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Abstract 

 

The incorporation of real-time traffic and weather data has proven to be a very fruitful approach 

when analysing crash likelihood. A major limitation is that there is no specific focus on 

vulnerable road users such as Powered-Two-Wheelers (PTWs). This paper aims to analyse 

PTW crash likelihood in the motorway of Attica Tollway (“Attiki Odos”) by using real-time 

traffic and weather data and applying Bayesian Logistic Regression. The results of the paper 

attempt to contribute to the understanding of accident probability and severity on motorways, 

by having a special consideration of PTWs for one of the first times for safety evaluation of 

motorways. 
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1. INTRODUCTION 

 

 

The European Union (EU) has made substantial progress in improving road safety and reducing 

traffic fatalities. In the decade leading to 2010 the number of fatalities decreased by 45% and 

the total injured casualties by 30%. Nevertheless, in 2010, 31,000 fatalities still occurred on EU 

roads.  

 

Consequently, Understanding the numerous factors that affect road crashes has attracted a great 

attention in literature and recent studies concentrate on examining the combined effects of 

traffic and weather on road safety to assist in developing real-time traffic management 

strategies. Although much progress has been carried out, the vast majority of relevant literature 

has a focus on US, China and Japan freeways and expressways (Abdel-Aty and Pande, 2005; 

Abdel-Aty et al., 2007; Ahmed and Abdel-Aty, 2012; Kockelman and Ma, 2007; Yu and Abdel-

Aty, 2013; Xu et et., 2013a and 2013b; Hossain and Muromachi 2012 and 2013; Yu et al., 2015; 

Peng et al., 2017).  

 

It is obvious that European motorways are less explored; let alone less developed countries. 

Another limitation is the fact, that there is no specific focus on vulnerable road users such as 

Powered-Two-Wheelers (PTWs). Due to the low weight and the high manoeuvre capabilities 

of PTWs, and considering the lack of protection of riders, it is of high importance to understand 

the influence of traffic conditions on PTWs safety. 

 

This paper aims to analyse crash probability of Powered-Two-Wheelers (PTW crash 

involvement) in the motorway of Attica Tollway (“Attiki Odos”) by using real-time traffic and 

weather data. Crash probability of PTWs is the likelihood that a PTW is involved in a crash 

given that this crash has already occurred. In order to achieve this aim, Bayesian Logistic 

models have been applied. 

 

 

2. DATA  

 

 

In this paper, the required accident, traffic and weather data were extracted from Attica Tollway 

Only basic motorway segments (BFS) were considered and not ramp areas. The raw motorway 

dataset, includes 387 cases, from 2006 to 2011. In order to explore the probability of PTW crash 

involvement, a subset had to be created. More specifically, all crash cases had to be defined 

(and not the injured persons). Therefore, each row of this subset corresponds to a crash, 

resulting in 285 crash cases, where a new binary variable was defined, namely “PTW crash 

involvement”. This variable takes two possible values 1 if a PTW was involved in a crash and 

0 if no PTWs were involved in that crash. It is very interesting that PTWs are involved in almost 

half of the total crash cases (49.5%). 

 

In the present study, crash and real-time traffic data were collected from Attica Tollway (“Attiki 

Odos”), an urban motorway located in Greater Athens area, Greece, which connects Athens-

Lamia National Road with Athens-Corinth National Road, by-passing the centre of Athens. 

Attica Tollway is one of the largest ring roads in Europe. It is a modern motorway, with a length 

of 65.2 Km and two directionally separated carriageways, each consisting in three lanes and an 

emergency lane. Three datasets were used in this analysis: one dataset with crash data, one with 

traffic data and one with weather data. The required crash data for Attica Tollway were 

extracted from the Greek crash database SANTRA provided by the Department of 

Transportation Planning and Engineering of the National Technical University of Athens. 



 

Real-time traffic data for the Attica Tollway were collected from the Traffic Management and 

Motorway Maintenance. Inductive loops (sensors), placed every 500 meters inside the asphalt 

pavement of the open sections of the motorway and every 60 meters inside tunnels, are used to 

provide information regarding the volume, speed and density of traffic. Traffic flow, 

occupancy, speed and truck proportion were considered and were measure in 5-min intervals 

and each crash was assigned to the closest upstream loop detector. Real-time weather data were 

extracted from the website of the Hydrological Observatory of Athens (HOA), whose address 

is www.hoa.ntua.gr. The site provides hydrological information and is operated by the National 

Technical University of Athens. It consists of more than 10 stations located in the greater 

Athens area, measuring various environmental parameters. In our study, each crash was 

assigned to the closest meteorological station and rainfall, relative humidity and wind speed 

were utilized. 

 

 

3. METHODOLOGY 

 

 

In this paper several Bayesian logistic regression models were developed to estimate the effect 

of traffic states on accident severity and probability with focus on PTWs. The classical 

statistical approach (also called frequentist approach) is different than the Bayesian approach. 

The general philosophy behind Bayesian approach, is that the prior distributions for each 

parameter are defined and then the data are used to update beliefs about the behaviour of 

parameters. Moreover, the updated probability of the parameters are used and the posterior 

credible intervals are produced. The correct interpretation is that a parameter of interest lies 

within the credible interval with 95% probability. In that context, instead of a t-test, each 

parameter is statistically significant if the 95% credible interval (2.5%-97.5%) of the beta 

coefficient does not contain zero (Lunn et al., 2012). As stated by some studies (Ahmed et al., 

2012), the Bayesian inference can effectively treat over fitting problems. 

 

Bayesian inference for logistic regression follows the usual procedure for all Bayesian analysis. 

More specifically, a prior distribution for all unknown parameters has to be formed, then the 

likelihood function of the data has to be defined and lastly, the Bayes theorem has to be applied 

so as to find the posterior distribution of all parameters. 

 

The likelihood function for Bayesian logistic regression is the same as in the frequentist 

inference. More specifically, 

 

    𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑖 = 𝜋(𝑥𝑖)𝑦𝑖(1 − 𝜋(𝑥𝑖))(1−𝑦𝑖)    (Eq. 1) 

 

where π(𝑥𝑖) is the probability of the event for the 𝑖𝑡ℎsubject which has covariate vector 𝑥𝑖. The 

𝑦𝑖 is the response variable which has the outcomes y=1 (occurrence of event) or y=0 (absence 

of event). The logistic regression equation is: 

 

    log (
𝑝

1−𝑝
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛      (Eq. 2) 

 

where 𝛽0 is the intercept, 𝛽𝑖 is a coefficient for the explanatory variable 𝑥𝑖 . In addition, similarly 

to the frequentist approach, taking the exp(β) provides the odds ratio for one unit change of that 

parameter.  
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Any prior distribution can be used for unknown parameters, however, it is usually preferable to 

use the so-called “vague” or “non-informative” priors if little is known about the coefficient 

values (Lunn et al., 2012). A non-informative prior could be for example a normal distribution 

with zero mean and very large variance, for example its form could be: 𝛽𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(0, 1002). 

Another popular non-informative prior could be for example a uniform distribution with large 

boundaries a and b, e.g. 𝛽𝑖~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−100, 100). 
 

It is noted that in the vast majority of cases when choosing a normal distribution as a prior 

distribution, the precision is considered. The precision is defined as 
1

𝜎2 , where 𝜎2 is the 

variance. Therefore, the distribution of the aforementioned example is transformed to 

𝛽𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(0, 0.0001). Lastly, the posterior distribution is derived if the prior distribution 

over all parameters is multiplied by the full likelihood function. Thus, 

 

    𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟      (Eq. 3) 

 

 

4. RESULTS 

 

 

The relationship between traffic and weather parameters and PTW accident probability, was 

examined through the application of Bayesian logit models. The followed methodological 

approach was the same as in previous models. The priors for the constant and for the candidate 

independent variables were all “vague” (non-informative), assuming to follow a normal 

distribution with zero mean and very low precision. The prior for the constant was 

alpha~dnorm(0, 0.0001). All candidate independent variables were following a non-

informative normal distribution, e.g. beta~dnorm(0, 0.0001). The first 5,000 samples were 

discarded as adaptation and burn-in. Three chains and 20,000 more samples were used to ensure 

convergence. The Monte Carlo (MC) errors (i.e. the Monte Carlo standard error of the mean 

values) were monitored. According to Spiegelhalter et al. (2003), MC errors less than 0.05 

indicate that convergence may have been achieved. In the model all MC errors were very low 

(less than 0.005) indicating convergence.  Figure 1 summarizes the findings of the Bayesian 

logit model for PTW accident probability, and provides the posterior mean, the standard 

deviation and the 95% credible interval CI (2.5%-97.5%) and the odds ratios (OR). Only 

statistical significant parameters are illustrated on the table. 

 

 
 

Figure 1: Significant parameters estimates, credible intervals and odds ratios for PTW 

accident probability model. 

 

Only the 30-min average traffic flow was found to be statistically significant and is interesting 

that a quadratic relationship was revealed as well. More specifically, two models were 

developed, one linear and one non-linear. The equations are provided below: 

 

U1 = −0.8357 + 0.013 ∗ Q_avg_30m_up                (Eq. 4) 

 

U2 = −1.695 + 0.0435 ∗ Q_avg_30m_up −  0.0002 ∗ Q_avg_30m_up2        (Eq. 5) 

Mean St.Deviation Odds Ratio 2.50% 97.50% Mean St.Deviation Odds Ratio 2.50% 97.50%

constant -0.8357 0.2355 - -1.2970 -0.3816 constant -1.6950 0.3958 - -2.5090 -0.9607

Q_avg_30m_up 0.0130 0.0033 1.0131 0.0068 0.0194 Q_avg_30m_up 0.0435 0.0114 1.0445 0.0223 0.0666

Q_avg_30m_up
2

-0.0002 0.0001 0.9998 -0.0003 -0.0001

DIC 376.926 DIC 367.84

Model2
Parameters Estimates Credible IntervalsParameters Estimates Credible Intervals

Model1



 

In the first model the average flow has a positive relationship with PTW accident involvement, 

suggesting that as traffic flow increases, PTWs are more likely to be involved in accidents. 

However, in the second model a quadratic term of the flow was found to be significant, implying 

a non-linear relationship between flow and PTW accident probability. The DIC of the non-

linear model is lower, suggesting that this model is preferable over the linear model. Therefore, 

a quadratic relationship between PTW accident probability and average flow is more likely to 

exist. The next figures illustrate a graphical representation of the relationship between average 

flow and the utility function as well as the probability of PTW accident involvement. More 

specifically, figures 2 and 3 regard the linear model while figures 4 and 5 the non-linear model. 

 

 

 
 

Figure 2: Diagram of the relationship between the average flow upstream and the utility 

function of the linear PTW crash likelihood model. 
 

 

 
 

Figure 3: Diagram of the relationship between the average flow upstream and the probability 

of PTW crash likelihood (linear model). 

 



 
 

Figure 4: Diagram of the relationship between the average flow upstream and the utility 

function of the non-linear PTW crash likelihood model. 

 

 

 
 

Figure 5: Diagram of the relationship between the average flow upstream and the probability 

of PTW crash likelihood (non-linear model). 

 

Figure 5 implies that an inverse U-shape relationship exists, meaning that as average flow 

increases the probability of PTW accident involvement increases until it reaches a maximum 

and then it starts to decrease. 

 

 

5. CONCLUSIONS 

 

 

The aim of the present paper was to investigate road safety in motorways by utilizing high 

resolution (real-time) traffic and weather data for Attica Tollway (“Attiki Odos”) in Greater 

Athens Area, Greece. The dataset included 285 crash cases (crashes), from 2006 to 2011, in 

order to explore the probability of PTW crash involvement. Therefore, each row of this subset 

corresponds to a crash, resulting in 285 crash cases, where a new binary variable was defined, 

namely “PTW crash involvement”. 

 

PTW crash involvement (or PTW crash likelihood) was explored through Bayesian logistic 

regression models. It was found the only statistically significant variable is the average 30-min 

flow upstream of the accident location. Two models were developed: one linear and one non-



linear. The fit of the non-linear was better indicating that a quadratic relationship exists, namely 

an inverse U-shape. It is interesting, that weather parameters were not found to significantly 

affect injury severity of occupants in motorways. The insignificance of weather parameters in 

the motorway, may be attributed to the fact that weather parameters may not be linearly related 

with road safety indicators such as PTW probability. It is expected that complex non-linear 

relations may exist and need further investigation.  

 

Overall, this paper contributes on the current knowledge, by having a specific consideration of 

PTW safety in motorways and also by developing models combined with real-time traffic and 

weather data.  
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