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Abstract: Human activities like urbanization and agriculture affect spatial biodiversity patterns. The 
presence and activities of humans richly benefit alien species, but native species usually decline in 
human-impacted areas. Considering that the richness of alien and native species are inter-related, 
we explored the effect of human population density, human-related land uses (agricultural and 
urban), and natural land area on avian (alien and native) species richness of Massachusetts for two 
time periods using Generalized Additive Models. Avian alien species richness increased with native 
species richness in both time periods. Despite the predominant role of native species richness as a 
major driver of alien species richness, human activities play an important additional role in shaping 
species richness patterns of established aliens. Human-related land uses (urban and agricultural) 
and human population favored alien species richness in both time periods. Counter to expectations, 
human activities were also positively associated to native avian species richness. Possible 
explanations of these patterns may include habitat heterogeneity, increased availability of resources, 
and reduced predation risk.  
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1. Introduction 

The human-mediated dispersal of species outside their native range, either deliberately or 
accidentally, has long been part of human history [1]. Global trade and extensive transport networks 
have increased and are expected to continue to increase the rate of alien species introductions [2–6]. 
For instance, 900 introductions of bird species have been reported since 2000 [7]. Alien species may 
pose a major threat to native species richness [8] and ecosystem functioning [9], with collectively 
significant global socioeconomic impact [10]. Therefore, understanding patterns and drivers of 
species distribution, as well as of alien diversity emerges as a critical issue for biodiversity 
conservation [11].  

The facilitative role of human population density, human-induced disturbance, and land-use 
changes on driving establishment and species richness patterns of alien species has been highlighted 
for different taxonomic groups [12–16]. Humans are not only responsible for the transport of the alien 
species to new areas (first stage of invasion process), but human activity is also a major driver of the 
establishment and spread of alien species. Urban landscapes promote alien species richness [15,17–
20]. The latter responds along an urbanization gradient (i.e., from downtown to rural residential 
areas) and exhibits a pattern of increasing species richness from most to least urbanized areas [21], 
from the edges to the interiors of urban parks [22], and/or from exurban developments to cattle ranges 
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and nature reserves [20]. Human-altered landscapes provide “niche opportunities”, increased 
resources, decreased competition, and ideal environmental conditions to alien species [23–25]. Some 
native species may not be able to exploit ecological opportunities [26] due to a lack of suitable traits 
to cope with the new environmental conditions of these converted landscapes [27]. For example, 
human-impacted habitats often harbor alien species because their unique functional traits enable 
them to adapt to disturbed habitats [28]. On the other hand, land-use changes may provoke the 
decline of native species richness [29].  

Alien species establishment and inter-relation with native species change the community 
structure, and result in an increase [30] or decrease of total species richness over time [31,32]. The 
relationship between alien and native species richness is scale-dependent [33,34]. The niche 
competition between native and alien species may result in a negative relationship, especially on 
small spatial scales [34–36], while both alien and native species may benefit from higher resource 
availability, especially on larger scales, often resulting in a positive relationship [37,38]. Therefore, to 
better understand the effect of human impact on alien species richness, we must consider the 
relationship between alien and native species richness.  

In the present study, we explored the effect of human population density, human-related land 
use (agricultural and urban), and natural land uses on avian species richness patterns with an 
emphasis on the established aliens, using data on breeding birds from Massachusetts for two time 
periods. Specifically, we address the following questions: (a) Is the relationship between alien and 
native species richness positive or negative? (b) Do established alien birds benefit from human-
dominated land uses, given that human population density and human-altered landscapes are 
considered to promote alien species richness? (c) Does the effect of human population density and 
different land uses change over time?  

2. Materials and Methods  

2.1. Avian Data 

Distribution maps of the breeding birds were obtained by the first and second atlas of 
Massachusetts [39,40], with surveys taking place in 1968–1972 (MS-1968) and 2007–2011 (MS-2007), 
respectively. In the atlases, the Massachusetts state was divided into blocks (1/6th of a 7.5 min of the 
United States Geological Service quadrangle map) of approximately 25 km2 size. For our analyses, 
we used only blocks (hereafter called grid cells) that were surveyed in both time periods. Each cell 
was surveyed for at least 20 hours by volunteers of the Massachusetts Audubon Society. The datasets 
comprised of the presence–absence data of bird species that showed confirmed breeding. For some 
species, the mating season was year-round, but most of the surveys took place from April to 
September. The nomenclature of bird species follows the American Ornithological Society (AOS) 
Birds of North and Middle America Checklist [41]. Alien bird species were identified following the 
Global Avian Invasions Atlas (GAVIA), a database of global alien bird distributions [42].  

2.2. Land-Use and Human-Population Data 

Land-use data were obtained by the US Geological Land-Use Survey [43] for 1970s–1980s, and 
by the 2006 version of the National Land Cover Database (NLCD) [44] for the second time period. 
Both land-use databases were for the United States and measured 30 m resolution. The land-use data 
layers were combined with Atlas grid cells, and we estimated the area of different land uses per grid 
cell. Then, we calculated the total area per grid cell of three land-use categories: urban, agricultural, 
and natural land uses. The grouping of different land uses into the three formulated categories is 
presented in Table S1. Furthermore, human population density per grid cell was estimated using 
1980 and 2005 data from HYDE Gridded Population version 3.1 [45,46]. 

2.3. Statistical Analysis 

We estimated the species richness of native and alien birds per grid cell for the two time periods. 
To explore if species richness was significantly different between the two periods, we implemented 
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permutational ANOVA separately for alien and native species with the aovp function of the lmPerm 
package [47]. Then, we formulated Generalized Additive Models (GAMs) [48] with the gam function 
of the mgcv R package [49], predicting the alien species richness of the different time periods as a 
function of the area of different land uses (natural, agricultural, and urban) and human population 
density. Given that native species richness is considered a strong driver of alien species richness, 
native species richness was included in the GAMs as predictor. Furthermore, we explored the 
relationship between native species richness, and the area of land uses and human population density 
using GAMs. In all formulated GAMs, the predictors entered the model as smooth predictor variables 
with thin-plate regression splines (3 knots per spline in order to capture unimodal relationships; 
Poisson error distribution and log-link function), and the grid cells’ co-ordinates were also used as 
smooth predictors to account for spatial autocorrelation. Finally, we repeated the analysis removing 
the spatial autocorrelation effect to detect the contribution of predictors to the observed patterns.  

3. Results 

A total of 175 native and 25 alien species were found in the first time period, and 181 native and 
24 alien species in the second time period in the state of Massachusetts (Figure 1a,b). Mean native 
species richness per grid cell was 39.22 ± 16.74 species in the first time period, and increased 
significantly over time to 47.92 ± 13.25 species in the second time period (Figure 2a, p < 0.001). 
Similarly, mean alien species richness increased significantly, from 8.27 ± 4.16 to 11.31 ± 3.15 species 
(Figure 2b, p < 0.001). Regarding land uses, agricultural and natural areas shrank. We observed a 
decrease in approximately 60% of the grid cells, while urban areas increased in approximately 80% 
of the grid cells (Supplementary Material, Figure S1).  

 
Figure 1. Distribution of (a) native species richness, (b) alien species richness, and (c) human 
population density in each grid cell (grid cell size approximately 25 km2) in the state of Massachusetts 
for the first time period MS-1968 (left column) and the second time period MS-2007 (right column). 
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Figure 2. Boxplots of (a) native and (b) alien species richness in the first (MS-1968) and the second 
(MS-2007) time period of breeding birds of Massachusetts per grid cell (grid cell size approximately 
25 km2). Diamonds and lines depict mean and median values, respectively. 

The richness of the MS-1968 alien species increased significantly with native species richness, 
agricultural area, and urban area, while natural area and human population did not exert a significant 
effect (Figure 3; Supplementary Material, Table S2). The GAM explained 66.20% of the deviance of 
alien species richness. By removing the spatial autocorrelation effect, i.e., longitude and latitude as 
predictors of alien species richness, the explained deviance was approximately 52% (Supplementary 
Material, Table S3). In the second time period, the significant positive relationship between alien and 
native species richness remained. Furthermore, MS-2007 alien species richness increased with human 
population and exhibited a unimodal relationship with area of natural land uses, while the remaining 
examined predictors did not show a significant effect (Figure 3; Supplementary Material, Table S2). 
The explained deviance of the GAM was equal to 58.10% after accounting for spatial autocorrelation. 
Removing the spatial autocorrelation effect, the explained deviance was approximately 56% 
(Supplementary Material, Table S3).  

 
Figure 3. Effect plots showing results of Generalized Additive Models using as response variable the 
alien species richness of breeding birds of Massachusetts, and as predictors, native species richness 
(a), area of different land uses (natural, agricultural, urban; b–d), and human population (e) for the 
first (MS-1968, green lines) and the second time period (MS-2007, red lines), after accounting for 
spatial autocorrelation. All predictors entered model as smooth functions; thus, y-axis presents mean-
centered alien species richness summing up to zero. Significant relationships depicted with solid 
lines; dashed lines denote non-significant relationships. 



Diversity 2020, 12, 72 5 of 10 

 

MS-1968 native species richness increased significantly with the area of the different land uses, 
while it decreased with human population density (Figure 4; Supplementary Material, Table S4). The 
GAM explained 35.50% of deviance after accounting for spatial autocorrelation (explained deviance 
was approximately 7% after removing spatial autocorrelation effects; Supplementary Material, Table 
S5). MS-2007 native species richness decreased with human population density, and followed a 
unimodal relationship with the area of natural land uses [46.50% explained deviance after accounting 
for spatial autocorrelation (Supplementary Material, Table S4), and 13.30% after removing the spatial 
effect (Supplementary Material, Table S5)]. 

 

Figure 4. Effect plots showing results of Generalized Additive Models using as response variable the 
native species richness of breeding birds of Massachusetts, and as predictors area of different land 
uses (natural, agricultural, urban; a–c) and human population (d) for the first (MS-1968, green lines) 
and the second time period (MS-2007, red lines) after accounting for spatial autocorrelation. All 
predictors entered model as smooth functions; thus, y-axis presents mean-centered native species 
richness summing up to zero. Significant relationships depicted with solid lines; dashed lines denote 
non-significant relationships. 

4. Discussion 

What are the impacts of human-dominated land uses of urbanization and agriculture on avian 
richness? The short answer might be that they increase avian abundance, while decreasing avian 
species richness and simultaneously favoring the introduction and establishment of alien/exotic 
species [50,51]. Our results only partially support this answer. Human-related variables (agriculture, 
urbanization, and human-population density) were indeed positively associated with alien  
breeding bird species richness in the State of Massachusetts across both examined time periods (1968–
1972 and 2007–2011), but explained only a small proportion of the variance of alien breeding species 
richness. Native species richness emerged as the strongest predictor of alien species richness in 
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accordance with predictions of the biotic acceptance hypothesis, as previously reported for a similar 
scale of analysis [33,52]. Although the same human-related variables were positively associated with 
native bird species richness, human-related variables perhaps favored more alien than native species, 
as their contribution in driving alien species richness spatial patterns was positive and additive to 
that of native species richness. 

The positive relationship between alien and native species richness, as well as the effect of 
human-related variables on them, can be explained by different mechanisms. Food availability, 
especially lack of it during the adverse season of the year, is a major factor regulating avian 
abundance and diversity [23,53,54]. Cities might offer plentiful food resources to birds by importing 
vast amounts of energy and materials, such as natural vegetation patches, human-generated garbage, 
and bird feeders [23,55,56]. For example, millions of households sustain bird feeders in their gardens, 
providing huge quantities of supplementary food to birds in North America [57,58]. Therefore, by 
providing food to birds throughout the year, urban areas attract birds, given that birds possess traits 
to adapt to human-disturbed habitats; this is particularly manifested in alien species, but also true for 
many common native species [59,60]. Furthermore, birds are strongly associated with vegetation 
structure and composition, and increased habitat heterogeneity might allow both the regional and 
local coexistence of native and alien birds [29,61]. Human-dominated landscapes, apart from areas 
unsuitable for birds, also include a wide array of different vegetation types (e.g., hedgerows, gardens, 
parks, and fields) [62,63]. Moreover, the greater availability of exotic plants in urban and agricultural 
areas may offer an opportunity for alien bird species that native species may not exploit, thus 
explaining the additional benefit for established alien species in these areas [64]. On the other hand, 
natural habitats might be more suitable and preferable to birds, but an extensive contiguous area of 
a natural type of vegetation (e.g., forest) can support only one functional guild of birds [65,66]. 
Finally, in urban areas, predation rates on birds are significantly lower than those in rural areas [67] 
due to the lower abundance of bird predators (with the exception of cats, which are generalist 
predators [68]), and evidence supports birds with lower parasite infestation than those in natural 
areas [69–71], thus resulting in higher species richness. This may be more evident in alien species for 
which their successful establishment might be explained by the absence of enemies (e.g., predators, 
parasites, pathogens) in the new range, i.e., the enemy release hypothesis [72,73].  

Human population density played a different role for the two species groups. Native bird 
species richness was negatively associated with human population density, while alien diversity was 
positively associated. The positive association of native diversity with urbanization, but negative 
with population density, may reflect the “luxury effect” [74,75]. Within a city, areas of low population 
density (often coinciding with areas occupied by higher-income residents) denote areas with more 
vegetation (either in private gardens or in public parks), with lower traffic congestion, and, 
consequently, lower levels of noise and air pollution. The higher availability of nesting resources 
(vegetation) and lower disturbance levels might foster native species richness. Contrarily, alien 
species are more adapted to human presence and less susceptible to human disturbance [76], perhaps 
face reduced competition with native species in densely populated areas, and thus appear positively 
associated with human population density [16,77].  

Our initial expectation that human-related variables would be associated with lower native 
species richness was not confirmed. It is possible that the increased species richness may be due to 
the predominance of common widespread species, and masks the loss of phylogenetically or 
functionally unique species. Another possible explanation could be that native species surviving in 
relatively high latitudes in this temperate region of the continental USA is characterized by relatively 
wide environmental tolerances, thus persisting even in human-dominated areas. A third possible 
explanation might be that the scale of our analysis, i.e., the grid cell size of approximately 25 km2 
masks the relationship between native species richness and human-related variables. It is possible 
that native species richness may not change if the blocks remain relatively the same, even if assuming 
land-use changes within the block, e.g., agricultural to urban areas, meadows to forests, and forests 
to urban areas. 
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In conclusion, we found that human-related land uses promote alien species richness more than 
native species richness, as human activity perhaps modifies the landscape and habitats, and creates 
favorable conditions facilitating alien species. However, in terms of species richness, both alien and 
native species showed positive associations to human land uses, and contrasting results to human 
population, implying there are a few similarities in drivers that shape the species richness patterns 
of native and established alien species.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1: Distribution 
of the coverage of different land uses (natural, agricultural, and urban areas) and the human population of 
Massachusetts for two time periods, Table S1: Grouping of different land uses of Massachusetts of two time 
periods into three broad categories: natural, agricultural, and urban, Tables S2 and S3: Results of Generalized 
Additive Models predicting alien species richness of breeding birds of Massachusetts as function of native 
species richness, area of different land uses, and human population with and without accounting for spatial 
autocorrelation, Tables S4 and S5: Results of Generalized Additive Models predicting native species richness of 
breeding birds of Massachusetts as function of different land uses and human population with and without 
accounting for spatial autocorrelation. 
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