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Abstract—Data related to biology are characterized by large
volume and requirements for enormous computational power.
Biological sequences, either of proteins or DNA/RNA segments,
can be large and usually need massive computations in order
to discover relations and study particular properties. Aligning
sequences is of great importance for various practical reasons.
Multiple sequence alignment studies the problem of aligning
several strings resulting in a complete alignment, a problem
for which several different approaches exist. In this work, a
novel heuristic method to progressively solve this problem is
proposed using elements of quantum-inspired optimization. The
proposed algorithm is described in detail and evaluated through
simulations against other aligning methods. The experimental
results seem promising for providing a good initial alignment,
especially for the case of large sets of sequences.

Index Terms—multiple sequence alignment, optimization,
quantum-inspired, TSP, bio-inspired, bio-computing, bioinfor-
matics

I. INTRODUCTION

The successful alignment of biological sequences is of great

importance, especially in the era of Big Data and the rise of

machine learning, where tremendous computation capabilities

are available for demanding tasks. In particular, the multiple

sequence alignment or MSA, in short, considers the problem of

aligning a set of sequences containing proteins or nucleotides

[1], [2], [3]. Unlike the simple pairwise alignment, MSA tries

to tackle the problem of aligning more than two sequences at

the same time. In general, a sequence alignment attempts to

solve the problem of arranging sequences of DNA, RNA, or

proteins in order to study properties and relationships among

themselves.

Such alignments are quite useful in many fields due to the

fact that a successful alignment can reveal interesting proper-

ties about the underlying set of sequences. In particular, having

such an alignment, specific areas of variability or conservation

of distinct proteins can be observed and further analyzed.

Moreover, structural and functional properties regarding the

set of proteins or nucleotides arise, which make easier for one

to determine the relationship among the sequences, offering

better and more faithful phylogenetic trees [1]. Interestingly

enough, literature has identified other uses of sequence align-

ment methods besides their biological one. For example, they

are widely used in information-related fields, i.e., for comput-

ing the edit distance between strings. Such approaches are then

used in fields like natural language processing, information

retrieval, finances, comparative linguistics, etc. [4], [5].

Since the sets of sequences are usually large and multitudi-

nous, combined with the fact that the MSA problem has been

proven to be NP-complete with SP-score [6], [7] and NP-

hard for most metrics [8], make the problem intractable for a

human approach. Therefore, efficient and smart algorithms are

needed in order to provide good alignments within acceptable

time frames [9], at least for an initial version of the aligned

sequence set.

These algorithms fall into two major categories, depend-

ing on the fraction of the sequences they try to align (the

entire length, or just particular regions), which are global

and local alignments. In this work, the main objective is

global alignment. Usually, dynamic programming approaches

are examined in order to find best alignments, but since the

problem’s hardness forbids the scalability of such methods,

heuristic and/or probabilistic methods have been designed

for larger instances of the problem (for smaller ones exact

solutions can be efficiently implemented).

MSA solutions can be categorized into 4 categories: pro-

gressive methods, iterative methods, motif-based methods,

and hybrid methods [10]. In the first class of algorithms

(in which the proposed algorithm belongs), the most similar

sequences are aligned first and then the rest of them are

aligned in a decreasing order according to the similarity

level [11]. This sort of alignment can be driven by a tree-

based structure that resembles the sequences’ relatedness. The

iterative algorithms try to repeatedly improve the accuracy

of the initial alignments, the algorithms based on motif take

advantage of aligning short parts of the sequences searching

for indicative patterns, whereas hybrid approaches combine978-1-7281-4959-2/19/$31.00 c©2019 IEEE



the aforementioned ones, often by combining them with other

computer science approaches like genetic algorithms, Markov

processes, etc.

It is important to mention that alignments are scored using

well-known scoring functions, like the sum-of-pairs metric,

the weighted sum-of-pairs, etc. There are also interesting ap-

proaches regarding the implementation of simulated annealing

[12], [13], quantum annealing techniques [14] (like the use

of the D-WAVE systems that have already been used for

the MSA problem [15]) or quantum genetic algorithms [16].

In general, quantum and quantum-inspired techniques try to

take advantage of the superiority of quantum computing (for

particular tasks), especially for optimization problems, both on

actual quantum computing architectures, as well as simulated

environments within classical platforms.

Contribution. The present work proposes a novel algorithm

that tries to solve the multiple sequence alignment problem.

The basic idea is to use a traveling salesman tour (calculated

using a quantum-inspired heuristic) to determine the order in

which the sequences are progressively aligned. Similarly to

other approaches, we take advantage of an alternative com-

putational scheme, a quantum-inspired perturbation function.

The main contribution lies in the proposal of an approach for

the problem of multiple sequence alignment (MSA) based

on a quantum-inspired VNS-based heuristic. The described

progressive methodology starts with the calculation of the

pairwise distances of all the sequences resulting in a distance

matrix that acts as the input of the heuristic-based algorithm.

Then, a simple guide tree is constructed according to the

solution of the heuristic and then the procedure of MSA

based on that tree takes place. The proposed solution is

benchmarked on actual datasets derived from [17]. Simulation

results show that the proposed solution is capable of aligning

larger sequences (around 20-600 sequences of length 90-2100

each) with better sum-of-pairs score. It is, thus, believed that

the present algorithm can quickly and efficiently provide an

initial solution with good score.

The paper is structured as follows: after the introduction

in Section I, Section II contains the discussion of the relevant

literature. Next, Section III contains the necessary notation and

definitions needed for the main part of the proposed algorithm,

which is described in Section IV and its analysis is given in

Section V. Simulation results that reveal an enhancement for

larger sets of sequences are presented in Section VI, whereas

Section VII contains the conclusion and some suggestions for

future work.

II. RELATED WORKS

The MSA problem has attracted a plethora of solutions that

fall into different categories depending on the functionality of

the algorithm, the number of iterations, etc. In this section,

emphasis is given on works similar to our approach, whereas

for others, not so closely-related works only a reference is

given. A thorough work about the MSA problem, along with

algorithms and related issues can be found in [2]. Sequence

alignments (both the pairwise and multiple) are useful in

various subfields of bioinformatics [1], [3], as well as in

other fields (e.g., [4], [5]). The most well-known algorithm for

solving the global alignment of two sequences is the Needle-

manWunsch dynamic programming algorithm [18], whereas

the SmithWaterman algorithm is the prevailing one when local

alignment of two sequences is needed [19]. The complexity

for the NeedlemanWunsch is O(n2), where n is the maximum

length of the two sequences [18].

The most widely-used platforms for professional sequence

alignment are MUSCLE [20], Multalin [21], CLUSTAL W

[22] (various CLUSTAL versions exist, the latest on is the

CLUSTAL Omega [23]). Multalin is a progressive approach

based on the unweighted pair group method using arithmetic

averages (UPGMA) [24], [10], where the last alignments are

along a guided tree. This approach has been used in the

simulation part of this paper for the evaluation of the proposed

algorithm. CLUSTAL W is another progressive approach

that is based upon the neighbor-joining (NJ) algorithm. Both

UPGMA and the neighbor-joining (NJ) algorithm require in

principle the construction of a complete distance matrix of

the sequences [10], [11]. MUSCLE is, also, another popular

choice for aligning sequences [20].

Regarding the optimization part of this work, quantum-

inspired techniques are usually conventional algorithms that

utilize principles and ideas from quantum computing, exploit-

ing the fact that quantum algorithms can vastly outperform

their classical counterparts. Quantum computing was first

proposed by Feynman, who realized that it is impossible to

efficiently simulate an actual quantum phenomenon using a

classical computer. The reader is referred to the textbook of

Nielsen and Chuang for an in-depth understanding of quantum

computation and information [25].

D-WAVE, an actual quantum computer based on quantum

annealing, was used for a biological problem in [14], while in

[26] pattern-matching on genomic sequences using quantum

algorithms was thoroughly discussed. Quantum algorithms

have also been deployed to solve the sequence compari-

son problem. In particular, Hollenberg discussed the use of

efficient quantum search algorithms on comparing protein

sequences [27]. A work that had a similar rationale with the

one described here can be found in [28], where a quantum-

inspired genetic algorithm is conceived in order to solve the

MSA problem.

The use of concepts from the well-known traveling salesman

problem for the MSA problem is not a new thing. The authors

in [29] use an evolutionary algorithm trying to find the most

appropriate order of sequences in order to progressively align

in the next steps. Similarly, the construction of the evolution

tree was modeled as a TSP problem in [30].

III. DEFINITIONS AND FORMALISM

In this Section, the necessary formalism pertaining to

the MSA and TSP problems is presented. First, let Σ =
{s1, s2, . . . , sm} be a finite alphabet. A sequence is a string

over Σ. We say that two sequences S′

1 and S′

2 are correspond-

ing alignments of two given sequences S1 and S2 if for every



i, S′

i can be obtained from Si by removing gaps (denoted

by −). Thus, every character of sequence S′

1 corresponds to

a character of sequence S′

2. This definition can easily been

extended to include more sequences.

Let m denote the length of sequences S′

1 and S′

2 (a particular

aligned version of S1 and S2). The total cost for this alignment

can be expressed as

m
∑

i=1

d(S′

1(i), S
′

2(i)), where d is the chosen

score scheme over the alphabet Σ ∪ {−} and S′

j(i) is the ith

character of sequence S′

j . A standard score scheme is the one

where matches are scored 1 and mismatches 0.

d(S′

1(i), S
′

2(i)) =

{

1, if match

0, if mismatch
(1)

An optimal alignment is the one with the maximum score

among every possible alignment. As already stated, the above

definitions can be easily extended to include more sequences.

We denote by n the number of sequences that have to be

aligned. Each sequence is allowed to have different length

mi, but we add gaps (denoted by −) in order to make them

all of the same length m. Then, the matrix of size n ×m is

called an alignment of the n sequences. In the case of many

sequences, the scoring scheme has to be properly adapted.

There are different scoring schemes that can be used to define

the alignment’s cost for many sequences. The most widely

used is the sum of pairs method [6], which is also used in

this work to compare the produced alignments against other

approaches. The sum of pairs method uses the sum of the

costs of aligning the n sequences in pairs (resulting in
(

n

2

)

total pairs).

Formally, let S1, S2, . . . , Sn define the n sequences that are

about to be aligned. Then, the sum of pairs score is

n−1
∑

i=1

n
∑

j=i+1

cost(Si, Sj). (2)

Note that the sum of pairs score can be slightly altered

if one prefers to “punish” mismatches, e.g., by giving -1

to any mismatch. Below, we provide some simple examples

of aligned sequences as depicted using a matrix-like scheme

that is the dominant representation of aligned sequences. For

example, if we have the sequences S1 = ACTTAA and

S2 = CAGTAC, then below we have a possible alignment

of them:

A C T - T A A -

- C A G T A - C

The score for this alignment is 3, since we have 3 matches.

If you add an extra sequence S3 = CGGACA, then a

possible multiple alignment of the three sequences would be

the following one:

A C T - T A A - -

- C A G T A - C -

- C G G - A - C A

In this case, the sum of pairs score of the above alignment

is 9, since we have 9 pairwise matches.

The choice of an appropriate scoring function has to be

carefully considered. It should reflect any biological or statis-

tical association that has been identified in the past regarding

the relation among the families of proteins (or nucleotides), as

well as appropriate gap penalties (e.g., by giving a -1 score for

the insertion of a gap). Gap penalties can also be associated

with the evolutionary relationship among the sequences. It is

important to note that in this work, we only use the most

generic scoring functions and gap penalty. Some well-known

scoring matrices are the PAM, BLOSUM, etc.

As it is noted later in this work, the proposed algorithm

models the similarity of sequences as a TSP instance, which

is usually represented using a graph. Thus, we aim to tackle

a minimization problem at this stage of the methodology.

Note that, although the actual MSA problem is a maximiza-

tion problem in terms of a score function, in this approach

sequences’ distances are used as input, thus the less their

distance the larger their similarity. The underlying structure is

a complete graph G = (V,A), where V = {v1, v2, . . . , vn} is

the set of nodes and A = {(vi, vj) : vi, vj ∈ V and vi 6= vj}
is the set of the edges. For the particular problem, the graph

is assumed to be undirected. Each edge is associated with a

weight wij which stands for the distance between the two

vertices. For the proposed algorithm, this distance is the

similarity distance among sequences, where each sequence is

modeled as a vertex of the graph. This similarity matrix is

symmetrical, i.e., wij = wji, thus the resulting TSP instance

is also symmetric.

IV. OUR APPROACH

In this Section, we describe the proposed algorithm for

solving the MSA problem. The main algorithm is presented

as pseudocode which reveals the rationale behind its function-

ality. First, the quantum-inspired part of the heuristic (called

qGVNS [31], [32]) is presented and then the description of

the complete algorithm follows. The quantum-inspired part of

the algorithm is based on the work in [32].

In order to improve the computational time, it is acceptable

to lose some of the solution’s quality by adopting heuristic

and metaheuristic approaches [33], [34]. Heuristics are fast ap-

proximation computational methods divided into construction

and improvement heuristics. Construction heuristics are used

to build feasible initial solutions and improvement heuristics

are applied to achieve better solutions.

Similar to the original GVNS [34], qGVNS consists of a

VND local search, a diversification procedure and a neighbor-

hood change step. Here, the pipe-VND is used during the im-

provement phase. When the pipe-VND’s improvement phase

of pipe-VND takes place, two classic local search strategies

are deployed: the relocate and the 2-opt strategy. In relocate,

the solutions are obtained by moving a node to a different

position of the current route, whereas in the 2-opt strategy

the solutions are obtained by breaking two distinct edges and

consequently reconnecting them in a different order. VNS and



GVNS share similarities with the way living organisms try to

adapt in a new area around their habitat [35].

Unlike classic GVNS, the used quantum-inspired heuristic

utilizes a modified diversification phase which successfully

resolves local minima traps within a VNS procedure. The

perturbation is achieved by exploiting quantum computation

techniques. In particular, a simulated quantum register gener-

ates a complex n-dimensional unit vector, during each shaking

call. Note that a quantum register is actually the quantum

analogue of a classical register. The dimension n of the

complex unit vector is greater than, or equal, to the dimension

of the problem. The complex n-dimensional vector is fed as

input in the algorithm and a real n-dimensional vector (whose

components are real numbers in [0, 1]) is its outcome. The i-th

component of the real vector is equal to the modulus squared

of the i-th component of the complex vector.

During this heuristic, each node of the current solution is in

one to one correspondence with the components of the real n-

dimensional vector. Having this mapping, between vector com-

ponents and nodes, the sorting of the components of the real

vector will introduce an identical ordering among the solution

nodes. Therefore, the ordered route that is generated after this

particular shaking move will result in guiding the algorithm to

another search space. Note that the Nearest Neighbor heuristic

is used in order to produce an initial feasible solution. From

an algorithmic perspective, the procedure is summarized in the

next pseudocode fragment in Algorithm 1 from [31].

Algorithm 1: Pseudocode of GVNS routine

Data: an initial solution

Result: an optimized solution

1 Initialization of the feasibility distance matrix

2 begin

3 X ← Nearest Neighbor heuristic;

4 repeat

5 X ′ ← Quantum-Perturbation(X)

6 X ′′ ← pipeVND(X ′)

7 if X ′′ is better than X ′ then

8 X ← X ′′

9 end

10 until optimal solution is found or time limit is met;

11 end

The main contribution of this paper, i.e., the proposal of

a MSA algorithm, is presented in Algorithm 2. In order

to achieve a more generic approach, no a priori weight

concerning the relatedness of the sequences is used, since

they are assumed to be unknown. Although this knowledge

is considered to be advantageous, the proposed approach aims

to cover the general case. It is also important to mention that

since it is a heuristic approach, it is difficult to assert the

procedure’s formal complexity.

Sol declares a matrix containing an approximation of the

shortest Hamiltonian of Dist. It is calculated through qGVNS

of Algorithm 1, which is a heuristic algorithm and that is

Algorithm 2: The proposed algorithm for MSA

Data: a set of sequences

Result: a set of aligned sequences

1 Disti,j : The pairwise distance matrix of the sequences

2 begin

3 i ← the i-th sequence

4 j ← the j-th sequence

5 repeat

6 Disti,j ← Calculate pairwise distance of i-th and

j-th sequences
7 until all pairs are examined;

8 end

9 Sol ← Approximation of the shortest Hamiltonian of

Dist ⊲ Derived using qGVNS of Algorithm 1

10 Score matrix ⊲ Choose a score matrix of your choice

11 Gap penalty ⊲ Choose the value of gap penalty

12 Align sequences following the Sol matrix as guide

why we have an approximation. The algorithm starts with the

calculation of the distance matrix among the sequences. This is

a trivial part for the most MSA algorithms, although heuristics

that provide approximation solutions exist for the cases of

many sequences, in order to lower the computation effort.

Such methods could be incorporated in future extensions of

the proposed algorithm. The choices for a score matrix and

a gap penalty are irrelevant to the main algorithm; they can

be separately chosen. This is an advantage of the proposed

algorithm, since it enhances its wide applicability and generic

form.

V. ANALYSIS

The proposed algorithm requires the calculation of pairwise

distances of the sequences, which is a standard procedure for

most aligning methods that deal with an acceptable number of

sequences. In case this number is tremendously scaled-up (for

hundreds of thousand or even millions of sequences), particu-

lar heuristics can be used. This calculation is a demanding task

that requires exhaustive comparisons. We chose to calculate

the complete distance matrix in order to have a fair comparison

with other methods that use a similar approach.

This calculation has complexity O(m(n2 − n)), where m

is the maximum length of a sequence and n the number

of sequences. euristics and information theoretic approaches

could be considered in order to lower the complexity in case m

and n get high enough (hundreds of thousand). The calculation

of the shortest Hamiltonian path of the distance matrix is a

known NP-hard problem and at first sight seems like the

proposed algorithm simply moves the “hard” computational

part in another routine hiding the algorithm’s overall overhead.

This is not true, though, since the GVNS-based heuristic

we used here only approximates the problems solution in a

specific time frame that is chosen according to the accuracy

level the user prefers.

Then the actual alignment process of the sequences is

straightforward and follows the standard methods. The only



difference is that there is no need to have complex guide

trees that are used as phylogenetic elements. In particular, a

simple guide matrix is used as guide tree that is a simple full

binary tree where each node has either 2 or 0 children. This

is depicted in Fig. 1.

Seq. 1

Seq. 2

Seq. 3

Seq. 4

Seq. 5

Seq. 6

Seq. 7
Seq. 8

..........

Fig. 1: A depiction of the tree produced after calculating the

shortest path of the distance matrix. It is just an indicative part

of the tree, since the actual tree continues until every sequence

is added. Here, the numbering of sequences is arbitrary.

VI. SIMULATION RESULTS

After the analysis of the proposed method, in this section

we present the experimental results. The proposed solution

is benchmarked on 33 real sequences retrieved from [17].

Samples from different kinds of organisms were chosen. In

particular, sequences of various lengths coding proteins and

RNA of archaea, invertebrates, plants, and plasmids were

used. A simulation program in MatLab was developed, using

the GONNET scoring matrix for every scenario.

Simulation results demonstrate that the proposed solution

is capable of better sum-of-pairs score, especially for larger

sequences, both for the case of negative mismatches and

simple matches. The results are illustrated in Fig. 2. The results

are split into three parts for each of the two scoring schemes.

Also, sequences are depicted in decreasing order of score in

order to enhance their readability.

For Figs. 2a-2c, the score was measured using the sum

of pairs where each match is scored with 1, whereas any

mismatch is scored with -1 (this explains the negative total

score for most sequences). The higher the score, the better

was the alignment. Similarly, for Figs. 2d-2f, the score was

measured using the sum of pairs without negative score for

mismatches (a match was still rewarded with 1). Again, the

higher the score, the better the alignment. The numerical

results for these experiments are provided in the Appendix

of the paper.

The proposed algorithm was compared against two well-

known algorithms. The first one is the UPGMA algorithm

[24], [10], and the other one is the single neighbor algorithm

(its simplest implementation, extensions and modifications of

the single neighbor approach could be considered in a future

work). Both of them operate under the progressive alignment

scheme (like our algorithm) and they use the full distance

matrix, again, similarly to our algorithm. For these reasons,

these particular algorithms were chosen for the evaluation part,

since all of them aim at producing an initial alignment which

could be further optimized in later stages using appropriate

methodologies. Finally, all the algorithms use the same method

for pairwise alignment.

The experimental results demonstrate that the proposed

algorithm outperforms the other two, especially when larger

sets of sequences are used (since for relatively smaller se-

quences the proposed heuristic would not yield any consid-

erable improvement compared to the other approaches). The

increase in the performance is notable in many occasions, but

there are also instances that the difference is marginal. These

observations show that the proposed algorithm is a promising

solution, especially for cases where no prior knowledge on the

relation among the sequences is known and a quick alignment

is needed, with as few as possible mistakes (as measured

through the chosen scoring function).

VII. CONCLUSION AND FUTURE WORK

Data related to biology and genomics are characterized

by large volume and require enormous computational power.

Biological sequences are usually large and demand massive

computing resources in order for someone to be able to

correlate them and further study particular properties. Multiple

sequence alignment (or MSA) tackles the problem of aligning

several strings resulting in a complete alignment.

There are many different approaches to solve the MSA prob-

lem and plenty of scoring methods to evaluate the alignment

results. In this work, a novel method to progressively solve

the multiple sequence alignment problem is proposed using

elements of quantum-inspired optimization. The proposed

algorithm is described in detail and then evaluated through

simulations on actual sets of sequences from [17]. These

results seem promising, revealing that the proposed algorithm

is capable of providing alignments with good scores, especially

when the sets of sequences are large. The algorithm’s output

can be used as an initial alignment with acceptable score that

could be further optimized in later stages.

Future extensions could be considered in combination with

other bio-inspired approaches, especially those belonging to

the field of evolutionary computation. Also, potential enhance-

ments that would cover particular cases taking into considera-

tion prior knowledge on the relation of the sequences that need

to be aligned could be considered. Finally, adjustments and

heuristics regarding the computation of the distance matrix,

sometimes used by other approaches, could also be useful,

especially for larger sets of sequences. In any case, the work

described here acts as a more general approach that covers the

most usual cases and guarantees efficient results.
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Fig. 2: Simulation results on actual sets of sequences retrieved from [17]. Sequences are ordered according to their size.
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APPENDIX



N Size UPGA single Proposed Alg. N NoS UPGA single Proposed Alg.

1 898 -142523088 -126315814 -117792189 18 18 -156976 -157776 -151573

2 237 -33293391 -33101406 -32336818 19 117 -9869902 -7972916 -7558387

3 21 -128976 -122415 -115459 20 27 -167478 -161125 -158635

4 21 -309000 -274034 -269871 21 31 -481274 -435969 -392305

5 536 -48422862 -44718577 -41554521 22 44 -525386 -509893 -501521

6 28 -552519 -503351 -477481 23 46 -1447160 -1327145 -1180051

7 118 -4358519 -4141859 -3925419 24 24 -118125 -112477 -113219

8 135 -13384128 -10699662 -10203670 25 24 -277897 -242824 -203750

9 16 -101230 -97476 -91816 26 126 -1E+07 -7494668 -7118485

10 267 -19483390 -19146707 -17220682 27 100 -6897746 -5901467 -5161430

11 503 -53667376 -49551353 -46743623 28 76 -4334603 -3778940 -3315710

12 35 -892612 -783885 -810280 29 195 -8822833 -8404489 -8239317

13 233 -12952986 -11877690 -11132666 30 644 -2337085 -2177805 -2107528

14 207 -32364856 -25950595 -25393594 31 124 -2933740 -2633563 -2538346

15 31 -190255 -178685 -181522 32 18 -43724 -41981 -39625

16 38 -928216 -808198 -793102 33 19 -100167 -94268 -82618

17 408 -52249519 -43821648 -49528355

TABLE I: Numerical results regarding sets of sequences from [17]. The first column is the number of the benchmark, Size

includes the size of each set. Score is calculated by giving 1 for matches and -1 for mismatches.

N Size UPGA single Proposed Alg. N NoS UPGA single Proposed Alg.

1 898 2442464 4763508 8268588 18 18 79562 80393 86673

2 237 15808398 15842811 16039622 19 117 3280783 4005033 4293242

3 21 11393 12702 13673 20 27 16283 18400 18947

4 21 173756 186961 196307 21 31 230730 249768 260459

5 536 1157632 2004663 3340256 22 44 45488 49297 56119

6 28 276324 299969 331963 23 46 572563 632060 676404

7 118 309752 354226 440475 24 24 10611 12296 13339

8 135 4283585 5255672 5901962 25 24 153919 165578 183849

9 16 86817 87957 95701 26 126 3113338 4108543 4294035

10 267 484669 599044 683589 27 100 2133176 2524886 2866489

11 503 3871356 4341563 5157986 28 76 1378922 1605658 1726975

12 35 395375 443729 458912 29 195 296065 350825 515435

13 233 355247 522927 804438 30 110 87262 112610 160942

14 207 5926077 8035926 8253775 31 124 99393 146312 211388

15 31 16747 19574 21027 32 18 3881 4073 5136

16 38 392727 438003 468757 33 19 68984 70704 77594

17 408 1333885 2805038 3575982

TABLE II: Numerical results regarding sets of sequences from [17]. The first column is the number of the benchmark, Size

includes the size of each set. Score is calculated by giving 1 for matches and 0 for mismatches.


