ζ2
(
ω1; Λ−4, 0

)(
1 +

1

ω2

)
= −16Λ2ζ2 (ω1; 1, 0)

(
1 +

1

ω2

)
. (4.8)

At the limit of the cusps (ω →∞), the parameter κ assumes the value

κ = −16Λ2ζ2 (ω1; 1, 0) . (4.9)

In figure 2, the dependence of the coefficient a on the parameter δϕ is shown and

compared to the asymptotic form for small values of δϕ (4.7).
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a
0

π 2π
δϕ

a (δϕ)

κ/δϕ

Figure 2 – The coefficient of the logarithmic term and its asymptotic behaviour

for small values of δϕ

4.2 The Definition of the Angle

The expansion of the holographic entanglement entropy in the cut-off energy scale in

the case of elliptic minimal surfaces contains the same terms as in the case of a cusp:

a leading “area law“ term, a constant term and a universal logarithmic term due to

the non-smooth points. Should we expect such an expansion in the case of elliptic

minimal surfaces? Naively assuming that our case corresponds to a cusp of vanishing

angular opening, we should not; we know that the logarithmic term for cusps diverges

as 1/Ω for small angles, and, thus, we should expect divergences of a higher order

like L lnL in the case of elliptic minimal surfaces. On the contrary, we have shown

that such a more divergent term does not appear and furthermore the logarithmic

term diverges as κ/δϕ for small δϕ similarly to the case of cusps for small angular

openings, with the role of the angle Ω being played by the parameter δϕ. This implies

that the geometrical feature affecting the logarithmic term is not exactly the angle;

The appropriate geometrical feature should be carefully defined so that its definition

is equivalent to the definition of the angle in the case of cusps, but it differs in the

case of spiral spikes, coinciding with the value of the parameter δϕ.

The common definition of the angular opening requires the use of a circle centred

at the singular point. Then, the naive definition of the angle is the ratio of the

corresponding arc length divided by the radius of the circle in the limit the radius of

the circle goes to zero

Ω := lim
r0→0

`arc

r0
. (4.10)
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However, one could have defined the angle based on the area of the corresponding

sector as,

Ω̃ := 2π lim
r0→0

Asector

πr2
0

. (4.11)

r0

`arc

Asector

Figure 3 – The two possible definitions of the angle Ω

Of course in most cases the two definitions (4.10) and (4.11) give identical results.

However, this is not the case for elliptic minimal surfaces and their spiral spikes. This

strange behaviour is permitted by the self-similarity of the entangling curve and by

the fact that the length of the segment of the entangling curve from the singular spiky

point to any other point is infinite. In figure 4, three cases of singular points are

depicted: a cusp (top left), a spike (top right) and a spiral spike of the entangling

curves under consideration (bottom).

Trivially, in the case of a cusp,

2π lim
r0→0

Asector

πr2
0

= Ω = lim
r0→0

`arc

r0
. (4.12)

In the limit that the cusp angular opening goes to zero and the cusp degenerates to a

spike, we get

2π lim
r0→0

Asector

πr2
0

= 0 = lim
r0→0

`arc

r0
. (4.13)

However, in the singular points of the elliptic entangling curves, although the angular

opening is not well-defined,

2π lim
r0→0

Asector

πr2
0

= δϕ 6= lim
r0→0

`arc

r0
, (4.14)

and, thus, the two definitions do not lead to identical results.
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cusp spike

spiral spike

Figure 4 – The area definition of the angle in the case of a cusp, a spike and

the case of a spiral spike that appears in the entangling curve of elliptic minimal

surfaces

As we discussed in the beginning of this section, the appropriate definition for the

geometric feature that determines the coefficients of the universal terms arising from

the existence of singular non-smooth points of the entangling curve, should coincide

with the angle in the case of cusps and with the parameter δϕ in the case of spiral

spikes. It follows that the appropriate definition is not the arc length definition (4.10),

but the area definition (4.11).

The definition (4.11) is also more natural as seen from the perspective of the physics

of entanglement. Entanglement entropy directly depends on the way the entangling

curve separates the degrees of freedom. The number of the latter is proportional to the

area of the sector and not the length of the arc. In this language, a smooth entangling

curve has the special property of dividing the degrees of freedom in the neighbourhood

of any of its points to two equal subsets.

13



4.3 Smoothness of the Logarithmic Term Coefficient

In the case of cusps, the demand that the coefficient of the logarithmic term a is

a smooth function of the angular opening Ω, combined with the symmetry property

(3.1) implies that the Taylor expansion of a around Ω = π contains no first order term.

Actually, the zeroth order term also vanishes, since at Ω = π the entangling curve is

smooth and no logarithmic term occurs. In the case of elliptic minimal surfaces, the

latter is obviously not true, but should we expect that the former still holds at δϕ = π?

There is one more demand that should have been posted to ensure that Ω = π

is a smooth extremum of the coefficient of the logarithmic term: the demand that

there is a unique minimal surface for the given entangling curve. When this is not

the case, the dependence of a on δϕ is not one-to-one. Although we would expect

that plotting a as function of δϕ would be again a smooth curve, the latter will have

self-intersections. Therefore, the segment of the above curve that corresponds to the

globally stable minimal surfaces, is not guaranteed to be smooth, but it may present

singular points, being self-intersections of the smooth curve.

The demand of the existence of a unique minimal surface is satisfied in the case of

cusps. However, it is not always true for more general elliptic minimal surfaces. As

shown in [20], there is a critical value of the parameter ω, equal to ωcr ' 0.458787, so

that for ω < ωcr, there are in general more than one minimal surfaces for the same

entangling curve. Indeed, as shown in figure 5, if only globally stable configurations

are considered, when ω < ωcr the coefficient of the logarithmic term has an extremum

at δϕ = π, but not a smooth one. The smooth extremum in such cases corresponds

to the helicoid limit of the minimal surfaces, which is globally [20] and locally [22]

unstable for these values of ω.

a
0

π 2π
δϕ

ω →∞

ω = 2

ω = 1/2

ω = 3/10

ω = 1/2

locally unstable

globally unstable

globally stable

Figure 5 – The coefficient of the logarithmic term, as function of the parameter

δϕ, for various values of ω
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5 Discussion

The elliptic minimal surfaces in AdS4 correspond to entangling curves that contain

singular non-smooth points that generalize cusps. For these surfaces, the holographic

entanglement entropy contains a logarithmic term that depends solely on the geometry

of the singular points, in a similar manner to the corresponding terms in the case of

cusps. This logarithmic term shares some of the properties of the corresponding terms

in the case of cusps, but not all of them.

The entangling curves corresponding to elliptic minimal surfaces contain two sin-

gular non-smooth points. Although an angle cannot be well defined in these points, it

is clear that the entangling curve divides the degrees of freedom in its neighbourhood

to two unequal subsets, similarly to the case of a cusps. The number of the degrees

of freedom in each of the two subsets is determined by the elliptic minimal surface

parameter δϕ, in the same way it is determined by the angle Ω in the case of cusps.

The similarity of the divergence of the coefficient of the logarithmic term for small

parameters δϕ to the divergence of the logarithmic term for small angles Ω in the case

of cusps, suggests that the logarithmic term indeed depends only on the geometry

of the singular non-smooth point. However, the geometric feature determining these

logarithmic terms should not be defined as the angular opening, the ratio of the arc

length to the radius, but rather as the ratio of the area sector to the circle area.

This is a more natural definition when considering the physics of entanglement and

entanglement entropy, as it is directly connected to the separation of the degrees

of freedom by the entangling curve. It is more natural to say that the geometric

characteristic determining the universal terms due to singular points is not really an

angle, ranging between 0 and 2π, but rather a ratio describing the separation of the

degrees of freedom at the neighbourhood of the singular point,

λ := lim
r0→0

Asector within region A

πr2
0

, (5.1)

ranging between 0 and 1.

A smooth entangling surface is characterized by λ = 1/2 at all points. In this

context, it would be interesting to investigate whether the dependence of entangle-

ment entropy on geometric characteristics of a smooth entangling surface, such as

the curvature [15], can be described in a similar, unifying manner, considering these

characteristics as those determining the way that λ tends to 1/2 at the limit r0 → 0.

Finally, the logarithmic term does not inherit the property of vanishing at δϕ = π

from the cusps case. More interestingly, it does not inherit the property of being

stationary or even smooth at δϕ = π. This is a direct consequence of the fact that

the minimal surface is not always uniquely defined by the entangling curve, but more

than one minimal surfaces corresponding to the same entangling curve may exist.
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A Formulae on Elliptic Minimal Surfaces

In this appendix we review some features of the elliptic minimal surfaces used in

the calculations throughout the main text. More details on the construction of the

static elliptic minimal surfaces, their properties and their relation with the Pohlmeyer

reduced integrable system are provided in [20].

In global coordinates, where the bulk metric assumes the form

ds2 = −
(

1 +
r2

Λ2

)
dt2 +

(
1 +

r2

Λ2

)−1

dr2 + r2
(
dθ2 + sin2θdϕ2

)
, (A.1)

the elliptic minimal surfaces can be written in the following parametric form in terms

of the isothermal coordinates u and v,

r = Λ

√
℘ (u)− ℘ (a1)

℘ (a2)− ℘ (a1)
cosh2 (`1v + ϕ1 (u))− 1, (A.2)

θ = tan−1

(√
℘ (u)− ℘ (a1)

℘ (u)− ℘ (a2)
csch (`1v + ϕ1 (u))

)
, (A.3)

ϕ = `2v − ϕ2 (u) . (A.4)

These surfaces are a two-parameter familly of minimal surfaces. They are naturally

parametrized in terms of the quantity E, which specifies the corresponding solution

of the Pohlmeyer reduced problem, and ℘ (a1).

The moduli of the Weierstrass elliptic and related functions appearing in the above

expressions are equal to

g2 =
E2

3
+

1

Λ4
, (A.5)

g3 = −E
3

(
E2

9
+

1

2Λ4

)
. (A.6)

16



The above values of the moduli imply that the associated cubic polynomial has three

real roots independently of the value of the constant E. These roots equal

e1 = −E
12

+
1

4

√
E2 +

4

Λ4
, (A.7)

e2 =
E

6
, (A.8)

e3 = −E
12
− 1

4

√
E2 +

4

Λ4
. (A.9)

The functions ϕ1 and ϕ2 appearing in the equations (A.2), (A.3) and (A.4) are given

by

ϕ1 (u) =
1

2
ln

(
−σ (u+ a1)

σ (u− a1)

)
− ζ (a1)u, (A.10)

ϕ2 (u) = − i
2

ln

(
−σ (u+ a2)

σ (u− a2)

)
+ iζ (a2)u, (A.11)

where ζ and σ are the Weierstrass zeta and sigma functions respectively. Finally, the

parameters `1 and `2 appearing in the equations (A.2), (A.3) and (A.4) equal

`21 = −℘ (a1)− 2e2, (A.12)

`22 = ℘ (a2) + 2e2, (A.13)

where the parameters a1 and a2 must be chosen so that they satisfy

℘ (a1) + ℘ (a2) = −e2. (A.14)

The entangling curve corresponding to the minimal surface described by the equa-

tions (A.2), (A.3) and (A.4) is completely determined by the parameters ω and δϕ,

which are functions of E and ℘ (a1). The entangling curve can be specified analytically

taking the limits u→ 2nω1 and u→ 2 (n+ 1)ω1. It turns out that it is the union of

two spiral curves of the form

cot θ+ = sinh (ω (ϕ+ + ϕ0)) , (A.15)

cot θ− = sinh (ω (ϕ− + ϕ0 − δϕ)) . (A.16)

The parameters ω and δϕ are equal to

ω =
`1
`2
, (A.17)

δϕ = π − 2

(
Imδ2 +

`2
`1

Reδ1

)
, (A.18)

where δ1 and δ2 are given by

δ1 ≡ ζ (ω1) a1 − ζ (a1)ω1, (A.19)

δ2 ≡ ζ (ω1) a2 − ζ (a2)ω1. (A.20)

.
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