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Abstract
Quantitative assessment of breast intra-lesion heterogeneity in terms of contrast agent free Magnetic Resonance Imaging (MRI)
approaches hold potential in breast cancer diagnosis. This study focuses on an Apparent Diffusion Coefficient (ADC) based
approach, investigating the diagnostic role of 1st and 2nd order ADC statistics features, in differentiating benign from malignant
breast lesion status. A total of 67 patients with 78 histologically verified breast lesions (40 benign and 38 malignant) was
analyzed. ADC maps were generated for a slice representative of lesion largest diameter, considering intra Diffusion
Weighted Imaging (DWI) sequence non rigid registration scheme. Lesion segments were defined by semi-automated Fuzzy
C-Means (FCM) segmentation on high b-value diffusion images and propagated on ADCmaps. 27 (11 1st order statistics and 16
2nd order statistics (texture) features were derived. To avoid overfitting a stepwise feature selection method was employed, while
the discriminating ability of features was evaluated with univariate and multivariate Logistic Regression classification. The
classification performance of the diagnostic model was evaluated by means of the Area Under Receiver Operating
Characteristic curve (Az index). A combination of two features, one from 1st order statistics (25th Percentile) and one from 2nd

order statistics, (texture Entropy), achieved high classification performance (Az = 0.965 ± 0.024), suggesting both the diagnostic
significance of 1st order statistics and texture biomarkers of the ADC map representation.
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1 Introduction

Breast cancer is the most frequently diagnosed type of cancer
and the leading cause of cancer death, in female population
worldwide. Incidence rates of female breast cancer remain
stable in the last few years (24.6%), while mortality rates
follow a decreasing trend (15%) [1]. Investigating the under-
lying complexity (heterogeneity) of breast lesions is a key
point in the era of personalized medicine. Heterogeneity char-
acterized as inter- and/or intra- lesion heterogeneity, is evalu-
ated with different genotypic assays, while phenotypic imag-
ing appearance is emerging [2].

Although biopsy-proven biomarkers have shown to assess
well breast lesion heterogeneity, their invasive nature limits
tumor sampling. Thus, a more systematic and quantitative

appreciation of breast intra-lesion heterogeneity has emerged
considering whole lesion sampling. Advances in medical im-
aging analysis and pattern recognition led to high-throughput
extraction of quantitative imaging features, termed radiomics
[3] aim to provide an objective and reproducible imaging bio-
marker, reflecting intrinsic tumor properties and aggressive-
ness [4]. A major confound of radiomics analysis is the quan-
tification of medical image texture. Texture is defined as the
repetition of image patterns of the same intensity values,
reflecting local spatial distribution variations of gray levels
in the image matrix [5], and is particularly suitable to describe
lesion imaging heterogeneity (phenotype). Extraction of
texture-based features is numerically described by using sta-
tistical or structural approaches. Statistical approaches of tex-
ture analysis are the most widely utilized ones based on nth

order statistics. Specifically, 1st order statistics, describe the
way that gray levels are distributed over the pixels of an im-
age, while 2nd order statistics, (herein called texture features),
describe the local or regional relationships among image
voxels (Gray Level Co-occurrence Matrix, Gray Level Run
Length Matrix, Gray Level Size Zone Matrix) [6]. Radiomics
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approaches based on texture features, when combined with
other clinical data and mined with sophisticated bioinformat-
ics methods, such as machine learning algorithms, develop
models that may potentially improve diagnostic, prognostic
and predictive accuracy for response to treatment and survival
outcomes.

Regarding breast cancer, radiomics approaches have been
mainly investigated with Magnetic Resonance Imaging
(MRI), while mammography is the gold standard in routine
breast screening [7]. However, MRI plays a key role in detect-
ing mammographically occult breast lesions [8] and its excel-
lent soft tissue contrast makesMRI ideal for screening women
with dense breast tissue [9]. In addition, MRI is a non-ionizing
imaging modality, providing anatomical and functional tissue
information with high temporal and spatial resolution by
means of advanced MRI sequences, such as Dynamic
Contrast Enhanced (DCE) and Diffusion Weighted Imaging
(DWI).

DCE offers morphological and functional information re-
lated with tissue angiogenesis and vascular permeability
through qualitative and/or quantitative analysis of signal in-
tensity time curves of paramagnetic contrast agent uptake
[10]. DCE is a powerful imaging technique in classifying
breast lesions with high sensitivity ranging from 86% to
99%, however with low specificity ranging from 67% to
72% [11]. In addition, DCE has revealed promising radiomics
signatures for breast lesions classification into histological
and/or molecular subtypes [12, 13], while it is also utilized
for evaluating treatment response [14, 15].

DWI, has been well integrated in routine breast MRI pro-
tocols with multiple clinical applications and holds promise in
breast screening cost-effectively, less time-consuming and
contrast agent free [16]. DWI depicts the mobility of water
molecules in vivo, mapping tissue cellularity and microstruc-
ture. Quantitative analysis of DWI is mainly exploited through
mono-exponential Apparent Diffusion Coefficient (ADC),
which provides a measure of the degree of water diffusivity
and describes the average area occupied by a water molecule
per unit time (mm2/s). When ADC is calculated on a voxel-
by-voxel approach, a parametric map (ADCmap) is generated
[17]. As ADC reflects different levels of lesion aggressive-
ness, malignant breast lesions due to increased cellularity,
demonstrate lower mean ADC values compared with the be-
nign ones [16, 17].

Previously reported multiparametric MRI studies have
exploited ADC as a supplementary imaging biomarker to
DCE, in differentiating benign from malignant breast lesions
increasing overall MRI specificity [18, 19]. Recently reported
controversies in DCE referring to gadolinium contrast agent
brain deposition have led to exploiting the diagnostic value of
contrast-agent free MRI sequences, such as DWI, although
characterized by reduced spatial resolution [20–23].
Specifically, the mean lesion ADC value has reported high

diagnostic performance, (Area Under Receiver Operating
Characteristic Curve, Az index, 0.94 [24]), however with sig-
nificant overlapping of mean ADC cut-off values (0.90–
1.76 × 10−3 mm2/s), mainly attributed to its sensitivity to dif-
ferent acquisition protocols and choice of optimal b-values
[25].

Thus, texture-based radiomics have been introduced
aiming to assess intra-lesion DWI spatial heterogeneity anal-
ysis in an image intensity invariant approach. Previously re-
ported studies have mainly exploited ADC histogram analysis
suggesting that minimum and/or lower percentiles of ADC
values hold promise in differentiating benign from malignant
breast lesions [22, 26, 27]. Considering breast lesions classi-
fication into histological or molecular subtypes [28–31], as
well as monitoring response to therapy [32, 33] several studies
have exploited the added value of 2nd order (texture) and other
radiomics features, although with controversial results.

The current study focuses on investigating if ADC-based
2nd order (texture) analysis is capable to contribute in diagnos-
tic accuracy of differentiating benign from malignant breast
lesions, in addition to 1st order ADC statistics analysis
(Figure 1).

2 Methods and materials

2.1 Patient cohort

This retrospective study was approved by the Institutional
Ethics Committee and informed consent was waived to pa-
tients undergoing routine clinical breast DWI-MRI examina-
tion, in a 3.0 T MRI scanner. The exclusion criteria in this
study were: (i) non mass like lesions, (ii) unavailable lesions’
histopathological confirmation/report, (iii) breast surgery or
chemotherapy/radiotherapy treatment prior to MRI examina-
tion and (iv) poor image quality in DWI images. A total of 78
histologically verified breast lesions, originating from 67 fe-
male patients were analyzed in this study. 32 female patients
(mean age ± standard deviation, range; 45.6 ± 13.5, 22–
74 years) with 40 benign findings (mean size ± standard de-
viation, range; 111.1 ± 70.8, 39.0–394.0 mm2) and 35 female
patients (mean age ± standard deviation, range; 57.9 ± 12.3,
25–76 years) with 38 malignant breast lesions (mean size ±
standard deviation, range; 175.3 ± 102.3, 46.0–446.0 mm2)
were included.

2.2 MRI acquisition

Breast MRI examinations were performed in a 3.0 T MRI
scanner (Signa HDx; GE Healthcare, Milwaukee, WI, USA)
using a dedicated bilateral four-element two-channel, phased
array breast coil, with the patients in prone position. Breast
holders were utilized in order to remove patients’ motion
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artifacts. Breast imaging protocol included: (1) Axial T2-
weighted fast spin echo (FSE) imaging sequence(T2–FSE,
Time of Repetition (TR)/Time of Echo (TE), 3600/100 ms;
slice thickness, 4 mm; spacing, 0 mm); (2) Axial short TI
inversion recovery sequence (STIR) (TR/TE, 3875/90 ms;
slice thickness, 4 mm; spacing, 0 mm); (3) Axial conventional
diffusion-weighted echo-planar imaging sequence (DW-EPI,
TR/TE, 6000/63.7 ms; slice thickness, 4 mm; spacing, 0 mm;
matrix, 96 × 108; Field Of View (FOV), 360 mm× 360 mm).
Sensitizing diffusion gradients were applied in three orthogo-
nal directions (x, y, z) with b values of 0 and 900 s/mm2,
respectively. A three-dimensional (3D) fat suppressed (FS)
T1-weighted VIBRANT dynamic sequence (flip angle, 10°;
TR/TE, 5.8/2.1 ms; slice thickness, 1.2 mm; spacing, 1.2 mm;
matrix, 512 × 512; FOV, 350 mm× 350 mm) was acquired
once before and five times after intravenous injection of con-
trast medium (0.1 mmol/kg of gadopentate dimeglumine
agent followed by a 20-mL flush of saline solution).

2.3 Image analysis

2.3.1 Intra DWI registration

In order to reduce image spatial misalignment due to patient
motion or Eddy-current distortions, a registration algorithm
[34] was adopted to map high-b value (b = 900 s/mm2) diffu-
sion weighted images to corresponding low b-value (b = 0 s/

mm2) diffusion weighted images [35]. The applied three-level
multi-resolution registration scheme combines two levels of
rigid and a final resolution level of b-spline transform, using a
Gaussian smoothing pyramid. The applied optimizer is a sto-
chastic gradient descent, while the similarity metric is Mutual
Information [34]. The Elastix 4.5 [36] software for intensity-
based medical image registration based on the open source
software Insight Toolkit (ITK) version 4.0 [37] was used for
implementation of the registration scheme.

2.3.2 Lesion ROI segmentation

A two-step semi-automated segmentation algorithm, based on
Fuzzy C-Means clustering (FCM) [38] and edge-based lesion
contouring, was adopted for breast lesion delineation. High b-
value diffusion images were utilized for breast lesion segmen-
tation, characterized by improved lesion contour/border iden-
tification compared with ADC map [30, 31]. Initially, an ex-
perienced radiologist defined a loose rectangular region of
interest (ROI), containing the whole lesion, in slices represen-
tative of lesion’s largest diameter, on high b-value diffusion
images. FCM was applied on the defined ROI, to build the
likelihood membership map (cluster number, 2; weighting
exponent, 2; stop criteria, 0.0005; max iteration, 100).
Subsequently, an edge-based segmentationmodel was applied
for binarization of the membership map, followed by

Fig. 1 Proposed radiomics analysis workflow.
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morphological operations to derive the final lesion contour
(MatLabR2017b Math Works, Natick, MA).

The segmented lesion ROI was transferred to ADC map
(Fig. 1), generated according to the mono-exponential fitting
model [17], employing in-house code (MatLab R2017b Math
Works, Natick, MA).

2.3.3 Feature extraction

A total of 27 features were extracted from ADC lesion maps,
including two feature sets: the first one was consisted of 11 1st

order statistics and the second one was consisted of 16 texture
features (2nd order statistics).

Prior to 1st order statistics analysis, ADC lesion maps were
not subjected to gray level normalization, in order to preserve
the biophysical meaning of ADCmap intensity values. In case
of ADC 1st order statistics entropy, a fixed bin number
discretization scheme (8 bits/pixel) of the lesion ADC maps
was considered, as a means of removing inter-lesion intensity
variabilities. Features were extracted with in-house code
(MatLab R2017b Math Works, Natick, MA).

In case of texture feature (2nd order statistics) extraction,
ADC lesionmapswere gray-level normalizedwithin [μ ± 3σ],
where μ is the mean of pixel intensity values within lesion
ROI and σ is the standard deviation, and discretized to 6
bits/pixel in order to minimize contrast and brightness varia-
tion and reduce computational cost of texture features [39]. 11
features were calculated from Gray Level Co-occurrence
Matrices-GLCM, considering a distance of one pixel (d = 1)
and four directions (0°, 45°, 90° and 135°). Furthermore, the 5
features were calculated from Gray Level Run Length
Matrices-GLRLM, considering four directions (Horizontally,
vertically, 45°and 135°). Features extracted from GLCM and
GLRLM were averaged over four directions to obtain
rotationally invariant features. Texture features were extracted
employing the publicly available MaZda package v 4.6 [40].

2.3.4 Statistical analysis

The Shapiro-Wilk test was utilized (p < 0.05) to test normality
of features’ distribution (IBM SPSS Statistics software 24.0,
2016) [41]. As the extracted features follow a non-normal
distribution, the non-parametric Mann-Whitney U test was
used inMatLab R2017b (MathWorks, Natick, MA), to assess
existence of statistically significant difference of individual
features between benign and malignant lesion status.
Bonferroni correction for multiple tests was considered to ad-
just the level of significance [42].

In order to reduce feature dimensionality and avoid redun-
dant information, a stepwise feature selection method was
adopted based on the minimization of Wilks-Λ [43]. The pro-
cedure employs stepwise feature entry and feature removal
from the model according to predefined thresholds

(probabilities). In this study, the probability-to-enter and the
probability-to-remove were set to 0.05 and 0.10, respectively.

A machine learning classification model, Logistic
Regression (LR), was exploited to further assess univariate di-
agnostic performance of each feature, as well as the perfor-
mance of the combined features derived from the above feature
selection procedure. The above machine learning model was
implemented in the publicly available data mining software,
Weka [44], using the 10-fold cross-validation training/testing
methodology, accounting for a robust internal validation meth-
od in case of datasets of limited size [45, 46]. The classification
performance was evaluated by means of Az index. In case of
multivariate logistic regression, the bias of collinearity between
features was evaluated using variance inflation factor (VIF) and
the corresponding threshold was set at 3.

3 Results

Investigating the discriminative ability of individual DWI se-
quence, a total of 27 features were exploited from ADC map,
for each breast lesion. Median and interquartile ADC values,
as well as discriminating ability (in terms of Az index ±
Standard Error (SE), of the univariate Logistic Regression
classifier) of individual 1st statistics and 2nd order (texture)
features, are provided on Tables 1 and 2, respectively.

Among 1st order statistics features, 25th Percentile achieved the
highest classification performance (Az = 0.943 ± 0.031), while
among individual 2nd order (texture) features, Entropy achieved
the highest classification performance (Az = 0.738 ± 0.052).

Following stepwise feature selection method, the selected
feature subset consisted of 2 quantitative imaging descriptors,
one descriptive parameter of signal intensity distribution (25th

Percentile) and one texture feature (Entropy 2nd order). The
discriminating ability of the selected feature subset was further
assessed by means of multivariate machine learning Logistic
Regression classifier, achieving the highest classification per-
formance (Az = 0.965 ± 0.024), with sensitivity, specificity
and accuracy of 92.3%, respectively.

Figures 2 and 3, illustrate a typical benign and a typical
malignant breast lesion respectively. Corresponding histograms
highlight the difference with respect to mean and 25th percentile
of ADC values, as well as the value of 2nd order statistics (tex-
ture entropy) in discriminating benign from malignant breast
lesions. Figure 4 illustrates a non-typical malignant breast lesion
with its corresponding histogram.While themeanADC value is
capable of differentiating benign from a typical appearing ma-
lignant breast lesion, however, in case of equivocal (non-
typical) breast lesions the reported high mean ADC value may
result in misdiagnosis. In this case, the combination of the 25th

percentile (1st order statistics) and entropy (2nd order statistics),
with the latter texture measure reflecting lesion heterogeneity,
resulted in high diagnostic accuracy (Figure 5).
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4 Discussion

DCE or multiparametric studies have revealed radiomics sig-
natures to assess breast lesions heterogeneity [10, 12–15, 18,

19], however controversies due to minimally invasive nature
and contrast agent safety [20] have emerged, addressing the
need of contrast agent free MRI approaches (i.e. DWI).
Towards this direction, the current study investigates the

Table 1 First order statistics ADC features

1st order statistics ADC features Benign lesions
(n = 40)

Malignant lesions
(n = 38)

Mann-Whitney
U test

Logistic Regression

Median (interquartile range) values p value Az ± SE

Mean
(× 10−3 mm2/s)

1.600 (0.872, 2.300) 0.888 (0.672, 2.100) 4,69 × 10−11* 0.924 ± 0.031

Standard Deviation
(× 10−3 mm2/s)

0.136 (0.045, 0.430) 0.164 (0.066, 0.685) 0.224 0.559 ± 0.056

Skewness −0.236 (−1.386, 1.711) 0.668 (−0.975, 2.198) 1.36 × 10−3* 0.748 ± 0.051

Kurtosis 3.225 (1.712, 8.348) 3.380 (1.665, 9.646) 0.315 0.551 ± 0.057

Entropy 5.220 (3.877, 6.257) 5.975 (5.099, 7.066) 6.93 × 10−7* 0.821 ± 0.047

Minimum
(× 10−3 mm2/s)

1.200 (0.422, 2.000) 0.593 (0.240, 1.200) 1.16 × 10−9* 0.888 ± 0.039

Maximum
(× 10−3 mm2/s)

1.900 (1.100, 2.500) 1.400 (0.980, 3.200) 2.38 × 10−7 * 0.831 ± 0.046

25th percentile
(× 10−3 mm2/s)

1.500 (0.766, 2.200) 0.785 (0.584, 1.900) 8.62 × 10−12 * 0.943 ± 0.031

50th percentile
(× 10−3 mm2/s)

1.600 (0.864, 2.400) 0.873 (0.646, 2.100) 2.35 × 10−11* 0.926 ± 0.030

75th percentile
(× 10−3 mm2/s)

1.700 (0.969, 2.500) 0.988 (0.725, 2.500) 6.60 × 10−11 * 0.920 ± 0.033

Range
(× 10−3 mm2/s)

0.607 (0.016, 1.700) 0.733 (0.040, 2.300) 0.045 0.623 ± 0.055

*p < 0.0045 indicates statistically significant difference, Bonferroni correction for adjusting significance level a = 0.05/11)

Table 2 Second order statistics (texture) ADC features

2nd order statistics ADC features Benign lesions (n = 40) Malignant lesions (n = 38) Mann-Whitney U test Logistic Regression
Median (interquartile range) values p value Az ± SE

Angular Second
Moment

0.009 (0.003, 0.023) 0.007 (0.004, 0.016) 2.30 × 10−3* 0.737 ± 0.052

Contrast 40.702 (17.203, 82.864) 40.541 (10.332, 104.962) 0.822 0.647 ± 0.057

Correlation 0.797 (0.474, 0.911) 0.791 (0.381, 0.954) 1 0.550 ± 0.057

Sum Of Squares 95.552 (73.785, 115.205) 98.988 (76.234, 115.899) 0.058 0.612 ± 0.056

Inverse Difference
Moment

0.186 (0.146, 0.290) 0.190 (0.135, 0.347) 0.525 0.524 ± 0.057

Sum Average 65.195 (60.229, 68.373) 63.776 (59.855, 66.094) 7.14 × 10−3 * 0.709 ± 0.053

Sum Variance 345.594 (235.742, 415.363) 346.615 (234.680, 438.581) 0.916 0.605 ± 0.057

Sum Entropy 1.608 (1.345, 1.813) 1.663 (1.396, 1.819) 2.75 × 10−2* 0.691 ± 0.054

Entropy 2.073 (1.699, 2.557) 2.242 (1.817, 2.531) 1.81 × 10−3* 0.738 ± 0.052

DifVariance 14.000 (6.275, 37.276) 16.822 (4.333, 45.917) 0.195 0.556 ± 0.056

DifEntropy 1.057 (0.879, 1.161) 1.080 (0.844, 1.191) 0.192 0.568 ± 0.056

RLNonUni 76.645 (33.529, 323.592) 119.518 (41.390, 314.063) 3.26 × 10−3* 0.736 ± 0.053

GLevNonUni 3.659 (1.858, 12.414) 4.959 (2.036, 18.325) 3.34 × 10−2* 0.689 ± 0.054

LngREmph 1.223 (1.113, 1.530) 1.230 (1.091, 1.629) 0.924 0.529 ± 0.057

ShrtREmph 0.951 (0.917, 0.972) 0.952 (0.899, 0.977) 0.760 0.525 ± 0.057

Fraction 0.935 (0.883, 0.945) 0.936 (0.858, 0.971) 0.760 0.521 ± 0.057

* p < 0.0035 indicates statistically significant difference, Bonferroni correction for adjusting significance level a = 0.05/16)
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Fig. 3 Illustration of a typical malignant breast lesion (a) High b-value
(b = 900 s/mm2) diffusion image, (b) lesion ROI on high b-value
diffusion image, (c) ADC map, (d) lesion ROI propagation on ADC

map and (e) lesion ADC histogram with mean ADC value of 0.97 ×
10−3 mm2/s, 25th percentile 0.86 × 10−3 mm2/s, and 2nd order (texture)
entropy 2.307

Fig. 2 Illustration of a typical benign breast lesion (a) High b-value (b =
900 s/mm2) diffusion image, (b) lesion ROI on high b-value diffusion
image, (c) ADC map, (d) lesion ROI propagation on ADC map and (e)

lesion ADC histogram with mean ADC value of 1.80 × 10−3 mm2/s, 25th

percentile 1.70 × 10−3 mm2/s, and 2nd order (texture) entropy 2.140
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ability of ADC texture-based biomarkers to capture spatially
breast intralesion heterogeneity and to assess prediction of
clinical diagnosis.

Regarding breast cancer diagnosis, previously reported
studies have demonstrated the ability of radiomics in dif-
ferentiating malignant from benign breast lesions with

Fig. 4 Illustration of a non-typical malignant breast lesion (a) High b-
value (b = 900 s/mm2) diffusion image, (b) lesion ROI on high b-value
diffusion image, (c) ADC map, (d) lesion ROI propagation on ADCmap

and (e) lesionADChistogramwithmean ADC value of 1.90 × 10−3 mm2/
s, 25th percentile 1.20 × 10−3 mm2/s, and 2nd order (texture) entropy 2.360

Fig. 5 ROC curves
corresponding to the best
individually performing 1st order
statistics feature (25th percentile
with Az = 0.943 ± 0.031), to the
best individually performing 2nd

order statistics texture feature
(Entropy with Az = 0.738 ±
0.052) and the selected ADC
feature subset (25th percentile [1st
order] + Entropy [2nd order
(texture)], with Az 0.965 ± 0.024)
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contrast agent free MRI approaches [21–23, 28, 29].
Especially, Bickelhaupt et al. [22], investigated radiomics
signatures incorporating T2-weighted, conventional DWI
and DWI with background suppression (DWIBS) (b
values of 0 and 1500 s/mm2) and corresponding ADC
maps, providing predictive models of breast cancer.
Their results have demonstrated that radiomics, including
1st order statistics combined to 2nd order statistics
(texture) analysis, extracted from high b-value DWIBS
sequence yielded higher performance (Az 84.2%) than
mean ADC individual feature (Az 77.4%). However, the
T2 shine-through effect may introduce variabilities de-
pending on the choice of high b-value.

Reported studies [26, 27] have mainly exploited ADC
texture analysis, in an effort to minimize variabilities in-
troduced by the choice of low and high b-values, utilized
in different acquisition protocols. Specifically, Suo et al.
[26] exploiting 1st order statistics analysis, reported that
minimum and lower percentiles, as well as 1st order sta-
tistics entropy of ADC values, achieved high diagnostic
performance (Az 0.893). The optimal/selected feature
subset of the current study, including one 1st order statis-
tics feature (25th percentile of lesion ADC map) and one
2nd order statistics (texture) feature (2nd order Entropy of
lesion ADC map), demonstrating the highest classification
performance (Az 0.965 ± 0.024) is consistent with Suo
et al. [26] results, especially regarding with the 25th per-
centile of ADC (Az 0.943 ± 0.031), representing the most
solid/aggressive part of the lesion.

The current study highlights the added value offered by 2nd

order statistics (texture) entropy (Az 0.738 ± 0.052) in im-
proving classification performance to (Az 0.965 ± 0.024), pos-
sibly representing local spatial intralesion heterogeneity of the
most solid/aggressive part of the lesion. The role of 2nd order
(texture) entropy is mainly observed in case of breast cancer
prognosis, including molecular subtypes and hormonal recep-
tor classification [29–31] and response to therapy studies [32,
33].

While results of the current study are encouraging towards
the role of texture analysis of ADC in capturing whole
intralesion heterogeneity, DWI acquisition protocols and
choice of b-values need to be further validated and standard-
ized according to QIBA (The Radiology Society of North
America’s Quantitative Imaging Biomarkers Alliance) [47],
prior to its clinical application. Further acknowledging the
importance of pre-processing in the workflow of radiomics
analysis [48], future efforts will also focus on comprehensive
investigation of the effect of normalization (i.e. histogram
matching, z-score, deep learning) and discretization (i.e. fixed
bin size, fixed bin width) [49] on the performance of the pro-
posed analysis scheme. The incorporation of image normali-
zation is necessary for ensuring reproducibility of the reported
results on heterogeneous datasets, by removing variations

induced by inter-scanner and intra-scanner technical specifi-
cations and imaging acquisition protocols [45, 47, 50, 51].

The current study is limited by a relatively small patient
cohort, as well as variabilities introduced mainly by the semi-
automated segmentation step, while the accuracy of image
registration must be quantitatively assessed. Although, this
study addresses the need of contrast agent free MRI ap-
proaches, focusing on assessing the discriminating ability of
ADC based 1st order statistics and texture analysis in breast
lesion diagnosis, further prospective steps should consider the
contribution of DWI in the frame of multiparametric breast
MRI.

5 Conclusion

Quantitative assessment of breast intra-tumor heterogeneity,
in terms of ADC 1st order statistics combined to ADC texture
analysis, demonstrated that a multivariable diagnostic model,
consisting of two informative features (ADC 25th Percentile
and ADC texture Entropy), improves diagnostic accuracy
with respect to reported state of the art. Further studies are
needed to warrant such contrast agent free MRI approaches
into breast imaging clinical practice.
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