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Abstract. In this work, the nonlinear buckling and post-buckling behavior of  shallow arches made of  Shape 
Memory Alloy (SMA) is investigated. Arches are susceptible to large deflections, due to their slenderness, 
especially when the external load exceeds the serviceability limit point. Beyond this, loss of  stability may occur, 
the famous snap-through buckling. For this reason, curved beams can be used in passive vibration control 
devices for seismic response mitigation, and the geometrically nonlinear analysis is needed for the accurate 
prediction of  their response. Thus, in this research effort, the assumptions of  the Euler-Bernoulli beam theory 
are considered, and the Von Karman strain field is employed to account for large deflections. The formulation 
of  the problem is displacement-based regarding the axial (tangential) and transverse (normal) displacements, 
while the two governing equations are coupled and nonlinear. In order to introduce the SMA constitutive law, 
the stress-strain experimental curves described in the literature are employed together with a fiber approach at 
specific control cross-sections along the beam. The numerical solution of  the longitudinal problem is achieved 
using the Analog Equation Method (AEM), a Boundary Element Method (BEM) based technique, and the 
iterative procedure is based on a Newton-Raphson scheme by using a displacement control algorithm to trace 
the fully nonlinear equilibrium path and overcome the limit points. Several representative examples are studied, 
not only to validate the proposed model but also to investigate the nonlinear buckling and post-buckling of  
SMA shallow arches. 

Keywords: Shallow arches, Shape Memory Alloys, Buckling, Nonlinear Analysis, Fiber Approach. 

1. Introduction 

During the last decades, there is an increasing interest in the development and integration of  smart materials into 
structures due to their outstanding behavior under severe loading conditions (e.g., earthquakes). These kinds of  materials 
can usually adjust their properties to provide various functions that improve the overall behavior of  structures and mitigate 
their damage. Shape memory alloys (SMAs), as a class of  intelligent materials, exhibit an exemplary performance and 
have been applied in many structural sectors, such as aerospace, robotics, biomedical, civil [1] due to their ability to recover 
their shape by heating or mechanical unloading after sustaining severe deformation. This kind of  material exhibits an 
ordered crystal structure meaning that atoms have specific locations in a lattice-like formulation. SMAs have two unique 
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properties, namely, shape memory effect (SME) or thermoelasticity and superelasticity or pseudoelasticity (PE) due to the 
nonlinear stress-strain curve that describes the SMAs’ behavior. The SME refers to the phenomenon that SMAs return to 
their original shapes upon heating. The superelasticity, realized later than the SME, refers to the phenomenon that SMAs 
can undergo a large amount of  inelastic deformations (up to 15%) and recover their shapes after unloading at a constant 
temperature. The loading paths are not identical to the unloading ones, and as a result stress-strain hysteresis loops are 
formed. These unique properties are the result of  reversible phase transformations between more-ordered (austenitic) and 
less-ordered product (martensitic) crystallographic structures under stress and/or temperature variations [2-5]. The 
transformations are diffusionless and take place through atomic movements, which are less than one atomic spacing. The 
SMA which is most commonly used in applications is Nitinol (NiTi), composed of  nickel and titanium, which possesses 
superior thermomechanical and thermoelectrical properties [6]. In most NiTi-SMA devices, the structural elements that 
have been employed are beams, bars or cables (e.g. in passive, active and semi-active control of  civil structures [1]), and, 
thus, can be simulated by one-dimensional models. SMA beams have been utilized as actuators, energy harvesters, and 
health monitoring devices for structures. The resisting mechanism of  SMA beams in most applications is through bending. 

Together with the beam theory employed to simulate the SMA structures, an appropriate constitutive model is highly 
crucial since the conventional theories or laws cannot describe the response of  SMA structural elements. During the first 
studies, the proposed models were either not able to predict the SME [7-8] behavior or their focus was only on the PE 
keeping the temperature constant in order to simplify the problem under investigation (e.g., uniaxial tension stress-strain 
response [9], pure bending of  an Euler-Bernoulli beam [10]). Both one [9-10] and three-dimensional [11] constitutive 
models have been developed reproducing the PE and following simplifying assumptions (isotropy). The formulations 
developed in the studies mentioned above [9-10] allow for different elastic properties between austenite and martensite. 
Additionally, the formulation in [10] accounts for tensile-compressive asymmetry, which is discussed below, since the 
bending problem is examined. Various homogenization schemes reported in the literature, such as Mori-Tanaka [12], 
Reuss [9], Voigt [9], have been employed for the derivation of  the elastic modulus tensor and the results have been validated 
against experiments [9]. More elaborate SMA constitutive models have also been developed to predict both PE and SME 
for both one- or three-dimensional models [13-15] allowing for more accurate computer-aided analysis of  SMA structures 
under various loading. The 1-D constitutive model reported in [13], which is the first model able to predict the SME, has 
been employed in the analysis of  composite beams with SMA inclusions [16-17]. Moreover, the 3-D constitutive SMA 
model reported in [14] and its improved form [15] have also been employed in recent studies on SMA beams [18-19]. 
Except for the primary phases mentioned above (SME and PE), secondary phases might also need to be considered. These 
are related to incomplete phase transformation and asymmetric behavior in tension and compression [10, 20]. Several 
research efforts proposed relevant one-, two- or three-dimensional models that consider the differences between the elastic 
properties and responses of  SMAs [21-25]. The models above are generally employed up to now in order to study the 
behavior of  beams under bending and are usually integrated with the Finite Element Method (FEM). In an effort to reduce 
the computational cost of  the existing numerical SMA models, analytical solutions have also been proposed describing 
both SME and PE as well as addressing limitations related to asymmetric compression-tensile stresses [26] or different 
stiffness of  austenite and martensite [27-29]. To gain a more comprehensive understanding of  the mechanical responses 
of  superelastic SMAs, several experiments have been performed on NiTi cylindrical SMA bars under uniaxial tension, 
compression, bending, and/or buckling [30-31]. Additionally, SMA material stress-strain experimental curves fitted by 
polynomials have also been adopted in order to develop simplified computational tools for the investigation of  SMA beams 
sustaining large deformations [32]. 

Since the classical beam theory assumption that plane cross-sections remain both plane and perpendicular to the 
longitudinal axis of  the SMA beam is proved experimentally to be not valid [31], the use of  more elaborate beam models 
becomes essential. Towards more accurate solutions and based on a simple 1D superelastic constitutive law, analytical 
moment-curvature relations for SMA beams have been reported in the literature throughout the years [2, 26, 33-34]. 
However, to reduce the complexity of  the analytical formulation, many studies employ classical Euler-Bernoulli theory 
(EBT) to study the deformations of  SMA beams under various loading [10, 18, 20, 26, 35, 36]. In [20], the bending of  a 
composite beam is studied through a semi-analytical method instead of  the commonly used FEM. Contrary to many other 
studies that employ EBT, the location of  the cross section’s neutral axis is considered as an unknown in [20]. Moreover, 
the bending-curvature analytical expression is obtained in [26] employing the assumptions of  EBT. Based on the EBT, the 
dynamic behavior of  SMA beams considering PE effect has also been studied for forced or free vibrations [19]. In other 
studies, the Kirchhoff  hypothesis is employed together with the EBT’s assumptions in order to account for geometric 
nonlinearities of  SMA beams under combined tension and bending [32]. Finally, thermo-mechanical studies of  SMA 
structures have been performed with the aid of  EBT [35-36]. Towards more accurate modeling of  SMA beams in bending 
with loading and unloading cycles, the Timoshenko beam theory (TBT) has been employed in order to derive moment-
curvature and shear force-strain relations or generally study the bending behavior of  superelastic SMA beams [2, 29, 37-
38]. Additionally, employing a nonlinear large deformation theory (von Kármán strain field) and Brinson SMA the EBT’s 
assumptions, the behavior of  beams with SMAs under tension-compression tests at different temperatures as well as under 
loading-heating (or heating-loading) paths have been examined [39]. Other very recent studies employ the von Kármán 
strain-displacement relation and the one-dimensional model [13] to study analytically the thermal buckling, and post-
buckling behavior of  composite beam reinforced with SMAs [40]. In a similar concept, the Brinson model is employed 
together with the von Kármán strain-displacement fields and the TBT in order to investigate the nonlinear thermal buckling 
of  functionally graded beams with SMA layers [41]. Yet the investigation of  buckling and post-buckling behavior is still an 
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open issue for the design of  various structural members either initially flat, such as beams [42, 43] and plates [44-46], or 
initially curved, for example, shells [47-51]. Recently, Tsiatas et al. [52] introduced a new layered approach to the nonlinear 
analysis of  initially straight Euler-Bernoulli beams by the Boundary Element Method (BEM). The beam was made of  a 
superelastic Shape Memory Alloy (SMA) and studied in the context of  both geometrical and material nonlinearity. To the 
authors’ knowledge, there is not reported formulation of  SMA models that consider a shallow arch geometry directly in 
the derivation of  equilibrium equations and the nonlinear regime. 

In this work, the nonlinear buckling and post-buckling behavior of  shallow arches made of  SMAs is investigated. 
Curved beams are often used in several engineering fields such as civil, mechanical, and aeronautical engineering. It is 
well known that arches are susceptible to large deflections, due to their slenderness, especially when the external load 
exceeds the serviceability limit point. Beyond this, loss of  stability may occur, the famous snap-through buckling [53]. Such 
systems are known as bi-stable systems; that is, they present two distinct stable configurations under identical loading 
conditions. During the transition between these configurations, the system exhibits negative stiffness characteristics while 
mechanical energy is dissipated. For this reason, arches can be used in passive vibration control devices for seismic 
response mitigation [54, 55], and the geometrically nonlinear analysis is needed for the accurate prediction of  their 
response. Thus, in this research effort, the assumptions of  the Euler-Bernoulli beam theory are considered, and the Von 
Karman strain field is employed to account for large deflections. Notably, the beam undergoes large displacements with 
small strain and moderate rotations (intermediate nonlinear theory) under general boundary conditions which may be 
nonlinear. The formulation of  the problem is displacement-based regarding the axial (tangential) and transverse (normal) 
displacements, while the two governing equations are coupled and nonlinear. In order to introduce the SMA constitutive 
law, the stress-strain experimental curves described in [32] and [52] are employed together with a fiber approach at specific 
control cross-sections along the beam. However, a similar method can be followed in order to develop beam models made 
of  other SMA (e.g., iron-based SMAs) if  an appropriate constitutive model is utilized. The numerical solution of  the 
longitudinal problem is achieved using the Analog Equation Method (AEM), a Boundary Element Method (BEM) based 
technique [56]. The iterative procedure is based on a Newton-Raphson scheme by using a displacement control algorithm 
to trace the fully nonlinear equilibrium path and overcome the limit points. The novelty of  this work lies in the investigation 
of  the nonlinear buckling and post-buckling of  SMA shallow arches through a reliable and robust numerical method which 
can handle any given nonlinear constitutive law. 

2. Statement of the Problem 

Let us consider a curved beam with a centroidal axis that lies in the xz  plane. The initial radius of  curvature is denoted 
by .R  A curvilinear coordinate system ( , , )s n t  is employed. The s  coordinate spans the centroidal axis of  the 
undeformed curved beam, while n  is the radial coordinate and t  is normal to the plane of  the paper (see Fig. 1a). The 
beam has a uniform cross-section, i.e. the axial EA  and bending stiffness EI  are constant, and it is subjected to the 
distributed load ( )n np p s  along the radial direction (see Fig. 1b). 

 

L
0h

R

lz

xs
n

 (a) 

 
 

x

Q

 np s

N dN

z

M dM

N

M

Q dQ 

 

 (b) 

Fig. 1. (a) Geometry of  the shallow arch and (b) conventional positive forces and moments acting on an infinitesimal curved 
element. 

Considering the cross-sectional deformations, the Euler-Bernoulli assumptions hold. The nonlinear strain-
displacement relations are obtained following the general shell theory simplified for cylindrical shells [57]. More 
specifically, the von Kármán axial nonlinear strain for straight beams is augmented with the term w R  which 
represents the increase in length due to the displacement w  [58]. The analysis is performed in the context of  small 
strains-moderately large rotations which allows us to retain the nonlinear term 2,sw  and to omit the nonlinear terms 

 2
/u R  and , /suw R  of  the non-linear strain-displacement relation [59]. Note that,  u u s  is the axial and 



668 George C. Tsiatas et. al., Vol. 6, No. 3, 2020 
 

Journal of  Applied and Computational Mechanics, Vol. 6, No. 3, (2020), 665-683   

 w w s  the normal displacement (opposite to the radial direction as in Fig. 1a) of  the centroid, respectively, and  ,s , 

 ,ss  denote the first and second derivative with respect to s . 

The simplified Green-Lagrange strain ( , )s zε ε  (with 0zzε  ) [60] at an arbitrary point ( , )s z  on the cross-section of  

a curved beam can be decomposed into a membrane mε  and a bending bε  component [52] 

 ( , ) m bs zε ε ε  , (1) 

which can be written as 

 21
, ,

2m s s

w
u w

R
ε    ,   ,b sszwε  , (2), (3) 

Applying the equations of equilibrium at a typical element of length ds  with all the pertinent forces acting on it (Fig.1b), 
the following equations are obtained [53] 
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where 

    , , ,s su w Nw , (7) 

is the nonlinear term due to the nonlinear strains. Furthermore, the stress resultants appearing in the equilibrium equations, 
i.e., the axial force, bending moment and shear force are given by the relations 
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respectively. Eliminating Q  from Eqs. (4) to (6) and substituting the nonlinear term from Eq. (7), the governing 
equations of the curved beam can be written as 
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Equations (11), (12) can as well be written in terms of the displacements, substituting Eqs. (8) and (9) into Eqs. (11) and 
(12) 
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. (14) 

The above differential equations are subjected to the corresponding boundary conditions, which are given as 

    1 2 30 0a u a N a  ,      1 2 3a u l a N l a  , (15), (16) 

    1 2 30 0w Qβ β β  ,      1 2 3w l Q lβ β β  , (17), (18) 

    1 2 3, 0 0sw Mγ γ γ  ,      1 2 3,sw l M lγ γ γ  , (19), (20) 
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where , , , , , ( 1,2,3)k k k k k ka a kβ β γ γ   are given constants specified at the boundaries of the beam 0,x L . It should be 

noted that the boundary conditions in Eqs. (15) through (20) are the most general boundary conditions and may also 
include elastic support. It is obvious that all types of the conventional boundary conditions (clamped, simply supported, 
guided edge, etc.) can be derived from these equations by appropriately specifying these functions (e.g. for a clamped beam 

the only non-zero constants are 1 1 1 1 1 1 1a a β β γ γ      ). 

3. Numerical Formulation 

3.1 The AEM Solution 

Following the previous analysis, the geometrically nonlinear problem of  Euler-Bernoulli shallow arches reduces in 
establishing the displacement components  u u s  and  w w s  having continuous derivatives up to the second and 

fourth-order with respect to s , respectively. These two displacement components must satisfy the coupled differential Eqs. 
(13)-(14) inside the beam, and the boundary conditions are given by Eqs. (15)-(20) at the beam ends. The boundary value 
problem described by Eqs. (13)-(20) is solved employing the Analog Equation Method. According to the analog equation 
principle, the two coupled differential Eqs. (13)-(14) are substituted by the following analog equations 
Following the previous analysis, the geometrically nonlinear problem of  Euler-Bernoulli shallow arches reduces in 
establishing the displacement components  u u s  and  w w s  having continuous derivatives up to the second and 

fourth-order with respect to s , respectively. These two displacement components must satisfy the coupled differential Eqs. 
(13)-(14) inside the beam, and the boundary conditions are given by Eqs. (15)-(20) at the beam ends. The boundary value 
problem described by Eqs. (13)-(20) is solved employing the Analog Equation Method. According to the analog equation 
principle, the two coupled differential Eqs. (13)-(14) are substituted by the following analog equations 

  1,ssu q s ,    2,ssssw q s , (21), (22) 

applying the linear differential operators of  the 2nd and 4th order respectively to  u u s  and  w w s . Both operators 

have known fundamental solutions. Thus, the solution of  the system of  Eqs. (13)-(14) can be established by solving the 
uncoupled system of  Eqs. (21), (22) under the same boundary conditions given by Eqs. (15)-(20), provided that the 
fictitious load distributions 1q , 2q  are first determined. The solution procedure is implemented only numerically by 

dividing the interval  0, l  into N  equal elements on which 1q  and 2q  are assumed constant. 

The integral representation of  the solution can be written as  
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where  ,u u sξ  ,  ,w w sξ   are the fundamental solutions of  the linear differential operators of  the 2nd and 4th 

order respectively, obtained as [61] 
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u s rξ  , (25) 

  3 2 31
( , ) 3 2

12
w s r l r lξ    , (26) 

where r sξ   is the distance between a constant source point at s and ξ  runs the interval  0, l . The integral 

representation of  the derivatives of  the field functions u , w  can be as well derived by immediate differentiation of  Eqs. 
(23) and (24). Moreover, in order to evaluate boundary quantities that are necessary to establish the solution of  the problem, 
the integral representations (23) and (24) are applied to the interval ends 0 , l  as 0os s   , ls s l  . Thus, the 
obtained boundary integral equations together with the boundary conditions (15)-(20) permit the establishment of  the 
boundary quantities in terms of  the fictitious load. 
Since the fictitious loads 1q , 2q  are unknown quantities, a discretization scheme along the interval  0, l  is needed in 

order to approximate the domain integrals in Eqs. (23) and (24). The interval is divided into N  line elements on which 
the fictitious loads are assumed to vary according to a predefined law (constant, linear, parabolic, etc.). In this work, the 
case of  the constant element assumption is adopted since it combines high accuracy results with simple numerical 
implementation (see Fig. 2). 
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Fig. 2. Constant discretization elements along the interval  0, l  and fictitious load curve. 

For a detailed description of  the method, the interested reader is referred to the paper of  Sapountzakis and Mokos [61]. 
The final step of  the AEM is the collocation of  the governing equations (13) and (14) at the N  internal nodal points and 
subsequently the substitution of  the values of  the field functions u , w  and their derivatives. These equations together 
with the boundary conditions constitute a nonlinear system of  2 6N   algebraic equations of  2 6N   unknowns, of  
the form 

 ( ) f x p , (27) 

where  1 2, ,
Tx q q c , and p  is a generalized loading vector. Note that 1 2,q q  are vectors containing the unknown 

fictitious loadings at the N  nodes, and c  is also a vector containing the six arbitrary integration constants which are 
determined from the respective boundary conditions. 
It should be noted that for a better approximation of  the fictitious load distributions 1q , 2q , an isogeometric formulation 
may be a better platform as the underlying basis functions are higher-order [62-64]. 

3.2 The displacement control algorithm 

The nonlinear algebraic system, described by Eq. (27), is solved numerically using the modified Powell’s hybrid 
algorithm [65]. This algorithm is a variation of  Newton’s method, which uses a finite difference approximation to the 
Jacobian matrix of  the system that corresponds to the generalized stiffness matrix of  the problem. The nonlinear 
equilibrium path of  the beam is traced with a load control procedure taking precautions to avoid large step sizes or 
increasing residuals. The method requires an initial guess of  the solution at each load step; x 0  is used at the first step, 
while for the next steps, the resolved vector of  the previously converged step is employed. The convergence criterion of  the 
algorithm is defined by a tolerance parameter, which in this work is set to 710 . 
However, unstable equilibrium paths are frequently encountered in the nonlinear structural analysis, e.g. due to snap-
through and snap-back buckling phenomena. A shallow arch is a typical example of  structures that exhibit unstable (snap-
through) behavior at a certain level of  external vertical loading. In such cases, load control algorithms fail to fully trace the 
convoluted load-displacement curve when reaching the first limit point, that is the point at which the concavity of  the 
curve changes. To overcome such limit points, a modification to the load control strategy is necessary. This can be achieved 
by the displacement control algorithm, which uses a dominant displacement component as an independent parameter 
instead of  the usual loading parameter [66]. Although the displacement control algorithm copes very well in problems 
with snap-through buckling, for more complex problems that exhibit snap-back behaviors recourse to the cylindrical arc-
length control algorithm is inevitable. 
In the displacement control algorithm, a displacement component is selected at one of  the structure’s degrees of  freedom 
and is incremented by a prescribed amount ctrluΔ  at each load step. Consequently, an extra restraining equation is added 
to the nonlinear system of  Eqs. (27) of  the form 

 ctrl ctrl 0x u  , (28) 

where ctrlx  is the component of  the unknown vector x  that corresponds to the selected degree of  freedom and ctrlu  is 
the imposed known value of  the displacement at each step. In turn, the load vector is considered as an unknown variable 
and must be adjusted within the load step so as the selected displacement takes the prescribed value. Taking into account 
these considerations, the system of  Eqs. (27) together with E. (28) comprise a nonlinear system of  2 7N   equations 
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with 2 7N   unknowns that can be written as 

 ( , )λ g x 0 , (29) 

where λ  is the parameter that multiplies the loading vector. Further, an incremental procedure is commenced for the 
solution of  the nonlinear system described by Eq. (29) starting with an initial guess of  the vector x  and the loading 
parameter λ . Next, for the first increment of  ctrlu  the system is solved with the modified Powell’s hybrid algorithm. The 

obtained solution ( , )λx  is considered as an initial guess for the next increment of  ctrlu  and the procedure starts over 

again and continues up to either the analyst’s desired value ctrlu  or the failure of  the structure. The solution of  the system 

provides the values of  the fictitious loads 1q , 2q  as well as the values of  the field functions u , w  and their derivatives 
at the N  internal nodal points. 

3.3 The Layered Analysis 

The previous analysis applies when the stress resultants N  and M  can be expressed as continuous functions one 
and two times differentiable in terms of  s , respectively, as in Eqs. (8), (9). In such cases, they can be analytically 
differentiated with respect to s  and the governing equations can be obtained directly in terms of  the displacements in 
Eqs. (13), (14). However, this is not always possible since the constitutive law of  the material is not always a priori known, 
or even cannot be expressed by a mathematical function but only by sets of  experimental data. When this is the case, an 
alternative method of  integration over the cross-section must be adopted in order N  and M  can be determined. Further, 
an appropriate numerical scheme must be established for the differentiation of  the stress resultants in terms of  s  and the 
satisfaction of  the governing Eqs. (11), (12). To this end, a layered approach [52] is employed for the integration over the 
cross-section in conjunction with the AEM for the differentiation along the beam length. The fiber/layered approach has 
found numerous applications on various engineering problems, such as, a fiber-based nonlinear Euler-Bernoulli beam 
modeling to capture the plasticity growth in large-deformation frames [63], snap-through instability behaviors of  structures 
that exhibit temperature-dependent material response [67], a higher-order gradient damage model [68]. 
In principle, the layered analysis comprises two distinct discretization steps. First, the beam length is divided into a number 
of  monitoring cross-sections. The position of  each cross-section coincides with the nodal points of  the longitudinal 
discretization and the two ends of  the beam. Second, each cross-section is decomposed into a number of  layers of  constant 
height. It is assumed that within each layer Eqs. (2), (3) hold for the nonlinear strain-displacement relation (see Fig. 3). 
Consequently, strains are expressed in terms of  the nodal displacement component at the center of  the layer. Next, given 
the strain-displacement expressions, stresses can be determined, and the stress resultants can be evaluated with a numerical 
integration scheme. The discretization scheme is depicted in Fig. 3. 
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1i node 1i 
x
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y

1
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Fig. 3. Discretization of  the beam into monitoring cross-sections, cross-section layers, and strain distribution.  

An odd number of  layers k  is selected so the center of  the beam’s cross-section is located at the middle of  the  1 /2k   

layer. The constant height of  the layers is hΔ . The z  coordinate of  the center of  the i -th layer is written as 

 
1

2i

k
z i hΔ

      
. (30) 

The axial force iN  and the bending moment iM  for each layer can be computed as 



672 George C. Tsiatas et. al., Vol. 6, No. 3, 2020 
 

Journal of  Applied and Computational Mechanics, Vol. 6, No. 3, (2020), 665-683   

 i
i iN Aσ Δ ,   i

i i iM z Aσ Δ , (31), (32) 

where  i ifσ ε  are the stress component at the center of  each layer and iAΔ  the area of  each layer. Therefore, the 

stress resultants can be approximated as  

 
0

k
i

i
i

N Aσ Δ


 ,   
0

k
i

i i
i

M z Aσ Δ


 . (33), (34) 

After the determination of  the axial force and the bending moment at each node, their derivatives are evaluated numerically 
using a method thoroughly described in [69]. Having established the numerical expressions of  the stress resultants and 
their derivatives in terms of  the unknown nodal displacements, the nonlinear Eqs. (11) and (12) together with the 
boundary conditions given in Eqs. (15)-(20) are solved employing the displacement control algorithm described previously. 
The employed subroutine that solves the system of  the nonlinear equations by implementing the displacement control 
algorithm is called directly by the main program and is described by the pseudocode compiled in Table 1. 

Table 1. Pseudocode of  the nonlinear solver with displacement control. 

Initialize displacement control method variables (displacement increment step and error tolerance) 

Initialize the solution vector guessx  and the loading parameter 0λ . 

for a defined number of  iterations j  

ctrl ctrlu j uΔ  

call the subroutine that solves the system of  nonlinear equations (modified Powell hybrid algorithm and 

finite-difference approximation to the Jacobian) and provides the solution ( , )λx  

update the solution vector and the loading parameter 

guess x x  

 for the number of  nodes N of  the longitudinal discretization i  

 calculate displacements and their derivatives at each node 

for a defined number of  layers of  the cross-section discretization k  

 calculate strains and stresses (according to constitutive laws of  SMAs later 

described) and stress resultants on each cross-sectional layer  

calculate stress resultants for the whole cross-section of  a curved nonlinear beam 

end for 

 end for 

end for 

4. Stress-strain Constitutive Equation 

In view of  the above-described methodology, a stress-strain experimental curve of  the following polynomic form is 
employed in the layered analysis loop (Table 1): 

 2 3 4 5
1 2 3 4 5( , )s zσ α ε α ε α ε α ε α ε      (35) 

where 1 2 3 4, , ,α α α α  and 5α  are constants derived by the least-squares method and the corresponding experimental curve. 
Their values can differ depending on the experimental data employed. The fitted stress-strain curves studied in this work 
are reported by Shang and Wang [32] and Tsiatas et al. [52].  
In [32] the superelastic TiNi shape memory alloy bars provided by Xi’an Saite Metal Materials Development Co., Ltd 
served as experimental materials. The chemical compositions of  SMA materials were Ti-55.86 wt% (weight percent) Ni, 
the phase transformation temperatures were Mf = −53 ◦C, Ms = −33 ◦C, As = −25 ◦C, Af = −5 ◦C, the diameter of  the 
experimental bars was 2.5 mm, and the phase composition at room temperature was austenite. In this case, the polynomic 
form of  the stress-strain curve is  

 6 2 7 3 8 4 8 5( , ) 70000 2.8 10 4.474 10 2.1001 10 1.419 10s zσ ε ε ε ε ε          (36) 

In [52] the SMA’s stress-strain relation obtained by interpolating the experimental curve presented in [70] for the Zhang 
and Zhu [71] testing program. The wire testing program involved superelastic nitinol wires with a diameter of  0.58 mm, 
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acquired from Memry Corporation. These cold-drawn nitinol wires had a composition to exhibit superelastic behavior. 
The ultimate tensile strength of  the tested nitinol wires was 1400 MPa. The uniaxial tension test of  the superelastic nitinol 
wires was carried out using an MTS servohydraulic test machine at room temperature of  23 ◦C, and the gage length of  the 
wire test specimens was 254 mm (10 inches) [59]. In this case, the polynomic form of  the stress-strain curve is 

 6 2 7 3 8 4 9 5( , ) 43308.4 1.84007 10 3.8728 10 3.49169 10 1.15776 10s zσ ε ε ε ε ε          (37) 

The stress-strain curves of  the two models are shown in Fig. 4a. It is obvious that the model of  Shang and Wang [32] 
exhibits a stiffer response, namely a higher restoring force, as compared to that of  Tsiatas et al. [52]. However, the shape 
of  both curves exhibits common features.  

 (a) 

      (b) 

Fig. 4. Stress-strain curve of  SMA 

In general, the curves are divided into three regions during loading (see Fig. 4b). The first one which accounts for the 
almost linear part before the critical stress criticalσ  has been reached, the second one which describes the phase 
transformation of  the material to martensite (associated with a reduced modulus of  elasticity) and the third region which 
accounts again for a linear behavior but of  a stiffer material with different modulus of  elasticity. The ambient temperature 
is constant and higher than the temperature at which the microstructure of  the material is fully austenitic ( fA ). Thus, the 

initial austenite is loaded elastically (first region of  the superelastic curve) up to the critical stress after which the 
transformation to martensite initiates (second region of  the curve). Afterward, the martensitic volume fraction is gradually 
increased in the microstructure until it becomes dominant. When the loading is increased further, the created fully 
martensite is elastically deformed with a Young modulus smaller than the one of  the elastic initial austenitic phases, but 
still significantly higher than the modulus during the transformation phase. 
The considered polynomial curves can accurately describe this behavior and can be simply integrated into the solution 
algorithm for the proposed numerical procedure presented illustrated by the flowchart in Fig. 5. 

5. Numerical Examples 

Based on the numerical procedure presented in the previous sections, a computer program has been developed, and 
representative examples have been studied in order to demonstrate the efficiency and accuracy of  the proposed method. It 
is noted that the numerical results have been obtained with up to 71 nodal points (longitudinal discretization) and up to 21 
layers (cross-sectional discretization) unless otherwise stated. However, it should be noted that satisfactory convergence 
and accuracy could also be achieved with a coarser discretization.  
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Fig. 5. A flowchart of  the solution algorithm for the determination displacements, strains, and stresses in an SMA arch 

(a) 

(b) 

Fig. 6. Shallow arches geometrical characteristics of  Example 5.1 
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Example 1: Steel shallow arch 

In the first example, we study the nonlinear response of  both fixed (Fig. 6a) and pin-ended (Fig. 6b) steel shallow arches 
subjected to a compressive distributed load in the radial direction. The arch has a uniform rectangular cross-section b h . 
The data employed are: 34.0 mL  , 1.0 mb  , 0.3mh  , and 6 2200 10 kN/mE   . The results are obtained using 
121 elements and 21 layers. 
To compare the results obtained from the presented layered formulation, the arches are also analyzed using the numerical 
method presented by Tsiatas and Babouskos [53], who employed an analytical cross-sectional integration for the evaluation 
of  the stress resultants. In this case, all the results were obtained using 121N   elements. The results for the central 
displacement obtained by the two numerical methods are presented in Table 2. It can be concluded that for both fixed and 
pin-ended shallow arches the results show a very good agreement. 

Table 2. Central displacement for both fixed and pin-ended shallow arches in example 5.1 

w (m) q (kN/m) 
Analytical integration 

q (kN/m) 
Layered approach 

w (m) q (kN/m) 
Analytical integration 

q (kN/m) 
Layered approach 

fixed arch pin-ended arch 

0.100 35.529 35.532 0.090 16.574 16.574 

0.196 50.120 50.124 0.181 21.360 21.364 

0.291 53.223 53.234 0.271 18.502 18.513 

0.387 51.280 51.302 0.361 11.626 11.645 

0.482 49.350 49.343 0.452 3.902 3.921 

0.582 51.583 51.578 0.542 -1.340 -1.337 

0.678 61.333 61.317 0.723 13.165 13.073 

0.773 82.281 82.148 0.803 38.572 38.406 

First, the curves of  the load versus normalized central displacement of  the fixed arch are shown in Fig. 7, for the two 
methods. A snap-through buckling occurs when the external load becomes greater than 53.24 kN/mcrq  . The result is 
also verified using the approximating relation (78) for the symmetric buckling load of  fixed arches, presented in [72], which 

gives 51.97 kN  for modified slenderness 2 / 4 / 11.14s l R I Aλ   . 

 

Fig. 7. Load versus normalized central displacement curves of  the fixed arch in example 5.1. 

 

Fig. 8. Load versus normalized central displacement curves of  the pin-ended arch in example 5.1.  
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Second, the curves of  the load versus normalized central displacement of  the pin-ended arch are shown in Fig. 8, for the 
two methods. A snap-through buckling also appears when the external load becomes greater than 21.37 kN/mcrq  . The 
result is again verified using the approximating relation (59) for the symmetric buckling load of  pin-ended arches, presented 

in [72], which gives 21.81kN  for the different modified slenderness 2 / 4 / 8.35s l R I Aλ   . 

Example 2: SMA shallow arch for two load types 

In this second example, the nonlinear response of  fixed and pin-ended shallow arches made of  SMA is studied. The 
arch is separately examined for a compressive distributed load in the radial direction and for a concentrated vertical load 
at the midspan. The arch has a uniform rectangular cross-section b h . The data employed are: 0.5mL  , 

0.01mb h   and 0.35mR  . Considering the constitutive law of  the SMA, the two models presented in section 4 are 
examined. 
Firstly, the behavior of  the shallow arch under a radial uniformly distributed load is examined. The analysis is performed 
for fixed and pin-ended boundary conditions for each polynomial curve and the nonlinear curves of  load versus normal 
displacement at the center of  the arch are depicted in Fig. 9. Next, the shallow arch is subjected to a concentrated load at 
the midspan, and the corresponding nonlinear curves are shown in Fig. 10.  

(a) 

(b) 

Fig. 9. Uniformly distributed load versus normalized central displacement curves of  the (a) fixed and (b) pin-ended arch in 
example 5.2. 

It is noteworthy that the buckling load differs significantly for both SMA models. As was expected the stiffer model of  
Shang and Wang [32] exhibits larger buckling loads compared to that of  Tsiatas et al. [52] for the two types of  boundary 
conditions. However, for both models, the post-buckling behavior presents similar characteristics. Moreover, from the 
obtained results it can be deduced that the influence of  the boundary conditions on the buckling and post-buckling is 
significant. For both load types, the fixed arch manifests larger buckling loads compared to the pin-ended arch. Note that, 
the presented results are limited to the common displacement range of  the two models, which is usually controlled by the 
Tsiatas et al. [52] model. 
Finally, in Figs. 11 and 12 the profiles of  the axial force and the bending moment are presented for both SMA models and 
for both types of  boundary conditions for distributed loading. It must be noted that all the curves refer to the respective 
critical state for each case, namely when the load is equal to the buckling load. 
The main conclusion drawn by this example is that there is no unique constitutive law describing the superelastic behavior 
of  the SMA material. The stress-strain constitutive curve depends on a variety of  parameters including the chemical 
composition of  the alloy, and geometrical and training effects, to name only a few. As so, an experimental test should 
always precede any numerical modeling. 
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(a)  

(b) 

Fig. 10. Concentrated load versus normalized central displacement curves of  the (a) fixed arch and (b) pin-ended arch in example 5.2. 

(a) 

(b) 

Fig. 11. Profile of  the (a) axial force and (b) bending moment of  the fixed arch under uniformly distributed load in example 5.2. 

Example 3: SMA shallow arch for three modified slenderness ratios 

In this third example, the influence of  the modified slenderness 2 /(4 / )s l R I Aλ   to the nonlinear response of  

fixed and pin-ended shallow arches made of  SMA is investigated. Two separate load types are considered, a compressive 
distributed load in the radial direction and a concentrated vertical load at the midspan. The arch has the geometrical 
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characteristics of  the previous second example, whereas three values of  radius of  curvature are considered, namely 
0.35mR  , 0.40mR  , and 0.45mR   with respective values of  modified slenderness 76.75sλ  , 63.16sλ  , 

and 54.09sλ  . The SMA is described by the stress-strain relation presented by Shang and Wang [32] which is more 
suitable for a beam. In Figs. 13 and 14, the nonlinear curves of  uniformly distributed and concentrated load versus normal 
displacement at the center of  the arch are shown for the two types of  boundary conditions and the three modified 
slenderness ratios. For all the examined arches it is revealed that the greater the modified slenderness ratio, the greater the 
critical load. 

Table 3. Uniformly distributed and concentrated buckling loads for the three values of  modified slenderness for both fixed and 
pin-ended shallow arches in example 5.3 

Modified 
slenderness ratio 

uniformly distributed load 
(kN/m) 

concentrated load 
(kN) 

λs fixed pin-ended fixed pin-ended 

54.09 37.419 30.951 4.097 3.577 

63.16 42.018 33.980 4.302 3.718 

76.75 47.070 37.024 4.467 3.818 

(a) 

(b) 

Fig. 12. Profile of  the (a) axial force and (b) bending moment of  the pin-ended arch under uniformly distributed load in example 5.2. 

(a) 

Fig. 13. Uniformly distributed load versus normalized central displacement curves of  the (a) fixed and (b) pin-ended arch for 
several values of  modified slenderness in example 5.3. 
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(b) 

Fig. 13. Continued. 

(a) 

(b) 

Fig. 14. Concentrated load versus normalized central displacement curves of  the (a) fixed and (b) pin-ended arch for several values 
of  modified slenderness in example 5.3. 

Comparing the post-buckling response of  the concentrated load case for the two types of  boundary conditions (see Fig. 
14a and 14b), the pin-ended arch exhibits a completely different behavior compared to that of  the fixed arch since the load-
carrying capacity decreases rapidly after the buckling. Moreover, the fixed arch under concentrated load (see Fig. 14a) 
exhibits a “snap-through type” buckling in contrast to the fixed arch under uniform load (see Fig. 13a). This happens 
because in the former case (Fig. 14a) the maximum strain emerges in the third region of  the stress-strain curve (see section 
4) which accounts for a linear stiffening behavior with a higher modulus of  elasticity. Lastly, in Table 3 the critical loads 
of  the analyzed arches are presented for all types of  boundary conditions, modified slenderness ratios, and load types. 

6. Conclusions 

In this paper, the nonlinear buckling and post-buckling behavior of  shallow arches made of  Shape Memory Alloy 
(SMA) was investigated. In order to introduce the SMA constitutive law, the stress-strain experimental curves described in 
the literature were employed together with a fiber approach at specific control cross-sections along the beam. The numerical 
solution of  the longitudinal problem was achieved using the Analog Equation Method, together with an iterative procedure 
which was based on a Newton-Raphson scheme and a displacement control algorithm. Several representative examples 
were studied, validating the assumptions made for the proposed model and the solution algorithm. The essential features 
and novel aspects of  the present formulation are summarized as follows: 
 Numerical results for the nonlinear buckling load of  SMA shallow arches are reported for the first time in the literature. 
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 The employed solution method exhibits stability and a small number of  constant elements are adequate to obtain 
accurate results for the displacements and the stress resultants. 

 A new displacement control algorithm is used for the solution of  the nonlinear system of  equations. This method 
allows following the nonlinear equilibrium path and overcomes successfully bifurcation and limit points.  

 Although this displacement control algorithm copes very well in problems with snap-through buckling, for more 
complex problems that exhibit snap-back behaviors recourse to the cylindrical arc-length control algorithm is 
inevitable. This is, however, the subject of  future research. 

 The proposed method can handle any SMA stress-strain relation (derived by an experimental curve) in the 
formulation of  the nonlinear deformation differential equations. 

 There is no unique constitutive law describing the superelastic behavior of  the SMA material. As so, an experimental 
test should always precede any numerical modeling. 

 In general, the buckling load differs significantly for both examined SMA models, and the influence of  the boundary 
conditions on the buckling and post-buckling is pronounced. However, for both models, the post-buckling behavior 
presents similar characteristics.  

 As the radius of  the arches increases, the modified slenderness ratio decreases. From all the examined arches it is 
revealed that the greater the modified slenderness ratio, the greater the critical load. 

 The pin-ended SMA arch exhibits a completely different behavior compared to that of  the fixed arch since the load-
carrying capacity decreases rapidly after the buckling. 
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