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Abstract

In this doctoral thesis we furnish structural results for signed-graphic matroids
focusing mainly on two subclasses binary and quaternary signed-graphic matroids.
Our purpose is to decompose the class of quaternary signed-graphic matroids and
to characterize the classes of cographic signed-graphic and binary signed-graphic
matroids.

We provide a characterization for the class of cographic signed-graphic matroids
which is based on properties of cocircuits. To achieve this, we show that each co-
graphic excluded-minor of signed-graphic matroids contains a Fournier triple with
two non-graphic cocircuits. Furthermore, we present a characterization for binary
signed-graphic matroids along with two algorithms. A polynomial algorithm which
checks whether a binary matroid is isomorphic with the signed-graphic matroid of a
given jointless signed graph and a recognition algorithm for binary signed-graphic
matroids. Regarding tangled signed graphs, we define an operation which pre-
serves the number of negative cycles. As a consequence, we prove that the number
of negative cycles in tangled signed graphs is polynomially bounded by the number
of negative cycles of signed graphs belonging to two well-defined classes.

The class of quaternary signed-graphic matroids is characterized by a decom-
position theorem which states that the existence of a non-graphic and bridge-
separable cocircuit which decomposes a quaternary matroid into a graphic minor
and a signed-graphic minor are necessary and sufficient conditions for the matroid
to be signed-graphic. As a result, we determine the building blocks of quaternary
signed-graphic matroids which are graphic matroids and signed-graphic matroids
which become graphic upon the deletion of any cocircuit. To this end quater-
nary signed-graphic matroids are studied in terms of signed graphs representing
them. Moreover, we prove that hereditary properties under k-sums permit de-
sirable graphical representations. The decomposition theorem, which is based on
a new operation called star composition and k-sums, constitutes the theoretical
background for a recognition algorithm.

A survey of important results of Matroid Theory as well as conjectures and
recent work on the field are also presented.
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Greek summary

To Yewpuata ATOXAELOUEVODY EAUCTOVLY Xl To VEWRAUAT amocUVIEOTC CUUTEQLA-
oufdvovton ota o adloroya anoteAéouato TnE Ocwplac Mntpoeddv. Eidwotepa, ta
Vewpfuota amocOVIESTC TV UNTEOEW®OY eivor Wlaltepng onuaciog, eeldr) odnyoly
O€ TOAUWYLUIXOUE OAYORITUOUE ovary VORLONE TV avTIOTOLY WY XAAGEWY UNTEOELOMY.
Emunifov, ta dewpfjpato armocivieons yio xAdoelg avamapao THOWOY UNTROEDGY
00N YOUV GE TOAUGYUULIXOUSC oAYORlUUOUS Yo TNV avaryVORLOT) TV XAIoEWY eV
TUVEXWY TOU ToL avamaploTovy.  Auvo evOEXTXG Topadelyyota elvon To Yedpnua
amoclvieons twv yeagxomy pnteoeddy tou Tutte [6I] xou to Yedpnua amociv-
Veone twv xovovixwy unteoedwy tou  Seymour [50]. To dedpnuo anocivieonc
TV Y@y unteocwwmy tou Tutte odfynoe otnv vhonolnon evég TOAUGVLULXOU
oA YOREIUOU YL TNV OVAY VORLOT) TWV YRUPIXMY UNTEOEWDWY X0, TUEEAANAL, GTNV LUAO-
Tolnom evog amoTeAEoUATINO0) GAYORIDUOU YIoL TNV VoY VIELOT] TWV TVEX®Y BxTOoU,
ONAOY| TWV TVIXWY TOU AVATAUELOTOLY Ypapixd unteoetdr]. To demonuo arocivie-
O™C TWV XAVOVIXGDY UNTEOEWMY Tou Seymour cUVEBoke xodopto Tnd 6Tny vhotolnon
TONVWVUILXO) aAYORIJLOU ovVary VEPIOTC TOV XAVOVIXMY UNTEOEDMY, Xa)MS Xt 0TV
UAOTIOINGT TOAUGYUULXOU GAYORIDUOU avary VORLOTNG TV T-TVAX®Y, Ol 0Tolol ovomo-
PLOTOUY XAVOVIXE. UNTEOELDT).

To amoteréoparto e Ocwplag MnTpoelddY €Youy ONUUVTIXES EQPUPUOYEC OF ap-
%ETOUC EMOTNUOVIXOUC YOpoue, OTwe Tar Ataxpitd Madnuatied xon 1 Xuvduac Tixh
Bektiotonoinor. AvTimpoomneuTind Topdderypo anoTteAel To Yedpnua arochvicong
WV XUVOVIXOY UNTeoedhy tou Seymour [50], and 1o onolo mpoéxue Evag Tohuw-
VUUXOG kY ORLIOC Yo TNV avory Vel TV T-mvdxwy. Ot t-nivaxeg ewvon uetlovog
ornuoctog yla Tn Yuvduac ) Behtiotonoinor, xodoe optlouy uio xhdorn axépatey
TEOYPUUUATGLY, T omolo UToEoUV var ETALYOUY OE TOAUWYUUIXO YEOVO. LNUavVTL-
%4 amoteléopata TN Ocwplag MnTpoeddy, mou avauévetar Vo £yYouy ToAudpriueg
EQUPUOYES GE TOMNOUC ETO TNUOVIXOUE YWEoUS 6K Tar Ataxpitd Mardnuotixd xou 1
Yuvdvaotiny Behtiotomoinom, €youv mpoxiiel and to ‘Eeyo Eraccdvev Mntpoet-
0wy, mou exmovidnxe and touc Geelen, Gerards xou Whittle [19, 20]. To 'Epyo
Eloccbvey Mntpoedny, av xo dev €yel dnuootevdel axoua oto cOvord Ttou, ye-
vixelel o ‘Epyo twv Ehaccovev oagnudtwy twv Robertson xar  Seymour oo
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AVOTORUO THOLO UNTEOELDT| og temepacpéva tedia. [Tpdogata, 1 Ocwpla Mntpoetddy
oLVBLAo TNXE emTUY WS UE TN BOewplo Houyviwv oty epyooio [57] 6mou opioTnxoy
Tody Vot o€ UNTEOELDY| HE ToLX{AES EQupuoYES oE VEUOTO ACPAAELOG.

To mpoonUacUEVE-YEuPIXd UNTEOEWY) TEOXOTTOUY Amd TO TREOCTUAOUEVY YEo-
PAUOTA X0l ATOTEAOUY YEVIXEUOT] TWV YRAUPXDY UNTEOEMY TOU TEOXVUTTOUY oTd
o ypagpruoto [74]. To mpoornuocuéva ypopruata oamoTeAoVY YEHOWES BOUES Yo
TN povTEAOTOINGT TEOPANUATLY XAl TNV oVATUEAG TUOY) QUOLXMY BXTUWY, NAEXTEL-
XV XUXAGOUATOY XAUMDS KoL TV IAANAETLORAOEWY Tou Umopel Vo Teoxdhouy ot douég
0edOPEVWY xaL TN oY) EAEYYOU OF TEOYEAUUATO UTOAOYLOTWY. AnoTteAéouota Ty
TROCTUACUEVLV-YRAUPIXDY UNTEOEWDMY UTOROUY VO UETAPEUCTOUY GE UTOTEAECHUOT
YL TEOCTUOOUEVOL YRUPTUOTO X0, CUVETMS Vo SUUPBAARouy oty emthucn TeofAn-
udtwy v Atoxertey Modnpotixoy xar tne Yuvduacs e BeAtiotonoinong. Eva
UNTEOELOES Elvol TPOCTUACUEVO-YRuPixd, GV Utopel va avamopos Toel and Evay mivo-
xo. 610 GF(3) nedlo, 6mov xdde oThAAN €xel To TOAD Buo un undevixd otouyeio. To
UNTeoeldn To omola elvan avoamopao THolo o xdle nedio extoc lowe and to GF(2),
ovoudlovta tepimou-xavovixd [72]. Avalnrdviac Yewpruata anocvvieong, to omola
0BNYoUV e AAYOELILOUC OVaY VEPLOTGS Yol YEVIXOTERES XAJGELS UNTEOELDWY XOlL XOUTAL
CUVETIELOL TOV TUVAXWY TOU ToL oVITORLG TOUY, UEAETAUE VEUEAIDDELS HAJCELS UNTEOEL-
0V Yla TIC OTOlEC LTLdPY oLV EVOELZELC 6Tl amoTteAoUV Toug Souxolc Toug Aldouc. Ta
TROGTUACUEVO-YRUPIXY. UNTEOELDT €Y 0LV TEOCEAXVOEL UEYHAO EQELVITIXG EVOLUPEQOY,
xod¢ exdleTon OTL ATOCLVIETOUY TNV XAJOT) TWV TERITOU-XAVOVIXMY UNTEOELOMY [UE
TEOTO TOPOUOLO UE UTOV TIOU TOL YEUPIXE. UNTEOELDT) AmOCUVIETOUY Ta XUVOVIXEL U1
Tpoedn [33] [72].

To pnteoedn mou avamopiotovtar amd évay mivaxa ue otoyela oto GF(2) xau
G'F(4) nedlo, ovopdlovton duadxd xat teTpadixd avtiotorya. Eva avtixdxhwpo ovo-
ualeTan YeupXo oy TO UNTEOEWOES TOU TPOXUTTEL UETA T1) Olorypapy| Tou lvol Ypoupixo,
Sropopetixd ovoudletar un ypopixd. ‘Eyel amodetydel 6t tor Suadind unteoetdt| [51]
X0 TOL TROOTUOOUEVA-YRAUPIXE UNTEoeldr) Bev elvor moAuwvuuxd avoryvepeiowa [33].
(261600, eV €xel anodelyVel avAAOYO ATOTEAECUO Yial TOL DUAOLXE oL T TETEOOLXS
TEOCNUACUEVO-YRUPIXE. UNTEOEWR. To duadLxd xon Tor TETEABIXY TEOCTUUCUEVA UT-
TpoeWN €youv amocuvtelel uéow TS TEAENS TwV K-opolopdtey and tov Slilaty[55].
Emniéov to 5uadixd TpooUaoUEVE-YRoUPIXE. UNTEOELDT €)0UV amOCUVTEVEL dlarypdpo-
VTG EVOL UN-YRopd avTixOxhowuo antd toug Iamahdunpou xo Ilitcolin [40]. Tho
OLYXEXELEVY, amEOECay OTL €V BUABIXO UNTEOELDES EVAL TEOCTUACUEVO-YQUPLIXO €-
Gv xou UOVO €GvV xAmoLo Xahd OPLOUEVY EAAGOOVA TOU TEOXOTTOUY Omd T} Blory poupY)
TOU OVTLXUXAOUOTOC Efval Youpixd, EXTOC amd Eva Tou Eival TEOCTUACUEVO-YQUPLXO.
‘Evag and toug Baowdtepouc otdyous Tne Topolcos dldaxTopxc dlatel3hc fTay 1
YEVIXEUOT) TOU TOQUTEVE ATOTEAEGUATOS YOl T TETEOOIXY TEOCTUUOUEVA-YEAUPXS U1
Tpoeld). Emimpocdeteg emOIOEES HTOV O YAURUXTNELOUOS TNG XAJONG TV BUADIXWY
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TPOCTUACUEVWV-YEAUPLXMY UNTEOELDWDY, XAVDS XL O YURUXTNELOUOS TNS XAAONE TWY
CUYYQPUPLXWY TROCTUACUEVOY-YRAUPIXDY UNTEOEDMY TOU BIETOUV Vol Un Yeupxo
CUYHOHAWUAL.

O yopoxTnEiogos NS XAACNC TOV BUABIXMDY TEOCTUACUEVWV-YQUPIXMY U TEOEL-
0wV oTnplydnxe otn PeRéTn TNg Bopr TOUG, 0AAG XaL TNG DOPAC TWY YRAPIXWY TOUG
avamopao Tdoewy. Edwdtepa, anodelydnxoy douxd aroteAéopata yia o tepitioxa
TPOOTUAOUEVA YRUPHAOTA XOL YAURUXTNRIOTNXAY YRUPIXE TA XUXAGUATI, TA CUYXU-
HAGUATO oL 0L BACEIC TWV BUABIXDY TEOCTUACUEVWV-YOUPIXGY UNTEOEWGY. K-
TAEOV BOUMMAY TVOXEC OVATOEAC TAOTS Yiol TOL OUAOXE TEOCTUUCUEVO-YEAUPLX YN
TpoeldY) xou Srortumdydnxe Vempnua mou yopaxtneilet Ty x\don toug (Oedpenua E3).
To teheutalo Ye@pnuo YEVIXEVEL EVAL YVWOTO UMOTENEOUA VIO TUL YRUPXS UNTEOELON
0 omnolo avagépetar oty epyacia [I7). And to yopoxtnelopd yior TNV xhdom Twv
OLABXOY TPEOCTUUCUEVWV-YRUPIXWY UNTROEWMY Teoéxuday 500 alyodpriuol:  Evog
oAy 6prluog TOU EAEYYEL EQY VoL DLUDIXO UT YEUPLXO UNTEOEWES Eival LoOUOPPOo UE
TO TROCTUACUEVO-YRAUPIXO UNTROEWES EVOC TPOCTUACUEVOU YRUPHUATOS, Ywelc op-
Ypdoeic mou diveton we eloodoc (Ahybdprduoc 2), xar évac ahydprduoc OLVOLY VERLOTS
yLor Tor Buadd TpoaNUUoUEVaL Yeuptxd unteoetdy| (Alyopriuoc 3). ‘Ocov agopd ot
OOMUIXES LOLOTNTES TWYV TEQITAOXMY TROCTUACUEVLY YRUPNUATWY TEOEXLPE OTL 1) TEAEN
NS UG TOMG Wag oxnc, 1) omola Bev etvan 00TE apvnTixy dptpwaorn 00Te yopedY| apvrn-
@00 %x0xhov, Blatneel To TARUOC TwY apYNTIXMY XOXAOY. Axodun, amodelyinxe 6Tt
70 TAHUOC TWV 0EVNTIXOY XOUAWY TWV TEQITAOKWY TEOCTUUCUEVKY YEAUPNUATDY Efval
TONVWVUIXE. PEAYHEVO amtd TO TARDOC TV AQVNTIXMY XUXAWY TOV TEOCUACUEVLY
YEUPNUATOV TOU oV x0UV GE BV0 XUAY OPLOUEVES XAACELS.

‘Ocov agopd 6TNY *AJOT TOV CLUYYRAPIXDY TEOCTUACUEVOV-YRUPIXOY UNTEOEL-
0wV, TOL BLIETOUY TOUALYLOTOV EVOL UT) YRUPIXO CUYXUXAWUA, OLUTUTOUNXE EVOS Yo
EUXTNELOUOC oL BacloTnie OTIC IOTNTES TWV CUYXUXAWUSTWY TOUS (@edopnpa B39).
To mopamdves amOTEAEGU YEVIXEVEL VAL Y pUXTNPLONO ToL Onpocicuce o Fournier yuo
o ypapwd punteoedn [I5]. To dedpnuo mou anodelytnxe avogpépet 6Tt Eva cuyypa-
Pxd UNTEOEWES, TO OTO{0 BLETEL TOUAAYIGTOV EVaL U] YRUPXO CUYXUXAWHA, elvol
TEOGNUAGUEVO-YRAUPXO GV xan UOVO ey xdie Fournier toidda tepiéyet To mohld éval
un yeapwod ouyxixhouo. o vo tpoxilel o yapaxtneiouds anodelydnxe ot ota
TPOOTUACUEVA-YRUPIXY. UNTEOELDY TV TEPITAOXMY YRAUPNUATKDY, To ontola diardETouy
TOUAGYLOTOV €Val un Ypopxd ouyxixiwua, xdde Fournier toiddo mepiéyel 1o moAY
Eva un Yeopwod ouyxixiwua. Erniong, yeiethdnxay ta ouyypapxd eAdcoova Tev
TROCNUAGUEVV-YRAUPIXDY UNTROEWWY ¢ To¢ Tic Fournier tplddeg xou detydnxe 6Tt
x&de Ehaccov dldéTel o Fournier tpudda mou TEpLEYEL DUO U1 YRUPIXE CUYXUXADUA-
To.

[o v amocHVIEST) TV TETEAOXOY TROCTUACUEVWV-YRUPLXWY UNTEOELDWY, dp-
Yd oplotnxay ol xatdiiniec mpdéelc. o cuyxexpyéva, oploTnxe wo véa Tedln,
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1N ao T CUVIECT) OE TEOCTUACUEVOL YRUPHUATI TOU YEVIXEVEL TNV oo TEWT| cOvie-
on mou eiye optoTel oe ypupruata uéow Twv Tvdxwy tpdontwone [44]. Emmiéov,
HEAETHONMAY Ol BOUIXEC BLOTNTEC TV TROCUACUEVLY YRUPNUATWY To oTtolal ovo-
TOELG TOUV TETEUOIXA TTROCTUAOUEVA-YRUPIXY UNTEOEWT. 'Etol, amodelytnxoy douxd
ATOTEAEGUATO YL TTROCTUACUEVOL YRUPTUATY, T OTtolaL efvol XUAVOEXE. 1 €Y 0LV XOpPU-
@1 e€Lo0PEOTNOTG UETAL TN Dlorypaupt| Twv apUp®oewy. Axdun, uehetidnxoy to enineda
TEOGNUAGUEVOL YRUPAUATOL, XUIMS T XUAVORIXE TEOCTUICUEVOL YRUPHUATA EYOUY €-
& oplopotl Wi eninedn anotinwon. Amodelydnxe ot xdie apvnTinde xixhog 6” eva
TEOCTUACUEVO YEAUPTUAL X, OTIOU TO TROCTUACUEVO YRAPTU Ywele Tig aplpwoel &-
tvou 2-cuvexTino, mepiéyel pla opvntixn 6dm. Katd cuvéneia, xdde opvntindg xdxiog
Teptéyel éva Teptttd TANG0C apynTX®Y Oewy, v xdde VeTindS xOXAOC TEQIEYEL
éva dptio mAfdog 6hewy. To douxd amotehéouato ToU TEOEXLPAY Yol To TOEUTAVE
TEOCTUAUCUEVAL YRUPHUTA, CUVEBUAXY GTNV ATOOELT DOULKGY ATOTEAEOUTGDV VLol TNV
ANEOT) TV TETPUOLXWY TEOCTUACUEVOV-YRUPIXOY UNTEoewwy. Emmpdodeta, to mo-
QUMY AMOTEAECUATOL Y ENOWOTOLAUNXOY YIoL TNV ATOBELLT) TEYVIXOY ATOTEAECUATWLY,
Toe omolor xpldnxay amapoltnTo Yoo TNy anocUVIEST) TV TETEABIXMY TEOCTUUCUEVHV-
YEUPIXWY UNTOOELDMV.

O mpoobloplou6S TWY BOUIXMY WOLOTATWY TWY TEOCTUACUEVGV-YRUPIXWY UNTEOEL-
0wV Atay xadoptoTixrg onuactiog Yo Ty amocUVIEST) NG XAUONG TWV TETEADXMY
TROGUACUEVLV-YRAUPXDY UNTEOEW®WY. Ewdwdtepa, pehetidnxay 1016TnTeg TV ou-
YHUXAWUETWY TV TROCTUACUEVWV-YRUPIXWY UNTEOEWDWY, OIS O Bl WELOUOS YEQU-
PWV %ol IOTNTES TV YEQPUEOY TWV CUYXUXAOUATWY, 0TS 1) amo@uy . Amodelydnxe
OTL OLLBLOTNTEC AUTEC BLUTNEOVUYTOL UE TIC TEGEELS TWV Y- QOLOUATWY TV UNTEOELDWY,
UE OTOTEAECUA VO TPOXUTTOLY EMWIUUNTES YRUPIXES ATEOVIOELS YIoL TO TTOAU GUVOE-
OEUEVA ENACCOVIL TOV TETPAOXOY TROCTUACUEVWV-YRUPIX®Y UNTEOEWWY. Emmifoy,
Yoo Tnelo TNy Yupd EVVOLES, OIS Tol CUYXUXAMUATO TWV TEOCTUUCUEVHV-
YEUPXOY UNTEOEWWY xou amodelydnxe OTL x4l TEOCUUCUEVO-YRUPIXO UNTEOELDES
TOL EYEL UT) YEUPLXS CUYHUXADUOTA, OLIETEL EVAL U YRUPXO CUYHUXAWUOL TOU BLo-
ywetlel Tic yépupec.

To xupLotepo VEo amotéheoua g mapoLoag dboxTopixg dlatelfrc elvar To Ve-
Opnuot omocOVIESNS Yior Tal TETPABIXG TROCTUAUCUEVY YRuPXd UNTeoeldr (Oebdpenua
B3). To Yedprnuor auTOd avapépel OTL Vol TETEAOLXO UNTEOEIDES EVOL TPOCTUAUOUEVO-
YOUPXXO oV %ot UOVO EQY, UTGEYEL €VoL UN YEUPIXd CLYXOXAWUS To omolo Olo-
Ywellel Tic YéQupeS ot amOCUVIETEL TO UNTEOEWES OE Vol YRUPIXO ENJCGCOV Xou
EVOL TTPOOTUACHUEVO-YRAUPXO XoL Un YPupixd éhaccov. H amocOvieon twv tetpo-
OLXWY TEOCTUACUEVV-YRAUPIXDY UNTEOEDWY TEAYUXTOTOUUNXE UE EVay GUYOLAOUO
TedEewy, TNV acTtexr cuvieon xar Ta K-adpolopata. Ao TV anocOvieor meo-
Exuoay oL (AACES TV UNTEOEWNOY ToU amoTeholV Toug douxols Toug hidoug.
O VepeMddel xAAOES UNTEOEWWY Tou TEoéxuday and TNV anocLVIEsT TV Te-
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TEAOXY TROCTUACUEVWV-YOUPLXGY UNTEOEWMOY eVl Tal YAQXd UNTEOEWN Xou To
TEOGNUAGUEVO-YQUPIXY. UNTEOELDY| TTOU OE SLIETOUY UN-YEUPLXE GUYXUXADUOTAL.

Téhoc Vo avapepdoly pepixéc UEANOVTIXEC TROEXTAOELC TNC OLOUXTOPLXAC OV
gpeuvag. Oa Aty Wiadtepa eVOLAPEEOY Var DlaTuUTWUEl EVaG YURUXTNEIOUOS Yol Tl
CLYYQUPLXS TOOCTUUCUEVO-YQUPLXE UNTEOEWN, To OTolal TEPLEYOUV EVOL UTN-YRAUPXO
oLYXDXAOUO TOU Vot OONYHOEL GE EVOY TOAUGVUULXG OAYORLIUO oVOy VRIONG TNG
xhdon Toug. AuTOC O YURUXTNEIOUOS UE T1) OELpd Tou, Vo 00NYNOEL G EVay TOAUGYL-
W6 oAYOELIUO VoY VOPRLOTS YIo TNV XAAOT] TV SUABIXMY TEOCTUACUEVOV-Y QUPLXCY
unTeoewwy. ‘Evo axoun avolyto mpdfAnua ebvar n Slatinemon evog Yempruatog o-
TOXAELOUEVGY EAVCGOVGY YIOL TNV XALOY) TWV TETEUBXMOY TROCTUACHUEVLV-YEUPLXDY
UNTEOEWWY, Ta oTtola OEV TEPLEYOUV UN-YRAPXO GLYXOXALUY, xadne eniong xat N
Topouctao wag pedo6dou 1 omola Var ovary vepiCel Tor U YeopLxd GUYXUXAGUATA TOU
OLory wetlouv TIC YEQUEES OF €Val TETPABIXG TROCTUUOUEVO-YRUPIXG UNTEOELDES.
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Chapter 1

Introduction

Matroid Theory has furnished many important results among which are excluded-
minor characterizations and decomposition theorems for well-known classes of ma-
troids. Especially decomposition theorems are of great importance since they lead
to polynomial time recognition algorithms for the corresponding classes of ma-
troids. As regards representable matroids, decomposition theorems lead also to
polynomial time recognition algorithms for the associated classes of representa-
tion matrices. Two indicative examples are Tutte’s decomposition theorem for the
class of graphic matroids [61] and Seymour’s decomposition theorem for the class
of regular matroids [50]. Tutte’s decomposition theorem for the class of graphic
matroids not only does it lead to a polynomial time algorithm for recognizing
whether a binary matroid is graphic [62], but it also leads to an efficient algo-
rithm for recognizing the class of network matrices i.e., representation matrices
of graphic matroids. Moreover, Seymour’s decomposition theorem for the class of
regular matroids apart from implying a polynomial time algorithm for the class of
regular matroids, it leads also to a polynomial time algorithm for totally unimod-
ular matrices.

Some of these deep results of Matroid theory have profound implications to
several areas of Discrete Mathematics and to Combinatorial Optimization. A rep-
resentative example is Seymour’s decomposition theorem for the class of regular
matroids [50] from which a polynomial time algorithm for recognizing totally uni-
modular matrices resulted. Totally unimodular matrices play a central role in
Combinatorial Optimization since they define a class of integer programs that are
solved in polynomial time. In particular, any integer program whose constraint
matrix is totally unimodular can be solved as a linear program since the associated
polyhedron is integral. The link between totally unimodular matrices and integral
polyhedra was established by the famous theorem of Hoffman and Kruskal in [29]
which states that for integral A matrices, the polyhedron {z|Az < b,z > 0} is
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integral for all integral vectors b if and only if A is totally unimodular. Further
results of Matroid Theory with significant consequences are already obtained from
the Matroid Minor Project by Geelen, Gerards and Whittle [19, 21]. This project,
which was announced that it is completed, generalizes Robertson and Seymour’s
Graph Minor Project to representable matroids over finite fields. The Matroid Mi-
nor Project is expected to have numerous applications to many areas of Discrete
Mathematics and Combinatorial Optimization. Moreover, Matroid Theory has
been combined successfully with Graph Theory giving rise to games with various
security-related applications [57].

Signed-graphic matroids are natural generalizations of graphic matroids since
they arise from signed graphs [74]. Signed graphs are useful combinatorial struc-
tures which are used to model real-world problems and to represent physical net-
works, electrical circuits and interactions which may occur in databases or in the
flow of control in a computer program. Results which are obtained for signed-
graphic matroids can be translated to results for signed graphs. Thereby many
problems of Discrete Mathematics and Combinatorial Optimization could be re-
solved with the aid of Matroid Theory. As regards representability, a matroid
is signed-graphic if it can be represented by a matrix over GF'(3) with at most
two nonzero entries in each column. Matroids which are representable over every
field, except possibly GF'(2) are called near-regular [72]. Signed-graphic matroids
constitute a class of matroids that has attracted significant research interest since
it has been conjectured that they decompose the class of near-regular matroids
the same way that graphic matroids decompose regular matroids. Although there
are obstacles for obtaining a characterization for near-regular matroids similar to
Seymour’s for regular matroids, it is still hoped that a combination of operations
will allow the decomposition of near-regular matroids [33].

A cocircuit is called graphic if the matroid which is obtained upon its deletion
is graphic, otherwise it is called non-graphic. Given a cocircuit Y of a matroid
M, Y is called bridge-separable if the elementary separators of the matroid M\Y
can be partitioned into two classes where any two members of the same class are
avoiding. Matroids which can be represented by a matrix with entries over GF'(2)
and GF'(4) fields are called binary and quaternary, respectively. It has been proved
that binary matroids [5I] and signed-graphic matroids are not polynomially recog-
nizable [33], however no such result exists for binary or quaternary signed-graphic
matroids. Towards a characterization which leads to a recognition algorithm for
binary or quaternary signed-graphic matroids, many decomposition results have
been provided so far. Binary and quaterary signed-graphic matroids have been
decomposed through the operation of k-sums by Slilaty in [55]. Moreover, binary
signed-graphic matroids have been decomposed by deleting a non-graphic cocircuit
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by Papalamprou and Pitsoulis in [40]. Specifically, they proved that a binary ma-
troid is signed-graphic if and only if some well-defined minors resulting from the
deletion of a cocircuit are graphic apart from one which is signed-graphic.

The most important new result of this thesis is the decomposition theorem for
quaternary signed-graphic matroids which generalizes Papalamprou and Pitsouli’s
decomposition theorem for binary signed-graphic matroids [40]. The decomposition
theorem states that a quaternary matroid is signed-graphic if and only if there
exists a non-graphic and bridge-separable cocircuit which decomposes the matroid
into a signed-graphic minor and a graphic minor.

Theorem 1. Let M be an internally 4-connected quaternary non-binary matroid
with not all-graphic cocircuits. Then M is signed-graphic if and only if

(i) there is a mnon-graphic cocircuit Y of M which is bridge-separable with
Ut U~ two classes of all-avoiding bridges where % ~ contains all the non-
graphic bridges,

(7i) M.(Uges- SUY) is signed-graphic and M.(Ugeqy+ SUY) is graphic.

The decomposition of quaternary signed-graphic matroids is performed through
a combination of operations the well-known k-sums and a new operation called star
decomposition. The resulting building blocks are graphic matroids and signed-
graphic matroids which become graphic upon the deletion of any cocircuit.

For a graph G, the dual matroid of the cycle matroid of GG is called bond
matroid or cocycle matroid of G. Any matroid which is isomorphic to the bond
matroid of some graph is called cographic. The class of cographic matroids is
a fundamental class of matroids since every regular matroid can be built from
graphic matroids, cographic matroids and one special 10-element matroid [50].
Cographic signed-graphic matroids as well as binary signed-graphic matroids have
been characterized in terms of excluded minors [45]. Nevertheless it would be
desirable to obtain characterizations which would lead to recognition algorithms
for the corresponding classes of matroids. To this end, we present a characterization
for cographic signed-graphic matroids based on properties of cocircuits, which is
motivated by Fournier’s characterization for graphic matroids [I5]. Moreover, we
present a characterization for binary signed-graphic matroids which generalizes an
analogous characterization for graphic matroids.

1.1 Organization of the thesis

The thesis is divided into three parts. The first part is introductory and includes the
first three chapters. The second part includes Chapter [ and discusses structural
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properties of signed graphs. The third part contains Chapters [l [0, [l and discusses
structural properties of signed-graphic matroids focusing on the classes of binary
signed-graphic and quaternary signed-graphic matroids.

In Chapter 2 we give some preliminaries which are used throughout the thesis.
Moreover, we provide generalizations of graphs along with the associated incidence
matrices, since they constitute representations of well-known classes of matroids.

Matroids are defined in Chapter [3, where operations and structural properties
of matroids are also provided. A survey of important results for well-known classes
of matroids is presented as well as recent work on the field. The focus is on
representable, graphic and signed-graphic matroids which are studied in the next
chapters. Several open problems and well-known conjectures are also mentioned.

Chapter M deals with signed graphs. We provide graphical operations which
are used in the decomposition of quaternary signed-graphic matroids in Chapter [1]
and structural results for signed graphs that represent quaternary signed-graphic
matroids. Furthermore, we obtain structural results for the aforementioned class of
matroids by determining structural properties of signed graphs representing them.

Chapter [l is about signed-graphic matroids that is matroids which arise from
signed graphs. In this chapter, we present structural results for signed-graphic
matroids which are essential for the decomposition of quaternary signed-graphic
matroids. Moreover, we characterize graphically matroidal notions and we inves-
tigate properties of cocircuits and their bridges such as bridge-separability and
avoidance, respectively, under k-sums.

Structural properties of signed-graphic matroids which are binary or quaternary
are determined in Chapters [0l and [, respectively. Structural results for tangled
signed graphs and a characterization for binary signed-graphic matroids are pre-
sented in Chapter [l Negative cycles in tangled signed graphs and operations
which preserve their number are also investigated. Furthermore a characterization
for cographic signed-graphic matroids based on properties of cocircuits and two
algorithms deriving from the characterization of binary signed-graphic matroids
are provided.

In Chapter [ we decompose the class of quaternary signed-graphic matroids.
The main result of the thesis, the decomposition theorem for quaternary signed-
graphic matroids is proved. In addition, structural results of cocircuits which are
necessary for the decomposition and lead to desirable graphical representations are
also presented.

Chapter B includes conclusions we have drawn from our research and describes
our contributions. In addition, it suggests several ideas for related future research.



Chapter 2

Preliminaries

In this chapter, we define basic notions of Algebra and Graph Theory that are
used throughout the thesis. Moreover, we present known results about matrices,
graphs, signed graphs and biased graphs that appear in the books of Pitsoulis [44],
Oxley [35], Diestel [I0], Tutte [65] and in [1l 56, 611, [74]. Some more definitions
will be given later at the relative chapters.

2.1 Fields, matrices and vector spaces

The set of natural numbers {1,2,3,...} is denoted by N, the set of integers by
Z, the set of non-negative integers by Z., and the set of reals by R. The finite
fields that appear oftenly in this thesis are GF'(2), GF(3), GF(4) and GF(5). The
first two of these fields are Z i.e., the field of positive integers modulo 2, and Zs
while the last one is Zs. The finite fields GF(2), GF(3) and GF'(4) are called also
binary, ternary and quaternary field respectively. The two elements of the GF(2)
field are denoted by 0 and 1 and the operations of addition and multiplication are
performed modulo 2 as follows:

+10 1 x |0 1
010 1 010 O
111 0 110 1

The three elements of GF(3) field are denoted by 0, 1 and -1, and the operations
of addition and multiplication are performed modulo 3 as follows:

+]l0 1 4 x [0 1 -1
00 1 -1 0/0 0 0
11 -1 10 1 -1
101 0 1 10 -1 1
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The four elements of the GF'(4) field, which is not isomorphic to Z,4, are denoted
by 0,1,w and w + 1 where w? = w + 1. The addition and multiplication tables for
GF(4) are as follows:

+ 0 1 w w—+1 X 0 1 w w1
0 0 1 w w+1 0 0 0 0 0

1 1 0 w+1 w 1 0 1 w w+1
w w w+1 0 1 w 0 w w1 1
w+1|w+1 w 1 0 w+1]0 w+1 1 w

Any set considered throughout the thesis is finite, unless otherwise stated. For
a set F, its power-set i.e., collection of subsets, and its cardinality will be denoted
by 2¥ and |E|, respectively. Given a tuple (E,.%), where & = (S; :i € I) is a
family of subsets of F, a subset X C E is maximal with respect to .7, if X € .F#
and there does not exist Y € % such that X C Y. Furthermore, X C F is
minimal with respect to %, if X € % and there does not exist Y € % such that
Y € X. If X and Y are sets, then their symmetric difference XAY, is the set
(X -Y)u(Y —X).

A n x m matrix A with elements a;; over a field F will be detoted by A =
(a;;) € F and the n x n identity matrix by I,,. Given a n x m matrix A € [F, the
column space of A is the set of all linear combinations of the columns of A. The
rank of a matrix A is the dimension of the column space of A. A matrix is of
full row rank if its rank equals the number of its rows or, equivalently, if its row
vectors are linearly independent. We shall write AT for the transpose of a matrix
A. A matrix is called totally unimodular if all the subdeterminants of its square
submatrices are in {0, 1, —1}.

Given a field F and vectors x1, 9, ..., x,, in F" we say that the vector y is a
linear combination of the vectors 1, xa, . .., T,, if there exist scalars a;,as ..., a,, €
F such that y = a1x1 + ... + a4y A linear relation among the vectors x; where
i € {1,...m} is an expression of the form Y, a;z; = 0. A set of vectors {z;} is
said to be linearly dependent in F if there exists linear relation }; a;x; = 0 such
that a; # 0 for some 7. If a set of vectors is not linearly dependent, then we
say that it is linearly independent. For brevity we shall say that the vectors z;
are linearly dependent (resp. linearly independent) when the set of vectors x; is
linearly dependent (resp. linearly independent).

2.2 Graphs

A graph G = (V, E) is a pair of a finite set V and a finite set £ C V U V2. The
elements of V := V(G) are called vertices, while the elements of £ := F(G) are
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called edges. Each edge has a set of none, one or two vertices associated to it,
which are called its end-vertices. There are four kinds of edges in a graph: (1) a
link that has two distinct end-vertices, (2) a loop that has two equal end-vertices,
(3) a half-edge with one end-vertex and (4) a loose-edge with no end-vertex. The
set of half-edges and loops of G is denoted by Jg.

Figure 2.1: A graph

The incidence matrix of a graph G is a matrix Ag = (a;;) € GF(2) which is
defined by

1 if non-loop edge j is incident to vertex v;
o
” 0 otherwise

The full row rank matrix which is obtained from Ag by applying elementary
row operations is called full row rank incidence matriz of G.

Example 2.2.1. The graph in Figure [Z1 has vertex-set V' = {vq,v9,v3,v4} and
edge-set E = {1,2,3,4,5,6,7,8}. The edge 7 is a loop while the edge 8 is a half-
edge. The incidence matrix of the above graph is

1 2 3 4 5 6 7 8
w |1 1 1 00000
Ap =" 01011000
v |1 0010101
w 001 01100

Two graphs G; and G5 are isomorphic, written G; = (G, if there are bijections
1 V(G1) — V(Gy) and vy : E(G1) — E(Gs) such that a vertex v of Gy is
incident with an edge e of G if and only if 1, (v) is incident with i5(e). A graph
H is a subgraph of G if V(H) C V(G) and E(H) C E(G). For V' C V(G), the
induced subgraph of V' in G is denoted by G[V'] and is defined by V(G[V']) =V’
and E(G[V']) = {{v,w} € E(G) : v,w € V'}. For E' C E(G) the induced
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subgraph of E’ in G is denoted by G[E'] and is defined by E(G[E']) = E' and
V(G[E']) = {v € V(G) : v is an end-vertex of some edge in E'}. If G; and G,
are graphs, their union G; U G is the graph with vertex set V(G1) U V(G3) and
edge set F(G1) U E(G3). The graphs G; and Go are called disjoint if V(G1) and
V(Gs) are disjoint, then so are E(G;) and E(Gs). A vy — v, walk is a subgraph
of GG that is defined by a sequence of vertices and edges in a consecutive manner,
which starts with the vertex vy and ends at the vertex v, where ¢; = {v;_1,v;} for
i =1,...,n. A v—w walk where all vertices are distinct is called v — w path. A
cycle is a closed path, that is v = w. Any partition (V7, V5) of V(G) for non-empty
V1 and V4, defines an edge cut of G denoted by E(Vi, V) C E(G) as the set of links
incident to a vertex in V] and a vertex in V5. A minimal edge cut is also called a
bond or a cocycle of G. An edge cut of the form F(v,V(G) — v) is called the star
of vertex v and is denoted by star(v).

Identifying two vertices u and v is the operation where u and v are replaced with
a new vertex v' in V(G) and E(G). The deletion of an edge e from G results in a
subgraph defined as G\{e} = (V(G), E(G) —{e}). The deletion of a vertex v from
(G is defined as the deletion of all edges incident with v and the deletion of v from
V(G). The contraction of a link e = {u,v} is the subgraph denoted by G/e which
results from G by identifying u,v in G\e. The contraction of a half-edge e = {v}
or a loop e = {v} is the subgraph denoted by G /e, which results from the removal
of {v} and all half-edges and loops incident to it, while all other links incident to v
become half-edges at their other end-vertex. Contraction of a loose-edge is defined
as deletion. A graph G’ is called a minor of G if it is obtained from G by a sequence
of deletions and contractions of edges and deletions of vertices. For X C E(G)
deletion of X in G, denoted by G\ X, is the subgraph of G which is obtained by
deleting all edges of X from GG. Moreover, the deletion to X in G, denoted by G| X,
is the subgraph of G consisting of the edges in X and all vertices incident to an edge
in X. Equivalently G|X is the graph obtained from G\(E(G) — X) by deleting
the isolated vertices. Furthermore, the contraction of X in G, denoted by G/ X is
the subgraph which is obtained by contracting all edges of X while the contraction
to X in G, denoted by G.X is the subgraph obtained from G/(E(G) — X) by
deleting the isolated vertices. A graph is called bipartite if its set of vertices can be
partitioned into two classes Vi and V5 such that each edge has one end-vertex in
V1 and the other in V5. A graph on n vertices whose any two vertices are adjacent
is called complete graph on n vertices, denoted K,. The graph which is obtained
from a 2-connected graph G by splitting a vertex v € V(G) into two vertices vy, vq,
adding a new edge {v1,v2}, and distributing the edges incident to v among v; and
vy such that 2-connectivity is maintained, is called an ezpansion of G at v. The
operation of twisting (see [35], Page 148]), is defined as follows. Let G and Gy be
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two disjoint graphs with at least two vertices uy,v; and us, v9, respectively. Let
G be the graph obtained from G; and G4 by identifying u; with us as the vertex
u € V(G) and vy with vy as the vertex v € V(G). In a twisting of G about {u,v}
we identify, instead, u; with vy and v; with us and we obtain a graph G’ that is
called a twisted graph of G about {u,v}. The subgraphs G; and G5 of G and G’
are called the parts of the twisting.

A graph is planar if it can be drawn in the plane without edge-crossings. Such
a drawing of a planar graph is called a planar embedding. The continuous regions
in the plane so formed by the deletion of a planar embedding of a graph are called
faces. The face of a graph which is unbounded i.e., does not lie within a sufficiently
large disc, is the outer face of the graph, while the other faces are the inner faces.
It is known that the boundary of a face of a planar embedding of a planar graph
is always a subgraph of the graph ([I0] Section 4.2). Furthermore if F' is a face of
a planar graph G such that G\Jg is a 2-connected graph where Jg is the set of
half-edges and loops of the graph, then the boundary of F'is a cycle. We make
the convention that a graph with half-edges and loops is planar if and only if the
graph which is obtained after the deletion of half-edges and loops is planar.

Connectivity for graphs

There are numerous definitions of connectivity in graphs which are generalized to
matroids. However, the most widespread is Tutte’s definition of k-connectivity,
since a graph and its cycle matroid have the same k-connectivity. For k > 1, a k-
separation of a graph G is a partition { A, B} of the edges such that min{|A|, |B|} >
k and |[V(G|A) N V(G|B)| = k. A graph G is called k-connected if there is no [-
separation where [ < k. A wertical k-separation of G is a k-separation {A, B}
where V(A)\V(B) # 0 and V(B)\V(A) # 0. A separation or vertical separation
{A, B} is said to be connected or to have connected parts when G[A] and G|[B]|
are both connected. A block is defined as a maximally 2-connected subgraph of G.
Loops and half-edges are blocks in a graph, since they induce a 1-separation.

2.3 Directed graphs

In a drawing of a graph without half-edges, an edge between two vertices creates
a two way connection. Assigning a direction to an edge makes one way forward
and the other backward. An edge which has been assigned a direction is called
directed edge or arc. A directed graph 8 = (V, E) is a graph whose every edge is
directed. The assignement of a direction to an edge is indicated by an arrow. If
e ={v,w} € E(G) is directed from v to w then v is called the tail of e while w is
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called the head of e. In case e = {v,v} € E(B) is directed from v to v, then one
occurrence of v is the tail of e while the other is the head of e. An orientation o of
a graph G = (V| F) is a function that attributes to the end-vertices of each edge
e = {v,w} € F(G) a sign in {+1,—1} such that o(e,v) = —o(e,w). Moreover,
if e = {v,v} € E(G), then different signs are attributed to the two occurences of
v. A directed graph is obtained from any orientation of a graph as follows: for
each e = {v,w} € E(G), v is designated as the tail of e if o(e,v) = —1 and w is
designated as the head of e otherwise. If e = {v,v} € E(G), then the designation
of the end-vertices is similar.

Figure 2.2: A directed graph

The incidence matrix of a directed graph @ is & matrix Ag = (ai;) € GF(3)
defined by

+1 if vertex ¢ is the head of the non-loop arc j,
a;; =4 —1 if vertex 7 is the tail of the non-loop arc j,
0  otherwise

Example 2.3.1. The incidence matriz Ag of the directed graph 8 in Figure 2.2
18

3 4 5 6 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
u [ 1 0 0 0 -1 0 O 1T O O 0 0 0 O
vy 1 -r 060 o0 o0 o o0 o0 o o o0 -1 0 0 1 1
s | -1 0 O o o0 o0 o0 -1 -1 -1 -1 0 0 0 0 -1
vy o o0 o 1 o0 o0 o o o o 1 1 o0 -1 0 O
vs o 60 -1-1-10 0 o0 o0 0O O o0 o0 0 -1 0
v o o0 o o 1 -1 0 o0 1 o0 0 o0 -1 1 0 O
w0 0 o0 o0 o0 1 1 1 o0 o0 o0 o0 1 0 0 O
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The incidence matrix of a directed graph is totally unimodular. The incidence
matrix of an undirected graph is totally unimodular if and only if the graph is
bipartite. Network matrices, which are derived from directed graphs, are totally
unimodular matrices and are defined as follows.

Definition 2.3.1. Let A = [R S| be a full row rank incidence matriz of a directed
graph 8, where R is a basis of A. The matrit N = R™S is called a network
matriz.

2.4 Signed graphs

A signed graph ¥ = (G,0) is a graph G = (V, E) together with a sign function
o: E(G) — {+1, —1} such that o(e) = —1, if e is a half-edge and o(e) = +1, if e
is a loose-edge. The graph G is called the underlying graph of ¥. We shall denote
by V(X) and E(X) the vertex set and edge set of a signed graph X, respectively.
An edge e is called positive if o(e) = +1 otherwise it is called negative. Half-edges
are attributed the negative sign, while loose-edges are attributed the positive sign.
In figures we use solid lines to depict positive edges and dashed edges to depict
negative edges.

Figure 2.3: A signed graph

An orientation o of a signed graph ¥ = (G,0) is a function that assigns to
the end-vertices of each edge e = {v,w} € E(X) a sign in {41, —1} such that
—o(e,v)o(e,w) = o(e). The incidence matrix of a signed graph ¥ = (G,0) is
a |V(G)| x |[E(G)| matrix Ay, € GF(3) with columns a. = (qe)icv(c) for each
e € E(Y) defined as follows: a,e = —ay, if e = {u, v} is a positive link, e = e
if e = {u, v} is a negative link, . = 1 or —1 if e = {u} is a half-edge or e = {u, u}
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is a negative loop, a,. = 0 if e = {u,u} is a positive loop and a;. = 0 if i # u, v

[44].

Example 2.4.1. The incidence matriz As, of the signed graph in Figure is

1 2 3 4 5 6 T -1 -2 -3 -4 -5 -6 -7 -8 -9
w|[O O 11 0 0 0O 1 0 0O 1 0 0 0 0 0]
w |1 1 1.0 0 O 0 o o0 o0 0 o0 1 0 0 1
s |1 -100 0O O o o0 1 1 -1 1 0 0 0 0
w |0 0 00 1 o0 o0 o o o0 o0 -1 -1 0 1 0
(0 0 01 -1 1 o0 o o0 o0 o0 o0 0 0 0 -1
w |0 0 00 0 o0 1 -1 -1 0 0 0 0 1 0 O
%0 0 o060 0 -1 -1 0 0 -1 0 0 0 1 -1 0 |

In a signed graph, each walk W = ey, es, ..., ¢, has a sign o(W) := o(e1)o(eq)
...0(ey). Therefore, a positive (resp. negative) cycle is a cycle that contains an
even (resp. odd) number of negative edges. Negative loops and half-edges are
considered negative cycles and are called joints. The set of joints of signed graph
Y is denoted by Jx. A signed graph without negative cycles is called balanced,
otherwise it is called unbalanced. If all negative cycles of a signed graph are joints
then the signed graph is called joint unbalanced. Following this definition, a con-
nected component of a signed graph ¥ which becomes balanced after the deletion
of joints is called joint unbalanced component of ¥. A vertex v in an unbalanced
signed graph that belongs to every negative cycle is called a balancing vertex. A
graph G is considered to be a signed graph whose edges are all positive. Thus,
signed graphs constitute a generalization of graphs. An unbalanced signed graph
is called tangled, if it has no balancing vertex and no two vertex-disjoint negative
cycles. A signed graph is cylindrical if it has a planar embedding with at most two
negative faces.

Any operation or term on signed graphs is defined via a corresponding operation
or term on the underlying graph and the sign function. In the following definitions
assume that we have a signed graph ¥ = (G, o). The operation of switching at a
vertex v results in a new signed graph (G, o) where a(e) = —o(e) for each link e
incident to v, while (e) = o(e) for all other edges. Two signed graphs are switching
equivalent if there exist switchings that transform the one to the other. Deletion of
a vertex v in ¥ is definedas ¥\v := (G\v, o). Deletion of an edge e in ¥ is defined
as X\e = (G\e, o). The contraction of an edge e in ¥ consists of three cases: (1) if
e is a positive loop, then 3 /e = (G\e, o), (2) if e is a half-edge, negative loop or a
positive link, then ¥ /e = (G/e,0), (3) if e is a negative link, then ¥/e = (G/e, 7)
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where ¢ is a switching at either one of the end-vertices of e. The expansion at a
vertex v, results in a signed graph (G, o), where G is the expansion of G at v, and
o is the same as o except for the new edge so created by the expansion, which is
given a positive sign. All remaining notions used for a signed graph are as defined
for graphs (as applied to its underlying graph). For example, for some S C E(X)
we have that X[S] = (G[S],0), ¥ is k-connected if and only if G is k-connected.
Given a signed graph ¥ = (G,0), if G is a tree, then ¥ is called signed tree.
Negative 1-tree of 3 is a signed tree with one more edge (link or joint) that forms
a negative cycle with the signed tree. Given a connected unbalanced signed graph
Y., a negative 1-tree of ¥ is denoted by Ty while its negative cycle is denoted by
Cr,. Negative 1-path is a connected signed graph consisting of a negative cycle
and a path that has exactly one common vertex with the cycle. A signed graph
such that each connected component is a negative 1-tree or a signed tree is called
1-forest. An 1-forest such that each connected component is a negative 1-tree, is
called negative 1-forest. A B-necklace is a special type of 2-connected unbalanced
signed graph, which is composed of maximally 2-connected balanced subgraphs ¥3;
joined in a cyclic fashion as illustrated in Figure 2.4l Observe that any negative
cycle in a B-necklace has to contain at least one edge from each ;.

g o

Figure 2.4: B-necklace.

Connectivity for signed graphs

For k > 1, a k-biseparation of a signed graph ¥ is a bipartition {A, B} of
E(Y) such that min{|Al|,|B|} > k that satisfies one of the following three prop-
erties: (1) |[V(G[A]) N V(G[B])] = k + 1 and both X[A],X[B] are balanced
(2) |V(G]A]) N V(G[B])| = k and exactly one of X[A],X[B] is balanced (3)
[V(G[A]) N V(G[B])| = k — 1 and both X[A],X[B] are unbalanced. A con-
nected signed graph is called k-biconnected when it has no [-biseparation for
1 =0,....,k—1. A wvertical k-biseparation of X is a k-biseparation {A, B} that
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has V(A)\V(B) # 0 and V(B)\V(A) # (. A connected signed graph is called
vertically k-biconnected when it has no vertical [-biseparation for [ =0,... k — 1.
Another definition of connectivity for signed graphs is the following. A signed
graph (resp. biased graph) is k-connected if the corresponding underlying graph is
k-connected.

2.5 Bidirected graphs

A bidirected graph f is a signed graph ¥ = (G, o) with an orientation o applied
to the underlying graph G such that o(e) = —o(e,u)o(e,v) for any edge e =
{u,v} € E(X). Thus, positive edges have end-vertices with different signs while
negative edges with the same sign. Edges with the same sign at their end-vertices
are called bidirected, while edges with different sign at their end-vertices are called
directed. Therefore every positive edge is a directed edge in a bidirected graph
while every negative edge is bidirected. An orientation of a signed graph ¥ is a
bidirected graph, denoted by S, where the positive edges of ¥ become directed
edges and the negative edges become bidirected. The operation of reorienting an
edge maintains the sign of the edge while its orientation is changed according to
the following. If the edge is directed, then the head of the edge becomes the tail
and the tail becomes the head. Otherwise the edge is bidirected and the heads
of the edge become tails and vice versa. Hence a bidirected edge (resp. directed)
remains bidirected (resp. directed) when a reorientation is applied.

Figure 2.5: A bidirected graph

The incidence matrix of a bidirected graph g, is a |[V(G)| x |E(G)| matrix
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Az= (as;) € R which is defined as follows:

+1 if vertex v is the head of the non-loop arc e,
—1 if vertex v is the tail of the non-loop arc e,
(e = § +2 if vertex v is the head of the loop arc e,

—2 if vertex v is the tail of the loop arc e,

0 otherwise.

Example 2.5.1. The bidirected graph which is depicted in Figure is obtained
by considering an orientation of the signed graph of Figure [Z23. The incidence
matriz Az of the bidirected graph is given below.

1 2 3 4 5 6 T -1 -2 -3 -4 -5 -6 -7 -8 -9
w[O O 11 0 0 O 1 0 0 1 0 0 0 0 0]
» |1 1 10 0 O O O o o0 O o0 1 0 0 1
w |1 -100 0 0 o0 o 1 1 -1 1 0 0 0 0
w |0 0 00 1 o0 o o o0 o0 o0 -1 -1 0 1 O
(0 0 01 -1 1 o0 o o0 o0 o0 o0 0 0 0 -1
s« |0 0 00 0 o0 1 -1 -1 0 O O 0 1 0 0
(0 O 00 0 -1 -1 0 0 -1 0 0 0 1 -1 0 |

Let Aw = [R[S] be a full row rank incidence matrix of a bidirected graph 3
where R is a basis of Ay that is a square non-singular submatrix of Ag. The
following algebraic definition of a binet matriz was given by Appa and kotnyek [I].

Definition 2.5.1. Let A = [R|S] be a full row rank incidence matriz of a bidirected
graph 3, where R is a basis of A. The matriz B = R™1S is called a binet matrix.

2.6 Biased graphs

A O-graph is the union of three internally vertex disjoint paths with the same
endpoints. A biased graph is defined as Q2 = (G, I"), where I is a set of cycles of G
satisfying the Theta Property, i.e., if C; and Cy are two cycles in I" and G[C1UCy] is
a ©-graph, then the third cycle in G[C; UCs] is also in I'. A subgraph of 2 is called
balanced when all cycles of the subgraph are contained in I'; otherwise the subgraph
is called unbalanced. Bias of a cycle of a biased graph (G, T") is the membership or
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non-membership of a cycle in I'. The definition of two isomorphic biased graphs is
the following. Two biased graphs (resp. signed graphs) are isomorphic if there is
an isomorphism between their underlying graphs that preserves the bias of cycles
(resp. the sign of edges). Two isomorphic biased graphs €; and Qs (resp. signed
graphs Y and Y,) are denoted by €y = )y (resp. X; = 3,).

The definition of connectivity for biased graphs that is used here is Slilaty’s
definition of k-biconnectivity [56]. For k > 1, a k-biseparation of a biased graph
Q2 is a bipartition (A;, A2) of the edges of Q with min{|A;|,|A2|} > k that also
satisfies one of the following three properties:

1. |[V(A;) NV (Ay)| =k + 1 and both Q[A;] and 2[A,] are balanced
2. |V(A1) NV (Ay)| = k and exactly one of Q[A;] and Q[A,] is balanced
3. [V(A1) NV (A2)] =k — 1 and both Q[A;] and [A,] are unbalanced

A wertical k-biseparation of € is a k-biseparation (A;j, Ay) such that
V(A)\V(A2) # 0 and V(A2)\V (A1) # 0. A connected biased graph is called
k-biconnected when it has no [-biseparation for [ < k. A connected biased graph
on at least k vertices is called wvertically k-biconnected when it has no vertical
[-biseparation for [ < k.



Chapter 3

Matroid Theory

Matroids were introduced by Whitney in his article 7On the abstract properties of
linear dependence” in 1935 in an attempt to axiomatize the fundamental proper-
ties of dependence that are common to graphs and matrices. Whitney presented
equivalent definitions of matroids in terms of rank, independence, bases and circuits
and studied matroidal properties such as connectivity, duality and representability
[70]. However, the foundations of Matroid Theory were laid by van der Waerden,
in 1930s in his "Moderne Algebra”, where he captured linear and algebraic depen-
dence axiomatically. Very few papers by Birkhoff [2], MacLane [31], [32], Dilworth
[T, and Rado, who worked on the combinatorial applications of matroids [46]
and the representability problem [47] followed Whitney’s seminal papers on ma-
troids. Nevertheless, since Tutte’s papers on graphs and matroids, the scientific
interest in matroid theory and its applications to combinatorial theory has grown
considerably.

Matroid Theory bridges several areas of Discrete Mathematics such as Algebra
and Graph Theory. Not only does it provide results which lead to the resolution
of important problems of Discrete mathematics and Combinatorial Optimization,
but also it furnishes powerful techniques which are used for solving combinatorial
optimization problems and for designing polynomial-time algorithms. Bixby and
Cunningham based on Tutte’s algorithm for testing whether a binary matroid is
graphic [62] provided an algorithm which converts a linear problem to a network
problem or shows that no such conversion is possible [5]. Recognizing a linear prob-
lem as network problem suggests efficient solution techniques such as the network
simplex method.

In this chapter, a survey of important results concerning matroids and graphs
as well as recent work on the field is presented. Matroids, operations and structural
properties of basic importance for the decomposition of quaternary signed-graphic
matroids are also defined. Moreover, a number of open problems and well-known
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conjectures are mentioned.

3.1 Definitions of matroids

Matroids are also known as 'geometries’ which is an abbreviation of 'combinatorial
geometries’. There are thirteen different but equivalent definitions for matroids,
most of them being axiomatic. The following definition of a matroid in terms of
circuits axiomatizes the properties of linear dependence in vector spaces.

Definition 3.1.1. A matroid M is an ordered pair (E,€) of a finite set E and a
collection € of subsets of E having the following three properties:

(C) b¢ge
(Cs) If Cy and Cy are members of € and Cy; C Cy, then Cy = Cy

(C3) If Cy and Cy are distinct members of € and e € Cy; N Cy, then there is a
Cy € € such that C3 C (CLUCy) —e

The set E is called the ground set of M, denoted also by E(M), while € denotes
the family of circuits of M. The independent sets of a matroid M = (E, %) are
all the subsets of E that do not contain a circuit C' € €. A circuit is a minimal
dependent set, that is, a dependent set all of whose proper subsets are independent.
If e € E and {e} is a circuit of M then e is a loop of M. If e and g are elements of
M such that {e, g} is a circuit of M, then e and g are parallel in M. If M has no
loops and no two parallel elements, it is called a simple matroid denoted si(M).

The following axiomatic definition of a matroid, in terms of independent sets,
generalizes the properties of linear independent vectors of a vector space.

Definition 3.1.2. Let . be a set of subsets of a set E. Then % is the family
of independent sets of a matroid on E if and only if Z has the following three
properties:

(L) De s
(I) If € F and I' C I, then I' € ..

(I3) If I} and Iy are in & and |I1| < |L3|, then there is an element e of Iy — I
such that Iy Ue € &

A pair (E,.7) that satisfies (I1) and (I3) is called an independence system.
A maximal independent set of M is called a basis. The set of bases of M is
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denoted by A(M) or just ZA. Just as the axiom system for independent sets
mirrors the properties of linear independence in vectors, the axiom system for
bases is motivated by properties satisfied by the collection of bases of a (finite-
dimensional) vector space.

Definition 3.1.3. A matroid M is a pair (E, %) in which E is a finite set and A
is a family of subsets of E satisfying

(By) B #0
(BQ) ]f81,82 € A and B, C Bg, then By = Bs.

(Bs) If B1,By € A and x € By — By, then there is an element y € By — By so that
By —xU{y} € A.

A typical example of a matroid is the wniform matroid M = (E,9%) with
|E| = m and family of bases & = {X C E : |X| = n} for two non-negative
integers m and n with n < m. The latter matroid is denoted by U,,,,. If T is a
spanning tree in a connected graph G and f € F(G) — E(T), then T'U f contains
a unique cycle which is called the fundamental cycle of f with respect to T. The
following result is a straighforward generalization of this.

Proposition 1. If B is a basis of a matroid M = (E, %) and f € E(M) — B,
then there exists a unique circuit C(B, f) that is contained in BU{f}. Moreover,
C(B, f) contains f.

The circuit C(B, f) of M is called the fundamental circuit of f with respect to
basis B. Moreover, for each f € E(M) — B we define P; C B such that Py U {f}
is the unique circuit contained in BU {f}, that is C(B, f) = Py U {f}. Two basic
notions in Linear Algebra is that of the dimension of a vector space and the span
of a set of vectors. The dimension of a vector space, which is the number of vectors
in any of its basis, is generalized to matroids as follows.

Definition 3.1.4. Let E be a finite set. A function r : 28 — N U {0} is the
rank function of a matroid on E if and only if the following are satisfied for all
X, Y CFE:

(F1) 0 <r(X) <[X|
(Ro) If X CY then r(X) <r(Y)

(Ry) Ifr(X) +r(Y)>r(XUY)+ (X NY)
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In a vector space V', a vector x is in the span of {x1, s, ..., z,} if the subspaces
spanned by {z1,zs,...,2,} and {xy, 29, ..., x,, x} have the same dimension. The
span of a set of vectors is generalized to matroids as follows.

Definition 3.1.5. Given a matroid M = (E,r) the closure operator is a set func-
tion cl : 2F — 2F defined as
d(X)={y e E:r(XU{y}) =r(X)}

forany X C E.

A set and its closure have the same rank as shown in the next lemma.
Lemma 3.1.1. For every subset X of the ground set of a matroid M,

r(X) = r(c(X)).
The following result characterizes matroids in terms of their closure operators.

Theorem 2. A function cl : 28 — 2F is the closure operator of a matroid M =
(E,.7) if and only if the following are satisfied for all X, Y C E:

(CLy) If X C E then X C cl(X)

(CLy) If X CY C E then cl(X) C cl(Y)

(CLy) If X C E then cl(cl(X)) = cl(X)

(CLy) I X CE, 2 €E, yec(XU{z})—cl(X) then z € (X U {y}).

What is remarkable about Matroid Theory is the existence of a theory of duality.
This theory generalizes the concepts of orthogonality in vector spaces and planarity
in graphs.

Theorem 3. Let M be a matroid and B* (M) ={E(M)—B:B & B(M)}. Then
PB*(M) is the set of bases of a matroid on E(M).

The matroid whose ground set is E(M) and whose set of bases is #*(M) is
called the dual matroid of M and is denoted by M*. For any matroid M, it
holds that (M*)* = M and r(M) + r*(M) = |E(M)|. The prefix 'co’ is used
when we refer to the dual notion of a matroid and an asterisk is used for the
corresponding notation. Thereby circuits, independent sets and flats of M* are
called cocircuits, coindependent sets and coflats of M. Furthermore Z*(M) is the
family of coindependent sets of M, %*(M) is the family of cobases of M, €*(M)
is the family of cocircuits of M, r*(M) is the corank function of M e.t.c.

An attractive feature about matroids is that they have an algorithmic definition.
More precisely they can be defined as the output of an algorithm to the following
optimization problem on independence systems.
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Problem 3.1.1 (Bixby 1981). Let (E,.#) be an independence system and let w be
a weight function from E into R. Define the weight w(X) of any non-empty subset
X of E by

w(X) = Yoex w(z)

and w(0) = 0. The maximization problem for (E,.%) is to mazimize w(X) such
that X is a mazximal member of 7.

Any set X € A, where £ is the collection of bases of (E,.#), is a feasible
solution to the above optimization problem, while the set X € % that maximizes
w(X) is called an optimum solution.

Perhaps the most intuitive algorithm for solving Problem BTl is Greedy Al-
gorithm which is described in Algorithm [ [44]. The algorithmic definition for
matroids which was based on Greedy Algorithm was provided by Jack Edmonds
[13, 14]. In this way he established the natural connection of matroids with com-
binatorial optimization.

Algorithm 1: GREEDY

Input: independence system (F,.#), function w: E — R
Output: set X € #
Sort £ such that w(e;) > w(ez) > ... > w(ep))
X =0
fori=1,...,|F| do

if XU{e;} € .4 then

X =X U{e}

end if

end for

return X

Theorem 4. An independence system (E, %) is a matroid if and only if the Greedy
algorithm has an optimum solution for the maximization problem [T 11

Two matroids M; and Ms are isomorphic and we write My = M,, if there is a
bijection ¢ : E(M;) — E(Ms) such that X € € (M) if and only if ¢(X) € € (Ma).
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3.2 Operations and structural properties of ma-
troids

Many important results of Matroid Theory are linked with the concept of decom-
position. Operations and structural properties of matroids which are used for the
decomposition of well-known classes of matroids such as regular, binary signed-
graphic and quaternary signed-graphic matroids are presented in the following.

3.2.1 Deletion and contraction

The operations of deletion and contraction for signed graphs are generalized to
corresponding operations for matroids. Moreover, these operations are dual to
each other.

Proposition 2. For a matroid M = (E,€) and X C E, the set
CM\X)={CCE-X:Cec¥M)},
is the family of circuits of a matroid on E — X which is denoted by M\ X.
The matroid M\ X is called the deletion of X from M.
Proposition 3. For a matroid M = (E,%€) and X C E, the set
F(MIX) = {CC X :Cew(M),
is the family of circuits of a matroid on X which is denoted by M|X .

The matroid M|X is called the deletion to X in M or the restriction of M to
X. Moreover, the matroid M|X is equal to the deletion of £ — X from M that is
M|X = M\E - X.

Proposition 4. For a matroid M = (E, %) and X C E, the set
¢ (M/X) = minimal nonempty{C — X : C € €(M)},
is the family of circuits of a matroid on E — X which is denoted by M/X.

The matroid M/X is called the contraction of X from M. Alternatively, the
contraction of X from M is defined as M /X = (M*\ X)*.

Proposition 5. For a matroid M = (E,€) and X C E, the set

€ (M.X) = minimal nonempty{C N X : C € € (M)},
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is the family of circuits of a matroid on X which is denoted by M.X.

The matroid M.X is called the contraction to X in M. Alternatively, the
contraction to X in M is defined as M. X = (M*/X)*.

Proposition 6. For a matroid M and X,Y C E(M) it holds
(0) (M\X)" = M"/X
(1) (M/X)* = M*\X

(iii) (M| X)|Y = MY

For a matroid M and disjoint X,Y C E(M) the matroid M\ X/Y is called a
minor of M. If X or Y are nonempty then it is called proper minor. A class of
matroids .# is called minor-closed if every minor of a matroid M € .# is also a
member of the class.

Proposition 7. For a matroid M and X,Y disjoint subsets of E(M) we have
(1) (M\X)\Y = M\(XUY)
(i) (M/X)]Y = M/(XUY)

(id1) (M/X)\Y = (M\Y)/X

3.2.2 Connectivity for matroids

A structural property of basic importance for many problems of matroid theory,
such as decomposition characterizations for classes of matroids, is connectivity.
There are numerous definitions of connectivity for matroids. The one employed
here is Tutte’s definition of n-connectivity for matroids, which generalizes the def-
inition of n-connectivity for graphs.

For a matroid M and a positive integer k, a partition (A, B) of E(M) is a k-
separation of M if min{|A|,|B|} > k and r(A) +r(B) < r(M)+k—1. A matroid
M is k-connected if it has no [-separation for any 1 <[ < k. A wvertical k-separation
(A, B) is a k-separation for which V(A)\V(B) # 0 and V(B)\V(A) # 0. A k-
separation (A, B) is called ezact when r(A) +r(B) =r(M)+k—1. If (A, B) is a
k-separation of a signed-graphic matroid M (X) such that 3[A], X[ B] are connected,
then (A, B) is called connected k-separation or k-separation with connected parts.
A k-separation (A, B) of a matroid M is minimal if min{|A|, |B|} = k. For k > 2 a
k-connected matroid is called internally (k+ 1)-connected if it has no non-minimal
k-separations.

There are many definitions of a separator of a matroid, one of them is the
following.
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Definition 3.2.1. For a matroid M = (E,%€) a set X C FE is called a separator
of M if any circuit C' € € is contained in either X or £ — X.

It follows from Definition B.2.1] that both E and () are trivial separators for any
matroid. Minimal nonempty separators will be called elementary separators.

The separators of a matroid are characterized by the property that the rank of
the matroid equals the rank of a separator and the rank of the rest of the elements.

Proposition 8. For a matroid M = (E,€) some set X C E is a separator of M
if and only if r(X) +r(E—X)=r(E).

The following corollary characterizes the separators of a matroid with respect
to the operations of deletion and contraction.

Corollary 1. Given a matroid M, a set X C E(M) is a separator of M if and
only if M\X = M/X.

A matroid M and its dual M* have the same separators as it is stated in the
following corollary.

Corollary 2. Given a matroid M, a set X C E(M) is a separator of M if and
only if X is a separator of M*.

Define a relation  on the ground set E(M) of a matroid M by ey f if either
e = f, or M has a circuit containing {e, f}.

Proposition 9 (Oxley [35] Proposition 4.1.2). For every matroid M, the relation
v is an equivalence relation on E(M).

The equivalence classes defined by 7 are called the (connected) components of
M. Hence every loop and every coloop is a component of M. Until now it was
sufficient to focus on 3-connected matroids, however, it seems that 3-connectivity
is no longer enough. On the other hand, the notion of 4-connectivity is too strong
since, for example, neither matroids of complete graphs nor projective spaces are
4-connected. Many definitions of connectivity intermediate between 3-connectivity
and 4-connectivity have been given so far. Three of these connectivities are pre-
sented in the following: the first one is vertical 4-connectivity, a minimal weakening
of 4-connectivity that allows projective spaces to be 4-connected. Another type is
sequential 4-connectivity which was presented by Geelen and Whittle and allowed
them to find an analogue of Tutte’s Wheels and Whirls Theorem for sequential
4-connected matroids [23]. A third type is fork connectivity that is a weakening of
4-connectivity related to a generalization of A-Y exchange, which was introduced
by Oxley et al. [26].



CHAPTER 3. MATROID THEORY 25

3.2.3 Avoidance and bridge-separability

Given a cocircuit Y of a matroid M, the elementary separators of the matroid M\Y
are called the bridges of Y in M. If B is a bridge of Y in M then the matroid
M.(BUY) is called Y -component of M. Moreover, w(M, B,Y) is a partition of YV’
such that two elements are in the same set if they are in exactly the same cocircuits
of M.(BUY). Equivalently, two elements are in the same set of 7#(M, B,Y) if
and only if one of them is a loop, or if the two elements are parallel to each
other in the matroid M.(BUY). If M is a binary matroid then it holds that
7(M,B,Y)=C*(M.(BUY)|Y) [63]. The latter equation is of central importance
for the decomposition of quaternary signed-graphic matroids, since it is used in
many proofs of the results to follow. The following two definitions appear in [40]
and [63].

Definition 3.2.2. Two bridges By and By of a cocircuit Y in a matroid M are
avoiding if there exist S; € w(M, B1,Y) and Sy € m(M, By,Y') such that S; U Sy =
Y.

Definition 3.2.3. A cocircuit Y is called bridge-separable if its bridges can be
partitioned into two classes such that all members of the same class are pairwise
avoiding.

Two bridges By, Bo which are not avoiding are called overlapping, or equiva-
lently, we say that By overlaps Bs. If the matroid M\Y has more than one bridge,
then Y is called separating cocircuit, otherwise it is called non-separating. If U
is a set of bridges of a cocircuit Y of a matroid M such that each pair of bridges
in U is avoiding, then we shall say that U has all-avoiding bridges. Consequently,
if all the bridges of Y are pairwise avoiding, then we say that Y has all-avoiding
bridges. Given two classes of bridges " and %~ of a cocircuit Y of a matroid
M, the sets UT and U~ denote the union of the bridges in the classes Z* and %~
respectively.

3.2.4 k-sums for matroids

For reason of completeness we quote the definitions of generalized parallel connec-
tion, of modular sums and of k-sums k € {1,2,3} for matroids. The definition
of k-sum k € {1,2} for matroids appears in [50], while the 3-sum of matroids is
defined in [55]. Before these definitions, a modular set is characterized in terms of
independent sets in the following proposition.
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Proposition 10 (Brylawski [7] Proposition 3.18). Let M = (E,.%) be a matroid,
then a set S is modular if and only if for all independent subsets I C E(M) — S,
I U {p} is independent for all p € S if and only if I U 1" is independent for all
independent subsets I' of S.

If M is a matroid, then a line L is a flat of rank 2. A positive triangle in a
signed graph ¥ and a subgraph ¥, 4 of ¥ (see Figure B are modular lines in
M(%).

Given two matroids M; = (Ey,r;) and My = (Fy,r3) having a common restric-
tion N (M;|T = Msy|T = N where Ey N Ey = T), it is natural to seek for a way
to stick these matroids together along N. There are examples in the litterature
which show that this may not be always possible (see Example 7.2.4 [35]), how-
ever, an operation which permits this is generalized parallel connection [7, 35]. Let
My and M, be matroids with ground sets E; and E5 such that £y N Ey =T and
M,|T = Ms|T. When si(M;|T) is a modular flat of si(M,), the generalized parallel
connection, Pr(My, Ms), is the matroid on F; U Ey whose flats are those subsets
X of Fy U Ey such that X N E; is a flat of M; and X N E5 is a flat of My. The
modular sum of M; and My along a flat T" that is modular in at least one of M
or My is the matroid Pp(My, My)\T.

1-sum

If M, and M, are matroids on two disjoint sets F, and Fs respectively, we define
M to be the matroid on E; U E5 in which a set is a circuit if and only if it is a
circuit of one of My, Ms. If E; and E5 are not empty, then M is called the 1-sum
of M; and M, denoted by M; & M,.

Lemma 3.2.1 (Seymour [50]). If M is the 1-sum of My and My then (Ey, Es) is
a 1-separation of M. Conversely, if (Ey, Fs) is a 1-separation of M, then M is the
L-sum of M|E, and M|FEs.

2-sum

Let M, My be two matroids on two sets E; and Ey with F; N Ey = {z}, where z
is not a loop or coloop of either M; or My and with |E,|, |Es| > 3. Let M be the
matroid on E = (Ey U Ey) — {z}, in which X C E is a circuit if and only if either

(i) X is a circuit of one of My, My or
(il) (X N E;)U{z} is a circuit of M; (1 =1,2).

M is indeed a matroid, called the 2-sum of M; and M.
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Lemma 3.2.2 (Seymour [50]). If M is the 2-sum of My and My then (Ey—FEy, Fo—
Ey) is a 2-separation of M. Conversely, if (Ey, Ey) is a 2-separation of M of order
2 and z is a new element, then there are matroids My and My on E1U{z}, EoU{z}
respectively such that M is the 2-sum of My and M.

3-sum

Given two matroids M; and M, both containing a line L that is modular in at
least one of M; and M,, we define the 3-sum M; @3 M, as the modular sum of M;
and M, along L.

3.3 Representable Matroids

Ever since matroids were introduced by Whitney, representable matroids have
attracted significant research interest. Lately due to Rota’s conjecture and the
Matroid-Minors Project of Geelen, Gerard and Whittle [2I], matroid representation
theory has been one of the most active areas of research in the field.

3.3.1 Matroids arise from matrices

Matrices give rise to a fundamental class of matroids, the class of representable
matroids. Specifically the columns of a m x n matrix A with entries in a field F
are elements of a matroid while the minimal linearly dependent sets of columns of
A constitute the family of circuits of the matroid.

Theorem 5. Let E be a finite set of vectors from a vector space over some field F
and let € be the collection of all minimally linearly dependent subsets of E; then
M = (E,¥) is a matroid called vector matroid.

Given a matrix A over the field F, the vector matroid of A is denoted by M[A].
Any matroid isomorphic to the vector matroid M[A] is called an F-representable
matroid. The dual of an F-representable matroid M is F-representable. Matroids
that are representable over the finite fields GF(2), GF(3) and GF(4) are called
binary, ternary and quaternary respectively. Regular are called the matroids which
are representable over every field. Equivalently, a matroid is called regular if it can
be represented by a totally unimodular matrix.

Example 3.3.1. Let A be the following matriz over the field R of real numbers.
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O = =

A:

— = =

4 5 6
011
1 01
1 10

_ O O w

2
0
1
0 0

MIA] has ground set E = {1,2,3,4,5,6,7} and 14 circuits some of which are
{2,3,4},{1,3,5}, {1,2,6},{1,2,3,7}, {5,2,3,6},{5,2,7}. The linear independent
sets of vectors {1},{2}, {2,3},{1,2}, {5,2},{2, 7} are independent sets of the vec-
tor matroid of A.

Let A be a m x n matrix over a field F, then the ground set of the vector
matroid M|[A] is the set E of column labels of A. In general, the matroid M [A]
does not determine the matrix A uniquely. Operations which leave the matroid
MT[A] unchanged when performed on A are defined in the following [35].

1. Interchange two rows.

2. Multiply a row by a non-zero member of F.

3. Replace a row by the sum of that row and another.

4. Adjoin or remove a zero row.

5. Interchange two columns (the labels moving with the columns).
6. Multiply a column by a non-zero mamber of F.

7. Replace each matrix entry by its image under some automorphism of F.

e1 ez ..er €rt1 ... €n €rt1  €r42 ... €n
el €1
e €2
I, D D =
€r_1 €r—1
er er

The first three operations are called elementary row operations. The seventh
operation differs from the first six in that it is based on a property of a field F.
By a sequence of operations of (1)-(5) the matrix A can be reduced to a matrix
[I.|D] where I, is the r x r identity matrix and D is a r X (n — r) matrix over
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F. Let us suppose that e, es, ..., e, are the column labels of the matrix [I,.|D],
then ey, eq,..., e, are the elements of a basis for M[A]. We shall always assume
that eq, es, ..., e, are the labels, in order, of the rows of D. Moreover, it is natural
to label the rows of D in order, by ey, es,...,e,. The matrices [I.|D] and D are
representation matrices for M[A] over F and are called standard representation
matriz and compact representation matriz for M[A], respectively. Two represen-
tations A; and A, of a matroid are equivalent if and only if A; can be transformed
to Ay via a sequence of the operations (1)-(7). A matroid is uniquely representable
over a field T if all of its F-representations are equivalent. Binary matroids are
uniquely G F'(2)-representable, ternary matroids are uniquely G F'(3)-representable
and 3-connected quaternary matroids are uniquely representable over GF'(4) [30].
On the other hand, a quaternary matroid that is not 3-connected has arbitrarily
many inequivalent representations.

In 1988 Kahn conjectured that 3-connectivity was sufficient to pose a bound on
the number of inequivalent representations. Oxley, Vertigan and Whittle verified
Kahn’s Conjecture for ¢ = 5 by showing that a 3-connected matroid has at most
six inequivalent GF'(5)-representations [36]. Moreover, they showed that there are
no bounds in the number of inequivalent representations of a 3-connected matroid
over a finite field GF'(q) with at least seven elements [36]. Specifically they gave
counterexamples using free spikes and free swirls and therefore they disproved
Kahn’s conjecture. On the contrary Geelen and Whittle proved that, when ¢ is
prime, the number of inequivalent G F(q)-representations of 4-connected matroids
is bounded [24]. Excluding Us ¢ as a minor, Geelen et al. [22] proved that Kahn’s
Conjecture holds for the class of matroids representable over a fixed finite field
with no Usg-minor. Tipless free 3-spike and the rank-3 free swirl are matroids
isomorphic to Usg.

3.3.2 Characterizations and decomposition theorems

Excluded minor characterizations over a field

The ideal method of characterizing a class of F-representable matroids for some
finite field F is to provide a polynomial time algorithm determining whether a
matroid given by, say, an independence oracle is F-representable. Unfortunately,
Seymour has proved that there is no polynomial time algorithm for testing if a ma-
troid given by an independence oracle is binary [51]. Moreover, this result extends
to all GF(q)-representable matroids for all prime powers gq. Consequently, we can
only hope for theorems that prove in polynomial time that a given matroid is not
representable over a field F. Such theorems are those that characterize a class of
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F-representable matroids by listing its excluded minors, that is matroids that are
minor minimal with respect to not being in the class. These characterizations con-
stitute a short proof of non-representability since they provide a method for proving
non-representability for a finite field that requires just a few rank evaluations.

- . , N
/ . \
' I
\ TS ~o PPt L

Figure 3.1: The signed graph Y4 such that M (3y4) = Usy

Excluded minor characterizations have been proved for GF(2), GF(3) and
GF(4) fields. In 1958, Tutte found the unique excluded minor of GF(2) repre-
sentability.

Theorem 6 (Tutte [59, [60]). A matroid is binary if and only if it has no minor
isomorphic to Us 4.

Hence Tutte gave a short proof of non-representability over GF(2) since we
can verify that a given minor is isomorphic to Us4 in a constant number of rank
evaluations. In 1979, Bixby (attributing the result to Reid [4]) and Seymour [49]
published independently a proof of the excluded minors of GF(3)-representable
matroids using different techniques.

Theorem 7. A matroid is ternary if and only if it has no minor isomorphic to

U274, U375, F7 and F7*

In 1970, based on Tutte’s result for GF'(2) and Reid’s unpublished result for GF'(3),
Rota conjectured that for any finite field F, the class of F-representable matroids
has only finitely many excluded minors. The latter conjecture is known as Rota’s
Conjecture. In 2000 Geelen, Gerards and Kapoor gave the list of the excluded
minors of quaternary matroids [18].

Theorem 8. A matroid is quaternary if and only if it has no minor isomorphic
to Us s, Usg, P, F7 , (F7)*, Py and Py .

The fields for which Rota’s Conjecture is known to be true are those that
guarantee uniqueness of the representations of matroids. For finite fields larger
that GF(4) there are many obstacles in proving Rota’s Conjecture. For this reason,
current research is concentrated on developing techniques that would lead to a
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general resolution of Rota’s Conjecture. A weakening of the latter conjecture,
i.e., there is a short proof of non-representability over any finite field F, seems
more approachable for larger fields than GF'(4). This weaker conjecture has been
resolved for GF'(5) by Geelen et al. [22].

Algebraic characterizations

The problem of characterizing a class of F-representable matroids for some finite
field F was extended to an analogous problem for sets of fields. The first result, an
algebraic characterization for the class of regular matroids, was proved by Tutte.
More precisely, Tutte proved that if a matroid M is representable over GF(2)
and M is representable over a second field of characteristic other than two, then
M is regular. Moreover he showed that a matroid is regular if and only if it is
representable over all fields. According to Tutte’s algebraic characterization for
regular matroids, there are exactly two possibilities for a class of matroids .#
representable over all fields in a set of fields F containing GF'(2). Either all fields
have characteristic 2 and .Z is the class of binary matroids, or .# is the class of
regular matroids. Five equivalent characterizations for binary matroids are stated
in the next theorem.

Theorem 9. The following statements are equivalent for a matroid M :
(1) M 1is binary

(i7) If C s a circuit and C* is a cocircuit, then |C' N C*| is even

(13i) If Cy and Cy are circuits, then C1ACy is a disjoint union of circuits.

(1v) The symmetric difference of any set of circuits is a disjoint union of circuits.
(v) If B is a basis and C' is a circuit, then C = A.ec—pC(B,e).

The problem of characterizing a class of matroids that are representable over
all fields in a given set containing GF'(3) was considered first by Whittle [71], [72].
Specifically he showed that if F is a set of fields containing GF(3) and M is a
class of matroids that are representable over all fields in F, then M is the class
of matroids representable over GF(3) and GF(q) for some g € {2,3,4,5,7,8}.
Furthermore he categorized the matroids that are representable over a set of fields
containing GF(3) into four basic classes, regular, near-regular, dyadic and +/1-
matroids. Apart from regular matroids, algebraic characterizations have also been
given for the last three classes of matroids [73].
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Let Q(«) be the field obtained by extending the rationals by the transcendental
a. A matrix over Q(«) is near-regular if all of its non-zero subdeterminants are
in {£(a’ — 1)’ : i,j € Z}. A matroid is near-regular if it can be represented
by a near-regular matrix. In [71] Whittle proved an algebraic characterization for
near-regular matroids. Specifically he showed that a matroid M is ternary and
representable over both the rationals and GF(4) if and only if M is ternary and
representable over both GF(4) and GF(5). Equivalently M is representable over
all fields except possibly GF'(2) if and only if M is near-regular. The class of near-
regular matroids contains the class of regular matroids and is the intersection of
v/1 and dyadic matroids (Figure B.4)).

A matrix over Q is dyadic if all of its non-zero subdeterminants are in {0, £2° :
i € Z}. A matroid is dyadic if it can be represented by a dyadic matrix. An
algebraic characterization for dyadic matroids very similar to that of near regular
matroids was presented by Whittney in [72]. More precisely, a matroid M is
dyadic if and only if M is representable over both GF'(3) and Q if and only if M
is representable over GF(3) and GF'(5).

A /1-matriz is a matrix over the complex numbers such that all of its subdeter-
minants are complex sixth roots of unity. A /1-matroid is a matroid that can be
represented over the complex numbers by a +/I-matrix. The class of ¥/1-matroids
is precisely the class of matroids representable over GF'(3) and GF'(4).

Ternary matroids

hear regulax

dyadic matroids ¥/1-matroids

regular

Figure 3.2: The relationships between near regular, v/1 and dyadic matroids.

Attempts to extend the problem of characterizing a class of matroids that are
representable over all fields in a given set of fields containing GF'(4) showed that
there are an infinite number of classes that are the class of matroids representable
over some set of fields containing G F'(4). Regular, near-regular, v/1 and dyadic are
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all classes of matroids that are obtained by taking representations whose subdeter-
minants belong to some subgroup of the multiplicative group of a field. Based on
this observation, Semple and Whittle developed a theory of matroid representation
over algebraic structures called partial fields [48]. Vertigan worked on this theory
and obtained many interesting results including the following. A matrix over R is
golden mean if all of its non-zero subdeterminants are in {£r(1 —r)’ : 4,5 € Z},
where 7 denote a real root of the polynomial 2 — z — 1 and the other root is 1 — 7.
A matroid is golden mean if it can be represented over the reals by a golden mean
matrix. The following characterization for golden mean matroids was provided by
Vertigan, but its proof was published by Pendavingh and Van Zwam [43]. A ma-
troid is golden mean if and only if it is representable over both GF(4) and GF(5).
Pendavingh and Van Zwam extended the theory of matroids representable over
partial fields further giving new results along with new proofs of Whittle’s results.
In particular they showed that when a matroid is representable over a partial field
then it is representable over some field [43] [42].

Excluded minor characterizations over sets of fields

Another question that arises is whether we can derive excluded minor characteri-
zations for classes of representable matroids over all fields in a given set of fields.
This open problem has led to a conjecture that generalizes Rota’s conjecture as
follows. If F is a set of fields, at least one of which is finite, then the class of
matroids representable over all fields in F has a finite set of excluded minors.

In a series of papers [59, 60, 61], 63] Tutte provided the following excluded minor
characterization for the class of regular matroids.

Theorem 10. A matroid is reqular if and only if it has no minor isomorphic to
Usy F7, F7.

For the classes of near regular, ¥/1 and dyadic matroids there are not yet ex-
cluded minor characterizations. For the class of near regular matroids, Geelen
announced that, by adapting the techniques of the proof of the excluded-minor
characterization of GF'(4)-representable matroids, one could determine the com-
plete list of excluded minors. However, the proof for the excluded-minor character-
ization of near regular matroids was published by Hall, Mayhew, and Van Zwam
in 2009.

Theorem 11. A matroid is near-reqular if and only if it has no minor isomorphic
to any Of U2,5’ U3,5a F77 F7*7 F’7_7 (F7_)*7 AG(27 3)\67 (AG(27 3)\6>*7 A3(AG(27 3)\6),
orPxs.
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As regards the class of ¥/1-matroids, its excluded minors will follow from those
for ternary and quaternary matroids, since they are representable over both GF'(3)
and GF(4) fields [18]. Similarly, since dyadic matroids are representable over
GF(3) and GF(5), the excluded minors for dyadic matroids would follow from
those of ternary and GF(5)-representable matroids. In [35], Oxley conjectures the
list of excluded minors for dyadic matroids, however a proof of this has not been
published yet.

Decomposition theorems

A very deep and important result in matroid theory is Seymour’s decomposition
theorem for regular matroids [50]. According to the latter theorem, each regular
matroid can be obtained from graphic matroids, cographic matroids and copies of
Ry by taking 1-,2- and 3-sums. Seymour’s regular matroid decomposition theorem
not only provided a polynomial time algorithm for recognizing regular matroids,
but it also led to a polynomial time algorithm for determining whether a real matrix
is totally unimodular. The matrix A;q, which is given below, is a representation
matrix for matroid Rjy over GF'(3).

1 0 1 -1
-1 1 0 0 1
Ap=| 1 -1 1 0 0
0 1 -1 1 0

0 0 1 -1 1 |

It is of desire to obtain similar decomposition theorems for other classes of
matroids that are representable over some finite field or even for classes of matroids
that are representable over all fields in a given set of fields. These theorems would
lead to algorithms that determine for each matroid M in the class, given by an
independence oracle, in polynomial time in |E(M)| whether M belongs to the class.
The next result, whose proof is unpublished, has eliminated the hopes for many
classes of matroids. Let F; and F, be finite fields. If either both F; and I, are
not prime, or both F; and Fy are prime with at least five elements, then there is
no polynomial algorithm for recognizing the class of matroids representable over
both F; and Fy. However, there are still hopes for classes of matroids that are not
included. In particular, it is conjectured that the classes of near regular, ¥/1 and
dyadic matroids are polynomially recognizable [73]. The first step towards their
recognition is to determine the classes of matroids that play a role analogous to
that played by graphic and cographic matroids in Seymour’s regular decomposition
theorem.
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3.4 Graphic matroids

In this section, we present well-known results and open problems concerning the
fundamental classes of matroids that derive from graphs, signed graphs and biased
graphs.

3.4.1 Matroids arise from graphs

One of the two fundamental classes of matroids that appear in [70] arises from
graphs as follows.

Figure 3.3: A graph

Theorem 12. Let E(G) be the set of edges of a graph G and C C 28®) is the
collection of edge sets of cycles of G, then M(G) = (E(G),C) is a matroid on
E(G) with circuit family C called the cycle matroid of G.

A matroid that is isomorphic to the cycle matroid of a graph is called graphic.
For a graph G we denote the dual of the cycle matroid of G by M*(G). This matroid
is called the bond matroid of G or the cocycle matroid of G. A matroid which is
isomorphic to the cocycle matroid of a graph is called cographic. Several operations
and results for graphs were translated to corresponding operations and results for
graphic matroids. Menger’s Theorem for graphs was generalized to matroids by
Tutte’ s Linking Theorem. Tutte’s Wheel Theorem for graphs was proved for
matroids also by Tutte establishing that wheels and whirls are the only 3-connected
matroids for which any one element deletion or contraction is not 3-connected.
Moreover, Tutte decomposed a 2-connected graph into 3-connected graphs, cycles
and cocycles in his book 'Connectivity in graphs’ [64]. This decomposition result
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was proved for matroids by Cunningham and Edmonds establishing the existence of
a unique 2-sum decomposition of a connected matroid into 3-connected matroids,
circuits and cocircuits [9].

3.4.2 Representation matrices for graphic matroids

Given a graph G the incidence matrix Aq is a representation matrix of the asso-
ciated cycle matroid over GF'(2). Moreover, if we assume that [I|D] is a standard
representation matrix of M(G), that is obtained from A, then the columns of the
compact representation matrix D are characteristic vectors of cycles in G. As a
result, there is computational method for the conctruction of D = (d, ;) € GF(2)
as follows. Given a basis B = {eq,e3,...,e.} of M(G) and e; € E(M(G)) — B the
entry d; ; = 1 if e; € C(B,e;) (i € {1,...,r}) and 0 otherwise.

Example 3.4.1. The graph G in Figure[33 has cycle matroid M (G) with ground
set B(M(Q)) = {1,2,3,4,5,6,—1, -2, 3, 4, —5, 6,7, 8,9, ~10} and cir-
cuit family € (M (G)) the set of edge sets of G. The incidence matriz of G is given
below.

1 2 3 4 5 6 -1 -2 -3 —4 -5 -6 -7 -8 -9 -10
»w[01 10001 0 0 1 0 0 0 0 0 0]
»w |1 1 00000 OO O O 1T 0 0 1 1
s |1 000O0O0O0 1 1 1 1 1 0 0 0 1

A¢=w |00 01 000 O O O 1T 0 0 1 0 O
» (0011100 0 0 0 0 0 0 0 1 0
w 000011 0 0 1 0 0 0 1 1 0 0
[ 0O0OO0OO0OO0O1 1 1 0 0 0 0 1 0 0 0 |

Applying elementary row operations in GF(2) and column interchanges to Ag we
obtain the following standard representation matriz [I|D] of M(G). The set B =
{1,2,3,4,5,6} € B(M(G)).

1 2 3 4 5 6 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
1100000 o1 1 1 1 0 0 0 0 1 |
010000 0 1 1 1 1 1 0 0 1 0
51001000 1 1 1 0 1 1 0 0 1 0
41000100, 0 000 1 1 0 1 0 0
51000010 1 110 0 0 0 1 0 0
600000 1 1 1.0 0 0 01 0 0 0
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The matriz D is a compact representation matriz of M(G) = M[Ag| over GF(2)
field.

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10

_— =0 = O O
_ o O O O O
O = =R O O O

— O R Rk -
O = O
o O OO O ==
O O = ==
S O = = = O
O O O = o=
oo O o o

S ot e W N

Given a connected directed graph 8, applying elementary row operations and
column interchanges to the incidence matrix of G we obtain a compact representa-
tion matrix of M (G) over GF(3). This representation matrix over R is the network
matrix N associated with G'. A computational method can be applied in order to
obtain the entries of N = (n;;) € GF(3) as follows. Let T" be a tree of @ and let
C = C(T,e;) be the fundamental cycle of e; with respect to T'. If C is a loop e;,
then the corresponding column of N is zero. Now assume that C' is not a loop and
let the edges of C' — {e;}, in cyclic order, be ey, es, ..., e,. Now cyclically traverse
C beginning with e; and for each e;,i € {1,...,n} let n;; be 1 if the direction of
traversal agrees with the direction of e; or —1 otherwise.

Example 3.4.2. Consider the directed graph 8 in Figure and the cycle ma-
troid M (G) with ground set E(M(G)) = {1,2,3,4,5,6,—1,—2, -3, -4, -5, —6, —7,
—8, -9, =10} and circuit family € (M(QG)) the set of edge sets of G. The incidence
matriz Ag of G is given below.

1 2 3 4 5 6 -1 -2 -3 -4 -5 -6 -T -8 -9 -10
v [ 110 OO O -1 0 O 1 o0 o0 0 0 0 0
v2 1 -1 0 o0 o0 o o0 o0 o0 o o -1 0 0 1 1
w |-1 0 0 o0 o0 o0 o0 -1 -1 -1 -1 1 0 0 0 -1
V4 o o0 o 1 o0 o0 o o o o 1 o o0 -1 0 O
vs o 0 -1 -1 1.0 O O O O O o o0 0 -1 0
ve o o o0 o6 -1 -1 0 o0 1T 0O O 0 -1 1 0 0
w0 0 o0 o0 oo 1 1 1 o o0 0 0o 1 0 0 O

Applying elementary row operations in GF(3) and column interchanges to Ag we
obtain the following standard representation matriz [I|N]of M(Q).
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1 2 3 4 5 6 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
1100000 o -1 -1 -1 -1 0 0 O ~1 ]
21010000 o -1 -1 -1 -1 -1 0 0 1 0
31001000 11 1 o0 1 1 O 0 -1 0
41000100 o o0 o o0 -1 -1 0 1 0 0
51000010 -1 -1 -1 0 0 O O -1 0 O
61000001 -1 -1 0 O O O -1 0 0 0

The matriz N is the network matrixz associated with 8 and a compact representa-
tion matriz of M(G) over GF(3) field.

-1 -2 -3 4 -5 -6 -7 -8 -9 -10
1 0O -1 -1 -1 -1 0 O
2 0O -1 -1 -1 -1 -1 0

r11r 1 o0 1 1 0 0 -1
o 0 o0 0 -1 -1 0
-1 -1 -1 0 0 0 O
-1 -1 0 O O 0 -1 0 O

[ S

As regards connectivity for graphic matroids, the concept of n-connectivity
for matroids was introduced by Tutte in order to generalize the corresponding
concept for graphs and to incorporate duality into the theory [65]. The importance
of Tutte’s definition for n-connectivity was highlighted by the fact that the n-
connectivity of a graph and its cycle matroid coincide. Whitney proved that cycle
matroids of 3-connected graphs are uniquely representable and gave necessary and
sufficient conditions for two graphs to have isomorphic cycle matroids in his 2-
Isomorphism Theorem [68]. Tutte proved that graphic matroids are representable
over every field while Whitney showed that the intersection of the class of cographic
matroids with the class of graphic matroids is the class of matroids that arise from

planar graphs [69].

3.4.3 Characterizations and decomposition theorems

The most important results concerning the class of graphic matroids are excluded
minor characterizations and decomposition theorems that lead to polynomial time
recognition algorithms. Excluded minor characterizations were given by Tutte
[6T, and Bixby [3].

Theorem 13 (Tutte [61]). A matroid is graphic if and only if it has no minor
isomorphic to Usy Fr, F¥, M*(Ks3) and M*(K5).
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Theorem 14 (Tutte [63]). A binary matroid is graphic if and only if it has no
minor isomorphic to Fr, Fr, M*(Ks3) and M*(K5).

Theorem 15 (Tutte [61]). A regular matroid is graphic if and only if it has no
minor isomorphic to M*(Ks3) and M*(K5).

A structural characterization for graphic matroids was given by Seymour in
[51]. Seymour’s characterization was based on the fact that when the cycle ma-
troid M(G) of a graph G is different from a matroid M on E(G) with the same
rank, then there is a vertex of G whose star is not a cocircuit of M. Characteri-
zations which were based on properties of cocircuits were given by Fournier [15],
Mighton [34], Tutte [62] and others. In 1974, Fournier characterized the class of
graphic matroids by proving that a matroid is graphic if and only if for any three
cociruits with a nonempty intersection there is one that separates the other two
[15]. In 2008, Mighton gave two necessary and sufficient conditions for a binary
matroid to be graphic, where the one condition was a reduction of Fournier’s con-
dition to fundamental cocircuits with respect to a basis and the other was the
bridge-separability property of each of the fundamental cocircuits [34]. Mighton’s
characterization in contrary with Fournier’s was a polynomial time algorithm for
testing graphicness. In 2011, Geelen and Gerards provided another characteriza-
tion for the class of graphic matroids based on the existence of a solution of a linear
system when a set of fundamental cocircuits with respect to a basis of a binary
matroid correspond to that of a graphic matroid [I7]. In 2010 Wagner presented
a simpler proof of Mighton’s characterization for graphic matroids using Tutte’s
decomposition theorem for graphic matroids [67]. Furthermore a characterization
in terms of circuits was given by Wagner in [66].

The first decomposition theorem characterizing the class of graphic matroids
was proved by Tutte and was based on the deletion of a cocircuit (Theorem [B1I).
More precisely, given a cocircuit Y of a binary matroid M, M is graphic if and only
if Y is bridge-separable and for each B bridge of Y in M the matroid M.(BUY')
is graphic. The decomposition theory that he developed for graphic matroids
led to the first algorithm for determining whether a binary matroid is graphic
[62]. Furthermore he pioneered the recursive approach of testing a matroid for a
property by testing some well defined minors.

All the above characterizations, apart from Fournier’s, imply algorithms for
testing graphicness. Polynomial time algorithms for recognizing graphic matroids
were also presented by Cunningham in [§ and Bixby and Cunningham in [5].
Specifically Bixby and and Cunningham gave a linear time algorithm using Tutte’s
decomposition theory for graphic matroids. A few years later, two almost linear
time algorithms were published by Bixby and Wagner in [6] and by Fujishige in
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Figure 3.4: The relationships between classes of matroids.

3.5 Signed-graphic and bias matroids

It is conjectured that bias matroids are bulding blocks for the class of near-regular
matroids in a similar way that graphic matroids are for regular matroids [73].
Pagano has essentially characterized the class of bias matroids that are near-regular
in [37] and it seems clear that there is a polynomial algorithm for recognizing this
class. The fundamental classes of signed-graphic and bias matroids are defined in
the next subsections.

3.5.1 Matroids arise from signed graphs

Signed graphs, that is graphs whose edges have been attributed a sign, were defined
by Harary in [27] in 1954. Three decades later, Zaslavsky studied signed graphs
and their properties in his article 'Signed graphs’ Moreover, in the same article
he introduced signed-graphic matroids that is a class of matroids that arises from
signed graphs.
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Theorem 16. Let E(X) be the set of edges of a signed graph ¥ and € be the family
of minimal edge sets inducing a subgraph that is either:

(a) a positive cycle, or
(b) two negative cycles which have ezxactly one common vertex, or

(¢) two vertex-disjoint negative cycles connected by a path that has no common
vertex with the cycles apart from its endvertices.

Then M(X) = (E(X),%) is a matroid on E(X) with circuit family € and it is
called the signed-graphic matroid of 3.

The connected subgraphs of ¥ which are of the types (a) — (¢) in the above def-
inition are called circuits of . Moreover, the subgraphs of 3 which are described
in cases (b) and (c) are called type I and type II handcuff respectively. In figures
of signed graphs, dashed lines are used to depict negative edges while solid lines
are used to depict positive edges. The three types of circuits of a signed-graphic
matroid M (X)) are depicted in Figure B0

(a)  Posi-  (b) Tight handcuff (¢) Loose handcuff
tive cycle

Figure 3.5: Circuits in a signed graph X..

Given a signed graph ¥ and a subset A of E(M (X)), it follows that A corre-
sponds to a subset of edges in ¥. Frequently, we shall refer to the induced subgraph
of the edgeset of A in Y, instead of the edgeset of A.

Zaslavsky defined many operations on signed graphs such as switching, deletion
and contraction. The operations which are performed at a signed graph leaving the
matroid unchanged were presented in [55, [74, [76]. These operations are mentioned
in the next proposition which appears in [40].

Proposition 11. Let ¥ be a signed graph. If ¥':

(i) is obtained from X by replacing any number of negative loops by half-edges
and vice versa, or
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(7i) is obtained from % by switchings, or

(7ii) is the twisted graph of ¥ about (u,v) with Xq1,%s the twisting parts of X,
where Xy (or 33) is balanced or all of its negative cycles contain u and v,

then M(X) = M(Y').

Necessary conditions under which a signed-graphic matroid is graphic are es-
tablished in the next proposition. These results can be found in [55], [74], [76].

Proposition 12. Let 3 be a signed graph. If ¥
(i) is balanced, or
(7i) has no negative cycles other than joints, or

(7ii) has a balancing vertex,
then M (%) is graphic.

The class of signed-graphic matroids is closed under the operations of contrac-
tion and deletion as it is stated in the following theorem.

Theorem 17. If ¥ is a signed graph and S C E(X), then M(X\S) = M(X)\S
and M(X/S) = M(X2)/S.

3.5.2 Representation matrices for signed-graphic matroids

Zaslavsky proved that signed-graphic matroids are representable over any field
of characteristic not equal to 2 [74]. Therefore what was left was to determine
when a signed-graphic matroid is representable over fields of characteristic two.
The representability of signed-graphic matroids over GF(2) and GF'(4) fields was
studied by Gerard [25], Pagano [37] and Slilaty and Qin [55].

Representation matrices for signed-graphic matroids were presented by Pa-
palamprou and Pitsoulis in [38] 39, [44]. In the following, we present two theorems

which appear in [39], [44].

Theorem 18 (Papalamprou and Pitsoulis [39]). Given a signed graph X
(i) As, is a representation of M(X) in GF(3), and

(ii) As is a representation of M(X) in R, where X is a bidirected graph obtained
by an arbitrary orientation of X.

A matrix is called integral if its entries are integers.
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Theorem 19 (Papalamprou and Pitsoulis [39]). Let B be an integral binet matriz
and M(X) be the signed-graphic matroid represented by B over R. The matriz
B' = B mod 3 is a representation matriz of M (X) over GF(3).

In the following example we describe how, given a signed graph, we derive a
compact representation matrix for the associated signed-graphic matroid.

Example 3.5.1. Consider the incidence matriz As, of the signed graph in figure
which is given below

1 2 3 4 5 6 T -1 -2 -3 -4 -5 -6 -7 -8 -9
w[O O 11 0 0 0 1 0 0O 1 0 0 0 0 0
» (1 1 10 0 O O o o o0 O o0 1 0 0 1
s |1 -10OO0O O 0 o0 o 1 1 -1 1 0 0 0 0
w |0 0 00 1 o0 o0 o o0 o0 o0 -1 -1 0 1 O
» |0 0 01 -1 1 o0 o o0 o0 0 o0 0 0 0 -1
s« |0 0 00 0 o0 1 -1 -1 0 O O O 1 0 0
(0 O 00 0 -1 -1 0 0 -1 0 O 0 1 -1 0 |

Applying elementary row operations over R and column interchanges to As, we
obtain the following standard representation matriz [I|D] of M (%) over R.

1 2 3 4 5 6 7 -1 -2 -3 4 -5 -6 -7 -8 -9
11000000 1 0 0 -1 0 0 1 0 0]
210100000 1 1r 1 o0 1 0 1 O
310010000 -2 -1 -1 1 -1 -1 =2 0 1
410001000 1 1 1 0 1 2 0 -1
510000100 o o0 o o 1 1 0 -1 0
60000010 11 1 0 O O 2 1 0
710 00O0O0O01 11 o0 O O o 1 0 0 |

The matriz D is a compact representation matriz of M (X) over R. Moreover, the
matriz D' = D mod 3 with entries in {0,1,—1} is a representation matriz for

M(X) over GF(3).
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' [1 0 0 -1 0 0 0 0
21 1 1 0 1 0 0
5|1 -1 -1 1 -1 =1 1 0

D=4+|1 1 1 0 1 1 -1 0 -1
s5/0 0 0 0 1 1 0 -1 0
6|1 1 1 0 0 0 -1 1 0
L1 1 0 0 0 0 1 0 0

By Theorem [I8 the incidence matrix of the bidirected graph which is obtained
by an orientation of the signed graph ¥ represents M (X) over R. In the following
example, we describe how, given a bidirected graph, we derive a compact repre-
sentation matrix for the associated signed-graphic matroid.

Example 3.5.2. Consider an orientation of the signed graph > in Figure[2Z.3. The
bidirected graph which is obtained is depicted in Figure[Z.3 and its incidence matriz
Az is given below.

1 2 3 4 5 6 7 -1 -2 -3 -4 -5 -6 -T -8 -9
©w [0 O 110 0 O 1 0 0 1 0 0 0 0 0]
»w |1 1 100 O O O O O o0 o 1 0 0 1
s |1 -1000 o0 o o0 1 1 -1 1 0 0 0 0

Ag=w |O 0 OO0 O O O O O 0 -1 -1 0 1 0
» |0 0 010 1 o0 o0 o0 o0 o0 0 0 0 0 -1
w |0 0 000 O 1 -1 -1 0 0O O 0 1 0 O
/0 0 000 -1 -1 0 0 -1 0 0 0 1 -1 0 |

Applying elementary row operations over R and column interchanges to As we
obtain the following standard representation matriz [I|B] of M (%) over R.

1 2 3 4 5 6 7 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 [1 000000 1 0 0 -1 0 0 1 0 0]
201 00000 11 1 o0 1 O 1 O
310010000 -2 -1 -1 1 -1 -1 =2 0
41000100 O0 1 1 1 0 1 2 0 -1
510000100 o o o o 1T 1 0 -1 0
610 00O0O0T1O0 11 1 o0 O O 2 1 0
71000 O0O0O01 11 o0 O O o0 1 0 0 |
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The matriz B is the binet matriz associated with § and a compact representation
matriz of M(X) over R. Furthermore, the matric B = B mod 3 with entries in
{0,1,—1} is a representation matriz for M(X) over GF(3).

1 0 0 -1 0 0 1 0 0
/1 1 1 0 1 0 1 0
51 -1 -1 1 -1 -1 1 0 1

B=4+|1 1 1 0 1 1 -1 0 -1
510 0 0 0 1 1 0 -1 0
6|1 1 1 0 0 0 -1 1 0
11 1 0 0 0 0 1 0 |

A combinatorial algorithm to compute the entries of a binet matrix associated
with a bidirected graph in the same spirit as the one described for network matri-
ces in Example was published independently by Appa and Kotnyek [1] and
Zaslavsky [77].

3.5.3 From signed-graphic matroids to signed graphs

The elements of a cocircuit of a signed-graphic matroid were characterized graph-
ically by Zaslavsky as follows.

Theorem 20 (Zaslavsky [74]). Given a signed graph 3 and its corresponding ma-
troid M(X), Y C E(X) is a cocircuit of M(X) if and only if Y is a minimal set of
edges whose deletion increases the number of balanced components of 3.

A cocircuit Y of a matroid M is called graphic if M\Y is graphic, otherwise
it is called non-graphic. The set of edges of a signed graph that corresponds to
a cocircuit of the associate signed-graphic matroid is called bond. It is important
to note that the deletion of a bond Y from a connected signed graph Y results in
a signed graph ¥\Y with exactly one balanced component due to the minimality
of Y. Hence X\Y is either connected and balanced or consists of one balanced
component and one or more unbalanced components. Bonds can be classified into
four types according to the signed graph obtained upon their deletion. Let us
assume first that X is an unbalanced signed graph. If ¥\Y is a connected and
balanced signed graph, then Y is called a balancing bond. Otherwise ¥\Y consists
of one balanced component and one or more unbalanced components. If there are
edges of Y with both endvertices (or the unique endvertex if they are joints) at
the balanced component of ¥\Y then we say that Y is a double bond. On the
other hand, if every edge of Y has one endvertex at the balanced component of
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Y\Y and one at an unbalanced component, then Y is called an unbalancing bond.
In case the balanced component is empty of edges then we say that Y is a star
bond. Let us assume now that ¥ is a balanced signed graph, then X\Y consists
of two balanced components and Y is called unbalancing bond. The types of
bonds which were defined above are depicted in Figure B.6] where a single line is
used to represent connected underlying subgraphs while a double line 2-connected
underlying subgraphs. The signs indicate whether the subgraphs are balanced (+)
or not (—).

(a) balancing (b) star bond (¢) unbalancing bond (d) double bond
bond

Figure 3.6: Bonds in signed graphs

Let Y be a double bond of a connected signed graph 3, then the edges of Y
can be partitioned into two parts, the unbalancing and the balancing part. The
unbalancing part contains the edges of Y which have exactly one end-vertex in
the balanced component of X\Y', while the balancing part contains the edges that
have both their end-vertices or their unique end-vertex (if they are joints) in the
balanced component. A further classification of bonds is based on whether the
matroid M (X)\Y is connected or not. If M(X)\Y has more than one connected
components then Y is called separating bond of Y, otherwise we say that Y is a
non-separating bond.

In the following theorem, the elementary separators of a signed-graphic matroid
are characterized with respect to the edge set of the corresponding signed graph.

Theorem 21 (Zaslavsky [76]). Let 3 be a connected signed graph. The elementary
separators of M(X) are the edge sets of each outer block and the core, except that
when the core is a B-necklace each block in the B-necklace is also an elementary
separator.

If M is signed-graphic and ¥ is a signed graph such that M = M (X) then a
separator of ¥\Y is a bridge of Y in M. Let us suppose that B is a separator
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of ¥\Y and ¥; is the connected component of ¥\Y such that B C ¥;, then we
denote by C(B,v), where v € V(B), the connected component of 3;\ B having v
as a vertex. Furthermore, we denote by Y (B, v) the set of all elements in Y with
either one end-vertex or both end-vertices at C(B,v). A vertex v of a separator B
of the signed graph X\Y such that Y (B, v) # () is called a vertez of attachment of
B. For a separator B and a vertex v € V(X[B]), if ¥; is the component of ¥\Y
such that 3[B] C ¥, we define F'(B,v) = ¥;\C(B,v). Let us assume now that >
is a balanced signed graph and Y is a bond of ¥ then the separators of ¥\Y are
depicted in Figure .71

Figure 3.7: The separators of ¥\Y

k-biconnectivity of a signed graph is related to k-connectivity of the associated
signed-graphic matroid as follows.

Proposition 13 (Slilaty and Qin [56]). Let ¥ be a connected and unbalanced signed
graph.

(i) If (A, B) is a k-biseparation of ¥, then (A, B) is a k-separation of M(X).

(ii) If (A, B) is an exact k-separation of M (%) with connected parts, then (A, B)
is a k-biseparation of 2.

3.5.4 Matroids arise from biased graphs

Biased graphs and gain graphs were defined by Zaslavsky in his article 'Biased
graphs I’; where he studied also their structural properties [75]. The bias matroid
or frame matroid F'(§2) of a biased graph Q was defined by Zaslavsky as well in
[76]. Moreover, he provided cryptomorphic definitions and proved that the bias
matroids of biased graphs are dyadic.
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Definition 3.5.1. Let E(QQ) be the set of edges of a biased graph Q and € be the
family of minimal edge sets inducing a subgraph that is either:

(i) a balanced cycle, or
(17) two unbalanced cycles which have exactly one common vertez, or

(7ii) two vertex-disjoint unbalanced cycles connected by a path that has no common
vertex with the cycles apart from its endvertices, or

(1ii) a theta graph with all cycles unbalanced

Then F(Q2) = (E(R2),%) is a matroid on E(Y) with circuit family € and it is called
the bias or frame matroid of €.

The biased graph which represents uniquely a signed-graphic matroid induces
a signed graph as shown in the next proposition.

Proposition 14. Let the biased graph Q@ = (G,T') represent uniquely the bias
matroid F(§2) up to isomorphism. If there is a signed graph ¥ = (G, o) such that
F(Q) = M(X) then ¥ is a unique representation of F(2) up to isomorphism.

Proof. Assume on the contrary that there is a signed graph ¥/ = (G, 0’) such
that X' 2¢ ¥ which represents F'(£2). By assumption the signed graph ¥’ represents
M (%) therefore M(X) = M(Y'). From ¥’ = (Gy,o') we construct Q' = (Gy, 1)
where I is the set of positive cycles of ¥/ and therefore M (YX') = F(§). Since
Y 2 ¥ we have that Q 2 . However, Q) represents F(Q)) as F({) = M(X)
= M(X) = F(Q), which is a contradiction. O

The structure of a biased graph that represents uniquely a bias matroid is
described in Theorem 2 of [53]. The latter theorem is stated for signed-graphic
matroids as follows.

Proposition 15. Let Y be a 3-connected signed graph without balanced loops, loose
edges and isolated vertices. If 33 contains three vertex-disjoint unbalanced cycles at
most one of which is a loop, then ¥ is a unique representation for M(Y).

Proof. Let X = (G, 0) be a signed graph that satisfies the hypothesis of the lemma.
We construct the bias graph 2 = (G, I') from ¥ such that I is the set of positive cy-
cles of ¥2. Then F(2) = M(X) and by Proposition[I4] ¥ is a unique representation
of M(%). O
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3.5.5 Structural results and decomposition theorems

The class of signed-graphic matroids contains the class of graphic matroids and the
class of even-cycle matroids of graphs, while it forms a subclass of bias matroids.
Thereby many results concerning the class of graphic matroids were generalised to
results for the classes of signed-graphic and bias matroids. The structure of biased
graphs whose bias matroids have a unique graphical representation was determined
by Slilaty [53] generalising Whitney’s famous result for graphs. Moreover, Whit-
ney’s Theorem which states that planarity is the necessary and sufficient condition
for a connected cographic matroid to be graphic was generalized also by Slilaty
in [52]. More precisely, he showed that projective-planarity is the necessary and
sufficient condition for a connected cographic matroid to be signed-graphic. As a
result, the cographic matroids of the 29 vertically 2-connected graphs G, ..., Gayg,
which are excluded minors for projective-planar graphs, were proved to be among
the excluded minors for the class of signed-graphic matroids.

In 2009 Qin, Slilaty and Zhou provided the complete list of regular excluded
minors for signed-graphic matroids and an excluded minor characterization for the
class of regular signed-graphic matroids [45].

Signed-graphic matroids and bias matroids were studied in terms of structural
properties of the signed graphs representing them by Pagano in his dissertation
[37]. Specifically, he characterized signed graphs whose matroids are binary as
follows..

Theorem 22 (Pagano [37]). Let ¥ be a connected signed graph and ¥’ be the signed
graph obtained from ¥ upon the contraction of any balanced blocks. Then M (X) is
binary if and only if X' has no two vertex-disjoint negative cycles.

The proof of the above theorem was based on Tutte’s excluded minor char-
acterization of binary matroids. Furthermore Pagano proved an excluded minor
characterization of signed graphs whose matroids are quaternary by showing that
the matroids of the signed graphs iC’g(,l), +C4\e and — il) in Figure are ex-
cluded minors of the class of quaternary signed-graphic matroids.

Signed graphs whose bias matroids are representable over GF'(2) and GF'(4)
fields were decomposed by Slilaty and Qin [55] combining Pagano’s and Gerard’s
results. The following theorem presents the k-sum decomposition of the class of
binary signed-graphic matroids.

Theorem 23 (Pagano [37], Slilaty, Qin [55]). If ¥ is connected and M(X) is
binary, then either

(i) X is balanced,
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(a) +C{M (b) £Cy\e (c) —KV

Figure 3.8: Excluded minors of quaternary signed-graphic matroids
(7i) X is joint unbalanced,
(7ii) ¥ has a balancing vertex,
(iv) ¥ is tangled, or
(v) ¥ =%, @k Lo for k € {1,2} where each M(%;) is binary.

Also, if ¥ is a connected signed graph that satisfies one of (i)-(iv), then M(X) is
binary.

Given a signed graph X the signed graph which is obtained after removing any
joints is denoted by ¥\Jy. The following theorem describes the k-sum decom-

position of quaternary signed-graphic matroids. The signed graph Ty, which is
mentioned in Theorem 24] is depicted in Figure [T.1]

Theorem 24 (Pagano [37], Slilaty and Qin [55]). If ¥ is connected and M(X) is
quaternary, then either

(i) M(X) is binary,
(1) X\ Jx has a balancing vertex,
(iii) Y\ Jx is cylindrical,
(iv) ¥\Js = Tg, or
(v) ¥X\Jg = X1 @k Xo for k € {1,2,3} where each M(X;) is quaternary.

Also, if ¥ is a connected signed graph that satisfies one of (i)-(iv), then M(X) is
quaternary.
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Theorems 23] and 24 provide also the signed graphs that represent binary and
quaternary signed-graphic matroids respectively. The following result which is
essential for the decomposition of quaternary signed-graphic matroids states that
the class of signed-graphic matroids is closed under the operations of k-sums k €
{1,2,3}.

Proposition 16 (Slilaty, Qin [55]). If ¥1 and Xo are signed graphs, then M (%, Gk
Yo) = M(X1) & M(Xs), where k € {1,2,3}.

The class of binary signed-graphic matroids is closed under k-sums for k €
{1,2, 3} as shown in the following theorem which appears in [55].

Theorem 25. If M(X,) and M(%5) are both binary signed-graphic matroids, then
for each k € {1,2,3}, M(X; @) 3a)= M(X1) @y M(Xs) is binary.

The link between binary signed-graphic matroids and the signed graphs repre-
senting them is the following theorem which was proved by Slilaty in [55].

Theorem 26. If X is a connected signed graph, then the following are true.
(i) If ¥ is tangled, then M(X) is reqular.
(i) If M(X) is regular and not graphic, then ¥ is tangled.

If ¥ is tangled signed graph then by Theorem 3.16 in [?], ¥ contains — K} or
+C5 as a link minor. Moreover, by Theorem 3.7 in [?] if ¥ is connected with at
least one joint and X\ Jy; is tangled then M (X) is not quaternary. Tangled signed
graphs were decomposed through k-sums k € {1,2,3} to balanced signed graphs
and to either a projective-planar signed graph or — K5 by Slilaty [54]. Many results
concerning tangled signed graphs were provided also by Slilaty in [54 [45].

The class of binary signed-graphic matroids was decomposed by Papalamprou
and Pitsoulis in [40]. The decomposition theorem states that a binary matroid is
signed-graphic if and only if certain minors resulting from the deletion of a non-
graphic cocircuit are graphic apart from exactly one which is signed-graphic. Fur-
thermore Papalamprou and Pitsoulis provided an excluded-minor characterization
of the binary signed-graphic matroids with all-graphic cocircuits and a polynomial-
time algorithm recognizing whether a cographic matroid with all-graphic cocircuits
is signed-graphic [41].

The class of binary signed-graphic matroids with all-graphic cocircuits was
characterized by Papalamprou and Pitsoulis in [39]. Specifically they provided an
excluded minor characterization for the aforementioned class of matroids which was
based on the excluded minor characterization of regular signed-graphic matroids
[45]. Furthermore they published a polynomial-time algorithm for determining
whether a binary matroid with all-graphic cocircuits is signed-graphic.
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3.6 Matroid minors

Wagner conjectured that every minor-closed class of (finite) graphs has a finite list
of excluded minors. Although the conjecture for infinite graphs has failed, it has
been verified for finite graphs by Robertson and Seymour’s Well-Quasi-Ordering
Theorem for graphs. This most celebrated result in Graph Theory says that graphs
are well-quasi-ordered under the minor order. In other words, in every infinite set
of graphs there is one that is isomorphic to a minor of another. Not only the
theorem but also the techniques that were developed for the Graph Minors Project
have numerous applications in the whole Graph Theory. Since the Graph Minors
Project is matroidal in spirit, it is natural to attempt to generalize this theorem
to matroids. In [35], Oxley constructs examples that show that the theorem does
not extend to all matroids or even to all R-representable matroids. However,
Robertson and Seymour have conjectured that the theorem does generalize to the
class of GF(q)-representable matroids. This conjecture known as Matroid Minor
Conjecture is one of the most important open problems of Matroid Theory.

Conjecture 3.6.1 (Matroid Minor Conjecture). Let F be a finite field. In any
finite set of F-representable matroids there is one that is a minor of another.

A set of graphs or a set of matroids is called an antichain if no member of the
set is isomorphic to a minor of another member of the set. Infinite antichains exist
within the class of all matroids as shown by Oxley [35], but not within the class of
regular matroids. This result, namely the above conjecture for the class of regular
matroids, was proved, but not published, by Seymour.

Geelen, Gerards and Whittle who work on the Matroid Minor Conjecture have
published many interesting results [19], 20]. In 2008 they announced they extended
Robertson’s and Seymour’s Graph-Minors Structure Theorem to binary matroids.
The proof of Well-Quasi-Ordering Theorem for graphs is based on Graph-Minors
Structure Theorem which provides a constructive characterization of the class of
graphs that do not contain a given graph as a minor. Geelen, Gerards and Whittle
take a similar approach in the Matroid Minors Project. In 2009 they announced
that they had proved the Well-Quasi-Ordering Theorem for ¢ = 2. Lately they
have announced that the Matroid Minor Project has been completed.

3.7 Algorithms

Several results on matroid representation theory and matroid structure theory
have important implications on combinatorial optimization and numerous com-
putational problems concerning graphs and matroids. Based on Tutte’s theorem
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that determines whether a binary matroid is graphic and his theory of Bridges,
Bixby and Cunningham provided an algorithm which converts a linear program
min{cz|Az = b,x > 0} to a network flow problem [5]. Moreover, an algorithm
that finds a separating cocircuit or a Fano minor in a binary matroid, namely a
constructive proof of Tutte’s corresponding theorem, was described by Cunningham
in [§]. Furthermore many results on graphs have been translated to correspond-
ing results for matroids with significant algorithmic implications. Such a result is
Robertson’s and Seymour’s Well-Quasi-Ordering Theorem for graphs that has the
following profound algorithmic consequence.

Theorem 27. For every graph H, there is a polynomial-time, indeed an O|V (G)|?,
algorithm to test if a graph G has a minor isomorphic to H.

Another direct consequence of Well-Quasi-Ordering Theorem for graphs is that
for every minor closed class G of graphs, there is a polynomial time algorithm to
test whether a graph is in G. Robertson’s and Seymour’s theorem implies that
the class of graphs G has finitely many excluded minors. Since for every graph H
we can check in polynomial time whether a graph G has a minor isomorphic to
H, the implementation of the above algorithm premises knowledge of the excluded
minors. Therefore it cannot be practically implemented.

The last theorem has motivated an analogous conjecture for matroids. In par-
ticular, Geelen, Gerards and Whittle have conjectured that the last theorem gen-
eralizes to matroids that are representable over finite fields and, in 2009, they
announced that the conjecture had been proved for binary matroids. A GF(q)-
represented matroid is a matroid along with a given G'F(q)-representation.

Theorem 28 (Minor-Recognition Conjecture). For every prime power q and every
GF(q)-representable matroid N, there is a polynomial time algorithm for testing
whether a GF(q)-represented matroid M has a minor isomorphic to N.

The above conjecture has been verified when N is isomorphic to the cycle ma-
troid of a planar graph. Furthermore, in 2003, Hlinény proved Minor-Recognition
Conjecture for matroids of fixed branch-width. In contrast to the last two results,
Hlinény proved that it is NP-hard to determine whether a given Q-represented
matroid of branch-width at most 3 contains a minor isomorphic to M (Cs"), where
C is the graph obtained from a cycle of length five by adding an edge that joins
two non-adjacent vertices of the cycle.

Another important conjecture is the following. For every prime power ¢, there is
a polynomial-time algorithm that, given any two matrices A; and Ay over GF(q)
with the same set of column labels, tests whether M[A;] = M[Ay]. However,
Geelen published a result that contrasts this conjecture saying that it is NP-hard



o4 CHAPTER 3. MATROID THEORY

to test whether M[A;] = M[A,] for two given rational matrices A; and Ay, even
when M[A;] is a tipless free spike.

Theorem 29. For every prime power q and every GF(q)-representable matroid
N, there is a polynomial-time algorithm for testing whether a GF(q)-representable
matroid M has a minor isomorphic to N.



Chapter 4
Signed graphs

Signed graphs are well-known natural generalizations of graphs that are used to
model real-world problems and to represent interactions and physical networks such
as electrical networks and roadways. It is always of desire to obtain results for more
general combinatorial structures than graphs such as signed graphs and matroids
which arise from signed graphs, since these results have important implications to
combinatorial optimization and other areas of discrete mathematics.

The main result of this thesis is the decomposition of the class of quaternary
signed-graphic matroids (Theorem [B3]). The first steps towards the decomposition
theorem was to settle the decomposition operations and to analyze structurally
the class of quaternary signed-graphic matroids. In this chapter, we define a new
operation on signed graphs, the star composition, that is used for the decomposition
of quaternary signed-graphic matroids and we determine the structural properties
of signed graphs that represent quaternary signed-graphic matroids. Specifically we
obtain structural results for signed graphs which are cylindrical or have a balancing
vertex up to deleting any joints. Since cylindrical signed graphs have a planar
embedding by definition, it is natural to start with investigating the structural
properties of planar signed graphs. The structural results that are obtained for the
above signed graphs are translated to structural results for the class of quaternary
signed-graphic matroids.

4.1 Decomposition operations for signed graphs

The decomposition of quaternary signed-graphic matroids is based not only on
matroidal operations but also on signed graphic operations. An operation that
is used to decompose a matroid to some well-defined minors induces naturally an
operation that composes it from its building blocks. In the following, we define a
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new operation for signed graphs called star composition while the reverse operation
is called star decomposition. Moreover, we present Slilaty’s definition of k-sum
k € {1,2,3} of signed graphs since it is used extensively.

4.1.1 Star decomposition

The star composition of two graphs G; and G5 in Y is defined in terms of incidence
matrices in [44]. Generalizing this operations for signed graphs, we define the
operation star composition of two signed graphs with respect to Y. Let ¥, =
(G1,01) and Xy = (Ge, 09) be two signed graphs such that Y, is balanced. Suppose
further that Y is the star of a vertex in both ¥; and ¥,. The star composition of ¥
and Y, with respect to Y is the signed graph ¥ = (G, o) such that the underlying
graph G is obtained from the graphs G1\Y and G2\Y as follows:

(a) by adding a link between the end-vertex of the link of Y in G; and the
end-vertex of the identical link of Y in G5 or

(b) by adding a joint at the end-vertex of the link of Y in G5 when the identical
element of Y in GGy corresponds to a joint.

The sign of an edge in X is the sign which is attributed to the edge by o; when it
belongs to GG; and the sign which is attributed to the edge by o5 if it belongs to
Go\Y.

(a) The signed graph ¥;  (b) The signed graph (¢) The signed graph %
Yo

Figure 4.1: The star composition of ¥; and ¥,

The reverse operation of star composition of two signed graphs is called star
decomposition of a signed graph with respect to Y. Given an unbalancing bond Y
of a signed graph 3, the star decomposition of ¥ with respect to Y results into two
signed graphs ¥; and Y5 where Y is the star of a vertex in both signed graphs.
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4.1.2 k-sums for signed graphs

The definition of k-sum k € {1,2,3} for two signed graphs is given by Slilaty
in [55]. The k-sum, k € {1,2,3} of two signed graphs ¥; and ¥, denoted by
Y1 ®g 29, induces naturally a decomposition operation. In the following we present
the definitions of the decomposition of the signed graph ¥ = ¥; @, X5 to X; and
.

1-sum

1-sum of two signed graphs »; and Y5, where one of them is unbalanced, is the
identification of ¥ and X, at a vertex v. Accordingly > = ¥ ®; X5 is decomposed
to the signed graphs »; and Y, by splitting vertex v to two vertices v; and vs.

by

0.0

/N D
O O

Figure 4.2: > =X, &1

2-sum

The 2-sum of two signed graphs is taken along an edge, that is not a coloop in
each of the corresponding signed-graphic matroids. Moreover, it is distinguished
in 1-vertex 2-sum and 2-vertex 2-sum. If 31 and Y, are unbalanced signed graphs,
then the 1-vertex 2-sum of ¥; and > is obtained by identifying them along a
joint and then deleting the joint. If exactly one of ¥, 35 is unbalanced then the
2-vertex 2-sum of ¥; and s is obtained by identifying them at a link of the same
sign, applying switchings if necessary, and then deleting the link.

3-sum

The 3-sum of two signed graphs is defined when the signed-graphic matroid of each
of them has rank at least three. The 3-sum has the following two types 2-vertex
3-sum and 3-verter 3-sum. If 3, and ¥, are both unbalanced signed graphs then
the 2-vertex 3-sum of >; and >, is obtained by identifying them along a 4-edge
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OO (O

21/\22 21/&

O 0 (C.9)

(a) X is 1-vertex 2-sum of 31 and Xo  (b) X is 2-vertex 2-sum of ¥; and Xq

Figure 4.3: ¥ = 21 Do 22.

line in each (see Figure B]) and then deleting the edges of the line. If exactly one
of 31 and Y, is unbalanced, then the 3-vertex 3-sum of ¥; and >, is obtained by
identifying them along a triangle so that the corresponding links have the same
sign, applying switchings if necessary, and then deleting the edges of the triangle.

by
by
>y / & Yo
) ¥ is 2-vertex 3-sum of ¥; and X9 ) ¥ is 3-vertex 3-sum of X1 and ¥,

Figure 4.4: ¥ = 3, &3 2.

Given two balanced signed graphs ¥; = (G, 01) and ¥y = (G, 02), the k-sum
of 31 and X is the signed graph ¥ = (G, o) with underlying graph G' = G| &, Gs
and o(e) = +1, for every edge e € E(X).

4.2 Planar signed graphs

In this subsection, we furnish structural results for planar signed graphs concerning
negative cycles and negative faces. Initially we give some definitions which are used
in the following.
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A signed graph is planar if and only if its underlying graph is planar. Let 3
be a planar signed graph such that 3\ Jy is 2-connected. We define the faces of
¥ to be the faces of ¥\ Jx. Moreover, we define the faces of ¥\ Jy to be the faces
of its underlying graph, while the sign of a face to be the sign of the cycle which
defines its boundary. Two faces are incident if they share at least one edge and
vertex-disjoint if they have no common vertex. Let H be a subgraph of 3. If the
boundary of an inner face F' of ¥ belongs to H then we say that F' is an inner
face of H. We note that every face of ¥ is bounded by a cycle and that every
inner face of H is an inner face of X. If F' is an inner face of H and H has a
cycle boundary C' then we say that F' is contained in the cycle C' or it is in C.
Since Y has a planar embedding with F' being the outer face, it is straighforward
to see that every cylindrical signed graph, which has a planar embedding with a
negative face, has also a planar embedding with a negative outer face. Henceforth
for connected planar signed graphs with a negative face we always assume a planar
embedding with a negative outer face.

In a 2-connected planar graph G, there exists an inner face that has a non-
empty intersection with the outer cycle of G and, moreover, the elements of this
intersection induce a path. The above can be easily generalized for a planar graph
G’ with half-edges and loops such that G'\Jg is 2-connected.

Lemma 4.2.1. Let C be the outer cycle of a planar graph G such that G\Jg is
2-connected then there exists an inner face F such that E(C) N E(F) # 0 and
G[E(C)N E(F)] is a path.

Proof. Let C' be the outer cycle of (G. Since any edge of C' is adjacent to exactly
two faces (see Lemma 4.2.2 in [I0]) there exists an inner face F’ of G such that
E(F")N E(C) # 0. Assume that G[E(F) N E(C)] is not a path; since, otherwise,
the result follows. Therefore, there exist vertex-disjoint paths Ky, K, ..., K,, with
m > 2 whose edges belong in E(F')NE(C'). Since G is a 2-connected planar graph,
the boundary of F” is a cycle of G (see Proposition 4.2.6 in [I0]). Thus, there exist
distinct paths Py, P, ..., P, with n > 2 of the boundary of F’ that are internally
disjoint from C' but have both of their end-vertices at V(C'). As a result, the
edges of any P; (i = 1,...,n) and the edges of C' induce a theta graph. In that
theta graph, let H; be the path of C that has the same end-vertices with P; and is
internally vertex disjoint with the boundary of F'. Let also G; be the subgraph of
G that is bounded by the cycle P;U H;. Since the end-vertices of H; are vertices of
some K; and K, (with [ # m) and F" is a face, K; and K, are the only paths that
connect G; with G\ (K;UG;UK,,). If we delete E(F")NE(C) from G, each G, is a
connected component in the resulting disconnected graph whose faces form a subset
of the set of faces of G and furthermore, for each G;, E(G;) N E(C) # () induces a
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path. We select arbitrarily a G;. Clearly, graph G; has as outer cycle the P, U H;
and there exists either a face F” such that G[E(C) N E(F")] is either a path and
the result follows or a set of disconnected paths. In the latter case we delete these
disconnected paths as we did in the case of G and a set of connected components
is obtained. This procedure is iteratively applied until either the intersection of a
face of a component obtained from deletion of disconnected paths and C' is a path
or the component consists of a single face in which case also the result follows. [

Utilising the aforementioned result the following lemma is proved, which il-
lustrates the relationship between negative faces and negative cycles in a planar
signed graph.

Lemma 4.2.2. In a planar signed graph ¥ such that X\ Jx, is 2-connected, every
negative cycle contains a negative face.

Proof. Let C' be a negative cycle in a planar signed graph. By Lemma [Z2.T]
there exists a face F' in C' such that their common edges form a path. Let P =
E(C)NE(F),H=E(F)\E(C)and K = E(C)\ E(F). If F' is a negative face then
there is nothing to prove. In the remaining case, we assume that the boundary of F’
is a positive cycle in Y. In the theta graph induced by PUK UH, the cycle induced
by K U H is a negative one, since in signed graphs any theta subgraph contains 0
or 2 negative cycles. Therefore, iteratively we come across either a negative face
or a negative cycle and since the number of faces is finite the result follows. m

As proved in the following result, the number of negative faces in a negative
cycle is odd. As a direct consequence every positive cycle contains an even number
of negative faces.

Lemma 4.2.3. In a planar signed graph 3 such that X\ Jx is 2-connected, every
negative cycle contains an odd number of negative faces whereas every positive cycle
contains an even number.

Proof. Induction on the number of faces contained in a cycle C' of a planar signed
graph shall be applied. If C' contains one face, i.e. it is a face itself, the statement
holds. For the induction hypothesis, assume that it holds for every C' which has
fewer faces than n. It will be shown that the statement holds for every C' with
n faces. Since the signed graph is 2-connected, without loss of generality we can
assume that C' is the outer cycle. Since C' contains n > 1 faces there is a path
internally disjoint from C' with both end-vertices belonging to V' (C'). Thus, a theta
graph is formed by C' and that path. If we assume that C'is negative, then in that
theta graph, the chord P divides C' into a positive cycle C* and a negative cycle
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C~ due to the fact that a theta graph in a signed graph contains either 0 or 2
negative cycles. By the induction hypothesis, C" has an even number of negative
faces, while C~ has an odd number. Since the set of faces contained in C'* is
disjoint from the set of faces contained in C'~ while their union is the complete
set of faces contained in (| it follows that C' contains an odd number of negative
faces. In the remaining case, i.e. if we assume that C' is a positive cycle, then C' is
divided into either two positive or two negative cycles. Therefore, similarly, using
the induction hypothesis, C' is shown to have an even number of negative faces. [

The following corollary is easily obtained from Lemma [1.2.3] by taking into
account the sign of the outer face of a 2-connected planar signed graph.

Corollary 3. The number of negative faces in a planar signed graph ¥ such that
Y\ Js is 2-connected is even.

4.3 Cylindrical signed graphs with joints

An important class of planar signed graphs is the class of cylindrical signed graphs,
since they constitute representations of quaternary signed-graphic matroids (The-
orem [24]). Structural properties of signed graphs which are cylindrical or have
a balancing vertex after removing any joints enable us to derive results for the
associated quaternary signed-graphic matroids.

For 2-connected cylindrical signed graphs, the existence of vertex-disjoint neg-
ative faces determines whether the associated matroid is graphic or not, as shown
in the following result.

Theorem 30. Let ¥ be a 2-connected cylindrical signed graph. M (X) is graphic
if and only if 3 has no two vertex-disjoint negative faces.

Proof. For necessity assume on the contrary that 3 has two vertex-disjoint negative
faces. Then there are two vertex-disjoint negative cycles in ¥ and M (X) is non-
binary as indicated by Theorem For sufficiency, if we assume that ¥ has no
negative faces then X does not have a negative cycle due to Lemma[£.2.2} therefore,
¥ is balanced and, by Proposition [2 M (X) is graphic. Now if we assume that
Y has one negative face then by Corollary B, > is not 2-connected. Since X is
cylindrical, i.e. it has at most two negative faces, the case left to be considered
is when ¥ has exactly two negative faces, say C; and Cs, which, by hypothesis,
are not vertex-disjoint. Let V' = V/(C}) NV (Cy) and consider a negative cycle C
of X, where C' is other than the cycles defined by the boundaries of C; and (.
By Lemma [£23] C' contains exactly one from C; and C,. This fact along with
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planarity of 3 implies that V' C V(C'). Therefore, the vertices in V' are also vertices
of any negative cycle of 3. This implies that any vertex in V' is a balancing vertex
of ¥ and thus, by Proposition [2, M () is graphic. ]

When a signed graph ¥\ Jy; is cylindrical, by definition it has a planar embed-
ding with at most two negative faces. Since the addition of joints does not affect
the number of negative faces, > has a planar embedding with at most two negative
faces. Moreover, by Corollary Bl we have that the number of negative faces in a
vertically 2-connected cylindrical signed graph is even.

Regarding a signed graph > such that 3\ Jy is cylindrical or has a balancing
vertex, the following two technical results are also proved.

Lemma 4.3.1. Let X be a vertically 2-connected cylindrical signed graph such that
M (X) is quaternary and non-binary. IfY is a non-graphic cocircuit of M (%), then
for each separator B of an unbalanced component of X\Y there exists at most one
vertex of attachment v € V(B) with balanced C(B,v) such that Y (B,v) consists
of edges of different sign.

Proof. Let us assume first that ¥ is jointless. Since M (X) is non-binary, by Theo-
rem 30, ¥ has two vertex-disjoint negative faces. Moreover, Y is a non-balancing
bond and, therefore, in ¥\Y there exist a balanced and an unbalanced component,
denoted by Xt and X7, respectively. By performing switchings at vertices of X,
all edges of the balanced separators of ¥\Y can become positive. Thus, in what
follows, we can assume that only Y and the unbalanced separators of ¥\Y may
contain edges of negative sign.

By way of contradiction, let v; and vy be two vertices of attachment of a bridge
B of Y in ¥~ such that each C'(B,v;) is balanced and each Y (B,v;) consists of
edges of different sign (where ¢ = 1,2). Clearly each C(B,v;) is incident with
at least two edges of Y. Let us denote by y; = {u;,w;} and by y; = {u},w!}
two edges of different sign in Y (B,v;), where u; and ) are vertices in ¥~ and
w; and w, are vertices in X*. Due to the fact that C(B,v;) is connected and
balanced, there exists a positive path P; between u; and w) in X~ while, due
to the fact that 3T is connected and balanced, there exists a positive path P!
between w; and w) in ¥t. Therefore, the cycle C; formed by P;, P/, y; and y;
is of negative sign. Hence, by Lemma 2.2 a negative face F; is contained in
each C;. Moreover, since Y is a non-graphic cocircuit, there would be at least
one non-graphic bridge of Y in M (X); otherwise, M (3)\Y would be graphic; by
Proposition [[2], the corresponding unbalanced separator should contain a negative
cycle other than joint. Thus, by Lemma [£.2.2] a negative face is contained in that
separator. Clearly, this negative face is distinct from F; and F5, since they have
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different boundaries. This means that ¥ has three distinct negative faces which is
in contradiction with the hypothesis saying that ¥\Y is cylindrical. If ¥ has joints
and two negative faces, then the result follows as above. O]

Lemma 4.3.2. Let M(X) be a connected quaternary non-binary signed-graphic
matroid such that ¥\ Js has a balancing vertez. If Y is a non-graphic cocircuit
of M(X), then for each separator B of an unbalanced component of ¥\Y there
exists at most one vertezx of attachment v € V(B) with balanced C(B,v) such that
Y (B,v) consists of edges of different sign.

Proof. Since Y is non-balancing, ¥.\Y consists of a balanced component denoted
by ¥ and some unbalanced components. Perform switchings at vertices of 3 such
that all edges of the balanced separators of ¥\Y become positive. Therefore, in
what follows, we can assume that only Y and the unbalanced separators of ¥\Y
may contain edges of negative sign.

By way of contradiction, assume that B is a separator of an unbalanced com-
ponent of ¥\Y which has two vertices of attachment v;, (i = 1,2) with balanced
C(B,v;) such that Y (B, v;) consists of edges of different sign. Clearly each C'(B,v;)
is incident with at least two edges of Y. Let us denote by y; = {u;,w;} and by
yi = {u}, wl} the two edges of different sign in Y (B, v;), where u; and u} are vertices
in ¥~ and w; and w} are vertices in ¥*. Due to the fact that C'(B,v;) is connected
and balanced, there exists a positive path P; between w; and u, in ¥~ while, due
to the fact that X" is connected and balanced, there exists a positive path P!
between w; and w! in 3. Therefore, the cycle C; formed by P;, P/, y; and . is of
negative sign. Since X\ Jy, has a balancing vertex, C; are not vertex-disjoint. By
the definition of C'(B,v;) and the fact that v; and v, are distinct, these cycles may
share vertices belonging only in X7, and, thus,the balancing vertex of 3\ Jy should
be a vertex of X 1. However, there is a negative cycle in ¥~ which contradicts the
fact that there is a balancing vertex in 3T, O]

Let M be a matroid, if C' is a circuit and C* is a cocircuit, then |C'N C*| # 1.
This property is called orthogonality. The next lemma derives easily from the
orthogonality property of matroids.

Lemma 4.3.3. The boundary of a face in a planar embedding of a 2-connected

cylindrical signed graph ¥ contains zero or two edges of an unbalancing bond Y in
X,

Proof. Since ¥ is cylindrical and Y is an unbalancing bond in ¥ then ¥\Y consists
of one unbalanced and one balanced connected component denoted by >; and >,
respectively. It is well-known that any cycle of a graph intersects any bond in
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an even number of edges. Therefore, since a face may also be viewed as a cycle
(see Proposition 4.2.6 in [I0]), it remains to show that the boundary of any face
can not contain more than two edges of Y. By way of contradiction, assume that
the boundary of a face F' in X has more than two common edges with Y. Let us
traverse F' starting from an edge y; of Y with endpoint vy in ¥; while let us call ¥
the next edge of Y that we encounter in that traversal. Let also vy be the endpoint
of yo in ;. By the fact that for any two points of the plane lying in I’ there exists
a simple curve joining them (without crossing any edge), we can say that there is
no path connecting v; and v, in 3q; a contradiction, since ¥, is connected. O]



Chapter 5
Signed-graphic matroids

A key issue in many problems of matroid representation theory and matroid struc-
ture theory is to determine the structural properties of the class of matroids under
examination. In this chapter, we provide structural results for the class of signed-
graphic matroids, in view of the decomposition theorem for quaternary signed-
graphic matroids (Theorem [B3]). More precisely, we characterize graphically ma-
troidal notions and we present structural results for cocircuits and bonds. Further-
more we determine hereditary properties of cocircuits through k-sums. The struc-
tural results obtained help us to establish necessary and sufficient conditions for a
quaternary matroid to be signed-graphic. Cocircuits and bonds play a central role
in the decomposition of the classes of graphic matroids and binary signed-graphic
matroids, since the decomposition operation is the deletion of a cocircuit. Cocir-
cuits have also a crucial role in the decomposition of quaternary signed-graphic
matroids. Hence we investigate properties of cocircuits and their bridges such as
bridge-separability and avoidance.

The concepts of bridge-separability and avoidance, which were defined in [61],
were used by Tutte for the decomposition of graphic matroids. The same concepts
were also used by Papalamprou and Pitsoulis in [40] for the decomposition of binary
signed-graphic matroids. Avoidance and bridge-separability prove to be useful tools
in order to extend the latter decomposition theorem to quaternary signed-graphic
matroids. Proving that these properties are preserved under the operation of k-
sums of matroids k£ € {1,2,3}, we obtain the desirable graphical representations
for the highly connected minors of quaternary signed-graphic matroids. Following
the matroidal definition of avoidance, we shall say that two separators of a bond
Y in ¥ are avoiding when the corresponding bridges of Y in M (X) are avoiding,.

65
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5.1 Cocircuits and bonds

Cocircuits are of basic importance for the decomposition of quaternary signed-
graphic matroids, since the deletion of a non-graphic cocircuit is the decompo-
sition operation. The following result guarantees the existence of a non-graphic
and bridge-separable cocircuit in a signed-graphic matroid with not all-graphic
cocircuits.

Lemma 5.1.1. If a connected signed-graphic matroid M (X) has a non-graphic co-
circuit which corresponds to a double bond in Y whose balancing part contains links,
then M(X) has also a non-graphic cocircuit which corresponds to an unbalancing
bond or a double bond in 3 whose balancing part contains only joints.

Proof. Let us denote with Y the non-graphic cocircuit of M (3) which is a double
bond whose balancing part contains links in 3. Then ¥\Y consists of one bal-
anced component, denoted by ¥ and some unbalanced components. Since Y is
non-graphic, there are unbalanced separators in 3\Y that are non-graphic bridges
of Y in M(X). We perform switchings in V(X7) so that the edges of the balancing
part of Y become negative. Consider an edge e = {vy, v} of the balancing part of
Y and the partition ({vy, v}, V/(2X)\{v1,v2}) of V(X). We distinguish the following
two cases:

Case 1: The signed graph X[V (3)\{v1, v2}] is connected.

Since Y is a double bond of ¥ and wv;,v, € V(XT1), the signed graph
Y[V (2)\{v1,v2}] contains the unbalanced component of ¥\ Y as a subgraph. Then
the signed graph X\ star(v;) where v; € {v1,v9} consists of a balanced component,
that is the vertex v;, and an unbalanced component induced by V(X)\{v;}. By
definition all edges of star(v;) have one end-vertex at the balanced component of
Y\star(v;) and one at X[V (2)\{v;}] or the unique end-vertex at the balanced com-
ponent of ¥\star(v;). Furthermore, star(v;) is minimal with respect to increasing
the number of balanced components and, therefore, it is either an unbalancing
bond or a double bond whose balancing part contains only joints in 3. By the
fact that X[V (3)\{v1,v2}] is a subgraph of X[V (X)\{v;}], the latter component of
Y\star(v;) contains the unbalanced separator of ¥\Y that is a non-graphic bridge
of Y in M(X). Thus, the cocircuit star(v;) of M(X) is non-graphic.

Case 2: The signed graph X[V (2)\{v1, v2}] is disconnected.

Let Si,..., S, denote the connected components of X[V (X)\{vy,vo}]. If each S,
[ =1,...,mis unbalanced, then ¥\ star(v;) where v; € {vy,v2} consists of one bal-
anced component, that is the vertex v;, and the unbalanced connected components
of X[V (X)\{v;}]. Hence star(v;) is either an unbalancing bond or a double bond
whose balancing part contains only joints in . Moreover, since Y is a non-graphic
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cocircuit of M (X)), the cocircuit star(v;) is non-graphic. Otherwise there is a bal-
anced component Sy, k € {1,...,m}. We shall denote with H the set of edges of
E(X) that have one end-vertex in {vy,v2} and one in V(X)\{vy,v2} (see Figure
[B.). For each v; € {vy,v2} and v' € V(Sy), each vv'-path contains an edge of H.
Let H' be the proper subset of H whose one end-vertex belongs to V' (S) and one
to {v1,v2} and let J be the (possibly empty) set of joints with an end-vertex at
V(Sk) (in the example signed graph of Figure Bl the links of Y are illustrated
with solid lines while the edges of H' U Ji are illustrated with dashed lines). By
the fact that ¥ is connected, the signed graph ¥\ (H'U J;) consists of one balanced
connected component S, and one unbalanced connected component which is the
union of all S, (I # k), the edge e and the edges H\H'. Therefore H' U J; is
a minimal set of edges consisting of links with one end-vertex at S; and one at
the unique unbalanced component of ¥\(H’ U Ji) or joints attached at Sg. This
implies that H'U J,, constitutes a non-graphic cocircuit corresponding to either an
unbalancing bond or a double bond whose balancing part contains only joints in

2. [l

Figure 5.1: A double bond whose balancing part contains links

The cocircuit Y of a signed-graphic matroid M (X) remains a cocircuit in the
minor M (X).(BUY)|Y by the definitions of matroidal contraction and deletion.
In the following lemma, the sets of elements of Y which correspond to bonds in the
signed graph ¥.(B UY)|Y are characterized graphically. Moreover, Lemma
is used for the graphical characterization of the sets of 7(M, B,Y") for a matroid
M and a bridge B of a cocircuit Y in M in Lemma B T3

Lemma 5.1.2. Let Y be a cocircuit of a connected signed-graphic matroid M (X)
and B a separator of X\Y . A bond of X.(BUY)|Y is either:

(i) the star of a vertex,

(ii) a mazimal set of parallel links of the same sign with the joints, at one end-
vertex
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(a) Be X~ (b) Bext

Figure 5.2: The signed graph £.(BUY)|Y.

(1ii) the set of joints at a vertex.

Proof. Let us suppose first that Y is a non-balancing bond in Y. Then the signed
graph Y\Y consists of exactly one balanced component X% and one or more un-
balanced components. Let us assume that B is an unbalanced separator of an
unbalanced component in ¥\Y denoted by ¥~. The signed graph ¥.(B U Y)|Y
is obtained from ¥ by contracting 3%, each unbalanced component of ¥\Y dif-
ferent from X7, each C(B,v) where v € V(B) and finally by deleting B. Thus,
Y. (BUY)|Y consists only of edges of Y which are either parallel links incident
at a vertex of attachment of B or joints at the vertex v where X7 is contracted
(see Figure B.2(a)). By definition, a bond in ¥.(B UY)|Y is either the star of a
vertex or a maximal set of parallel links of the same sign incident at a vertex of
attachment of B with the joints at their other end-vertex or the set of joints at v’.
The case is similar when B is a balanced separator of an unbalanced component
in X\Y.

Let us assume that B is a balanced separator of ¥*. The balancing set of
Y consists of links or joints that have both end-vertices or one end-vertex at X*
respectively, while the unbalancing set of Y consists of links which have one end-
vertex at X7 and one at an unbalanced component of ¥\Y by minimality of Y.
To obtain the signed graph X.(B UY)|Y, the unbalanced components of ¥\Y are
contracted and therefore the edges of the unbalancing set of Y become half-edges
at their other end-vertex in . Hence the signed graph X.(B UY)[Y consists
only of edges of Y which are either half-edges at a vertex of attachment of B or
parallel links of the same sign incident at two vertices of attachment of B (see
Figure B2(b)). By definition it follows that a bond in X.(B UY)|Y is either the
star of a vertex or a maximal set of parallel links of the same sign with the joints
at one end-vertex or the set of joints at a vertex of attachment of B.

Let us suppose now that Y is a balancing bond in . Then the signed graph
Y\Y consists of one balanced component denoted also by ¥7. The edges of Y are
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either half-edges at a vertex of Xt or parallel links of the same sign incident at
two vertices of X*. Each separator of Xt is balanced, therefore the signed graph
Y.(BUY)|Y consists of half-edges at a vertex of attachment of B or parallel links
of the same sign incident at two vertices of attachment of B (see Figure B.2|(b)).
Thus by definition a bond in X.(BUY)|Y is either (i), (ii) or (iii). O

Let Y be a cocircuit of a matroid M and let B be a bridge of Y in M, the
following result is a straightforward consequence of the definition of w(M, B,Y’)
and Lemma B.T.2

Lemma 5.1.3. Let Y be a cocircuit of a signed-graphic matroid M (X) and B a
separator of X\Y . The members of m(M(X), B,Y') are sets of edges in X.(BUY)|Y

which can be either:
(i) mazimal set of parallel edges of the same sign, or
(ii) the set of joints at a vertez.

Jointless signed graphs arise in the k-sum decomposition of quaternary signed-
graphic matroids by Theorem 24l In the following propositions, we characterize
graphically cocircuits and we determine properties of bonds of signed graphs that
result after removing any joints.

Given a bond Y in a signed graph 3, there exists a subset of Y that is a bond
in the signed graph ¥\ Jy; preserving the type of Y.

Proposition 17. If Y is a non-graphic cocircuit of M(X), then there exists a
cocircuit Y' C Y\ Js which is a non-balancing bond in 3\ Js.

Proof. Since Y is a non-graphic cocircuit of M(X), it corresponds to a non-
balancing bond in . Moreover, there is an unbalanced separator in X\Y that
contains a negative cycle C~ which is not a joint. By the definitions of matroidal
deletion and that of cocircuits of a matroid, Y’ is a cocircuit of M (X\Jx). Since
Y’ CY, the signed graph (X\Jx)\Y’ has an unbalanced separator that contains
C~. Due to the fact that Y’ is a cocircuit of M (X\Jy), it follows that Y’ is a
non-balancing bond of X\ Jy. O

The following result can be proven in a similar fashion.

Proposition 18. IfY is a graphic cocircuit of M (X)), then there exists Y C Y\ Jx
which is a graphic cocircuit of M (X\Jy).

The following two results are easily obtained combining the above propositions
and the definitions of a star and a balancing bond in a signed graph.
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Proposition 19. IfY € C*(M(X)) and Y’ C Y \Jx. is a cocircuit of M (X\Jx) and
the star of a vertex in X\ Jx, then Y is the star of a vertex in X.

Proposition 20. IfY € C*(M (X)) and Y’ C Y\ Jx is a cocircuit of M (X\Jx) and
balancing bond in ¥\ Jx, then Y is a balancing bond in 3.

The next two technical lemmas are used to prove Theorem [3I] which is essential
to the decomposition of quaternary signed-graphic matroids.

Lemma 5.1.4. If Y is a non-graphic cocircuit of a connected signed-graphic ma-
troid M(X) and Y\ Jx. is a cocircuit of M(X\Jx), then there is no joint unbalanced
component in L\Y .

Proof. By hypothesis Y corresponds to a non-balancing bond in ¥, therefore the
signed graph X\Y has at least one unbalanced connected component. By way of
contradiction, let us assume that there is a joint unbalanced component in X\Y/,
denoted by 37 and therefore the component 37\ Jy is balanced in the signed
graph ¥\ Jy. Since Y is a non-graphic cocircuit, there is an unbalanced component
in X\Y, other than X7, that contains an unbalanced separator corresponding to
a non-graphic bridge. If the edges of the unbalancing part of Y\.Jy that have
an end-vertex at X;\Jy have different sign, then they constitute a minimal set
whose deletion from 3\ Jy increases the number of balanced components. Since
this minimal set of edges is contained properly in Y\ Jy, it follows that Y\ Jy is
not a bond in ¥\Jy. Otherwise the edges of the unbalancing part of Y\ Jy that
have an end-vertex at ¥\ Jy have the same sign. The component which is formed
by ¥7\Js, the edges of the unbalancing part of Y\ Jy that have an end-vertex
at 3\ Jy and the balanced component of ¥\Y is balanced. Moreover, the set of
edges of the unbalancing part of Y\ Jy; that have an end-vertex at an unbalanced
component of ¥\Y other than ¥} is minimal with respect to increasing the number
of balanced components. Thus it is a bond of ¥\ Jy and proper subset of Y\ Jy
which is a contradiction. O

Lemma 5.1.5. Let B be a bridge of a cocircuit Y of a signed-graphic ma-
troid M(X) and B’ be a bridge of a cocircuit Y' C Y\Jx of the signed-graphic
matroid M(X\Jx). Suppose further that Y is a non-balancing bond in ¥ and
Sen(M(X),B,Y). Then one of the following holds:

(i) If Y = Y\Jg, then B' C B\Js and there exists S" € n(M(X\Jx), B",Y")
such that S\Jsx C S".

(i) If Y' C Y\Jx, then there exists S' € w(M(X\Jx),B",Y') such that S" C
S\ Js.
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Proof. We distinguish the following two cases:

Case 1: V' =Y\ Js

By Lemma T4 there is no joint unbalanced component in ¥\Y and therefore
B' C B\Js. Since Y’ = Y\ Js, the connected components of ¥\Jx\Y’ are the
connected components of ¥\Y without joints. By Lemma .13 the elements of S
correspond to a class of parallel links of the same sign or to half-edges incident at
a vertex in X.(BUY)|Y. Let us assume first that the elements of S correspond
to a class of parallel links of the same sign. Then the elements of S correspond
to links of Y of the same sign that have an end-vertex at C(B,v) where v is a
vertex of attachment of B in ¥ ie., S C Y(B,v). It follows that there is v’ vertex
of attachment of B" in ¥\ Jy, such that C(B,v)\Jy C C(B’,v") which implies that
Y(B,v)\Js C Y(B',v'). Thus there is S C Y(B’,v’) such that S” is a bond in
Y\ Js.(B'UY")|Y for which S\Jyx C S’. Let us assume now that the elements of S
correspond to half-edges incident at a vertex in X.(BUY)|Y. Then the elements of
S correspond to joints of the balancing part of Y or to links of the unbalancing part
of Y that have an end-vertex at an unbalanced component of ¥\ Jg. Since S and
S’ are subsets of Y and Y’ that are minimal intersections of bonds in ¥.(BUY')|Y
and X\ Jx.(B"UY")|Y" respectively, we have that S\Jyx C 5.

Case 2: Y/ C Y\ Jy

By assumption there is a joint unbalanced component in 3\Y denoted by ¥ and
let B be its joint unbalanced separator. Then the bridge B’ such that B\Jyx C B’
corresponds to a balanced or an unbalanced separator of ¥\ Jg\Y’. There is only
one S € m(M(X), B,Y) such that S\Jx C Y’ whose elements correspond to half-
edges incident at a vertex in X.(BUY)|Y. Thereby the elements of S correspond
either to links of Y that have an end-vertex at some unbalanced component of ¥\ Y
or to edges of the balancing part of Y in X. Thus there is v" vertex of attachment
of B" in ¥\ Jg\Y’ such that B\Js C F(B’,v"). Then there is 8" C Y (B’,v") which
is a bond in X\ Jx.(B'UY")|Y" and therefore S” C S\Jx. The same holds when
B' c B\ Js. O

Given a cocircuit Y of a signed-graphic matroid M (), the property of bridge-
separability of a cocircuit Y\ Jy of the minor M (X\Jy) is passed to Y.

Theorem 31. IfY is a non-graphic cocircuit of an internally 4-connected quater-
nary signed-graphic matroid M(X) and Y' C Y \Jx is a bridge-separable cocircuit
of M(X\Jx), then Y is bridge-separable in M(X).

Proof. We shall show that when two bridges By and Bj of M(X\Jg)\Y’' are
avoiding, then there are avoiding bridges B; and By of M(X)\Y such that

BiN B # 0,(i = 1,2). Let J\ denote the set of joints at vertices of the bal-
anced component of 3\Y.
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We distinguish the following two cases:

Case 1: Bj, B}, are separators of the same component ¥’ in (3\Jg)\Y".

Let us assume that ¥’ is unbalanced since the case that it is balanced follows sim-
ilarly. Moreover, let us assume first that Y = Y\ Jy, which implies that B; is not
a joint unbalanced separator of ¥\Y. Then either B is a balanced separator of
the unbalanced component ¥/, of the signed graph ¥\Y where ¥’ = 3/,\Jy, or B
is contained in the unique unbalanced separator of ;. Thus there is B; separator
of ¥\Y such that B C B;\Jx. Due to the fact that Bj, B} are avoiding bridges of
Y’ in M(X\Jx), there are S| € m(M(X\Jx), B}, Y’) and S, € m(M(X\Jx), By, Y')
such that S]U S, =Y’. By Lemma[B.13] we distinguish two cases for the elements
of S!. If the elements of S/ correspond to half-edges at a vertex in X\ Js.(B/UY")|Y”,
then the elements of S, correspond either to links of the unbalancing part of Y’ that
are incident to unbalanced components of (X\Jx)\Y” or to links of the balancing
part of Y’ in ¥\ Jg. Thereby the elements of S! U Jit correspond to half-edges at
a vertex in 2.(B; UY)|Y and by Lemma BI3 there is S; € m(M(X), B;,Y') such
that S!U J& C S;. Since Y/ U J& =Y, we have that S; U Sy =Y. Otherwise the
elements of S! correspond to links of the same sign incident at a vertex of attach-
ment of B] in ¥\ Jy.(B/UY")|Y”, which implies that there is vertex of attachment v
of B; so that the elements of S! correspond to links of Y that have an end-vertex at
C(B;,v) in X. Due to avoidance of B] and Bj, if the elements of S| correspond to
parallel links of the same sign at a vertex in X\ Jx.(B] UY")|Y” then the elements
of S, correspond to half-edges at a vertex in X\ Jx.(B,UY")|Y’, which implies that
the elements of S5 U J5 correspond to half-edges at a vertex in X.(B, UY)|Y. Tt
follows that S; = S; and S, U J5- C Sy and therefore B; and B, are avoiding.

Let us assume now that Y’ C Y\ Jy, and that Bj is a joint unbalanced separator
of ¥\Y, therefore B;\Jy; C Bj. Furthermore we assume that B} is an unbalanced
separator and Bj is a balanced separator of ¥’ in (3\ Jyg)\Y”, since by Lemma [5.1.3]
all other cases follow similarly. Due to the fact that B/, B} are avoiding bridges of
Y’ in M(X\Js), there are S| € n(M(X\Jx), B}, Y’) and S, € m(M(X\Jx), By, Y')
such that S7 U S, =Y’. By Lemma 513 the elements of S! correspond either to
a class of parallel links of the same sign or to half-edges incident at a vertex in
Y\ Jx.(BiUY")|Y'. If the elements of S| correspond to links in ¥\ Jg.(BjUY")|Y’,
then by avoidance of Bj, Bj, the elements of S correspond to half-edges at a
vertex in X\ Jx.(B5 U Y')]Y’. Otherwise the elements of S] correspond to half-
edges incident at a vertex in X\ Jy.(B. UY”)|Y’. In both cases, by Lemma [5.1.0]
there is S; € m(M(X), B;,Y) such that S! C S;\Jx. The elements of Y\ (Y’ U J5)
are incident at an unbalanced component of ¥\Y', therefore, they become joints at
a vertex in X.(B; UY)|Y. Then they are contained in S; or S and By and By are
avoiding.
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Case 2: Bj, B!, are separators of different components in (X\Jx)\Y".

Let us assume that Bj, B) are separators of different unbalanced components in
(3X\Js)\Y'. By avoidance of B}, B), there are S} € (M (X\Jx), By, Y’) and S}, €
m(M(X\Jy), By, Y') such that S7 U S, = Y'. Moreover, let H; denote the set of
links of Y’ in ¥\Jy that are incident to an unbalanced component of ¥\Y not
containing B; and the links of the balancing part of Y’. Then the edges of H; are
joints at a vertex in X\ Jy.(B/UY”)|Y” while the edges of H; and the edges of J5: are
joints at a vertex in X.(B; UY)|Y. By Lemma BEI3 there is S; € n(M(X), B;,Y)
such that H; U J3; C S;. Furthermore it holds that H, U Ho U J5t =Y, therefore we
have that S;US; =Y. The case where B} and Bj are separators of an unbalanced
and a balanced component in (3\J5)\Y' respectively, follows similarly. O

5.2 Hereditary properties through k-sums

When a signed graph ¥ is k-sum, k € {1,2,3}, of two signed graphs then 3\ Jy
is also an [-sum, [ < k, of two signed graphs. This is also the case for the corre-
sponding signed-graphic matroids.

Lemma 5.2.1. If M(X) is a k-sum, k € {1,2,3}, then M(X\Jx) is an l-sum,
[ <Ek.

Proof. 1t is enough to show that if ¥ is a k-sum, k& € {1,2,3}, then X\Jy is
an [-sum, [ < k, since then the result follows by Proposition [[6l Suppose that
Y =¥ @y Xg where X, ¥y are signed graphs. Since ¥\ Jy is obtained from ¥ by
removing joints, then by the definition of k-sums of signed graphs, it follows that
Y\Jy = X@X) where X is a signed graph that derives from ¥; by removing all
joints. ]

In the remainder of this section we will describe how the cocircuits of signed-
graphic matroids, the associated bonds of signed graphs, and the properties of
bridge-separability and avoidance are affected under k-sums.

5.2.1 1-sum

The inheritance of a cocircuit of a matroid M = M; &1 My to either M, or M,
is a direct consequence of Proposition 4.2.22 in [35]. Moreover, by the definition
of bridges and Proposition 4.2.23 in [35], the following straightforward result is
obtained.

Lemma 5.2.2. IfY is a cocircuit of a matroid M = My @&, My then
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(i) Y is a cocircuit of exactly one, say M, and

(1i) the bridges of Y in M are the bridges of Y in M, and the elementary sepa-
rators of M.

The property of all-avoiding bridges of a cocircuit Y in M = M; &, M, is
inherited to a component of the 1-sum as stated in the following result.

Lemma 5.2.3. If Y is a cocircuit with all-avoiding bridges of a matroid M =
My &1 My then Y is a cocircuit with all-avoiding bridges in either My or M.

Proof. By Lemma [B.2.2] we can assume that Y is a cocircuit of M;. Moreover, the
bridges of Y in M; are the bridges of Y in M except for the elementary separators
of My. Next it is proved that 7(M, B,Y) = w(My, B,Y") for every bridge B of Y in
M other than the elementary separators of My, by showing that C*(M.(BUY)|Y)
=C*(M,.(BUY)|Y). We have that

M.(BUY)[Y = M/(E(M)UE(M)) - (BUY)|Y
M/E(My)/E(My) — (BUY)|Y
M\E(My)/E(My) — (BUY)|Y
— M.(BUY)Y.

O

Restricting ourselves to the class of signed-graphic matroids, it is shown that
there are specific relationships between special types of cocircuits in a signed-
graphic matroid M (X) = M(X,) &1 M(X,) with those of M (X;) and M (X,).

Lemma 5.2.4. Let Y be a cocircuit with all-avoiding bridges of a signed-graphic
matroid M(X) = M(%1) @1 M (3y) where M(%;) (i = 1,2) signed-graphic matroid.

(i) If Y is the star of a vertex in Xy or 3o, then it is the star of a vertex in a
signed-graphic representation of M(X).

(ii) If Y is a balancing bond in Xy or X then it is a balancing bond in 3.

Proof. For (i) suppose that Y is the star of a vertex w in ;. Assume that ¥,
contains more than one vertex. Let ¥ &, 25 be obtained by identifying a vertex
v; # w of ¥y with a vertex vy of Xy, Then Y is the star at w in 3; &1 Xy and since
M3, &1 X9) = M(%) &1 M(X2) = M(X) the result follows. If V(3;) = {w},
then Y is set of joints in w and ¥, is joint unbalanced. Thus M (%) = M(X))
where ] has exactly two vertices and Y is a star of each.

For (ii) suppose that Y is a balancing bond in ¥;. Since ¥ is a balanced
separator of X the results follows. O
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Figure 5.3: Y is the star of a vertex in X = ¥; @& Y

Theorem 32. Let Y be a non-graphic cocircuit of a signed-graphic matroid M (X)
where X = ¥ @1 5. If Y is a bridge-separable cocircuit in either M (3q) or M(%s)
then Y is bridge-separable in M (X).

Proof. Suppose that Y is a bridge-separable cocircuit in M (%;). By Lemma [(.2.2]
the set of bridges of Y in M (X) is the union of the set of bridges of Y in M (%)
and the set of elementary separators of M(3;). By Lemma and since Y
is bridge-separable cocircuit in M (%), the bridges of Y in M (%) which coincide
with the bridges of Y in M(X;) can be partitioned into two classes so that any
two bridges in the same class are avoiding. It suffices to show that the remaining
bridges of Y in M(X), i.e. those coinciding with the elementary separators of
M (%), are avoiding with all bridges in one of the two aforementioned classes. To
prove this, let us first denote by B’ an elementary separator of M (%) and by ¥
the corresponding separator.

Let us consider first the case where 3J; is an unbalanced signed graph which,
by the definition of 1-sum of signed graphs, implies that ¥, is balanced. Moreover,
since Y C EF(X;) and non-graphic, ¥y would be a subgraph of either the balanced
component or an unbalanced component of ¥\Y. We shall consider only the first
case since the second case follows similarly. Note that in 3.(X'UY)|Y all edges of YV’
are half-edges at the common vertex of ¥; and ¥,. This implies that X.(3'UY)|Y
has only one bond and, therefore, 7(M(X), B',Y) = {Y'}. Evidently, B avoids any
bridge of Y in M (X;) and, thus, Y is bridge-separable in M (Y).

In the remaining case we have that ¥, is a balanced signed graph which implies
that 3, is an unbalanced signed graph Since Y C F/(¥;) and Y is a non-balancing
bond of ¥, we have that ¥ would be contained in the unique unbalanced com-
ponent of ¥\Y. Then the signed graph ¥.(X' U Y')|Y consists of a set of parallel
positive links of Y that constitutes a bond. Therefore, ¥.(35 UY')|Y has only one
bond consisting of the edges of Y and thus, m(M(X), B',Y) = {Y'} which as in the
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previous case implies that Y is bridge-separable in M (). O

5.2.2 2-sum

Throughout this subsection we assume that we have a connected matroid M =
M; @y My where M; and M, are connected matroids with ground sets E(M;) =
XUz and E(M,y) = Xy U z. Moreover, the ground set of M is E(M) = (E(M;)U
E(M3)) — z so M; is an one element extension of M|X;, (i = 1,2).

Given a cocircuit Y of M, it is either contained in one of M;, M5 or its elements
may be partitioned between them. As shown in the following result, in the former
case, Y is also a cocircuit of the corresponding matroid (i.e. M; or Ms) while, in
the latter case, the elements of Y in M; (M) and z constitute a cocircuit of M
(Ms). Moreover if the elements of Y are partitioned between M; and Mo, then the
bridges of Y in M are also partitioned accordingly. Otherwise, the bridges of Y in
M apart from one are inherited to either M; or Ms.

Lemma 5.2.5. Let M = M; ©y My be a matroid such that each M; (i = 1,2)
is connected and E(M;) = X; U z. If (Y1,Y2) is a partition of Y € C*(M) where
Y; C E(M;) then one of the following holds:

(i) Y is a cocircuit in some M; and its bridges are the bridges of Y in M that
are contained in E(M;) and a bridge B such that B &y M;, where j # i, is a
bridge of Y in M,

(17) Y; Uz is a cocircuit in M; and its bridges are the bridges of Y in M that are
contained in E(M;).

Proof. (i) Assume that Y C F(M;), so Y C X;. Thus, Y € C(M*|X;). Since M;
is obtained by extending M|X; by z, C(M*|X,) C C(M]). Therefore, Y € C*(M;).
Moreover, it is known that M @y My = P(M;, My)\z where P(M;, M) denotes the
matroid which is obtained by the parallel connection of M; and Ms. By Proposition
7.1.15 in [35], e € E(My) — z, (My @9 My)\e= P(My, My)\p\e= P (M, Ms)\e\p=
P(M\e, My)\p= (M;\e) B2 Ms. It follows that (M; Go Mo)\Y = (M;\Y) &g Mo.
Let us denote by B the unique bridge of Y in M; containing z. Since M; ¢y M,
is connected if and only if M; and M, are connected matroids, then B @9 M, is a
bridge of Y in M because it is a minimal connected subset of E(M) — Y.

(ii) Assume that both Y; are non-empty. By the definition of the matroid 2-sum
operation we have

C*(My) =C"(M.X,) U{(CNX;)Uz:C cocircuit of M meeting both Xy, X}
(5.1)
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Therefore, since Y is a cocircuit of M meeting both X; and X,, we have that
(YNX,)Uz € C*(M;) which is equivalent to Y; Uz € C*(M;). With respect to the
bridges of Y, we shall first show that X;—Y; is a separator of M\Y. It is well-known
that (X, — Y1) +r(Xo = Ys) > (X —Y) when X —Y = (X; —Y]) U (Xy —Ys)
where X; — Y], Xy — Y, disjoint sets. Therefore, if r(X; — Y7) + r(Xs — Y3) =
r(X —Y) the result follows. So assume that r(X; —Y7) +7(Xy = Ys) > r(X =Y,
or equivalently

r(Xi—-Y)+r(Xp—-Y) >r(X -Y)+1 (5.2)

Since Y1 Uz € C*(My), X; — Y7 is a hyperplane of M; and r(X; —Y;) = r(M;) — 1.
Equivalently, r(X; —Y)) = r(X; Uz) — 1. Since M; is connected and z is neither a
loop nor a coloop of My, z € cl(X;) and r(X,Uz) = r(X;). Therefore, r(X;—-Y7) =
r(X1) — 1. Similarly, r(Xy — Y3) = r(X3) — 1. Then equation (52) becomes
r(Xy) —14+7r(Xs)—1>7r(X —Y)+ 1. Furthermore, Y € C*(M),so X —Y is a
hyperplane of M and (X —Y) = r(M)—1. Thus, r(X;)+r(Xs) > r(M)+2 which
is a contradiction since (X7, Xs) is an exact 2-separation with r(X;) 4+ r(Xs) =
r(M)+ 1. By definition of matroidal 2-sum, M;\ (Y1 Uz) = M|(X; —Y1). Thereby,
M\Y = M|(X; —Y7) &1 M|(Xs—Ys) = M;\(Y1U 2) &1 M\ (Y2 U z). Therefore,
every bridge of Y in M is contained either to E(M;) or E(Ms). O

The following four technical lemmas are needed for the proofs of Theorem
and Theorem [34]

Lemma 5.2.6. Let M = M,&y M, be a matroid, Y € C*(M) and each M; (i = 1,2)
is connected with E(M;) = X;Uz. If Y € C*(M;) and B a bridge of Y in M; then
either:

(i) z¢ B and n(M;, B,Y) = n(M,B,Y), or
(ii) = € B and 7(M;, B,Y) = (M, B &y M,,Y), (i # ).

Proof. For the proof that follows assume that ¢ = 1.
(i) By Lemma (i) B is a bridge of Y in M. Enough to show that
Yy € C*(M.(BUY)|Y) if and only if Y] € C*(M;.(BUY)|Y). Assume that Y} €
C*(M.(BUY)|Y), then there exists Y, € C*(M.(BUY')) such that C} = YoNY. It
follows that Y3 € C*(M). Moreover, Yo C X1, so Y5 € C*(M.X1). By (B1]) we have
that C*(M.X;) = C*(M;.X,), thus, Y; € C*(M;.X;) which implies Y7 € C*(M;).
Since Yo € BUY then Y, € C*(M;.(BUY)). Furthermore Cf = Y> NY which
implies that either Y7 € C*(M;.(BUY)|Y') or Y] contains a member of C*(M;.(BU
Y)|Y). However, in the latter case, there exists Y3 € C*(M;.(BUY)) such that
Y5NY C YoNY implying that Y5 € C*(M.(BUY)) which is a contradiction to
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our initial assumption that YoNY =Y, € C*(M.(BUY)|Y). Reversing the above
arguments it is proved that if Y; € C*(M;.(BUY)|Y) then Y] € C*(M.(BUY)|Y).
(ii) We will show that C*(M.(B @&y My UY)|Y) = C*(M;.(BUY)|Y). Suppose
that Y7 € C*(M.(B @©2 My UY)|Y), then there exists Y € C*(M.((B @2 M) UY))
such that Y7 = Yo NY. Therefore, Y5 € C*(M). Since z ¢ ¢, we distinguish two
cases as regards to ¢’. Either Y5 C X; or ¢’ meets both X; and X,. If Y5 C X7,
since Yy € C*(M), Yy € C*(M.X,) = C*(M;.X1); moreover, Yo C BUY, therefore,
Yy, € C*(M,.(BUY)). Hence, it follows that YoNY =Y, € C*(M;.(BUY)|Y).
Consider now the case that ¢’ meets both X, X5. Since Yy € C*(M), by (B
we have (Yo N X1) Uz € C*(M;); moreover, z € Bso YoNX; =Y, N(BUY).
Thereby, [YaN (BUY)|Uz € C*(M;) and [YoN (BUY)|Uz C BUY. It follows
that [Yan (BUY)| Uz € C*(M;.(BUY)). Since Y7 = Yo NY, we have that
Y € C*(M.(BUY)|Y).

[

©
ON©

Figure 5.4: M(X) = M (3,) &2 M (3,)

Lemma 5.2.7. Let M = My &y My be a matroid such that each M; (i = 1,2) is
connected with E(M;) = X; U z and (Y1,Y2) a partition of Y € C*(M). IfY; C
E(M;) such that Y; U z € C*(M;) and B is a bridge of Y in M where B C E(M,)
then there exists S € (M, B,Y') such that Y, C S.

Proof. By the relationship of cocircuits of a M and its contraction minor M’ =
M.(BUY), it is evident that Y is a cocircuit of M. If for any cocircuit Y’ of M’
we have that either Y5 C Y’ or YoNY’ = (), then the lemma holds by the definition
regarding the elements of (M, B,Y"). Thus, it remains to show there exists no Y’
such that Y5 € Y or YoNY' # (). If such an Y existed then it would be a cocircuit
of M as well; thus, by (1)) the set (Y N X5) Uz =Y Uz should be a cocircuit of
M, which contradicts the minimality of Y5. O
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Example 5.2.1. Consider the signed graph Y which is depicted in Figure [2.0.
The signed graph ¥ is 1-vertex 2-sum of ¥y and ¥y (Figure [5.]]) where the signed
graphs ¥y and ¥y are depicted in Figures [5.8(a) and [50(b) respectively. The
signed-graphic matroid M (X) = M(3,) @y M (X2) has a non-graphic cocircuit Y =
{4,5, =5, =3} which is bridge-separable and corresponds to a double bond in .
The bridges of Y in M(X) are By = {1,2,3,—1,—2,—6} and By = {—4}. Then
T(M(X), B, Y) = {{-3, -5}, {4}, {6} } and (M (2), B2, Y) = {{-3,4},{-5,5}}.

—1

Figure 5.5: The signed graph X

The double bond Y of X, which is contained in E(3;), is a double bond of ¥s.
Moreover, the cocircuit Y of M(Xs) is graphic and bridge-separable. The bridges
of Y in M(Xs) are By = {z} and By = {—4}. Then w(M(%y),B,Y) =
{{-3,-5},{4},{5}} and m(M(3,), B, Y) = {{—3,4},{—5,5}}. Note that B; =
By @, B..

(a) The signed graph ¥, (b) The signed graph X,

Figure 5.6: The cocircuit Y C E(%,)

Example 5.2.2. Consider the signed graph Y which is depicted in Figure [2.7
The signed graph ¥ is 1-vertex 2-sum of ¥y and ¥y (Figure [5.4) where the signed
graphs X1 and Yo are depicted in Figures [8(a) and [Z8(b) respectively. The
signed-graphic matroid M (X) = M (31) G M(3s) has a non-graphic cocircuit Y =
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{2,-2,4,5, -6, —1} which is bridge-separable and corresponds to a double bond in
Y. The bridges of Y in M(X) are By = {1}, By = {3} and By = {—3,—4, -5, —7}.
Then

W(M(E)a By, Y) = {{_1}7 {2}7 {_27 4, -6, 5}}

7T<M(E)a By, Y) = {{2}7 {_Q}a {_1747 —6, 5}}
71-(‘]M(Z)a Bs, Y) = {{_1 -2,2, _6}7 {4}7 {5}}

Figure 5.7: The signed graph X

Let (Y1,Y5) be a partition of Y such that Y, = {1,2, -2} and Yo = {4,—6,5}. Then
YiUz ={—1,-2,2, z} is a bridge-separable cocircuit of M (3,) where By = {1} and
By = {3} are the bridges of Y1 Uz in M(X;). Moreover, YoUz = {4,5,—6,2} is a
bridge-separable cocircuit of M (Xy) where By is the unique bridge of Y in M(Xs).
Then

W(M(El)v By, Y1 U Z) = {{_1}7 {2}7 {_27 Z}}
W(M<21)7 By, Y1 U Z) = {{_2}7 {2}7 {_17 Z}}
m(M(21), By, Y1 Uz) = {{-6, 2}, {4}, {5} }.

Note that if B is a bridge of Y in M such that B C E(M;) and Y; Uz € C*(M;)
for some ¢ € {1,2}, then by Lemma we have that B is a bridge of Y¥; U 2z in
M;.

Lemma 5.2.8. Let M = M; ©y My be a matroid such that each M; (i = 1,2)
is connected with E(M;) = X; U z and (Y1,Y2) a partition of Y € C*(M). If
Y; C E(M;) such that Y; Uz € C*(M;), B is a bridge of Y in M where B C E(M;)
and S € m(M,B,Y), then

(i) S €n(M,B,Yi1Uz), if Yo £ S, or

(i) (S —Ys)Uz € n(My,B,Y,Uz), otherwise.
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(a) Y1 Uz cocircuit of M (3) (b) Y2 U z cocircuit of M(Xs)

Figure 5.8: The signed graphs 3; (a) and X5 (b)

Proof. By Lemma B2 and the definition of n(M,B,Y), for any C €
C*(M.(BUY)|Y) we can distinguish two cases:

Case 1: CNY,; = 0.

We have that C' C Y; and there exists C" € C*(M.(BUY)) such that C =C"'NY.
Combining that with the assumption that C' N'Y; = () we have that ' NY, = 0,
which in turn implies that ¢’ € BUY; C X;. Therefore, by the fact that
C*(M.X,) = C*(M;.X1), we have that ¢ € C*(M;.(BUY7)) implying that
C" € C*(M;.(BUY1Uz)). Moreover, since C' C Y} and z ¢ C’ we have that
C=C"NY =C"N(Y1Uz) and, thereby, C € C*(M;.(BUY; U 2)|Y] U 2).

Case 2: Y; C C.

There exists C' € C*(M.(BUY)) such that C = C"NY then ¢’ € C*(M). Since
B is a bridge of Y; U z in My, it follows that C' N'Y; # 0. Thereby C’ meets both
X1, Xs implying that (C' N Xy) Uz € C*(M;). Since z ¢ C" and ' C BUY, we
have that C' N X; = C'N(BUY;). Thus, (C"N(BUY;))Uz € C*(M;) and more-
over, (C"N(BUY)))Uz € C"(M;.(BUY; Uz)). It holds that (C"N(BUY))) Uz
= (C—-Yy)Uzso (C—-Yy)Uz e C(M.(BUY;Uz)). Due to the fact that
C e C"(M.(BUY)|Y) and C" N (B UY))) U z, it follows that (C' — Y3) U z
eC(M.(BUY,Uz)Y1U z). O

Following the lines of the proof of Lemma (.28 the following result can be
obtained.

Lemma 5.2.9. Let M = M; @&y My be a matroid such that each M; (i = 1,2)
is connected with E(M;) = X; U z and (Y1,Ys) a partition of Y € C*(M). If
Y; C E(M;) such that Y; Uz € C*(M;), B is a bridge of Y in M where B C E(M,)
and S € m(My, B,Y, U z) then

(i) Sen(M,B,Y) ifz¢ S, or

(ii) (S —z2)UYs € (M, B,Y), otherwise.
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Example 5.2.3. Consider the signed graph Y which is depicted in Figure [5.9.
The signed graph ¥ is 2-vertex 2-sum of X1 and Yo along z where the signed
graphs ¥y and ¥y are depicted in Figures [i10(a) and [ 10(b) respectively. The
signed-graphic matroid M (X) = M(3,) @2 M (X2) has a non-graphic cocircuit Y =
{7,4,8,11,—4,—6,—9,—10,—11, —13, } which is bridge-separable and corresponds
to an unbalancing bond in X. The bridges of Y in M(X) are By = {5}, By = {6},
By={-5}, By = {7} and Bs = {1,2,3,9,10, 1,2, 3, -8, —12}. Then

(M (), By, {{-9,-10},{—4,4,11,-13,7,8,—6, —11}}
M(S), B, {{7,8},{=6,—11,4,11, -4, -9, —10, —13}}

(M(X), By, Y) =
(M(X), By, Y) =
(M(2), B, Y) = {{—4, 13,11}, {4, -9, -10,7,8, 6, —11}}
(M(%), By, Y) =
(M(%), Bs, Y) =

™

3

N

M (%), By, {{=11,7},{—6,8,4,11, -4, -9, —10, —13}}

M(Y), Bs, {{—4,-9},{4},{~10},{~13,7,8,—6, —11}, {11}}

™

Figure 5.9: The signed graph X

Let (Y1,Y3) be a partition of Y such that Yy = {4,11,—4,—-9,—10,—13,} and
Yo = {7,8,—6,—11}. Then Y1 U z is a bridge-separable cocircuit of M(3;) where
By = {1}, B3 = {-5} and B; ={1,2,3,9,10, —1, -2, —3, =8, —12} are the bridges
of YiUz in M(3,). Then

7(M(21), B, Y1 Uz) = {{~9, 10}, {~4,4,11, 13, 2}}
7(M(51), Bs, Y1 U z) = {{—4,—13,11}, {4, -9, —10, 2}}
7(M(21), Bs, Vi Uz) = {{—4, -9}, {4}, {~10}, {—13, 2}, {11}}.

Moreover, Yy U z is a bridge-separable cocircuit of M(Xy) where By = {6} and
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(a) Y1 Uz cocircuit of M (3) (b) Y2 U z cocircuit of M(Xs3)

Figure 5.10: The signed graphs ¥; (a) and 35 (b)

By = {=T7} are the bridges of Y in M(%s3). Then

T(M(Ss), By, Ya U 2) = {{7,8},{—6,—11,2}}
T(M(%,), By, Yo Uz) = {{—11,7},{—6,8, z}}.

The property of all-avoiding bridges of a cocircuit in M = M; @y My is inherited
in a specific way in the cocircuits of M; and M; as described in the following
theorem.

Theorem 33. Let M = M; @y My be a matroid such that each M; (i = 1,2) is
connected with E(M;) = X; U z and (Y1,Y3) a partition of Y € C*(M). If Y has
all-avoiding bridges in M and Y; C E(M;) then one of the following holds:

(i) Y is a cocircuit with all-avoiding bridges in either My or My,
(7i) Y; U z is a cocircuit with all-avoiding bridges in M,;.

Proof. We shall show that (i) holds when either Y} and Y5 is empty while (ii) holds
when both Y; and Y, are non-empty.

For (i) assume that Y C X;. By Lemma E.20(i), Y is a cocircuit of M;. Let
By and Bs; be two bridges of Y in M and B be the bridge of Y in M; that contains
z. Then, by Lemma B25(i), it also follows that B @, M, is a bridge of Y in M.
Assume first that the bridges B; and B, of Y in M are distinct from B @y Mo;
then, by Lemma [525(i), B; and B, are bridges of Y in M; distinct from B. By
Lemma[5:2.6](i), it holds that 7(M, B;,Y) = w(My, B;,Y) (j = 1,2) and, therefore,
B; and B, are avoiding bridges of Y in M;. Assume now that one of B; or Bs is
B @9 My, say B;. Then, by Lemma B25(i), By is a bridge of Y in M; and, by
Lemma B.2.0] B is avoiding with any other bridge of Y in M;.
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For (ii), let us assume that ¢ = 1, since the same arguments can be used for
i = 2. By Lemma B2ZH(ii), Y7 U z is a cocircuit of M;. We shall show that
any two bridges By and By of Y in M such that By, By C E(M;) are avoiding
bridges of Y} U z in M. Since By, B, are avoiding bridges of Y in M, there are
Sy € (M, By,Y)and Sy € (M, Bs,Y') such that S;USy = Y. By LemmaB.271 Yo
is either contained in one of Si, S5 or in both of them. Let us assume that Y5 C 5].
By Lemma B28], there are S| € (M, By, Y; U z) such that S| = (S; — Y2) U z
and Sy € w(My, B2, Y, U z) such that S) = Sy and therefore, 57U S, = (Y1 U 2).
If Y € S; NSy, then by Lemma B.2.8) there are S] € w(M;, By,Y; U z) such that
S; = (S1 —Ye) Uz and S € m(My, By, Y1 U 2) such that S) = (S — Ys) U 2z and,
therefore, ST U S, =Y, U z. O

The operation of 2-sum preserves star bonds and unbalancing bonds in the
manner described in the next two results.

D Y
Y L
oL @)’ X’
VAR s VAN S
D Y oC
(a) ¥ is 2-vertex 2-sum of ¥; and (b) ¥ is 1-vertex 2-sum of ¥; and ¥y

b))

Figure 5.11: Y is the star of a vertex in X

Lemma 5.2.10. Let M(X) = M(X2,) @2 M(33) be a signed-graphic matroid such
that each M(%;) (i = 1,2) is connected signed-graphic with E(M(%;)) = X; U z. If
Y € C*(M (X)) has all-avoiding bridges in M(X) and Y C E(M (X)), then:

(i) if Y is the star of a vertex in ¥y, then it is the star of a vertex in a signed-
graphic representation of M(X).

(ii) if ¥ is a 2-vertex 2-sum of ¥y and Xy and Y is a balancing bond of the
unbalanced ¥, then Y s a balancing bond in 3.

(1i7) if ¥ is a 1-vertex 2-sum of ¥y and X5, then Y cannot be a balancing bond in
3.
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Proof. For (i), suppose that Y is the star of a vertex w in ;. Assume first that
Y is the 2-vertex 2-sum of ¥; and Y9 and v; and vy be the vertices of 3; which
are the end-vertices of z. Since Y is a bond of ¥, it follows that z ¢ Y, therefore
Y cannot be the star of v; or vy (see Figure BITi(a)). Assume now that ¥ is the
1-vertex 2-sum of ¥; and X, and moreover, assume that v; is the vertex of
which is identified with a vertex of 5. Since Y is a bond in ¥, it follows that
z ¢ Y, and therefore Y cannot be the star of the end-vertex v; of z in 3; (see
Figure B.ITI(b)). In both cases, since M (3 @y Xo) = M(X;) @y M(X2) = M(Y),
the result follows.

For (ii), since Y is a balancing bond in ¥, by the definition of the 2-vertex
2-sum, > is the unbalanced signed graph and ¥, is the balanced one. Moreover,
z can be considered as a positive link (after applying switchings at vertices if
necessary) in both ; and ¥5. Due to the minimality of Y (i.e. being a cocircuit in
M (X)), there exists a series of switchings at the vertices of ¥; such that the edges
of ¥1\Y become positive while the edges in Y become negative. Since switching
at the vertices of a signed graph does not alter the associated matroid, by the
definition of 2-vertex 2-sum of two signed graphs, it follows that we can assume
that the only negative edges in X are the edges of Y and, therefore, Y is a balancing
bond in X.

For (iii), by Lemma[R.Z|(i), Y is a cocircuit of M (3;). By way of contradiction
assume that Y is a balancing bond in ;. Applying switchings at the vertices of >,
all edges of ¥1\Y become positive. Then by the definition of 1-vertex 2-sum of two
signed graphs, ¥, is unbalanced and, since M (3y) is connected, 35\ z should also
be unbalanced. Thus, Y is not a minimal set whose deletion increases the number

of balanced components in ¥, which contradicts the fact that Y is a cocircuit of
M(%). O

Lemma 5.2.11. Let M(X) = M (X)) @y M(3s) be a signed-graphic matroid such
that each M(%;) (i = 1,2) is connected signed-graphic with E(M(%;)) = X; U 2
and (Y1,Ys) a partition of Y € C*(M (X)) with Y1 and Yy being nonempty. If Y
has all-avoiding bridges in M (X) and Y; C E(M(%;)) then:

(i) if Y; U z is the star of a vertex in each 3;, then Y is the star of a vertex in a
signed-graphic representation of M(X).

(i) if ¥ is the 1-vertex 2-sum of X1 and ¥y and Y; Uz is a balancing bond in each
Y then'Y is a balancing bond in 2.

(iii) If X2 is the 2-vertex 2-sum of ¥ and 3y then Y; U z cannot be a balancing
bond in each ¥;.
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(iv) if ¥ is the 1-vertex 2-sum of X1 and Xy and Y; U z is the star of a vertex in
one of ¥1,%o and a balancing bond in the other, then Y is a balancing bond
mn 2.

(v) if ¥ is the 2-vertex 2-sum of X1 and 3y then Y; U z cannot be the star of a
vertex in one of 31, X9 and a balancing bond in the other.

Proof. We distinguish two cases:

Case 1: Y is the 2-vertex 2-sum of ¥; and >.

Let us denote by v; and vy the common vertices of X|X; and ¥|X, in ¥ and by
v} and v? (1 = 1,2) the vertices of 31 and X, respectively, which are identified in
order to form v; in ¥ (namely, v{ and v} are identified with vs and v3, respectively,
in the 2-sum operation).

For (i), since Y; U z is the star of a vertex in %;, then it is the star of v} or v?. If
Y; U z is the star of v} (resp. v?) in ¥;, then by the 2-vertex 2-sum operation, YV’
is the star of vy (resp. vo) in 3. If Y} U 2 is the star of v{ in 31 and Y, U z is the
star of v2 in Xy, then for the signed graph Y’ which is the twisted signed graph of
Y about {vy,ve} we have that M (X)) = M(X) and Y is the star of a vertex of ¥';
similarly is treated the case in which Y; U z is the star of vf in ¥ and Y5 U z is the
star of vs in 3, .

For (iii), let use first suppose that Y; Uz is a balancing bond in each ;. Then both
Y1 and Yy must be unbalanced which is in contradiction with the definition of the
2-vertex 2-sum of two signed graphs.

For (v) suppose that Y; U z is the star of a vertex in one of 3, ¥5 and a balancing
bond in the other. This implies that at least one of >, ¥4 is unbalanced. Suppose
w.l.o.g. that ¥ is unbalanced and ¥, is balanced. Then Y; Uz is a balancing bond
in ¥3; and Y, U z is the star of vi or v3, say vy, in 3. Since Yy is balanced, we may
assume that the links of Y5 which are incident to vi are positive. Thus, Y; C Y is
a bond of ¥ which contradicts the hypothesis that Y is a bond of X.

Case 2: Y is the 1-vertex 2-sum of ¥; and .

Let v; and vy be the vertices of ¥, and X, respectively, which are identified in
order to form the vertex v in ¥ in the 2-sum operation.

For (i), since Y; U z is the star of v; in ¥;, by the definition of the 1-vertex 2-sum
operations, it follows that Y is the star of v in X.

For (ii), since Y;Uz is a balancing bond in ¥;, we perform switchings at the vertices
of ¥; so that all edges of ¥;\(Y; U z) become positive. Then, by minimality of Y; U z
(i.e. it is a cocircuit in ¥;), its edges are negative in ¥; and, therefore, Y is a
balancing bond in X.

For (iv) it follows by the definitions of 1-vertex 2-sum and a balancing bond. [
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As the following result shows, for a signed-graphic matroid M such that M =
My @9 My where M; (i = 1,2) is signed-graphic, the existence of a bridge-separable
cocircuit in M; or My induces the existence of a bridge-separable cocircuit in M.

Theorem 34. Let M(X) = M(X1) @2 M(X2) be a signed-graphic matroid such that
each M(%;) (i = 1,2) is connected and signed-graphic with E(M(%;)) = X; U z.
Moreover, let (Y1,Ys) be a partition of a cocircuitY of M(X) whereY; C E(M(3;)).
If'Y is a bridge-separable cocircuit of some M(%;) or, for all i, Y; U z is a bridge-
separable cocircuit of M(X;), then Y is bridge-separable in M(X).

Proof. We distinguish the following two cases:
Case 1: Y C E(M(%;)) for some i.
Suppose that ¢ = 1. Since Y is a cocircuit of M (X), it holds that z ¢ Y. Thus there
is a bridge B of Y in M (X;) such that z € B. By LemmalB.2.5(i), the bridges of Y in
M (X) are the bridges of Y in M (%), apart from B, and B&®y M (X5). Moreover, by
Lemma[B2.6] for each bridge B’ of Y in M (3;) that does not contain z, it holds that
m(M(%,),B,Y) = n(M(X),B',Y), while for B it holds that #(M(3,),B,Y) =
m(M(X), B®y M(X2),Y). Combining the existence of a partition of the bridges of
Y in M (%) into two classes each consisting of all-avoiding bridges with the above
relations, we get a partition of the bridges of Y in M (X) into two classes each
consisting of all-avoiding bridges, where the bridge B is replaced by B @9 M (3).
Case 2: Each Y] is nonempty.
Since there is a partition of the bridges of ¥; Uz i = 1,2 in M(%;) into two
classes %' and %* such that any two bridges in the same class are avoiding, it
is shown first that any two bridges in the same class %’ (i,j = 1,2) are also
avoiding bridges of Y in M(X). Let By and B, be two arbitrary bridges in %4,
then By, By € E(M(X;)). It follows that there are Sy € (M (%), By, Y1 U z) and
Sy € m(M (%), By, Y1 U 2) such that S; U Sy = Y; U z. Then either z belongs to
at least one of S1, 55 or z € S; N S,. In the first case, let us assume that z € S
and z ¢ S;. By Lemma B.20(ii), B; and By are bridges of Y in M(X) and by
Lemma (.28 there are S; € 7(M(X), By, Y) such that S; = (S; — 2z) U Y, and
Sy € m(M(X), By, Y) such that S, = Sy. Thereby S; U Sy = Y. Suppose that
z€ 81 NS,, then S; = (S; — 2)UYy and Sy = (Sy — 2) UY, and, therefore, By, By
are avoiding bridges of Y in M (X). Hence each class %j consists of all-avoiding
bridges of Y in M(X).

Next we shall prove that the classes %' and %, can be merged into one class
7, consisting of all-avoiding bridges of Y in M(X). Let Bj, By be two avoiding
bridges of Y1 U z in M (X;) that are contained in %' and Bj, B} be two avoiding
bridges of Y, U z in M(X,) that are contained in %,'. For Bj, By there are S €
7(M(%1),B1,Y1Uz) and Sy € (M (X%1), B2, Y1 U z) such that S; U Sy = (Y1 U 2)
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while for B}, Bj there are S| € (M (X,), B}, YaUz) and S}, € m(M(3,), B, Yo Uz2)
such that S7 U S, = (Y2 U z). We shall consider only the case where (z € 5
but z ¢ S) and (2 € S; but z ¢ S)), since the others follow similarly. As
above for By, By there are S; € n(M(X), By,Y) where S; = (S} — 2) UY; and
Sy € m(M(X), By,Y) where Sy = Sy such that S; U Sy = Y. Similarly for B}, Bj,
there are S| € n(M(X), B;,Y) where S} = (S} —2)UY; and S; € n(M(X), B}, Y)
where S} = S} such that S] U S, = Y. Since By, B} are bridges of Y in M(X),
by Lemma B.Z8] it follows that S; U S} =Y — Way(s) (B, B}), which implies that
By and Bj are avoiding bridges of Y in M (X). Moreover, by Lemma B.2.7] there
is S5 € m(M (%), B2, Y1 U z) such that z € S} and by Lemma [5.2.8 we have that
(Y —2)UYsy € m(M(X), By, Y). Similarly for B} there is S5 € w(M(X3), B), YaUz2)
such that z € SJ" and therefore (S5 —2) UY; € n(M(X), B}, Y'). Thus By, By, By
and B are avoiding bridges of Y in M(X) and the classes %' and %,' can be
merged into one class %4 of all-avoiding bridges of Y in M(X). Similarly, the
classes %% and %, can be merged into one class % consisting of all-avoiding
bridges of Y in M(X). O

5.2.3 3-sum

The two types of 3-sum regarding signed graphs will be examined separately and
structural results will be provided for the corresponding signed-graphic matroids.
In contrast with the 1-sum and 2-sum operations where we were able to show how
cocircuits and avoidance behave for general matroids, for the 3-sum operation we
need to restrict ourselves to the class of signed-graphic matroids.

2-vertex 3-sum

We shall consider the case in which a connected signed graph X is decomposed
to two connected signed graphs ¥, and ¥, where ¥ is the 2-vertex 3-sum of ¥
and Y. By the definition of the 2-vertex 3-sum operation, 3 has a 3-biseparation
(X1, X3), where each signed graph ¥|X; (i = 1,2) is connected and unbalanced.
Furthermore, each ; is an unbalanced signed graph with E(%;) = X; U Z, where
by Z the set of common edges of ¥; and ¥ inducing K, is denoted. We shall also
refer to X; as the part of the 2-vertex 3-sum. Moreover, throughout this section,
we shall denote by v; and v, the common vertices of 3| X; and ¥| X, in ¥ and by
vjl- and vjz (7 = 1,2) the vertices in ¥; and X, respectively, which are identified so
as to form v; in 3.

The following lemma presents the way a non-balancing bond of 3 is inherited to
Y1 and Y,. Moreover, it establishes the relation between the separators of a non-
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O,

/ @3\

OO

Figure 5.12: M () = M (1) @3 M (%)

balancing bond in a 2-vertex 3-sum signed graph > = ; @3>, and the separators
of the corresponding bond in the parts 3; and X5 of the 3-sum.

Lemma 5.2.12. Let M(X) be a connected signed-graphic matroid where 3 is the
2-vertex 3-sum of two signed graphs X1 and Yo with M(3,) and M(3s) connected
and let E(3;) = X;UZ (i = 1,2). If (Y1,Y2) is a partition of a non-balancing bond
Y in ¥ where Y; C E(X;) then one of the following holds:

(i) Y is a non-balancing bond in some %; and the separators of ¥;\Y are the
separators of X\Y that are contained in E(X;) and one separator B with
Z C B such that the 2-vertex 3-sum B @3 3,(j # i) is a separator of X\Y,

(ii) Y; U Z is a bond in X;, where Z contains every element z of Z such that
z & c(X; —Y;) and the separators of X,\Y; U Z are the separators of X\Y
contained in E(%;) and a separator B; such that By @9 By is a separator of
Y\Y.

Proof. Since Y is a non-balancing bond in 3, the signed graph X\Y consists of a
balanced component, denoted by X1 and one or more unbalanced components. As
concerns the inheritance of Y to ¥; and Y5, we distinguish the following two cases,
Y C E(%;) for some i or each Y; is non-empty.

In the first case, assume that Y C E(3). Due to the fact that Y is a minimal
set of edges whose deletion increases the number of balanced components in >3, the
vertices v, vy must belong to the same unbalanced component of ¥\Y. Since ¥;
is part of the 2-vertex 3-sum, the vertices v{, v} belong to the same unbalanced
component of ¥;\Y, denoted by >~. Moreover, the signed graph ¥;\Y has the
same connected components with ¥\ Y apart from ¥~ where the 2-vertex 3-sum of
¥~ and X is the unbalanced component of ¥\Y containing vy, vo. Then the edges
of Y in ¥; have an end-vertex at X1 and the other at an unbalanced component of
¥1\Y. Therefore Y is a minimal set of edges whose deletion increases the number
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of balanced components in ;. Furthermore the existence of an unbalanced com-
ponent in 31\ Y implies that Y is a non-balancing bond of ;. Since an unbalanced
separator of X\Y contains both v; and v, there is an unbalanced separator B in
¥1\Y that contains the vertices v{ and v? which are identified with the vertices
va and v5 of ¥y so as to form v; and v, in ¥, respectively. Moreover, B contains
all the edges of Ky. Then the unbalanced separator of ¥\Y that contains both v;
and vy is a 2-vertex 3-sum of B and Y,. Furthermore the signed graph X|X; is
isomorphic to ;| X;, therefore all separators of ¥;\Y that are contained in X are

separators of X\Y and (i) follows.

In the second case, each Y; is non-empty, v; and vy cannot be vertices of the
same unbalanced component of ¥\ Y. Thus, either one vertex in {vy, v} is a vertex
of an unbalanced component of ¥\Y and the other is a vertex of ¥ or both v,
and vy are vertices of X 1. In the first case, let us assume that v; is a vertex of an
unbalanced component of £\Y and vy is a vertex of 3. Since Y is a non-balancing
bond in X, the edges of Y; have an end-vertex at X' and one at an unbalanced
component of 3\Y. Thereby the deletion of the edges of Y; U Z from ¥; increases
the number of balanced components by one and ¥;\(Y; U Z) has a unique balanced
component, denoted by ¥, In ¥;, the half-edge of K at v; belongs to cd(X;=Y;)
so not in Z. However, all the remaining edges of K are contained in Z as they do
not belong to cl(X; —Y;). Hence in ¥;, the elements of Z correspond to edges with
an end-vertex at ¥7. Then in ¥;, each edge of Y; has one end-vertex at ¥ and
one at an unbalanced component of ¥;\(Y; U Z). Therefore Y; U Z is a minimal set
of edges whose deletion increases the number of balanced components in ¥;. Since
Y; is part of the 2-vertex 3-sum and X|X; is isomorphic to ¥;|X;, the separators
of ¥;\(Y; U Z) that are contained in X; are separators of ¥\ Y. Moreover, there is
an unbalanced separator B; of ¥\ (Y; U Z) that contains z € Z\Z having v; as
a vertex and an unbalanced separator By of ¥5\(Y5 U Z) that contains z € Z\Z
having v% as a vertex. Thereby the 1-vertex 2-sum B; &y B, is an unbalanced
separator of X\Y containing v;. Let us assume that both v; and vy are vertices
of X*. Since Y; is part of 2-vertex 3-sum, the deletion of the edges in Y; U Z
from ¥; increases the number of balanced components by one and let ;7 be the
unique balanced component of 3;\(Y; U Z). We shall consider only the case where
the edges of Y, have both end-vertices at ¥3 in ¥y and the edges of Y; have one
end-vertex at ¥ and the other at some unbalanced component of 31\ (Y; U Z) in
Y1, since the case where the edges of Y; have one end-vertex at 3] and one at an
unbalanced component of ¥;\ (Y; U Z) follows similarly. In the signed graph ¥;, the
positive link of Ky belongs to cl(X; —Y;) so not in Z and the remaining edges of K
are contained in Z as they do not belong to cl(X; —Y;). Then in ¥;, the elements
of Z correspond to edges that have both end-vertices at the balanced component
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of 3;\(Y; UZ). Therefore, Y; UZ is a bond in ¥; and there is a balanced separator
of 3;\(Y; UZ), denoted by B;, that contains the edge of K that is not contained in
Z and the vertices v} and v?. Therefore, the 2-vertex 2-sum Bj @y By constitutes
Y *. Furthermore, since ¥; is part of the 2-vertex 3-sum, each signed graph Y| X;
is isomorphic to ¥;|X; and the separators of 3;\(Y; U Z) that are contained in X;
are separators of X\Y. O

Example 5.2.4. Consider the signed graph > which is depicted in Figure [5.13.
The signed graph 3 is 2-vertex 3-sum of ¥y and 3y (Figure[5.12) where the signed
graphs ¥y and ¥y are depicted in Figures [5.14)(a) and [5-13)(b) respectively. The
signed-graphic matroid M (X) = M(3,) ®3 M (X2) has a non-graphic cocircuit Y =
{8,10,11, —10} which is bridge-separable and corresponds to a double bond in 3.
The bridges of Y in M(X) are By = {1,2,3,4,5,—1,—-2, -3, -4, -5, —6, —7,12},
By ={6,7,-8}, B3 = {9} and By = {—9} where By = B} & z,. Then

*(M(S), B, Y) = {{8}, {~10}, {10}, {11}
T(M(), Bo,Y) = {{8},{10,11, —10}}
m(M(2), Bs,Y) = {{10},{11,8, —10}}
*(M(S), By, Y) = {{10}, {11}, {8, —10}}

Figure 5.13: The signed graph X

Let (Y1,Y3) be a partition of Y such that Yy = {8, =10} and Yo = {10,11} and
7 = {z,23,24}. Then Y1 U Z is a bridge-separable cocircuit of M(31) which
corresponds to a double bond in 3. Furthermore the bridges of Y1UZ in M (3) are



92 CHAPTER 5. SIGNED-GRAPHIC MATROIDS

B, ={1,2,3,4,5,—1,—2,—3,—4, -5, —6, —7,12, 2 }and B> = {6,7, —8}. Then

m(M(3), By, Y1 U Z) = {{8}, {10}, {=2}, {23}, {z}}
7(M(X1), Bo, Y1 U Z) = {{8}, {22, 23, 24, — 10} }.

(a) Y7 U z cocircuit of M (%) (b) YaUz cocircuit of M (X2)

Figure 5.14: The signed graphs 3, (a) and ¥, (b)

Moreover, Yo U Z is a bridge-separable cocircuit of M(Xs) which corresponds to a
double bond of X5. The bridges of Y in M(3y) are BY = {z}, By = {9} and
By = {—=9}. Note that B is 1-vertex 2-sum of By and B}. Then

T(M(%3), BY, Y2 U Z) = {{11, 23}, {10, 24}, {22} }
W(M(ZQ), Bg,YQ UZ) = {{10}, {11,2’2,23, 24}}
W(M(Z2)7 By, Yo U Z) = {{10}7 {11}7 {227 Z3}7 {24}}

3-vertex 3-sum

We shall now consider the case in which X is the 3-vertex 3-sum of two connected
signed graphs ¥; and Y,. We shall refer to 3; and >, as parts of the 3-vertex
3-sum. Then ¥ has a 3-biseparation (X, X3), where we shall assume that | X is
the connected unbalanced signed graph and ¥| X5 is the connected balanced signed
graph. Moroever, throughout this section V(X|X;) N V(2| X3) = {v1,v9,v3} and
E(X) =X,UZ (i =1,2), where Z are the common edges of ¥; and >3 inducing
a positive triangle.

The following lemma describes all possible ways that a non-balancing bond of
a signed graph can be inherited to the parts of a 3-vertex 3-sum. Moreover, it
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describes the way that the separators of a non-balancing bond in a signed graph
that is a 3-vertex 3-sum of two signed graphs are inherited to the parts of the
3-vertex 3-sum.

Lemma 5.2.13. Let M(X) be a connected signed-graphic matroid where 3 is 3-
vertexr 3-sum of a connected unbalanced signed graph ¥, and a connected balanced
signed graph Yo. If (Y1,Y5) is a partition of a non-balancing bond Y in ¥ such that
Y; C E(%;), (i = 1,2) then one of the following holds:

(i) Y is a non-balancing bond in some ¥; and its separators in ¥;\Y are the
separators of X\Y that are contained in E(%;) and a separator B with Z C B
such that the 3-vertex 3-sum B @3 ¥;, (j # i) is a separator in X\Y,

(ii) Y; U Z is a non-balancing bond in 3;, where Z contains every element z of
Z such that z ¢ cl(X; —Y;), and its separators are the separators of L\Y
contained in FE(X;) and one separator B; such that By &y Bs is a separator
of Z\Y.

Proof. Since Y is a non-balancing bond in ¥, the signed graph ¥\Y consists of
a balanced component, denoted by X% and one or more unbalanced components.
There are two possible cases that Y can be inherited to 3; and 35, Y C E(3;) for
some % or each Y; is non-empty.

In the first case, suppose that Y C F(X;). Since each ; is part of the 3-vertex
3-sum, there is a connected component of ¥\Y that contains all three vertices of
{v1,v9,v3} which is either balanced or unbalanced. Let us assume that the latter
component is unbalanced, since the other case follows similarly. By definition of
3-vertex 3-sum, the signed graph ¥;\Y has the same components with 3\Y', apart
from the unbalanced one that contains vy, v9, v3 denoted by B. Moreover, B ®3 Yo
constitutes the unique unbalanced component of ¥\Y. Due to the fact that Y
is a non-balancing bond in ¥, the deletion of Y from ; increases the number of
balanced components and it is minimal with respect to this property. Furthermore
there is an unbalanced component in ¥;\Y and therefore Y is a non-balancing
bond in ¥;. By definition of 3-vertex 3-sum, the separators of 3;\Y are separators
of ¥\Y except from a separator B such that Z C B, where the 3-vertex 3-sum of
B and ¥, is the unique balanced component of ¥\Y and (i) follows.

In the second case, i.e., each Y; is non-empty, vy, vo,v3 cannot belong to the
same component of X\Y. Thereby either two vertices in {vy, v9, v3} belong to an
unbalanced component of ¥\Y and the third to X% or two vertices in {v, ve, v3}
belong to X and the third to an unbalanced component of ¥\Y. In the first
subcase, suppose that vy, vo belong to an unbalanced component of 3\Y', denoted
by X7, and v is a vertex of X . Moreover, let vjl» and UJZ (j = 1,2,3) be vertices
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in ¥; and X, respectively which are identified to form v; in . Since ; is part
of the 3-vertex 3-sum, X7 is the 2-vertex 2-sum of ¥ and X5, where ¥; denotes
the signed graph which is obtained from X7|X; by adding z € Z\Z as a positive
link with end-vertices v} and v%. Furthermore % is 1-sum of the signed graphs
YF|X, = Xf and 7| X, = ¥F. Since Y is a non-balancing bond in 3, the edges
of Y7 have one end-vertex at X7 and the other at some unbalanced component
of ¥;\Z, while the edges of Y, have one end-vertex at ¥j and the other at a
balanced component of ¥,\Z. By definition of 3-vertex 3-sum, the edges of Z
have vg as a common end-vertex in ;. Therefore Y; U Z is a non-balancing bond
in ;. In the second subcase, where v{, vy belong to ¥ and w3 is a vertex of an
unbalanced component of ¥\Y, denoted by X7, we replace ¥~ with ¥ and X+
with ¥~ in the above case and it follows that Y; U Z is a non-balancing bond in ;.
Then X;\(Y; UZ) consists of one balanced component and one or more unbalanced
components. Since ¥3; is part of the 3-vertex 3-sum, ¥~ is the 2-vertex 2-sum of
Y7 and Y5, where ¥ denotes the signed graph which is obtained from ¥~ |X;
by adding z € Z\Z as a positive link with end-vertices v} and vi. Furthermore
Yt is 1-sum of the signed graphs ¥ 7|X; and X7 |X;. Thereby the separators of
¥i\(Y; U Z) are separators of X\Y apart from one B; that contains z € Z\Z where
By @ By is a separator of ¥\Y and (ii) follows. O

5.2.4 Avoidance and bridge-separability in 3-sum

The following three technical lemmas are needed in order to prove the main results
of this section (Theorem BH and B6]) which are critical components in the proof of
the decomposition theorem.

Lemma 5.2.14. Let M(X) = M(%,) @3 M(X2) be a connected signed-graphic
matroid where M (%) and M(X3) are connected signed-graphic matroids with
EM(;)) = X; U Z (i = 1,2). Moreover, let Y be a non-balancing bond in
Y. If Y is a non-balancing bond in some %; and B is a separator in ¥;\Y then
either:

(i) B contains no element of Z and w(M(%;),B,Y) =n(M(X),B,Y) or
(i) Z C B and m(M(%;),B,Y) =n(M(X),B®3 %;,Y), (j #1).

Proof. Suppose w.l.o.g. that i = 1. By Lemma BE2TI2(i), a separator in ¥;\Y
either contains no element of Z or it contains every element of Z. Let B; be a
separator of ¥;\Y that contains no element of Z and let B be the unbalanced
separator that contains every element of Z. Then by Lemma B2ZT2(i), it follows
that ¥;\Y has the same separators with ¥\Y apart from B which is replaced by
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B @3 35 in X\Y. Therefore Bj is a separator of X\Y. Since ¥.(B; UY)|Y and
¥1.(B1UY)]Y are obtained by contracting identical separators and the unbalanced
separators B @3 Yy and B in X\Y and X;\Y, respectively, then these graphs (i.e.
Y.(BiUY)|Y and ¥,.(B; UY)]Y) are isomorphic. It follows that the family of
bonds of ¥.(B; U Y)Y is equal to the family of bonds of ¥;.(B; UY)|Y and
(M%), By,Y) =n(M(X), B1,Y) by definition. The signed graphs ¥;.(BUY)|Y
and X.(B®3X,UY)|Y are obtained by contracting the same separators in 3;\Y and
Y\Y, respectively, and then by deleting B and B @3 X5 in the so-obtained signed
graphs, respectively. Thereby ;.(B UY)|Y is isomorphic to 3.(B @3 X, U Y)Y
and, thus, 7(M (%), B,Y) = n(M(X), B ®3 X5,Y). O

Lemma 5.2.15. Let M(X) = M(X,) ®3 M(X3) be a connected signed-graphic
matroid where M(X1) and M(3y) are connected signed-graphic matroids with
EM(%)) = X; UZ (i = 1,2). Suppose further that (Y1,Ys) is a partition of a
non-balancing bond Y in ¥ where Y; C E(M(%;)) and Y;NE(M (%)) # 0. If Y,UZ
is a bond in X;, where Z contains every element z of Z such that z ¢ cl(X; —Y;)
and B is a separator of ¥;\(Y; U Z) that contains no element of Z then there exists
Sen(M(X),B,Y) such that Y; C S (j # 1).

Proof. The proof is similar to that of Lemma [B.2.7] m

Example 5.2.5. Consider the signed graph Y which is depicted in Figure [2.9.
The signed graph 3 is 3-vertex 3-sum of ¥y and 3y (Figure[Z.12) where the signed
graphs ¥y and ¥y are depicted in Figures [ I3(a) and [ZI3(b) respectively. The
signed-graphic matroid M (X) = M(3,) ®3 M (X2) has a non-graphic cocircuit Y =
{6,9,—6, —11, —12, —13} which is bridge-separable and corresponds to an unbalanc-
ing bond in 3. The bridges of Y in M(X) are By ={1,2,3,4,5,10,11, —1,-2, -3,
—4,-5,-8,—-9,—10} and By = {7,8,=7}. Then

7T(]M(E)a Bl7Y) = {{_67 —11, 6}a {_13}7 {_12}7 {9}}
7(M(X), By, Y) = {{-11},{6},{9, —6,—12,—13}}

The wunbalancing bond Y, which is contained in E(X3), corresponds to an
unbalancing bond in Xs.  Moreover, the bridges of Y in M(X) are B} =
{#,3,4,10,11,—1,—2,—-3,—4, —5,—8} and By = {7,8,—7}. Then

W(M(Zl)v BL )/1 U Z) - {{_67 _117 6}7 {_13}7 {_12}7 {9}}
7(M(%1), Ba, Y1 UZ) = {{—11}, {6}, {9, =6, —12, —13}}.
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<3

(a) Y1 U z cocircuit of M (%) (b) Y2 U z cocircuit
of M (%)

Figure 5.15: The signed graphs ¥; (a) and 5 (b)

Lemma 5.2.16. Let M(X) be a connected signed-graphic matroid where 3 is the
l-vertex 3-sum | = 2,3 of two signed graphs X1 and ¥y with M(31) and M (Xs) con-
nected and let E(%;) = X;UZ (i = 1,2). Suppose further that (Y1,Y3) is a partition
of a non-balancing bond Y in X where Y; C E(M(X%;)) and Y; N E(M(%;)) # 0. If
B is a separator of X\Y and S € m(M(X), B,Y) then either:

(i) B is a separator of ¥;\(Y; U Z) for some i and S € n(M(%;),B,Y; U Z), if
;€S (i #34), or (S=Y;)UZ e m(M(%;), B,Y; UZ), otherwise, or

(ii)) B = By ®y By with B; being a separator of ¥;\(Y; U Z) containing z €
cd(X; —=Y;) and SUZ" € 7(M(%;),B;,Y; UZ) (j # 1), where Z' C Z and
SCY;.

Proof. The signed graph ¥\ Y consists of a unique balanced component, denoted by
¥ and one or more unbalanced components. Let us assume first that [ = 2. Since
each Y; is non-empty, the vertices vy, vy cannot belong to the same unbalanced
component of ¥\Y. Thus either one vertex in {vy, v} is a vertex of an unbalanced
component of ¥\Y and the other is a vertex of T or both v; and vy are vertices of
Y. We consider only the first case and suppose that v; is a vertex of an unbalanced
component of ¥\ Y and vy is a vertex of 3T, since the case where both vy, vy belong
to X1 is similar. Due to the fact that B is a separator of X\Y', then by Lemma
B2T2(ii), B is either a separator of ¥;\(Y; U Z) for some i or B = By by By, where
B; is the separator of 3;\(Y; U Z) that contains z € Z\Z. Thus we distinguish the
following cases for B:
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Case 1: B is a separator of 3;\(Y; U Z) for some i.

Suppose w.l.o.g. that ¢ = 1 and moreover, let us suppose that B is a balanced
separator of ¥ . In 3, the edges of Y] have either one end-vertex at X% and one at
an unbalanced component of ¥\Y or both end-vertices at £* (or one end-vertex at
Y* if the edge is a joint). Thus they become joints at a vertex of attachment of B
or classes of parallel edges of the same sign incident at two vertices of attachment of
Bin ¥.(BUY)]Y. By Lemma 5217 it follows that the edges of Y5 are contained
in a bond of ¥.(BUY)|Y. Since ¥, is part of the 2-vertex 3-sum, each bond
in X.(BUY)[Y is a bond in ¥,.(BUY;UZ)|(Y; UZ), apart from the one that
contains Ys. Moreover, the bond which contains the edges of Y3 in X.(BUY)|Y
is transformed to a bond in X;.(BUY; U Z)|(Y; U Z) by replacing the edges of Y,
with the edges of Z. Therefore, there is a one to one correspondence between the
bonds of ¥.(BUY)|Y and the bonds of ¥;.(BUY; U Z)|(Y; UZ). Each element
in 7(M(X), B,Y) is a minimal nonempty intersection of bonds in ¥.(BUY)|Y.
Thereby if S € 7(M(X), B,Y) does not contain Ys, then S € 7(M (%), B,Y, U Z),
otherwise (S —Y5)UZ € n(M(X,), B,Y;UZ). The case where B is an unbalanced
separator of ¥\ Y different from B @9 By or a balanced separator of an unbalanced
component follow similarly.

Case 2: B = By $y Bs.

Then B is the unbalanced separator of ¥\Y having v; as a vertex. By defini-
tion the elements of w(M(X), B,Y) partition Y and S € wn(M(X),B,Y) is a
minimal nonempty intersection of bonds in X.(B UY)|Y. Since ¥; is part of
the 2-vertex 3-sum, each bond contained in X; in X.(B U Y)|Y is a bond in
Y. (BiUY;UZ)|(Y;UZ). Thereby there is SU Z’, where Z' C Z, that is a min-
imal nonempty intersection of bonds in 3,.(B U Y; U Z)|(Y; U Z) and, therefore,
SUZ en(M(%),B;,YiUZ).

Let us assume now that [ = 3, since each Y; is nonempty, vy, v, v3 cannot
belong to the same component of ¥\Y. Thereby either two vertices in {vy, vg, v3}
belong to an unbalanced component of ¥\Y and the third to X or two vertices
in {v1,v9,v3} belong to £F and the third to an unbalanced component of X\Y. In
the first case, suppose that v;, vy belong to an unbalanced component of ¥\Y and
v3 is a vertex of XF, while in the second case suppose that vy, vy are vertices of X
and vs is a vertex of an unbalanced component of 3\Y and the result follows as
above. O

From the above two lemmas, we deduce that when Y; U Z is a bond in ¥; and
B is a separator of 3;\(Y; U Z) that contains no element of Z, then there exists
S € n(M(3;),B,Y; U Z) such that Z C S. The following lemma presents the
relation between the elements of (M (%;), B;,Y; U Z) and 7(M(X), B, Y'), where
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B; is a bridge of M (3;)\(Y; U Z) and B! is the bridge of Y in M(X) that contains
an element of B;.

Lemma 5.2.17. Let M(X) be a connected signed-graphic matroid where 3 is the
l-vertex 3-sum | = 2,3 of two signed graphs ¥y and ¥y with M (X,) and M (33) con-
nected and let E(¥;) = X;UZ (i = 1,2). Suppose further that (Y1,Y3) is a partition
of a non-balancing bond Y in X where Y; C E(M(X%;)) and Y; N E(M(%;)) # 0. If
By is a separator of ¥1\Y1 U Z and S € m1(M(X,), B;,Y1 U Z) then either:

(i) By is a separator of L\Y and S € n(M(X),B1,Y), if Z € S, or (S—Z)UY; €
m(M(X), B1,Y), otherwise, or

(ii) B = By ®9 By with B; being a separator of L,\(Y; U Z) containing z €
A(X;=Y) and S — 7' € 1(M(X), B;,Y) (j # 1), where Z' C Z.

Example 5.2.6. Consider the signed graph Y which is depicted in Figure [2.9.
The signed graph X is 3-vertex 3-sum of X1 and Xy (Figure[5.12) where the signed
graphs X1 and Yo are depicted in Figures [10(a) and [Z13(b) respectively. The
signed-graphic matroid M(X) = M(X;) @3 M (X2) has a non-graphic cocircuit Y =
{8,4,—6,—7,5, =5} which is bridge-separable and corresponds to an unbalancing
bond in 3. The bridges of Y in M(X) are By = {1,2,3,9,10,11,—1,—-2, -3,
—4,-8,-9,—-10,—12, 13} and By = {6,7,—11}. Then

ﬂ-(M(E)v By, Y) = {{_57 —06,4, 5}? {_7}7 {8}}
71—(‘]M(Z)a By, Y) = {{_5}’ {5}’ {4}’ {_67 -7, 8}}

Let (Y1,Ys) be a partition of Y such that Yy = {8, —6,—7,—5,4} and Y2 = {5} and
7 = {29,23}. Then Y1 U Z is a bridge-separable cocircuit of M(X%) which corre-
sponds to an unbalancing bond in ¥1. Furthermore the bridges of Y1 U Z in M (%)
are By, = {2,3,9,10,11,—1, -2, —3,—4,-8, 12, —13}and B, = {6,7,—11}.
Then

w(M (%), By, Y1 UZ) = {{-5,-6,4, 20, 23}, {—T7},{8}}
7T<M<El)> Béa Yi U 7) = {{_5}7 {Z2}v {4}7 {_67 _77 8}> {ZS}}

Moreover, YoUZ = {5, z9, 23} is a bridge-separable cocircuit of M (Xy) which corre-
sponds to an unbalancing bond of Xy. The bridges of YoUZ in M(3s) are B} = {1}
and BY = {z1,2,—9,—10}. Note that By = B}, ®5 By. Then

W(M(22)7317Y2 U7) = {{22,23,5}}
W(M<22)7 Bg? Yo U 7) = {{22}’ {23}’ {5}}
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The following theorem describes how the property of bridge-separability of a
cocircuit in M (3;) or (and) M(%,) is inheritted to the induced cocircuit of the
matroid M (X) = M(3,) @3 M(%,).

Theorem 35. Let M(X) = M(%)) @3 M(X2) be a 3-connected signed-graphic
matroid where M (X1) and M(Xs) are 3-connected signed-graphic matroids with
EM(%)) = X; UZ (i = 1,2). Suppose further that (Y1,Y3) is a partition of a
cocircuit Y of M(X) such that Y; C E(X%;). If Y is a bridge-separable cocircuit
of some M(3;) or Y; U Z is a bridge-separable cocircuit of each M(%;), then'Y is
bridge-separable in M (X).

Proof. We distinguish the following two cases: either Y C E(M (%;)) for some i or
each Y; is nonempty. In the first case, since Y is bridge-separable cocircuit in some
M(%;), say M(X;), the bridges of Y in M (3;) can be partitioned into two classes
where any two bridges of the same class are avoiding. By Lemma B2T2(i), each
bridge of Y in M (%;), apart from one which contains the elements of Z, denoted by
B, and B @3 Y, is a bridge of M (X)\Y. By Lemma 5214, for each bridge B’ of Y
in M (X,) different form B, it holds that = (M (X,), B',Y)= n(M(X), B',Y), while
for B it holds that 7(M (%), B,Y)= n(M(X), B @3 ¥2,Y). Since Y is a bridge-
separable cocircuit of M (%), there is a partition of the bridges of Y in M (%) into
two classes where any two bridges in the same class are avoiding. Then Y is also
bridge-separable cocircuit of M (X). More precisely, the two classes of all-avoiding
bridges of Y in M(X) are the two classes of all-avoiding bridges of Y in M (%),
where B is replaced by B &3 Y.

In the second case, by hypothesis, there is a partition of the bridges of Y;UZ in
each M (%;) into two classes %' and %, such that any two bridges in the same class
are avoiding. Let By and By be two arbitrary bridges of some class 02// (1,7 =1,2),
let 2!, therefore there are S; € m(M (%), By, YiUZ) and Sy € w(M(34), Bo, Y1UZ)
such that S;USy = Y;UZ. Then by LemmaBE2ZT2(ii) and Lemma BZT3|(ii), either
By and By are bridges of Y in M (X)) or one of By and B; contains z € cl(X; —Y)),
let B;. In the first subcase, by avoidance of By, B, either Z belongs to at least one
of Sy,S2 or Z C S1 N S,. Suppose first that Z C Sy but Z € S,. The case where
Z C Sy but Z ¢ Sy is similar. By Lemma B.2.T7(i), there are S; € 7(M(2), B1,Y)
such that S} = (S} — Z) U Y, and Sy € m(M(X), By,Y) such that S, = Sy and
therefore S} U S, =Y. If Z C S} N Sy, then there is Sy € m(M(X), By, Y) such
that Sy = (S, — Z) UY; and since By, By are avoiding bridges of Y1 U Z in M (3,),
it follows that Bj, By are avoiding bridges of Y in M (3). In the second subcase,
let us assume that B; @y B is a bridge of Y in M(X), where B is the bridge of
Yo U Z in M(X,) that contains z € cl(Xy — Y3). Moreover, By is a bridge of Y
in M(X) and by Lemma B.2ZTH, there is Sy € w(M(X), By, Y') such that Y; C Ss.
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By avoidance of By and By and Lemma [(.2.17, we have that By &9 B and B, are
avoiding bridges of Y in M (). Therefore each class % consists of all-avoiding
bridges of Y in M(X). Let B!, B} be two avoiding bridges of YoU Z in M (%,) that
are contained in %4?. This implies that there are S} € m(M(3,), B}, Y, U Z) and
She m(M(Xy), By, YaU Z) such that S;USh =Y, U Z. Then either B and B} are
avoiding bridges of Y in M (3) or one of B} and B}, say Bj, contains z € cl(Xy—Y5).
In the first subcase, let us suppose that Z C S} but Z ¢ S}, since the other
cases follow similarly. By Lemma BZI7(i), there are S| € (M (%), B}, Y) where
S; = (S]—2Z)uY; and Sy € 7(M (%), BS,Y) where S, = S, such that S{US), =Y.
In the second subcase, let us assume that By @ Bj is a bridge of Y in M (X) where
By contains z € ¢l(X; — Y;). Then by avoidance of B} and B}, we have that
B @ B} and B} are avoiding bridges of Y in M(X). Since S US| =Y/, it follows
that B; and B] are avoiding bridges of Y in M (X). Moreover, by Lemma [5.219]
there are S§ € w(M(X), By, Y) such that Y2 C SY and S}’ € n(M(X), B, Y') such
that Y7 C SY" and therefore Bs, BY) are avoiding bridges of Y in M(X). Thus
By, By, B}, B, and B; @& B} are avoiding bridges of Y in M(X) and the classes %'
and %, can merged into one with all-avoiding bridges. Similarly %4* and %, can
merged into one class with all-avoiding bridges and therefore, Y is bridge-separable
cocircuit of M (X%). O

The following theorem describes how the property of all-avoiding bridges of a
cocircuit in M (X) = M (3;) @3 M(Xs) is inherited in the cocircuits of M (%) and
M (%s).

Theorem 36. Let M (X) = M (3,)®3M(X2) be a connected signed-graphic matroid
where M (1) and M(33) are connected signed-graphic matroids with E(M(%;)) =
X, UZ (1 = 1,2). Suppose further that (Y1,Y2) is a partition of a non-graphic
cocircuit Y of M(X) such that Y; C E(M(X%;)). If Y has all-avoiding bridges then
one of the following holds:

(i) Y is a cocircuit that has all-avoiding bridges in some M (%;).
(ii) YU Z is a cocircuit that has all-avoiding bridges in M (%;).

Proof. Since Y is a non-graphic cocircuit of M(X), it is a non-balancing bond
in . We distinguish two cases as concerns the inheritance of Y to ¥; and X,:
Y C E(M(%;)) for some i or each Y; is non-empty. In the first case, suppose
that Y C E(M(X;)). Then by Lemma B2T12(i) and Lemma E2ZT3|(i), YV is a
cocircuit of M(%;). Let Bj, By be two avoiding bridges of Y in M(X) and B
be the bridge of Y in M(%;) that contains Z. Assume first that the bridges
By, By are different from the bridge B @3 Xs; then by Lemma [.212)(i) and Lemma
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B.2T13(i), By and B, are bridges of Y in M(X;). By Lemma B2ZT4(i), we have
that 7(M(X), B;,Y) = n(M (%), B;,Y) (j = 1,2) and, therefore, By and B, are
avoiding bridges of Y in M (3;). Suppose now that one of B; or By is the bridge
B ®3%,, say By. Then, by Lemma [B.2ZT2(i), Bs is a bridge of M (%;)\Y. Moreover
by Lemma B.2T4(ii), we have that B; and By are avoiding bridges of Y in M (%)
and, therefore, Y has all-avoiding bridges in M (X%;).

For (ii), let By and By be two avoiding bridges of Y in M (X). Then there are
S1 € m(M(X),B1,Y) and Sy € (M (X), By,Y) such that S; U Sy =Y. Suppose
first that By, By € E(M(Y;)) and moreover, suppose w.l.o.g. that i = 1. By
Lemma [.2T2(ii) and Lemma B2ZT3(ii), Y; U Z is a cocircuit of M(X;) and By, By
are bridges of Y; U Z in M(X;) without any element of Z. Moreover, by Lemma
B2.15] there is a set that contains Y, in each 7(M(X), B;,Y) and by avoidance of
B and B», Y5 is either contained in one of S7, Sy or Y5 C S7MNSs. In the first case,
let us assume that only S; contains Y;. Then by Lemma B2ZT0|(i), there are S| €
m(M(3), By, Y1 UZ) such that S; = (S} —Y2)UZ and Sy € m(M (%), By, Y1 U Z)
such that S5 = Sy and, therefore, S; U S, = Y; U Z. In the second case, i.e.
Yy € S NSy, by Lemma B2.16((i), there are S} € w(M(34), By, Y; U Z) such that
Si = (S —Yy)UZ and S} € (M (%), By, Y1 U Z) such that Sy = (Sy — Vo) U Z
and, therefore, S| U Sy = Y; U Z. Suppose now that one of By, Bo, say By =
B} @y B) where B and B, are bridges of M(X;)\(Y; U Z) and M (3,)\(Y> U Z),
respectively containing both 2z € Z\Z and By is contained in F(M(X;)). Then
by Lemma B.ZT0] there is a set that contains Y, in w(M(X), Bs,Y'). Furthermore
by avoidance of By and By, Y, is either contained in one of Sy, S, or in both of
them. Let us assume that Y5 is contained only in Ss, since the other case follows
similarly. By Lemma 216 it follows that there are S € w(M(X,), B}, Y1 U Z)
such that S; = S; U Z’ where Z' C Z and Sy € w(M (%), By, Y; U Z) such that
S = (Sy — Y3) U Z and, therefore, S; U S, =Y, U Z. O

The inheritance of a star bond and a balancing bond via 3-sums is described

in the following two results.

Lemma 5.2.18. Let Y be a cocircuit with all-avoiding bridges of a signed-graphic
matroid M(X) = M (%) ®3 M (X2) where M (3;) (i = 1,2) connected signed-graphic
matroid with E(M(%;)) = X; UZ and Y C E(M(%;)) for some i.

(i) If Y is the star of a vertex in ¥y or Yo, then Y is the star of a vertex in 3.

(ii) If 3 is the 3-vertex 3-sum of X1 and Xy and Y is balancing bond in the
unbalanced ¥; then'Y s balancing bond in 3.

(iii) If ¥ is the 2-vertex 3-sum of ¥y and ¥, then Y cannot be balancing bond in
Y for some i.
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Proof. Suppose that Y C E(M(X;)). Then by Lemmas and G213 Y is
a cocircuit of M(X;). For (i) by hypothesis, Y is the star of a vertex w in .
Assume first that ¥ is the 3-vertex 3-sum of ¥; and ¥,. Moreover, let vy, vq, v3
be the common vertices of X|X; and ¥|X, in ¥ and vj,v5, v} (j = 1,2) be the
vertices in X1 and g, respectively which are identified so as to form vy, vy, v3 in 2.
Since Y is a bond in X, it follows that Z ¢ Y, therefore Y cannot be the star of a
vertex in {v{,v?, v?} in 3;. By definition of 3-vertex 3-sum, X, is either balanced
or unbalanced and in both cases, by Lemma BEZT3|(i), Y is the star of w in X.
Assume now that X is the 2-vertex 3-sum of ¥; and X,. Moreover, let vy, vy be the
common vertices of ¥|X; and X|X, in ¥ and v}, v7 (j = 1,2) be the vertices in X
and Y, respectively which are identified so as to form v; in ¥. Since Y is a bond
in ¥, it follows that Z € Y, and therefore Y cannot be the star of v{ or v{ in ¥;.
Then by definition of 2-vertex 3-sum and Lemma B2T2(i), Y is the star of w in
Y. Assuming that ¥; and Y, are both balanced, then Y is also the star of w in X.

For (ii), since Y is a balancing bond in X1, then by the definition of a balancing
bond, ¥; is an unbalanced signed graph, while ¥, is balanced. Since the edges
of Z induce a positive triangle in ¥;, by performing switchings at the vertices of
Y1, all edges of 3;\Y become positive. Furthermore, by minimality of Y its edges
have a negative sign in ;. Thus, by definition of 3-vertex 3-sum, Y is a balancing
bond in .

For (iii) by way of contradiction assume that Y is a balancing bond in .
Applying switchings at the vertices of ¥; all edges of 3;\Y become positive. Then
by minimality of YV its edges are the only negative edges of ;. By definition of
2-vertex 3-sum of two signed graphs, Y,\Z is unbalanced. Therefore Y is not a

bond in ¥, which is a contradiction since Y is a cocircuit in M (). O
Lemma 5.2.19. Let Y be a cocircuit with all-avoiding bridges of a signed-graphic
matroid M (X) = M(31)®3 M (Xs) where M(%;) (i = 1,2) connected signed-graphic
matroid with E(M(%;)) = X; U Z. Suppose further that (Y1,Y2) is a partition of
Y where Y; C E(M(X;)) and Y N E(M(%;)) # 0.

(i) If Y; U Z is the star of a vertex in %;, then Y is the star of a vertex in 3.

(ii) If ¥ is the 2-vertex 3-sum of ¥y and Xy and Y; U Z is a balancing bond in
each ¥; then'Y s a balancing bond in 3.

(iii) If ¥ is the 3-vertex 3-sum of ¥y and X, then Y; U Z cannot be a balancing
bond in each X3;.

(iv) If ¥ is the 2-vertex 3-sum of X1 and Xy and Y; U Z is the star of a vertex in
one of 1,25 and a balancing bond in the other, then Y is a balancing bond
mn .
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(v) If 3 is the 3-vertex 3-sum of X1 and X, then Y; U Z cannot be the star of a
vertex in one of X1, Y9 and a balancing bond in the other.

Proof. Assume first that ¥ is the 3-vertex 3-sum of ¥; and Y,. Let us denote by
v1, U3, v3 be the common vertices of ¥|X; and X|X; in ¥ and by v}, v3,0? (j = 1,2)
the vertices in »; and X4, respectively which are identified so as to form vy, vs, v3
in 3. For (i) since Y; U Z is the star of v} or v? or v?, let v}, in 3;, then by Lemma
B213 Y is the star of vy in X. For (iii), let us assume on the contrary that each
Y; U Z is a balancing bond in each 3;. Then by the definition of a balancing bond,
Y1 and Y, are both unbalanced, which contradicts the definition of 3-vertex 3-sum
of two signed graphs. For (v) suppose that Y; U Z is the star of a vertex in one of
Y1, 29 and a balancing bond in the other. This implies that at least one of X1, 39 is
unbalanced. Suppose that > is an unbalanced and ¥, is a balanced signed graph.
Then Y; U Z is a balancing bond in ¥; and Y5 U Z is the star of vi or v3 or v3,
say vs in ¥y. Since the latter signed graph is balanced, the links of Y, which are
incident to vi are positive in Xy. Therefore there is a contradiction to minimality
of Y in ..

Assume now that ¥ is the 2-vertex 3-sum of ¥; and X,. Let us denote by vy, v9
the common vertices of ¥|X; and | X5 in ¥ and by v}, v? be the vertices of 3, 3y,
respectively which are identified creating the vertex v in ¥. For (i), by hypothesis,
Y;UZ is the star of v} or v?, say v} in ¥;. Since the edges of Z determine uniquely
the vertex v} or v? in 3; and moreover, these edges are common for ¥; and Y, it
follows by Lemma that Y is the star of v; in ¥. For (ii), since Y; U Z is a
balancing bond in »3;, we perform switchings at the vertices of »; and all edges of
3,\(Y; UZ) become positive. Then due to the fact that Y; U Z is a balancing bond
in ¥;, Y is a balancing bond in . For (iv) by the definitions of 2-vertex 3-sum
and a balancing bond the result follows.

O
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Chapter 6
Binary signed-graphic matroids

Signed-graphic matroids are representable over any field of characteristic other
than 2 [74]. Combining the above with results in [37], we distinguish the following
three cases for a signed-graphic matroid M in terms of representability: (i) if M
is binary, then it is regular and therefore, representable over all fields (ii) if M is
representable over GF'(4) but not over GF(2), then it is representable over all fields
except GF(2) (iii) if M is not representable over GF(4), then it is representable
over all fields of characteristic other than 2.

In this chapter, we present structural results for binary signed-graphic matroids
and their signed graphic representations as well as characterizations which lead to
algorithms. In section 6.1, we characterize graphically circuits, cocircuits and bases
of binary signed-graphic matroids and we determine structural properties of tangled
signed graphs. In section [6.2] inspired by Fournier’s characterization for graphic
matroids [I5], we present a characterization for cographic signed-graphic matroids
with not all-graphic cocircuits. In section[6.3] we prove results for cycles in jointless
and in tangled signed graphs. In the last section, we furnish a characterization
for binary signed-graphic matroids and we provide two algorithms: the first one
receives as input a binary non-graphic matroid and checks whether it is isomorphic
to the signed-graphic matroid of a given jointless signed graph and the second is a
recognition algorithm for the class of binary signed-graphic matroids.

6.1 Tangled signed graphs

Binary signed-graphic and non-graphic matroids are represented by tangled signed
graphs, as shown in the following theorem from [55]. The tangled signed graph
— K5, whose signed-graphic matroid is the regular matroid Ry, is depicted in
Figure G.11

105
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Figure 6.1: The signed graph —Kj

Theorem 37. If ¥ is connected and M(X) is binary, then
(i) 3 is tangled or
(i) M(X) is graphic.

Tangled signed graphs are unbalanced, have no balancing vertex and no two
vertex-disjoint negative cycles. Hence we derive Propositions 2] and which
characterize graphically circuits and cocircuits of binary signed-graphic matroids.
We note that a tangled signed graph is jointless.

Proposition 21. If M(X) is a connected binary signed-graphic and non-graphic
matroid then it has no circuit which corresponds to a type I handcuff in the signed
graph .

Proposition 22. If Y is a cocircuit of a binary signed-graphic and non-graphic
matroid M(X), then Y corresponds to an unbalancing or a balancing bond in the
signed graph .

Due to the structure of a tangled signed graph, the subgraph which is obtained
by the deletion of an unbalancing bond consists of one unbalanced connected com-
ponent. Moreover, the latter connected component contains exactly one unbal-

anced block.

Proposition 23. If Y is a non-graphic cocircuit in a binary signed-graphic and
non-graphic matroid M(X), then the signed graph X\Y consists of one balanced
and one unbalanced connected component.

The relationship between the connectivity of a tangled signed graph and the as-
sociated binary signed-graphic matroid is given in the following result that appears
in [56].
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Theorem 38. If ¥ is a tangled signed graph without isolated vertices and M (X)
is k-connected for any k € {2,3}, then ¥ is vertically k-connected.

Every basis of a signed-graphic matroid M (X)) corresponds to a spanning 1-
forest in the signed graph ¥ by Theorem 5.1 of [74]. If B is a basis of a connected
signed-graphic matroid M(X), where ¥ is an unbalanced signed graph, then the
induced subgraph of B in X is either a spanning negative 1-forest or a spanning
negative 1-tree. In case that M (X)) is binary, then B is a spanning negative 1-tree.

Proposition 24. Fuvery basis of a connected binary signed-graphic and non-graphic
matroid M (X)) is a spanning negative 1-tree in X.

Proof. M(X) is a connected binary signed-graphic and non-graphic matroid, there-
fore, the signed graph ¥ is connected and tangled. Let B denote a basis of M (%)
and Y[B] denote the subgraph of ¥ induced by the edges of B. By way of con-
tradiction suppose first that X[B] is a spanning negative 1-forest i.e., all con-
nected components of ¥[B] are spanning negative 1-trees, then X[B] contains two
vertex-disjoint negative cycles. This implies that ¥ has two vertex-disjoint nega-
tive cycles, which is a contradiction to tangleness of 3. Let us assume that X[B]
is a spanning signed tree, since X.[B] is a balanced signed graph, it holds that
r(B) = r(X[B]) = v(X[B]) — 1< r(¥) = v(X[B]) which is a contradiction. If we
assume that X[B] is either a spanning 1-forest or a signed forest then there is a
contradiction to maximality of B. O]

The following corollary is a straighforward consequence of Theorem B7 and
Proposition 241

Corollary 4. If 3 is a connected tangled signed graph then every basis of M(X)
is a spanning negative 1-tree in 3.

Due to the structure of a tangled signed graph, the negative 1-paths with respect
to a spanning negative 1-tree share a vertex.

Proposition 25. If 3 is a connected tangled signed graph and Ty, is a spanning
negative 1-tree of ¥ with negative cycle Cry, then the negative 1-paths (if there
exist) with respect to Ts, meet at a vertex w of Cr,.

Proof. Let Py, Py, be two negative 1-paths with respect to Ty, in 3. All negative
1-paths have Cp, as a common negative cycle by definition. Let C ", Cy be the two
negative cycles that are formed by the paths Py, — Cry, Py, — Cp, and the corre-
sponding nonbasic edges fi, f2, respectively. Since X is tangled, any two negative
cycles in X meet at a vertex. We shall show that C],C5 have the same common
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vertex w € V(C'). Assume on the contrary that C;, C5 have distinct common ver-
tices wy, wy with C'r, respectively. Since C, Cy are not vertex-disjoint, they have
a common vertex wsz. Then there are two internally vertex-disjoint wy, wo-paths of
Cry,. Moreover, there are two vertex-disjoint paths w, ws-path of P — Cp, and
wsy, w3 path of Py, — Cr,. Thereby a cycle is formed with edges of Ty, other than
Cry,, which is a contradiction. ]

6.2 A characterization for cographic matroids
with non-graphic cocircuits

Let C7,C5,C5 be three distinct cocircuits of a matroid M on a set £. We say
that C} does not separate C3 and C§ when C3\C; and C5\C} are included in the
same connected component of M\C}. In [I5], Fournier proved that a matroid is
graphic if and only if for any three distinct cocircuits with a nonempty intersection,
there exists one that separates the other two. In this subsection, inspired by
Fournier’s result, we characterize cographic signed-graphic matroids with not all-
graphic cocircuits taking into advantage a structural property of cographic excluded
minors of signed-graphic matroids.

The property of cocircuits, which is defined in the following, was used by
Fournier in [I5] in order to establish necessary and sufficient conditions for a ma-
troid to be graphic.

Definition 6.2.1. Let M be a matroid on E and let Ay, Ay C E. We say that Ay
separates Ay in M when Ay meets at least two components of M\ A;.

The following result, which appears in [15], is used for the definition of a
Fournier triple.

Proposition 26. Let M be a matroid on E and Ay, Ay C Z C E. If Ay separates
Ay in M then Ay separates Ay in M|Z and M.Z.

We say that a cocircuit C} separates a matroid M, namely C7 is a separating
cocircuit, when C} separates F in M. Furthermore, we say that a cocircuit C7
separates two other cocircuits C3 and C5 of a matroid M when C7 separates C5UCS
in M. Three cocircuits with a nonempty intersection such that none separates the
other two is called a Fournier triple.

Examining all possible graphical representations of cocircuits of a Fournier
triple in a binary signed-graphic and non-graphic matroid, we show that a Fournier
triple cannot have two or three non-graphic cocircuits.
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Lemma 6.2.1. Let C},C5,C5 be three cocircuits with a nonempty intersection of
a connected binary signed-graphic and non-graphic matroid M(X). If Cy,C5,C;
are unbalancing bonds in 3, then one of C7,C5,C5 separates the other two.

Proof. Since M (X)) is a connected binary signed-graphic and non-graphic matroid,
the signed graph X is connected and tangled. Moreover, C},7 = 1,2,3 is an
unbalancing bond in ¥ and by Proposition 23] the signed graph X\C} consists of
one balanced component, denoted by B;, and one unbalanced component, denoted
by U;. Let e = {b,v} be the link of ¥ such that e € C7 N C; N C§ and suppose
that b € B; and v € U;. Assume on the contrary that (C},C5,C3) is a Fournier
triple. Then by definition, (C5 U C%) — C7 is contained in a connected component
of ¥X\C} which we may assume to be By, while the case of U; follows similarly. We
distinguish two cases:

Case 1: (CTUCY) —C5 C By

The cocircuits C] and C5 are distinct which implies that there exists f € C5 —
C7 having an endvertex at Us. Since U, contains no edge of C7 U C3 U C3, the
connected signed graph Us U f is a subgraph of By or U; in ¥\C}. Moreover,
fe(C;uCy) —Cf C By, therefore the unbalanced subgraph U, U f is contained
in the balanced By, which is a contradiction.

Case 2: (CTUCY) —C5 C U,

Let us assume first that (C7 U C5) — C5 C Bs. By the fact that Cf and C§ are
distinct cocircuits, there exists e; € C7 — C5 with an endvertex in V(U;). Since
U, contains no edge of C7 U C5 U (5, the connected signed graph U; U e is a
subgraph of Bz or Us in ¥\C3, which is a contradiction. Let us assume now that
(CTUC5)—C% C Us. Then there exists eo € C5 — C§ with an endvertex at V(By).
Since By U ey connected signed graph contained in Bz or Us in ¥\Cj, it holds
that By U ey C Us. Thereby V(By) C V(Us) implying that b € V(Us), which is a
contradiction. n

Lemma 6.2.2. Let C5,C5,C5 be three cocircuits with a nonempty intersection
of a connected binary signed-graphic and non-graphic matroid M(X). If CT,C5
are unbalancing bonds and C3 is a balancing bond in X, then one of C,C5,C5
separates the other two.

Proof. Since M (X)) is a connected binary signed-graphic and non-graphic matroid,
the signed graph X is connected and tangled. By hypothesis C},7 = 1,2 is an
unbalancing bond in ¥ and by Proposition 23] the signed graph X\C} consists of
one balanced component, denoted by B;, and one unbalanced component, denoted
by U;. In case of the balancing bond C3, the signed graph ¥\C35 consists of one

balanced component denoted by Bs. Let e = {b,v} be the link of ¥ such that
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e € CfNC; N C5 and suppose that b € B; and v € U;. Assume on the contrary
that (CY, C3, C%) is a Fournier triple. Then by definition, (C7UCS)—C3 is contained
in Bsy. We distinguish two cases:

Case 1: (CTUCS) —C5 C By

Since (3, (3 are distinct cocircuits, there is hy € C5 — C5 with an endvertex at
Us. Moreover, U, contains no edge in Cf U C5 U C5, which implies that U, U hy is
a connected subgraph contained in Hj3 in ¥\Cj.

Case 2: (C5UCY) —CF C Uy

If (C;UC%) — Cy C By, then since C3, C5 are distinct cocircuits, there is hy €
C7—C5 with an endvertex at U;. Then U;Uh; is a connected subgraph contained in
Hj in ¥\, which is a contradiction. Otherwise (C5UC%)—CT C U;. Since Cf, C;
are distinct cocircuits, there is hy € C5 — C with an endvertex at U,. Thereby
By U hs is a connected subgraph contained in By or U; in ¥\C}. Furthermore
hs € U; implying that By U hg C Uy which is a contradiction. O]

Given a binary signed-graphic matroid, it is possible to have a Fournier triple
where all three cocircuits are either balancing bonds or two of them are balancing
bonds and one is an unbalancing bond. For the first case, consider as an example
the signed graph X5 in Figure 6.2 which represents the dual matroid of Ry5. All
three nonseparating cocircuits of the Fournier triple (C},C5,C5) of Rj;, where
cy =4{-1,-3,-6,-7,1}, C = {-2,—-5,-6,—7,2} and C5 = {-2,—-5,—6,3},
are balancing bonds in ;5. For the second case, consider as an example the
Fournier triple (C},Cy,C%) of Rj;, where Cf = {—1,—3,—7,4} is a balancing
bond and C% = {—1,—5,5} is a nonseparating and non-graphic cocircuit, which is
an unbalancing bond in 5.

(a) X15 represents Rjs (b) X6 represents Rig

Figure 6.2: Signed graphic representations of Rj; and Rj4

The class of signed-graphic matroids has not been characterized yet in terms
of excluded minors, however, the regular excluded minors of signed-graphic ma-
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troids were provided by Slilaty in [45]. The cographic matroids of the 29 graphs
G'1,...,Gag, which are excluded minors for the class of projective-planar graphs,
are among the regular excluded minors of signed-graphic matroids. The 29 ver-
tically 2-connected graphs Gfy,...,Ga along with a representation matrix over
GF(2) are given in the Appendix of [4I]. Moreover, a representation matrix over
GF(3) for each of Ry5 and Ryg is given in Appendix [

Proposition 27. A reqular matroid is signed-graphic if and only if it has no minor
isomorphic to M*(Gy),..., M*(Ga), R15 and Ryg.

Each cographic excluded minor of signed-graphic matroids contains a Fournier
triple and a non-graphic cocircuit (J41] Appendix). A representation matrix over
GF(2) together with a Fournier triple with two non-graphic cocircuits are pro-
vided for each cographic excluded minor of signed-graphic matroids in Appendix
Bl Thereby, we prove the following lemma.

Lemma 6.2.3. Fach cographic excluded minor of reqular signed-graphic matroids
with not all-graphic cocircuits has a Fournier triple with two non-graphic cocircuits.

The following result is from [15].

Lemma 6.2.4. If a minor N = (M|B).A of a matroid M on E where (A C B C
E) possesses three cocircuits with a nonempty intersection such that none separates
N, then M possesses three cocircuits with a nonempty intersection such that none
separates the other two in M.

The following lemma is a direct consequence of Lemma [6.2.4]

Lemma 6.2.5. Let N = (M|B).A be a minor of a matroid M on E where (A C
B C E), if N has a Fournier triple, then M has a Fournier triple.

The following lemma, which appears in [41], implies that the all-graphic co-
ciruits property is closed under minors ([41] Corollary 1). Thereby if a minor N of
a matroid M has a non-graphic cocircuit, then M has a non-graphic cocircuit.

Lemma 6.2.6. If N is a minor of a matroid M then for any cocircuit Cy of N
there exists a cocircuit Cyy of M such that N\Cy is a minor of M\C)y;.

The following theorem characterizes the class of cographic and signed-graphic
matroids with no minor isomorphic to M*(G;7) and M*(G19). We note that the
matroids Ry and Ry are not cographic ([45] Proposition 4.5).

Theorem 39. Let M be a cographic matroid with no minor isomorphic to M*(G17)
and M*(Gho), then M is signed-graphic if and only if every Fournier triple has at
most one non-graphic cocircuit.
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Proof. Let us assume first that M is a cographic and signed-graphic matroid. Then
M is binary and by Lemmas and we have that every Fournier triple of
M has at most one non-graphic cocircuit.

Let wus assume now that M is not signed-graphic,  there-
fore it has a minor M’ which is isomorphic to a matroid in
{M*(Gy),..., M*(G17), M*(G19), ..., M*(Gag)}. By Lemma [B23, each of
the matroids in {M*(G,),..., M*(Gy7), M*(Go), ..., M*(Gag)} have a Fournier
triple with two non-graphic cocircuits. Then by Lemmas and [6.2.5] it follows
that M has a Fournier triple with two non-graphic cocircuits. O

6.3 Cycles in tangled signed graphs

Let B be a basis of a connected signed-graphic matroid M (X) such that the signed
graph Y is jointless. Furthermore suppose that 7% is the spanning negative 1-tree
of ¥ with negative cycle Cp, such that E(T%) = B. The subgraphs of ¥ which are
induced by the sets (P — Cr.) U{f} for each f € E(M (X)) are called basic cycles
with respect to Tx,. Every cycle in a connected and jointless signed graph can
be expressed as symmetric difference of basic cycles with respect to the associate
negative 1-tree.

Lemma 6.3.1. If T is a spanning negative 1-tree of a connected and jointless
signed graph ¥ = (G, o), then every cycle of ¥ is either a basic cycle or symmetric
difference of basic cycles with respect to T.

Proof. Consider a cycle C'~ of X. If the cycle C~ is a basic cycle of X with respect
to Ty, then the result follows. Thus, suppose that C'~ is not a basic cycle. Then
the spanning tree T, which is constructed from the negative 1-tree T% by deleting
an arbitrary edge e from the negative cycle Cr of Tk, constitutes a basis for the
matroid M (G). It follows that e is a nonbasic element of M(G) with respect to
the basis that is equal to Tz and therefore Cp is a fundamental cycle of G with
respect to Tg. Since every cycle of ¥ is also a cycle of G, it follows that C'~ is
symmetric difference of fundamental cycles of G with respect to Tg. It suffices
to show that every fundamental cycle of G with respect to Ty is either a basic
cycle or symmetric difference of basic cycles of ¥ with respect to Ty. If there is
no path (Py: f € E(M) — B) such that e € Py, then all the fundamental cycles
of G are basic by definition. Otherwise there is a path (Py: f € E(M) — B) such
that e € Py, and thereby Cp and (Py U {f})ACy are fundamental cycles of G
with respect to T¢;. Since this holds for every path Pj such that e € Py, every
fundamental cycle of G with respect to T is a basic cycle or symmetric difference
of basic cycles of ¥ with respect to Tx.. O
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Let C be a cycle and T, be a negative 1-tree of a connected unbalanced signed
graph . If C is expressed as symmetric difference of basic cycles with respect to
T by Lemma [6.3.1] then we shall refer to the aforementioned basic cycles as basic
cycles of C' with respect to Tx. If C' is negative then the number of negative basic
cycles of C' with respect to Ty is odd.

Lemma 6.3.2. Let Tx, be a spanning negative 1-tree of a connected jointless signed
graph ¥ = (G, o). If C is a negative cycle of ¥, then the number of negative basic
cycles of C'" with respect to T, is odd.

Proof. The negative edges of the basic cycles of C' are partitioned into two sets:
one set that contains the negative edges of C' and one set that contains the negative
edges that do not belong to C'. Since C'is a negative cycle of ¥, it contains an odd
number of negative edges. Moreover, every negative edge of C' belongs to an odd
number of basic cycles of C', due to the definition of symmetric difference. Thus,
the number of times that the negative edges of C' appear in the basic cycles of C,
denoted by 57, is odd. The negative edges of the second set do not appear in C
because each of them belongs to an even number of basic cycles of C' with respect
to Tx. Thereby the number of times they appear in the basic cycles of C', denoted
by S5, is even independently of their number. Then, the number of the negative
edges in the basic cycles of C' is equal to the sum of S; and S, and, therefore, it
is odd. Equivalently, the total number of negative edges in the basic cycles of C
is equal to the sum of the negative edges of the positive basic cycles of C' and the
negative edges of the negative basic cycles of C'. Since the first part of the sum
is even, then the second part is odd. It follows that the number of negative basic
cycles of C' with respect to T% is odd, since every negative basic cycle has an odd
number of negative edges. O

A link which joins two vertices of a cycle in a graph but is not itself a link of the
cycle is a chord of that cycle. A chord of a negative cycle is called a minus-chord.
An edge of a signed graph which is neither a minus-chord nor a joint is called
m-edge.

If we delete or contract a link e from a signed graph ¥, then the signed graphs
Y\e and ¥ /e have no more negative cycles than 3. Moreover, among the operations
for taking minors, only the deletion of a link or the contraction of a chord from a
negative cycle C' of ¥ may result in a signed graph with more negative cycles than
>.. Thereby the contraction of an m-edge is among the operations that leave the
number of negative cycles unchanged when applied to a signed graph.

Lemma 6.3.3. Ife is a m-edge in a signed graph X then X /e has the same number
of negative cycles with 3.
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Proof. We shall show that there is one to one correspondence between the negative
cycles of ¥ and the negative cycles of ¥ /e. Let us assume that the endvertices of
e = {wy,ws} are identified to a vertex w in ¥/e. A negative cycle that contains
both endvertices of e in X, and therefore e, is mapped to the negative cycle in ¥/e
that contains w and includes the same links apart from e. We note that the two
cycles are both negative since the switching, performed when contracting e, leaves
the sign of the cycle unchanged. A negative cycle that contains no endvertex of e
in ¥ is mapped to the identical negative cycle in ¥/e. A negative cycle of 3 that
contains exactly one endvertex, say w; of e is mapped to the negative cycle of ¥/e
that contains w instead of w; and the same set of links. When contracting a m-
edge in X, neither a new negative cycle is formed nor a negative cycle is destroyed.
Thus, there is a bijection between the negative cycles of ¥ and the negative cycles
of X /e. O

The following corollary derives easily by combining Lemma, with the def-
inition of a tangled signed graph and the definition of a m-edge.

Corollary 5. If e is a m-edge of a tangled signed graph ¥ then Y /e is tangled.

A minor of a signed graph ¥ is a signed graph obtained from ¥ by performing
the following operations: (1) contractions of edges, (2) deletions of edges, (3)
switchings and (4) deletion of isolated vertices. A link minor is a minor which is
obtained from ¥ without performing contractions of joints. The two link minors
of tangled signed graphs, which were provided by Slilaty in [55], are depicted in
Figure 63

Theorem 40 ([55] Theorem 3.16). If ¥ is a tangled signed graph then 3 contains
— K4 or £C5 as a link minor.

(a) :|:Og (b) —K4

Figure 6.3: Link minors of tangled signed graphs

Any signed graph obtained from a signed graph X by the addition of any number
of parallel positive or negative links to existing links of ¥ is said to belong to the
parallel class of X, denoted by P(X).
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Lemma 6.3.4. If ¥ is a tangled signed graph then there is a sequence of m-edge
contractions which results in a signed graph belonging to either P(—Ky) or P(£Cs).

Proof. By Theorem [0, there is a sequence of contractions of links and deletions
of links and/or joints that reduces ¥ to a signed graph, which up to switchings,
is isomorphic to —K4 or £C3. Since deletions and contractions of links may be
performed in any order, we first apply the set of contractions (of links) in X.
Suppose now that at some point a chord of a negative cycle had to be contracted,
then a negative loop (joint) is created which, after performing all contractions,
should be attached at one of the vertices of the signed graph so-obtained, say 3.
According to Theorem [0, X, is a graph belonging to P(—Ky) or P(£C3) along
with one or more joints at its vertices. Therefore, 3. is not tangled since it has two
vertex disjoint negative cycles which, by Corollary Bl implies that > is not tangled;
a contradiction. Therefore, no joints are created during the contractions and thus,
no deletion of joints could take place, and the contractions applied are only m-edge
contractions. Thus, regarding deletions, only deletion of links which are parallel to
edges of —K, or +C'5 can be performed that is 3. is, up to switching, isomorphic
to a graph belonging to either P(—K}) or P(£C}). O

A tangled signed graph ¥ can be reduced by a sequence of m-edge contractions
to a signed graph Y’ belonging to either P(—K,) or P(+C5) by Lemma
Moreover, by Lemma the number of negative cycles of ¥ equals the number
of negative cycles of ¥'. Since the number of negative cycles of 3’ is polynomially
bounded by the number of negative cycles of a signed graph belonging to either
P(—Ky4) or P(£Cs), it follows that the number of negative cycles of ¥ is poly-
nomially bounded. For a proof of the above result, we provide a case analysis in
Appendix

Theorem 41. The number of negative cycles of a tangled signed graph is poly-
nomially bounded by the number of negative cycles of a signed graph belonging to

either P(—K4) or P(£C3).

6.4 A characterization for binary signed-graphic
matroids

In this subsection, we obtain a characterization for binary signed-graphic matroids
and we derive representation matrices for signed-graphic matroids which are known
to be GF(3)-representable. Total unimodularity is strongly connected with the
representation matrices of binary signed-graphic matroids.
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Let M be a matroid represented by a totally unimodular matrix D over R.
If D is viewed to be a matrix over an arbitrary field F, then M is represented
by D over F. Furthermore, total unimodularity is maintained when we apply
the following operations to a totally unimodular matrix: (1) pivots (2) row and
column interchanges (3) scalings of rows or columns by —1. The binary support of
a matrix D, denoted by Bg(D), is defined to be a matrix which is obtained from
D by replacing each non-zero entry of D by a 1.

The incidence matrix Ay, of a signed graph ¥ is a representation matrix of the
signed-graphic matroid M (X) over GF'(3) [44]. In the following proposition, we
use the incidence matrix of a signed graph to highlight the connection between
regular signed-graphic matroids and totally unimodular matrices.

Lemma 6.4.1. Let B = {ey,es,...,¢e,.} be a basis of a connected signed-graphic
and non-graphic matroid M (X), then M (X) is reqular if and only if the incidence
matrixz of the signed graph X is totally unimodular.

Proof. Let us assume first that M (X) is a regular matroid, then by definition there
is a totally unimodular matrix A such that M (3) = M[A]. By a sequence of pivots,
row and column interchanges, A can be transformed into a totally unimodular
matrix of the form [I.|D;], where the first r columns are labelled eq,e,, ..., é,.
Therefore [I,|Dq] has {0, %1} entries and it represents M (X) over GF'(3). Since
the incidence matrix Ay, of X is over GF(3), by applying pivots, row and column
scalings to Ay, it can be transformed into a matrix [I.|Ds] in which the first r
columns are labelled ey, es,...,e.. By Proposition 6.4.1 of [35], it follows that
Bg(D1) = Bg(D3). Moreover, combining the fact that D; is totally unimodular
with Proposition 10.2.4 of [35], we have that D, is totally unimodular.

For the converse, the incidence matrix Ay, of X is totally unimodular and there-

fore, it is a representation matrix of M (X) over R. O

Corollary 6. A signed-graphic matroid M(X) is binary if and only if the incidence
matrixz of the signed graph X is totally unimodular.

The following well-known result, which appears in [I7], characterizes the class
of graphic matroids. This result is generalized for the class of binary signed-graphic
and non-graphic matroids in Theorem

Theorem 42. If B is a basis of a binary matroid M, then M is graphic if and only
if there is a tree T with E(T') = B such that each of the sets (Py: f € E(M) — B)
is a path in T.

The following theorem characterizes the class of binary signed-graphic and non-
graphic matroids. The main tools for its proof are structural and representation
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results for tangled signed graphs and the associated signed-graphic matroids proved
in previous sections.

Theorem 43. Let B be a basis of a connected binary and non-graphic matroid M,
then M 1is signed-graphic if and only if

(i) there is a negative 1-tree T with negative cycle Cr, that is not a half-edge
and E(T) = B such that each of the sets (Py : f € E(M) — B) is either a
path or a negative 1-path in T

(ii) the signed graph obtained from T by adding each [ € E(M)—B as a link with
endvertices the ends of Py (resp. Py — Cr) if Py is a path (resp. negative 1-
path) and with the same sign with Py, has an incidence matriz that is totally
unimodular.

Proof. For the 7if” part. Since M is a connected binary signed-graphic and non-
graphic matroid, there is a connected and tangled signed-graph ¥ such that M =
M(X) [[B5], Theorem 1.4]. By Proposition 4] there is a negative 1-tree T% in 3
such that F(T%) = B with negative cycle C'r, that is not a half-edge. Moreover,
by Proposition ] the fundamental circuits of M (%) with respect to B are either
positive cycles or type I handcuffs in ¥. Therefore each set (Py:f € E(X) —T%) is
either a path or a negative 1-path in T%. Furthermore the incidence matrix of X
is totally unimodular by Proposition [6.4.1], since M () is regular.

For the "only if” part. Let us assume that there is a negative 1-tree T" with
negative cycle Cp that is not a joint and it holds that F(7') = B. Moreover, for
each f € E(M) — E(T) the set Py is either a path or a negative 1-path in 7". We
construct a signed graph Y from 7" by adding each f € E(M) — E(T) to T in the
following manner. Suppose that Py is a path in 7', then we add edge f to T as a
link with endvertices the two ends of Py. Furthermore we attribute to f the sign
of the path P;. Therefore Py U {f} is a positive cycle in T'U {f}. Suppose that
P; is a negative 1-path in 7', then we add edge f to T" as a link with endvertices
the two ends of the path Py — Cp. Furthermore we assign to f the opposite sign
of the path Py — Cr. Thereby (Py — Cr) U {f} is a negative cycle and Py U{f} is
a type I handcuff in 77U {f}. By assumption the incidence matrix of ¥ is totally
unimodular , which implies that M (Y) is regular and therefore, M (X) is binary.
Since both of M and M(X) are binary and the fundamental circuits of M (X) and
M coincide with respect to the basis B, it follows that M = M (X). O

On combining Theorem A2 and Theorem A3 we derive a characterization for
the class of binary signed-graphic matroids. Moreover, from the above theorems
we obtain the following algorithm which determines whether a binary non-graphic
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matroid M given by an independence oracle is isomorphic to the signed-graphic
matroid of a given jointless signed graph ..

Algorithm 2: BINARY
Input: A binary non-graphic matroid M given by an independence oracle and
a jointless signed graph ¥ such that E(M) = E(X)
Output: M = M(X) or not
Determine a basis B of M
if B is not a spanning 1-tree in ¥ then
M 2 M%)
else
if some Py U {f} where f € E(M) — B with respect to B is not a positive
cycle or a type I handcuff in ¥ then
M 2 M%)
else

if the incidence matrix Ay, of ¥ is not totally unimodular then
M 2 M(%)
else
M= M%)
end if
end if
end if

As regards the proof of correctness of Binary Algorithm [ every basis B of a
binary signed-graphic and non-graphic matroid M corresponds to a spanning 1-
tree in the signed graph representing it (Proposition 24]). By Proposition 21, each
fundamental circuit C'y of M with respect to B is either a positive cycle or a type
I handcuff in the signed-graphic representation of M. Furthermore the incidence
matrix of a signed graph representing M is totally unimodular by Corollary [Gl
Thereby the correctness of Binary Algorithm [2 results from Theorems [42] and

Binary Algorithm Plruns in polynomial time since we can check if B is a spanning
1-tree in ¥ and if the set PfU{f} for each f € E(M)—B is a positive cycle or a type
I handcuff in ¥ in polynomial time. Moreover, using Truemper’s algorithm in [58]
we can test in polynomial time if the incidence matrix of ¥ is totally unimodular.

The following algorithm tests whether a binary matroid given by an indepen-
dence oracle is signed-graphic.

Given a basis B of a binary matroid M, there is no known algorithm for testing
the existence of a negative 1-tree T with B = E(T') such that the sets Py are
either path or a negative 1-path in 7. Finding a polynomial time algorithm for
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Algorithm 3: BINARY SIGNED-GRAPHIC
Input: A connected binary and non-graphic matroid M given by an

independence oracle.

Output: M is signed-graphic or not.

Determine a basis B of M

if there is no negative 1-tree 7" such that B = E(T") then
M is not signed-graphic

else
if some Py where f € E(M) — B is neither a path nor a negative 1-path in T
then
M is not signed-graphic
else
Construct a signed graph ¥ as follows: add to 7" each f € E(M) — B as a
link with end-vertices the ends of Py (resp. Py — Cp) if Py is a path (resp.
negative 1-path) and with the same sign with Py
if the incidence matrix Ay, of ¥ is not totally unimodular then
M is not signed-graphic
else
M is signed-graphic
end if
end if

end if
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determining the existence of such a negative 1-tree, will result in a polynomial time
recognition algorithm for the class of binary signed-graphic matroids. The proof of
correctness of Binary Signed-graphic Algorithm [lis a straightforward consequence
of Theorem



Chapter 7

Quaternary signed-graphic
matroids

We decompose the class of quaternary signed-graphic matroids extending Papalam-
prou and Pitsouli’s decomposition theorem for binary signed-graphic matroids [40].
To this end, we use the operation of star composition which was defined in Chapter
[ and technical results which were obtained. Moreover, structural results concern-
ing hereditary properties of cocircuits which were presented in Chapter [ are
of central importance for the decomposition. Non-graphic cocircuits of signed-
graphic matroids whose signed-graphic representations are cylindrical or have a
balancing vertex or are isomorphic to Tg up to deleting joints are proved to be
bridge-separable. Furthermore cocircuits with all-avoiding bridges of highly con-
nected quaternary signed-graphic matroids are shown to correspond to the star of
a vertex in the associate signed-graphic representation.

Figure 7.1: The signed graph T§

121
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7.1 Signed-graphic matroids with a minor iso-
morphic to M(Tg)

The structural properties of a signed-graphic matroid M (X) such that ¥\ Jy =
Ty are examined in this section. Specifically, any non-graphic cocircuit of these
matroids is proved to be bridge-separable. Additionally, if such a non-graphic
cocircuit happens to have all-avoiding bridges then it is shown to correspond to
the star of a vertex.

Lemma 7.1.1. Let M(X) be a signed-graphic matroid such that ¥\ Jy = Tg. If
Y € C*(M (X)) is non-graphic then Y is bridge-separable. Moreover, there exists a
partition of the bridges of Y in M(X) into two classes of all-avoiding bridges where
one contains the separators of the balanced component of ¥\Y and the other the
separators of the unbalanced component.

Proof. Since Y is non-graphic, it is either an unbalancing bond or a double bond
in Y. By enumerating all possible cases, there is up to isomorphism one unbalanc-
ing bond e.g. Y7 = {-3,3,6,2} in Ty such that Y is non-graphic in M(7Tg) (see
Figure [[T]). Thereby since ¥\ Jx = T, it can be easily deduced that the only un-
balancing bonds in ¥ are the stars of vertices without joints. If Y is an unbalancing
bond in ¥, then ¥\Y is 2-connected and has two vertex-disjoint negative cycles.
Thus, X\Y consists of one separator which is a non-binary bridge of Y in M (%)
and Y is trivially bridge-separable. If Y is a double bond in 3, then up to iso-
morphism there is one double bond in Ty e.g. Y5 = {1,2,5, —6, —4} such that Y is
non-graphic in M (7g). Then either ¥\Y consists of two separators or Y is the star
of a vertex containing joints in . In both cases Y is trivially bridge-separable. [

Lemma 7.1.2. Let M(X) be a signed-graphic matroid such that ¥\ Jx, = Ts. If Y
is a non-graphic cocircuit of M(X) with all-avoiding bridges then Y is the star of
a vertex in 3.

Proof. Suppose first that Y is an unbalancing bond in ¥. By enumerating all
possible cases, there is up to isomorphism one unbalancing bond Y; = {—3,3,6,2}
in Ty such that Y is non-graphic in M (Tg) (see Figure [1]). Then X\Y has one
2-connected separator with two vertex-disjoint negative cycles which is a non-
binary bridge of Y in M(X). Thus, Y is the star of a vertex in 3. Suppose
now that Y is a double bond in 3. Next it is shown that when Y is not the
star of a vertex in 3, then there are two separators in 3\Y which correspond
to overlapping bridges of Y in M(X). A double bond of ¥ contains only joints
that are incident to vertices of the balanced component of 3\Y. Moreover, the
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number of these joints does not affect the avoidance of two bridges of Y in M (X).
Up to isomorphism there is one double bond in T e.g. Y, = {1,2,5,—6, -4},
corresponding to a non-graphic cocircuit in M(75). Then 3\Y; consists of two
separators By = {—5}, By = {—1,—2,—-3,4,6}. By the above, we shall consider
only the case that Y = Y, U J; U Jy where Jq, .y are sets of joints at the two
vertices of B;. Suppose that J; is the set of joints at the vertex v, of By such that
star(vy) = JyU{5, —4, =5, —6} and J; is the set of joints at the vertex vy such that
star(vg) = JoU{1,2,—4, =5}. Then 7(M(X), B1,Y) ={{1}, {5}, {—6}, {2}, {—4}}
and m(M(X), B2, Y) ={{—4},{5,—6} U J1,{1,2} U J,}, therefore By, By overlap.

O]

7.2 Bridge-separable cocircuits

Every cocircuit of a graphic matroid is bridge-separable as shown in [61].

Theorem 44 (Tutte [6I]). If Y is a cocircuit of a graphic matroid then Y is
bridge-separable.

Similarly, the bridge-separability property of non-graphic cocircuits in binary
signed-graphic matroids is proved in [40].

Theorem 45 (Papalamprou, Pitsoulis [40]). If Y is a non-graphic cocircuit of a
binary signed-graphic matroid M, then Y is a bridge-separable cocircuit of M.

However, Theorem A5 can be generalized to cover the whole class of quaternary
signed-graphic matroids. As a first step, in Theorem [0 we prove such a result for
signed-graphic matroids having a cylindrical signed graphical representation up to
removing joints.

Theorem 46. Let M(X) be an internally 4-connected, quaternary and non-binary
signed-graphic matroid and Y\ Jx, be a cylindrical signed graph. If Y is a non-
graphic cocircuit of M(X) which corresponds to an unbalancing bond or a double
bond whose balancing part has only joints, then Y 1is bridge-separable. Moreover,
there exists a partition of the bridges of Y in M(X) into two classes of all-avoiding
bridges where one contains the separators of the balanced component of X\Y and
the other the separators of the unbalanced components.

Proof. We consider only the case where Y corresponds to a double bond whose
balancing part has only joints, since an unbalancing bond is a double bond whose
balancing set is empty of edges. By the definition of double bond, the signed graph
Y\Y consists of one balanced component and one or more unbalanced components.



124 CHAPTER 7. QUATERNARY SIGNED-GRAPHIC MATROIDS

Since Y is a non-graphic cocircuit, there is at least one unbalanced separator in
Y\Y corresponding to a non-graphic bridge of Y in M(X), say By. Moreover,
in X\Y let us denote by Xt the balanced component and by X~ the unbalanced
component containing By. Due to the fact that switching at vertices of ¥ do not
alter M (X)), we can assume that all the edges in the balanced separators of X\Y
are positive. Let % be the class of the balanced separators of ¥ and %~ be
the class of all the separators of the unbalanced components of ¥\ Y. Consider any
pair of bridges By and By both belonging in either % ™ or % ~. Furthermore, let us
denote by v; € V(B;) and vy € V(B,) the vertices of attachment such that By is
contained in C'(By,v1) and By is contained in C(Bs, vs), respectively. To prove the
theorem it suffices to show that there exists an edge-set S; in each ¥.(B; UY)|Y,
(1 = 1,2) which corresponds to a set in 7(M(X), B;,Y) such that S; U Sy =Y.

In what follows, we can assume that X is vertically 2-connected, since M (%)
is internally 4-connected. Moreover, since 3\ Jy is cylindrical we can assume that
it is planar and, by Corollary [, it can be assumed to have exactly two negative
faces. We have the following cases:

Case 1: By and B, are separators in %+

If B, and B, are separators of ¥, then they are both balanced. By the definition of
contraction in signed graphs, since all the edges in the unbalanced components will
be contracted, the signed graph X.(B;UY")|Y will consist only of half-edges attached
at the vertices of attachment of By. The edges Y (Bj,v;) are half-edges attached
at vy in that graph therefore, by Lemma 513 S; = Y (By,v1) € n(M(X), By,Y).
Similarly, we can find an edge-set Sy = Y (B2, v9) € m(M(X), By, Y). We have that
V(X1) CV(C(By,v1)) UV (C(Bay,vs)), which implies that Y (B, v;) UY (Ba, v9) =
Y.

In what follows, B; and B, are separators of % ~. Moreover, let H; C Y
(1 =1,2) consist of all edges having an end-vertex to an unbalanced component of
Y\Y other than the one that contains B; and the joints of the balancing part of
Y.

Case 2: By and By are separators in different unbalanced components of ¥\ Y
Due to the definition of contraction in signed graphs, the edges of H; become half-
edges with a common end-vertex in X.(B;UY)|Y. Then by Lemma[B.T3] the edges
of H; are contained in some S; of m(M (%), B;,Y) and it holds that S; U S, =Y.
Case 3: By and B, are separators in the same unbalanced component of >\Y
We can assume that B; and Bs are separators of ¥~ since all other cases follow
similarly. By Lemma 3], for every separator B of ¥\Y there exists at most one
vertex of attachment v such that Y (B, v) consists of links with different sign. Let
by vi,v5 and vi denote these vertices of By, By and By, respectively. We have
the following cases:
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Case 3.1: By, By # By

The unbalanced separator By may be contained in both C'(By,v;) and C(Ba, vs) or
in one of them. In the first case, all the edges of X.(B;UY)|Y share a common end-
vertex and, moreover, the edges of Hy and Y (B, v1) are half-edges (see Figure[[.2]
where v,w # v1). Therefore, by Lemma T3] there exists S; € m(M(X), By,Y)
such that S; = H; UY(By,vy). Similarly, we can find Sy € w(M(X), By, Y) such
that Sy = Hy U Y (B, v9). The set Y (B;,v1) UY (Bg,vy) contains the edges of Y
that have an end-vertex to ¥~ in ¥ and thus, S; U Sy =Y.

Y\(H1 UY(B1,v1))

(
%
w Hy UY(B1,v1)

(a) signed graph X (b) X.(B1UY)|Y

Figure 7.2: Case 3.1 in proof of Theorem

Consider now without loss of generality that By is contained in C(By,v;) and
not in C'(By,ve). Then there must exist vy € V(By) such that By and B, are
contained in C(By,vy). We have the following subcases:

Case 3.1.a: vy # v5

In this case either C'(By, v1) or C(Ba, v9) is contained in C'(By, vy); without loss of
generality, consider the latter (see Figure [[3|(a)). Since Y (Bs,ve) C Y (By, vp) the
edges of Y'(Bz, v) have the same sign, thus, constitute a bond in X.(BaUY)|Y (see
Figure [[3(c)) implying that Y (B, ve) € C*(M(X).(B2 UY)|Y). Then by Lemma
B.13] there exists Sy € (M (X), B2, Y) such that Sy = Y(Bs, v2). Given that By
is contained in C'(By,vy), the edges in Y (By,v1) and the edges in H; are half-edges
at a vertex in X.(B; UY)]Y (see Figure [[3(b)). Therefore, by Lemma [E.1.3] there
exists S; € m(M(X), By,Y) such that S; = Hy U Y (Bj,v1). Since the edges of
Y that have an end-vertex to ¥~ in X are contained in Y (By,v1) U Y (By, vs), it
follows that S; US; =Y.

Case 3.1.b: vy = v3

Assume that vy # vi¥. Then Y (By,v,) consists of edges with equal signs, thus,
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v Y\(H1 UY(B1,v1)) Y (Ba, v2) Y (Ba, w)
% }é# Uz
L Hy UY (B, v1)
(a) signed graph ¥ (b) Z.(BLUY))Y (¢) Z.(B2UY)|Y

Figure 7.3: Case 3.1.a in proof of Theorem [0

by Lemma there is Sy € w(M(X), By,Y) such that Sy = Y (B, v9). The
edges in H; and the edges in Y (By,v;) are half-edges with common end-vertex in
Y.(B,UY)|Y. Therefore, by Lemma [B.13] there is Sy € m(M(X), By,Y’) such that
Sy = H,UY(By,v).

Now assume that vy = v3 which means that Y (B, vy) consists of edges with
different sign (see Figure [[4]). By Lemma 3] the separator B; can have only
one vertex that is incident with edges of Y of different sign in ¥.(B; UY')|Y. Let
this vertex be v} for By and Y~ (B, v]) be the set of edges of the same sign, say
negative, which are incident to v} in X.(B;UY)|Y. Thus, Y (By,v3) = Y (B, v3)U
Y~ (Bi,v}) where Y*+(By, vy ) is the subset of the positive edges of Y (B, vy). The
edges in H; and the edges in Y (By, v;) are half-edges with a common end-vertex in
5.(B,UY)|Y. Thereby, H;UY (By,v)UY~(By,v}) = CF € C*(M(Z).(B, UY)[Y).
Let v}, be the vertex of attachment of By such that C(By, v}) contains By; then, in
Y.(ByUY)|Y, the edges in Y (Bsg,v)) are half-edges. Moreover, the set Y (Bsy, v))
is non-empty since X is vertically 2-connected. In 3.(Bs U Y)|Y, from the sets
of parallel edges of Y only the set which has vy as a common end-vertex may
consist of edges of different sign. Thus, Hy U Y (By,v3) U Y (By,vh) = Ci €
C*(M(X).(B, UY)|Y). Since By, By are balanced separators of ¥, ¥.(B;UY") has
as balancing vertex the common end-vertex of the edges of Y (B;, v;), which implies
that M(X).(B; UY) is binary. Then n(M(X), B;,Y) = C*(M(X).(B;UY)]Y) and
there are Sy = Cf € m(M(X),B;,Y) and Sy = C5 € n(M(X), B2, Y) such that
S1US, =Y.

Case 3.2: B, = B,
We shall consider the following cases:
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Figure 7.4: Case 3.1.b in proof of Theorem

Case 3.2.a: vy # V5

In ¥.(BoUY)]Y, the edges in Y (Bs, v9) are all those having the same sign and v,
as an end-vertex; therefore, by Lemma I3 there is Sy € w(M(X), By, Y') such
that Sy = Y (Bs,v2). In the signed graph ¥.(B; UY)|Y, the edges in H; and the
edges in Y (By, v1) are a set of half-edges attached at a common vertex. Therefore,
by Lemma [5.1.3] there is S; € m(M(X), By,Y') such that Sy = H; UY (B, vy).
Case 3.2.b: v, = v

Assume first that B; has one balanced component C(By, vi) such that the edges in

Y (By,v{) have different sign. Let Y+ (B;, vF) and Y~ (B;, vi") be the set of positive
+
Yy

and negative edges of Y (B;,v;"), respectively, for i = 1,2 (see Figure [[H]). Given
that By contains at least one negative face of ¥ with no edges of Y, the unique
negative face defined by the edges of Y(By,vi) has to be the outer face of 3.
This implies that all the edges of Y with end-vertex either in V(C(By,v)), where
v # v, vy, or in V(C(By,v1) NV (C (B, vy)) will have the same sign, say positive.
This in turn implies that Y~ (By, vy’) = Y~ (B, v). Examining the graphs ¥.(B;U
Y)|Y we have that H; UY (By,v1) UY ™ (By,v3) = HLUY (B, v1) UY (B, vi) €
C*(M(X).(BLUY)|Y) and Y*+(By,v¥) € C*(M(X).(B,UY)|Y). Since B is a
balanced separator of ¥~ the signed-graph ¥.(B; UY') has a balancing vertex,
which implies that the corresponding signed-graphic matroid M (X.(B; UY)) is
binary. Thereby n(M (%), B;,Y) = C*(M(X).(B;UY)]Y) and by Lemma B.I3]
there are S; € 7(M(X), By,Y) such that S; = H; UY (By,v) UY ™ (By,vy) and
Sy € m(M(X), By,Y) such that Sy = Y*+(By,v3). Finally, if Y(B;,v) for every
v # v has edges of the same sign, the proof is similar.

O]
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Y+ (B1,vi)

C(Ba,vY)

Figure 7.5: Case 3.2.b in proof of Theorem

We prove an analogous theorem for the case of quaternary signed-graphic ma-
troids whose signed-graphic representations have a balancing vertex up to deletion
of joints.

Theorem 47. Let M(X) be an internally 4-connected, quaternary and non-binary
signed-graphic matroid and suppose that ¥\ Js, has a balancing vertex. IfY is a non
graphic cocircuit then Y s bridge-separable. Moreover, there exists a partition of
the bridges of Y in M (X) into two classes of all-avoiding bridges where one contains
the separators of the balanced component of ¥\Y and the other the separators of
the unbalanced components.

Proof. Since Y is a non-graphic cocircuit of M(X), it is either a double bond
or an unbalancing bond in ¥. We consider only the case where Y corresponds
to a double bond, since an unbalancing bond is a double bond with an empty
balancing set. By the definition of double bond, the signed graph ¥\Y consists of
one balanced component, denoted by X7, and one or more unbalanced components.
Furthermore, there is a non-graphic bridge By of Y in M (X) that corresponds to an
unbalanced separator in ¥\Y which, by Proposition [[2] contains a negative cycle
other than joint. Due to the existence of By and the fact that X\ Jx, has a balancing
vertex, the balancing part of Y contains only joints. Therefore, there is only
one unbalanced component of ¥\Y that is not joint unbalanced, denoted by >~
and, thus, By corresponds to the unique unbalanced separator of ¥X~. Performing
switchings at the vertices of 3, all the edges of the balanced separators of 3\Y
become positive. Let % be the class of separators of X" and % ~ be the class of
separators of the unbalanced components of ¥\Y. Also, let us consider any pair
of bridges By and B, both belonging to either 2™ or %/ ~. To prove the theorem
it suffices to show that there exist S; € 7(M(X), B1,Y) and Sy € n(M(X), By, Y)
such that S;US, =Y. In what follows, v; and vy are the vertices of attachment of
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B; and Bs, respectively, such that By C C(By,v1) and By € C(Bs,v3). Moreover,
¥ is vertically 2-connected, since M (X) is internally 4-connected. We distinguish
the following cases:
Case 1: By and B, are separators of
Since B; and B, are separators of ¥, they are both balanced. By the definition
of contraction in signed graphs, the signed graph ¥.(B; U Y)|Y will consist of
half-edges only attached at the vertices of attachment of B;. Then the edges of
Y (Bj,v1) are half-edges attached at v; in that graph and therefore, by Lemma
BI3 S1 =Y (By,v) € n(M(X), By,Y). Similarly, we can find an edge-set Sy =
Y (Ba,v2) € m(M(X), B2,Y). We have that V(X1) C V(C(By,v1)) UV (C(Bg,v2)),
which implies that Y (B, v1) UY (By,v2) =Y and S; U Sy =Y.

In what follows, let By and By be separators of % ~.
Case 2: By and B, are separators in different unbalanced components of ¥\Y
Let H; (i = 1,2) be the set of edges of Y in X that contains the edges of the bal-
ancing part of Y and the edges having an end-vertex to an unbalanced component
of ¥X\Y other than the one that contains B;. In the signed graph X.(B; UY)|Y,
the edges of H; are half-edges with a common end-vertex. Then by Lemma
the set H; is contained in an element S; of m(M(X), B;,Y') and therefore, it holds
that S; U S, =Y.
Case 3: By and B, are separators in the same unbalanced component of >\Y
Since ¥\ Jy has a balancing vertex, an unbalanced component in ¥\Y either con-
tains By or it is joint unbalanced. We shall consider only the case where B; and
By are separators of %7 since the arguments for the other case are the same. We
have the following two subcases:
Case 3.a: B; and B, are balanced separators of >~
The unbalanced separator By may be contained in both C'(By,v;) and C(Ba, vs) or
in one of them. In the first case, the edges of Y (B;,v;) (i = 1,2), the edges of the
balancing part of Y and the edges of Y that have an end-vertex to an unbalanced
component of X\ Y different from X~ become half-edges at a vertex in ¥.(B;UY)|Y.
Then by Lemma[B.13] these half-edges are contained in some S; € 7(M(X), B;,Y')
and, therefore, S; US> =Y. In the remaining case, assume that By is contained in
C(By,v1) and not in C'(Bsy, vy). Combining Lemma and the fact that 3\ Jg
has a balancing vertex, there is at most one vertex of attachment By, denoted
by v, which is incident with edges of Y of different sign. Since By ¢ C(Bs,v2),
the edges of Y (Bs,v) have the same sign in X.(By U Y)|Y and therefore, there
is Sy € m(M(X), B, Y') such that Sy = Y(Bs,vy). The edges of Y that have an
end-vertex to an unbalanced component of ¥\Y different from >~ the edges of
the balancing part of Y and the edges of Y'(By, v1) in ¥ become half-edges incident
at a vertex in ¥.(B; UY)|Y. Hence by Lemma[B.T3] there is S; € n(M(X), B1,Y)
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that contains this set of half-edges and it holds that S; U Sy =Y.

Case 3.b: B; = By and B, is a balanced separator of >~

Since By C C(Bs,vg), the edges of Y (Bs,vy), the edges of Y that have an end-
vertex to an unbalanced component of X\Y different from X~ and the edges of
the balancing part of Y become half-edges incident at a vertex in X.(By UY)|Y.
Then the set of these half-edges is contained in a set Sy € (M (X), Bs,Y). Now
if we assume that v; # vy in 3, then the edges of Y (By,v;) have the same sign
in X.(B; UY)]Y. Thus, there is S; € n(M(X), B1,Y) such that Sy = Y(By,v1)
and S; U Sy =Y. For the remaining case, i.e. when v; = U(:)t, the set Y (By,v1)
contains edges of Y of different sign, i.e. Y (By,v1) = YT (By,v1) UY (B, v1),
where Y1 (By,v1) and Y~ (By,v;1) are the sets of positive and negative edges of
Y (By,vy1), respectively. Then, by Lemma B.I3] there is S; € n(M(X), B;,Y)
such that S; = Y (By,v1). Since Y (Bj,v;) contains edges of Y of different sign,
there are y;,y2 € Y such that y; = {v1, w1} and yo = {v9, wy} with positive and
negative sign, respectively, where w; € V(X" and v; € V(C(By,v1)). Moreover,
C(By, vy) is balanced and, therefore, ¥y, 7, are edges of a negative cycle in 3. Since
¥\ Jx, has a balancing vertex, the edges of Y~ (By,v1) C Y(Bsy, vy) since otherwise,
there are two vertex-disjoint negative cycles in X\ Jy. By Lemma [B.1.3] there is
Sy € m(M(X), B2, Y) such that Y~ (By,v;) C Sy and, therefore, S; US, =Y. O

7.3 Cocircuits with all-avoiding bridges

Regarding the class of graphic matroids, the property of all-avoiding bridges of a
cocircuit is sufficient for a connected graphic matroid to have a graphical represen-
tation where the cocircuit is the star of a vertex as shown in [61].

Theorem 48 (Tutte, [61]). Let Y be a cocircuit of a connected graphic matroid M
such that any two bridges of Y avoid each other. Then there exists a 2-connected
graph G where Y is the star of a vertex and M = M(G).

The above result was generalised for the class of binary signed-graphic matroids
in [40].
Theorem 49 (Papalamprou, Pitsoulis [40]). Let Y be a non-graphic cocircuit of a
connected binary signed-graphic matroid M such that any two bridges of Y avoid

each other. Then there exists a connected signed graph ¥ where Y is the star of a
verter and M = M(X).

Let Y be a non-graphic cocircuit of an internally 4-connected quaternary signed-
graphic matroid M (X) with all-avoiding bridges; then, as shown in the following
result, we can assume that Y is the star of a vertex in 2.
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Theorem 50. IfY is a non-graphic cocircuit with all-avoiding bridges of an in-
ternally 4-connected quaternary non-binary signed-graphic matroid M(X), then Y
is the star of a vertex in the signed graph .

Proof. The matroid M (X) is internally 4-connected and by definition of bicon-
nectivity, % is 3-biconnected. Due to the fact that Y is a non-graphic cocircuit of
M (X)), it is a non-balancing bond in . Moreover, the signed graph ¥\ Y consists of
one balanced component X and one or more unbalanced components from which
one contains an unbalanced separator denoted by B~. Let X~ be the unbalanced
component of ¥\Y that contains B~. Performing switchings at the vertices of ¥,
all the edges of the balanced separators of ¥\Y become positive. Thus only Y
and the unbalanced separators of X\Y may have edges of negative sign. Assume
on the contrary that Y is not the star of a vertex in 3, equivalently |E(X*)| > 0.
Then there is a balanced separator BT that is a balanced block of . Due to
3-biconnectivity of X, B* cannot have one vertex of attachment. Thus B* has
two or more vertices w;, j = 1,...,m such that Y (B*,w}") # 0 (Figure [0 (a)).
By hypothesis BT, B~ are avoiding bridges of Y in M(X), which implies that
there are nonempty S* € n(M(X),B",Y) and S~ € n(M(X), B~,Y) such that
STUS™ =Y. By Lemma[B.1.3] the elements of St correspond either to half-edges
incident at a vertex of attachment w;f of BT or to a class of parallel links of the
same sign incident at two vertices of attachment of BT in ¥.(BT UY)[Y. We
distinguish the following two cases:

Case 1: The elements of ST correspond to half-edges incident at a vertex of at-
tachment w} in X.(BT UY)|Y (Figure LG (c))

It holds that ST = Y (B*,w;") for some vertex of attachment w;” of B¥ in ¥ (Fig-
ure (a)). By Lemma the elements of S~ correspond to either parallel
links of the same sign incident at a vertex of attachment v; , i =1,...,n of B~ or
half-edges incident at a vertex in ¥.(B~ UY)|Y.

Let us assume first that the elements of S~ correspond to a parallel class of
negative links incident to a vertex of attachment v; in X.(B~ UY)|Y (Figure
(b)). The case where the elements of S~ correspond to a parallel class of positive
links follows similarly. By avoidance of B* and B~, the elements of Y\S* are
contained in S~ and therefore, they correspond to edges of the same sign and with
an end-vertex at C(B~,v; ) in ¥. Thus S™ = Y~ (B~ ,v; ), where Y~ (B~,v; )
denotes the set of parallel negative links of Y with an end-vertex at C(B~,v; )
in ¥. If Y is an unbalancing bond in ¥, then (A4, A;) is 2-biseparation of ¥,
where A; = T UY(B~,v;) UC(B~,v; ) with X[A;],3[A;] being a balanced
and an unbalanced signed graph, respectively and V(A;) N V(4;) = {w], v}
(Figure (a)). Otherwise Y is a double bond in ¥ and there are joints or links
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(a) signed graph ¥ (b) Z.(B-UY))Y (c) Z.(BTUY)|Y
Figure 7.6: Case 1 in proof of Theorem

of the balancing part of Y that are contained to neither S* nor S~ which is a
contradiction.

Let assume now that the elements of S~ correspond to half-edges incident at
a vertex in X.(B~ UY)|Y (Figure [ (b)). The elements of S~ correspond to
the edges of the balancing part of Y and to the links of the unbalancing part of
Y having one end-vertex to some unbalanced component of ¥\Y different from
the one that contains B~ in X. We note that ST = Y(BT, wj) for some vertex
of attachment w; of BY in ¥ (Figure [[7 (a)) and that X~ is the unbalanced
component of ¥\Y that contains B~. Then (A, Ay) is a 2-biseparation of X,
where Ay = X~ UY(B",w]) UC(B*,w]), since the signed graphs ¥[A,] and
%[A,] are both unbalanced and V(A;) N V(4;) = {w;} (Figure [T (a)). The
above applies when Y is either a double bond or an unbalancing bond in > and it
leads to a contradiction in both cases due to 3-biconnectivity of 3.
Case 2: The edges of ST correspond to a class of parallel links of the same sign
incident at two vertices of attachment of B* in X.(BTUY)[Y
The elements of S~ correspond to either parallel links of the same sign incident at a
vertex of attachment v;” of B~ or to half-edges incident at a vertex in ¥.(B~UY)|Y.
Let us suppose first that the elements of S~ correspond to negative parallel links
incident at a vertex of attachment v;” of B~ in 3.(B~UY)|Y. By avoidance of B
and B, the elements of Y\ST are contained in S~. Moreover, they correspond
to links of the same sign of the unbalancing part of Y with an end-vertex at
C(B~,v; ) in ¥. Let ¥~ be the unbalanced component of ¥\Y that contains B~.
Then (As, A3) is 2-biseparation of X, where A3 = X7, since X[A3] and X[A3] are
both unbalanced signed graphs with V(A3) NV (A3) = {v; }. Furthermore ¥~ has
at least two elements since it contains B~ that has a non-graphic minor. If the
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(a) signed graph X (b) X.(B-UY)|Y (c) T.(BTUY)|Y
Figure 7.7: Case 1 in proof of Theorem

elements of S~ correspond to half-edges with a common end-vertex in ¥.(B~UY)|Y
then the links of the unbalancing part of Y that have an end-vertex to a connected
component C'(B~,v; ) belong to neither ST nor S—, leading to a contradiction due
to avoidance of BT and B~. O

Moreover, in the above proof, if we restrict > to be jointless, ¥ to be a non-
balancing bond and replace the non-graphic bridge (B~) with a graphic bridge
then we obtain the following result.

Corollary 7. If X is a jointless signed graph such that M(X) is an internally
4-connected signed-graphic matroid and Y is a non-balancing bond in ¥ and a
cocircuit with all-avoiding bridges of M(X), then Y is the star of a vertex in 3.

Finally, we prove a useful lemma for our decomposition approach regarding the
existence of cocircuits with all-avoiding bridges in signed graphs after the deletion
of joints.

Lemma 7.3.1. Let Y be a cocircuit with all-avoiding bridges of a quaternary
signed-graphic matroid M(X) and a non-balancing bond in the signed graph X.
If Y CY\Js is a cocircuit of M(X\Jx), then Y' has all-avoiding bridges.

Proof. Let By, By be two avoiding bridges of Y in M (X). By avoidance of B; and
By, there are S; € m(M(X), B1,Y) and Sy € (M (X), B, Y') such that S;US; =Y.
Let us assume first that Y’ = Y\ Jx, which implies that none of By, By corresponds
to a joint unbalanced separator of ¥\Y. Then by Lemma (i), there are
bridges Bi, B} of Y in M(X\Jx) such that B; C B;\Jg. Moreover, there are
Spem(M(X\Jy), B}, Y') and S, € m(M(X\Jx), By, Y') such that S1\Js C S} and
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So\Jy € S5. Thus since S; U Sy =Y and Y/ = Y\ Jg, we have that S]U S, =Y’
Let us assume now that Y’ C Y\ Jy; and that at least one of By and By corresponds
to a joint unbalanced separator of ¥\Y, let B;. Then Bj\Jx is incorporated to a
balanced or an unbalanced separator Bj of ¥\ Jg\Y’ and since there is avoidance
between any two separators of X\Y, there is avoidance between any separator of

Y\Js\Y’ and Bj. O

7.4 Structural results

Before the decomposition theorem of quaternary signed-graphic matroids which
is presented in the next subsection, we provide known decomposition theorems
and structural results which are used in its proof. Regarding the class of graphic
matroids, the first decomposition theorem was provided by Tutte.

Theorem 51 (Tutte [61]). Let M be a connected binary matroid and Y € C*(M)
be a bridge-separable cocircuit, then M is graphic if and only if every Y -component
of M is graphic.

Tutte’s decomposition theorem for graphic matroids was generalised by the
decomposition theorem for binary signed-graphic matroids by Papalamprou and
Pitsoulis.

Theorem 52 (Papalamprou, Pitsoulis [40]). Let M be a connected binary matroid
and Y € C*(M) be a bridge-separable cocircuit such that M\Y is not graphic. M
is signed-graphic if and only if the Y -components of M are graphic except for one
which is signed-graphic.

Given a cocircuit Y of a matroid M, the connectivity of the Y-components is
ensured by the following result.

Proposition 28 (Tutte [61]). IfY is a cocircuit of a matroid M and B is a bridge
of Y in M, then M.(BUY) is connected.

We note that if T and %~ are two classes of bridges of a cocircuit Y of a
matroid M, the sets U and U~ denote the union of the bridges in the classes
Ut and %~ respectively. The following two propositions generalize results from

[6T., 62].

Proposition 29. If Y is a bridge-separable cocircuit of a matroid M with %~
and T the two classes of all-avoiding bridges, then Y € C*(M.(U UY)) where
Ue{U ,Ut}.
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Proof. The cocircuits of M.(UUY) are the circuits of (M.(UUY))* = M*|(UUY),
which are the cocircuits of M contained in U UY', so Y is a cocircuit of M.(U U
Y). O

Proposition 30. If M is a connected matroid and 'Y is a bridge-separable cocircuit
of M with %~ and %™ the two classes of all-avoiding bridges, then M.(UUY) is
connected where U € {UT, U~ }.

Proof. Assume on the contrary that there is a separator S C U~UY of M.(U~UY).
Then rar.w-uy)(S) +raw-ur) (U UY) =S) = rayw-uv) (U~ UY). Equivalently,
TM/U+(S) + T‘M/U+((U7 U Y) — S) = T‘M/U+(U7 U Y) Since UT C E and S C
E—-U"Tand (U"UY)—S C E—UT, by [[35] Proposition 3.1.6] it holds that
ry(UTUS) —ry(UT) +ry(E —S) =r(E). Consider a basis Bg of M|S and a
basis By+ of M|U™T, then ry(S) = |Bgs| and 7y (U") = |By+|. Since Ut and S are
disjoint sets, BsUBy+ is a basis of M|(UTUS) by definition of bases of matroids and
therefore, 7y, (UTUS) = |BsUBy+|. Furthermore BgN By+ = () and it follows that
|Bs U By+| = |Bs| + |By+| = ru(S) +rau(UT). Thus, ra(S) +ryu(E—S) =r(E)
which is a contradiction since M is connected. O

The property of non-graphicness is maintained for a cocircuit Y of some well-
defined minor of a non-graphic matroid.

Lemma 7.4.1. IfY is a non-graphic, bridge-separable cocircuit of M with % ~, %
the two classes of all-avoiding bridges of Y in M and M.(UT UY) is graphic then
Y is a non-graphic cocircuit of M.(U~ UY).

Proof. By Proposition 29, Y is a cocircuit of M.(U UY) where U € {U~,U"}.
Since Y is a non-graphic cocircuit of M, the matroid M\Y contains a minor H
isomorphic to one of the excluded minors of the class of graphic matroids, that
is [y, Fr, M*(K5), M*(K33). By the fact that each of the above excluded minors
is connected and H contains no element of Y, H is contained in a bridge of Y in
M. Since Y is a graphic cocircuit in M.(UT UY'), we have that M.(UT UY)\Y=
M/U\Y=M\Y/U = M\Y.U = M\Y|Ut= M|U*. Thereby M|U" is graphic
which implies that H is not contained in any bridge of % *. Therefore H is a minor
of a bridge of ~ and M.(U~ UY)\Y= M|U~ is non-graphic. O

The bridges of a bridge-separable cocircuit Y of a matroid M.(U UY), where
% is a class of all-avoiding bridges and U is the union of bridges in %, are bridges
of Y in the matroid M.

Proposition 31. Let Y be a bridge-separable cocircuit of M with %+, ~ the two
classes of all avoiding bridges. If B is a bridge of Y in M then B is a bridge of Y
in M.(UUY) where U € {UT,U"}.
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Proof. By Proposition 29, Y is a cocircuit of M.(U UY') where U € {UT, U }.
It is enough to show that M.(U UY)\Y)/B = (M.(UUY)\Y)\B. We have
that M.(U U Y\Y)/B = M.U/B = M.UJ(U\B) = M.(U\B) = (M.U)\B =
(M.(UUY)\Y)\B. O

Proposition 32. Let M(X) be a connected quaternary signed-graphic matroid and
Y be a double bond in the signed graph Y whose balancing part contains links. If
Xt denotes the balanced component of \Y then M(X).(X1TUY) is either graphic

or non-binary signed-graphic.

Proof. Since M (X)) is connected, it follows that ¥ is connected. Moreover, since Y
is a double bond in ¥, ¥\Y consists of one balanced component and one or more
unbalanced components. Perform switchings at the vertices of ¥ so that all the
edges of the balanced separators of ¥\Y become positive. Due to the definition of
contraction in signed graphs and connectivity of ¥, the edges of the unbalancing
part of Y become half-edges in ¥.(XT UY). Thus X.(X" UY) has at least one
joint. By hypothesis and minimality of Y, the balancing part Yy of Y contains
links having both endvertices at X*. Thus they are edges of negative cycles in the
connected signed graph X|(X1 UYjy). Since the class of signed-graphic matroids is
closed under the operations of deletion and contraction, the matroid M (X).(XTUY)
is signed-graphic. If M(X).(XT UY) is binary non-graphic then ¥.(X%* UY') must
be tangled, which is a contradiction since it contains a joint. Hence M (X).(XTUY')
is either graphic or non-binary. O

7.5 Decomposition theorem

The main result of this work, i.e. a decomposition characterisation for the class of
quaternary non-binary signed-graphic matroids, is provided in the theorem below.
The decomposition is performed by deleting a non-graphic cocircuit and the blocks
are shown to be signed-graphic of a particular structure.

Theorem 53. Let M be an internally 4-connected quaternary non-binary matroid
with not all-graphic cocircuits. Then M is signed-graphic if and only if

(i) there is a mon-graphic cocircuit Y of M which is bridge-separable with
U™T, %~ two classes of all-avoiding bridges where % ~ contains all the non-
graphic bridges,

(1) M.(Ugeq- SUY) is signed-graphic and M.(Ugeqy+ S UY') is graphic.
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Proof. Assume first that M is signed-graphic, then there is a connected signed
graph ¥ such that M = M (X). Since M has not all-graphic cocircuits, it has a non-
graphic cocircuit that corresponds to a non-balancing bond in . If it corresponds
to a double bond whose balancing part contains links, then by Lemma BTl there
is another non-graphic cocircuit of M (X) which corresponds to an unbalancing
bond or a double bond whose balancing part contains only joints, denoted by Y.
Thereby X\Y consists of a balanced component denoted by X" and one or more
unbalanced components, where by ¥~ is denoted the subgraph that consists of all
the unbalanced components. M (X)) is quaternary and non-binary and by Theorem
24 it follows that (1) X\ Jy is cylindrical, or (2) ¥\ Jy has a balancing vertex, or (3)
Y\Js = T or (4) X\Js = X B 2o for k € {1,2,3} where each M (%;), (i = 1,2)
is quaternary. Then for (1)-(3) by Theorem 6, @7 and Lemma [Z.TT] respectively,
Y is bridge-separable and there is a partition of the bridges of Y in M (%) into two
classes Z*,% ~ of all-avoiding bridges where % ™ contains the separators of X,
while % ~ contains the separators of ¥~. Therefore %7 ~ contains all the non-graphic
bridges of M(X)\Y. As regards case (4) then ¥ has a minimal 3-biseparation
(X1, X5) where X[X;]| are vertically 2-connected and unbalanced and |X;| = 3.
Moreover, X; is the star of a vertex in ¥ with one of its three elements being a
joint, and therefore a cocircuit of M(X). If X is non-graphic, then X[X5] is not a
B-necklace and therefore it is the unique unbalanced separator of ¥\ X;. Thus X is
a non-graphic bridge-separable cocircuit of M (X). Otherwise X; is graphic and by
Proposition[[2, ¥[X5] is either joint unbalanced or has a balancing vertex, since if it
is balanced then M (X) is graphic. Thereby ¥\ Jy is a 2-vertex 2-sum of ¥; and 3
where M (X;) are graphic. By hypothesis there is Y non-graphic cocircuit of M ()
and by Proposition [[T, there is Y C Y\ Jy; cocircuit of M (3\Jx). We distinguish
two cases either Y’ C E(X3) or Y is partitioned to M(%;). If Y C E(X5), then
Y’ is a bridge-separable cocircuit in M (%5) by Lemma and Theorem 4] and
Y’ is bridge-separable in M (X\Jx) by Theorem B4l Furthermore by Theorem BT
Y is bridge-separable in M (X). Otherwise Y is partitioned to M (%;) and Y/ U z
where Y’ N X; =Y/ is a bridge-separable cocircuit of M(%;) by Lemma and
Theorem 4l By Theorem[B4] Y is a bridge-separable cocircuit of M (3\ Jx) and by
Theorem BTl Y is a bridge-separable cocircuit of M (X). Furthermore by Theorem
[I7 the class of signed-graphic matroids is closed under the operation of deletion and
contraction, therefore, the matroid M (X).(U UY) where U € {U~,U*} is signed-
graphic and connected by Proposition If Y is an unbalancing bond in ¥, then
the signed graph X.(X7UY) is joint unbalanced and M.(UTUY) =M (X).(XTUY)
is graphic. The same holds when Y is a double bond whose balancing part contains
only joints.

Conversely, assume that conditions (i) and (ii) hold. If there is one bridge B of
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Y in M, then M = M.(BUY) is signed-graphic by hypothesis. Otherwise, there
are at least two bridges and a non-graphic bridge in %, since Y is a non-graphic
cocircuit of M. The matroids M.(U~ UY) and M.(UT UY') are quaternary, as a
minor of M and connected by Proposition B0l Moreover, M.(U~ UY) is signed-
graphic and non-graphic having Y as a non-graphic cocircuit by Proposition
and the existence of a non-graphic bridge in % ~. Therefore, there is a connected
signed graph 3y = (G4, 01) such that M.(U~ UY) = M(%;). Then, by Theorem
2] one of the following holds: (1) M (%) is binary or (2) ¥;\Jy, is cylindrical, or
(3) 31\ Jy, has a balancing vertex, or (4) X1\ Js, = Tg, or (5) X1\ Jy, = X & 2
for k € {1,2,3} where each M (3}),i = 1,2 is quaternary. For (1) by Theorem (9],
there is a signed-graphic representation of M (%) where Y is the star of a vertex in
Y. For (2) and (3) by Theorem B0 and for (4) by Lemma [Z.T.2] Y is the star of a
vertex in ¥;. Let us consider now case (5). Due to the fact that Y is a non-graphic
cocircuit of M(%;) and Proposition[IT7 there is Y C Y\ Jy, that is a non-balancing
bond in ¥4\ Jx,. Then Y’ is partitioned to M (3}) and for k = 1 by Lemma 522
for k = 2 by Lemma B.2.5 and for k¥ = 3 by Lemmas 5.212 5213, Y; U Z is a
cocircuit in M (X}), where Z denotes the common elements of M (%)) and M (X)),
Z contains every element 2 of Z such that 2z ¢ cl(X; —Y;), E(M(X) = X; U Z
and Y; = E(M (X)) NY’. Furthermore combining the fact that Y has all-avoiding
bridges in M (%) and Lemma [7.3T] Y has all-avoiding bridges in M (¥;\Jy, ). For
k = 1 by Lemma B.2.3] for £ = 2 by Theorem [33] and for & = 3 by Theorem [30]
Y; U Z has all-avoiding bridges in the matroid M(X}) that contains it. We can
assume that each X\ Js is not a k-sum, since the decomposition of case (5) can be
applied otherwise. Moreover, let us assume first that each Y; U Z is a non-graphic
cocircuit in M (3). Then one of the first four cases of Theorem 24] holds: for (1)
by Theorem B0, for (2)-(3) by Theorem E9 and for (4) by Lemma [ 1.2, Y; U Z
is the star of a vertex in ;. Hence for k = 1 by Lemma (.24 (i), for & = 2 by
Lemmas (i), BZ1T (i) and for &k = 3 by Lemmas (i), (i), we
have that Y is the star of a vertex in ¥;\.Jy,. Moreover, by Proposition 9 Y is
the star of a vertex in ;.

Let us assume now that each Y; U Z is a graphic cocircuit in M (3}), then there
exists (Y; U Z)' C (Y; U Z)\Jy, graphic cocircuit of M(%}\Js/) by Corollary I8 If
cach (Y; U Z)" is a balancing bond in X\.J5, then by Proposition 20, Y; U Z is a
balancing bond in Y. Furthermore for £ = 1 by Lemma B.24 (ii), for £ = 2 by
Lemmas (ii)-(iii), B2IT1 (ii)-(iii), and for k£ = 3 by Lemmas (ii)-(iii),
(ii)-(iii), Y is a balancing bond in ¥\ Jy, which implies that Y is a balancing
bond in ¥, a contradiction. If each (Y; U Z)" is a non-balancing bond in ¥\ Js,
then by Lemma [3] it has all-avoiding bridges in M (3}\Js/). Furthermore by
Corollary [@, each (Y; U Z)" is the star of a vertex in Xj\Jy/ and as above we have
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that Y is the star of a vertex in ;. Otherwise (Y; U Z)’ is a non-balancing bond in
one of X7\ Jyy, X5\ Jy; and a balancing bond in the other. Suppose that (Y;UZ)" is
a non-balancing bond in 3\ Jy; and (Y2UZ)' is a balancing bond in 35\ Js;,. Then
by Corollary [, (Y1 U Z)" is the star of a vertex in ¥\ Jy; and it follows that Y, UZ
is the star of a vertex in ¥j. On the other hand (Y, U Z)’ is a balancing bond in
%\ Jsy, which implies that Y5 U Z is a balancing bond in . For k = 2 by Lemma
(217 (iv)-(v), and for k£ = 3 by Lemma (iv)-(v), Y is a balancing bond
in 31\ Jx, which implies that Y is a balancing bond in %1, a contradiction. The
case where Y; U Z is a non-graphic cocircuit in one of M (X}), M(3}) and a graphic
cocircuit in the other follows as the latter one. Regarding M.(UT UY'), from (ii),
we have that it is graphic and by Theorem M|, there is a connected signed graph
Yo = (Ga,09) such that M.(UTUY) = M(X,), where Y is the star of a vertex in
Y.

Next we construct a signed graph ¥ = (G, o) from the star composition of 3
and Y, with respect to a bond Y that is the star of a vertex in both 3; and ¥5. The
underlying graph G is obtained from the graphs G;1\Y and G2\Y as follows: (a) by
adding a link between the end-vertex of the link of Y in G; and the end-vertex of
the identical link of Y in G5 or (b) by adding a joint at the end-vertex of the link
of Y in (G5 when the identical element of Y in Gy corresponds to a joint. The sign
of an edge in X is the sign which is attributed to the edge by o; when it belongs
to G; and the sign which is attributed to an edge by o, when the edge belongs to
G5\Y. Let us call X* the subgraph X5\ Y upon the deletion of any isolated vertices
and let us call X~ the subgraph of ¥ that consists of the union of the unbalanced
components of X\Y', since Y is star in ¥;. Hence X7 is the balanced component of
Y\Y and ¥~ is the subgraph of ¥ that consists of all the unbalanced components of
Y\Y. Thus Y is a minimal set of edges in ¥, whose deletion increases the number
of balanced components. Thereby Y is a non-balancing bond in ¥ and a cocircuit
of M(X). By the above we derive the following equations

ME).(U-UY)=ME(U UY))=ME/U")=M>) =M(U UY) (7.1)
and
ME).(UtUY)=ME(UTUY)=ME/U)=M() = M.(UTUY). (7.2)
By (2) we have that
M.(UTUY)N\Y = M(Z)\Y = M(3,\Y) = M(Z7). (7.3)

Correspondingly by ([1l) it holds that M. (U~ UY)\Y= M(X~). Moreover, com-
bining the fact that UT and U~ are the two separators of M\Y and the prop-
erty that M\U~ = M/U~ we obtain that M.(UT UY)\Y= M\Y|U". More
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precisely, M.(UT UY)\Y= M/U\Y= M\Y\U = M\(U UY)= M|Ut=
M\Y|U". Next we show that M(X)\Y = M\Y. It holds that M(X)\Y=
M(XZ\Y)= M(XZT @ 37)= M(XT)®;M(X7) which is equal to M.(UT UY)\Y
OM(U-UY)\Y=M\Y|U+@® M\Y|U~= M\Y.

Then Y is a cocircuit in both M(X), M. Hence E — Y is a hyperplane in
both M (X)), M. Therefore r(M(X)\Y)= r(M(X)) — 1 and r(M\Y)= r(M) — 1.
By the fact that M(2)\Y = M\Y, we deduce that r(M(X)\Y)= r(M\Y) and
therefore (M (X)) = r(M). Next we shall show that M(X) = M by showing
that Z(M (X)) = Z(M). Let X € Z(M(X)) then E — X is a cospanning set of
M(X) and spanning set in M*(X). Then r(E — X) = r(M*(X)). Thus r(E —
X) = |E| = r(M(X)). Since r(M(X)) = r(M), r(E — X) = |E| — r(M) and
r(E — X) =r(M*). Therefore E — X is a spanning set of M* and a cospanning
set of M, which in turn implies that X € Z(M). By reversing the arguments we
show that Z(M) C Z(M(X%)).

[

The following decomposition theorem for quaternary and non-binary signed-
graphic matroids, which is based on Theorem B3] was stated by Dillon Mayhew.
Its proof is very similar to the one presented above.

Theorem 54. Let M contain a cocircuit, Y, such that deleting Y produces a
non-graphic matroid. Then M is signed-graphic if and only if there exists such a
cocircuit, Y, with the following properties: the connected components of M\Y can
be partitioned into two classes, %, % ~, such that any two members of %+ or of
U~ are avoiding, and whenever B is a bridge and M.(BUY") is non-graphic, then
B isin % ~. Furthermore, M.(BUY") is signed-graphic whenever B is in % ~, and
is graphic whenever B is in % ™.

In the following, we present an example of the decomposition of an internally
4-connected quaternary signed-graphic matroid M (X%).

Example 7.5.1. Consider the signed-graphic matroid M(X), where the signed
graph X is depicted in Figure[Z.9. The decomposition of the internally 4-connected
quaternary signed-graphic matroid M(X) is illustrated in Figure [Z.8. The signed
graph 3. is jointless and cylindrical. We note that cylidricality is maintained through
k-sums. M(X) has a non-graphic cocircuit Y = {3,—4,—1,-9,5,6} which is
bridge-separable and corresponds to an unbalancing bond in . The bridges of
Y in M(X) are By = {4} and By = {1,2,—4,-5,—6,—2,—-3,—8,7}. The Y-
components of M(X) are the signed-graphic matroid M (X).(B2UY') and the graphic
matroid M (X).(B1 UY'). The matroid M(X).(B1 UY) is represented by the signed
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Figure 7.8: The decomposition of the signed-graphic matroid M ()

graph X% which is depicted in Figure[710(a), while the matroid M(X).(BoUY) is
represented by the signed graph X~ which is depicted in Figure [ZI0(b).

Figure 7.9: The signed graph X

The signed-graphic matroid M (X).(Be UY') = M(X7) is 2-connected, quater-
nary and non-binary and the signed graph ¥~ is 2-vertex 2-sum of 31 and X9 along
z. The signed graph ¥ is depicted in Figure[Z11(a) and the signed graph Yo is de-
picted in Figure [ZI1(b). FurthermoreY is a cocircuit of M(X™) with all-avoiding
bridges and a star bond in X~. The signed-graphic matroid M (Xy) is internally
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4-connected quaternary and non-binary. Moreover, Y is a non-graphic cocircuit
of M(Xs) with all-avoidng bridges, therefore, by Theorem [50, Y is the star of a
vertex.

(a) The signed graph X+ (b) The signed graph X~

Figure 7.10: Y-components of M (%)

(a) signed graph X (b) signed graph X

Figure 7.11: The signed graphs >; and ¥,



Chapter 8

Conclusions

In this chapter we point out the main results of the thesis and describe our contri-
bution. Moreover, we draw conclusions from our research and suggest directions
for future research.

The main target of our reseach was to characterize quaternary signed-graphic
matroids by providing a decomposition theorem. To this aim we studied signed
graphs which represent quaternary signed-graphic matroids obtaining structural
results for the latter class of matroids. As a result, we established necessary and
sufficient conditions for a quaternary matroid to be signed-graphic in Theorem
and we determined the building blocks of quaternary signed-graphic matroids. The
decomposition theorem obtained generalizes Papalamprou and Pitsouli’s decompo-
sition theorem for binary signed-graphic matroids and constitutes the theoretical
basis for a recognition algorithm for the assocated class of matroids.

An important consequence of the decomposition of quaternary signed-graphic
matroids is that it will lead to the decomposition of larger classes of matroids, which
have quaternary signed-graphic matroids as bulding blocks. Moreover, from such
decomposition theorems, recognition algorithms for larger classes of matroids that
contain quaternary signed-graphic matroids are expected to emerge. Since binet
matrices are representation matrices for signed-graphic matroids over R, another
consequence of our decomposition theorem is that it will lead to a recognition algo-
rithm for the subclass of binet matrices that represent quaternary signed-graphic
matroids.

A characterization for cographic signed-graphic matroids with a nongraphic
cocircuit is presented in Theorem Specifically it is proved that a cographic
matroid with a nongraphic cocircuit is signed-graphic if and only if each Fournier
triple contains at most one nongraphic cocircuit. To achieve this, we proved that no
cographic signed-graphic matroid contains a Fournier triple with two nongraphic
cocircuits. Additionally, we showed that each cographic excluded minor of signed-
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graphic matroids contains a Fournier triple with two nongraphic cocircuits. Our
characterization of cographic matroids apart from its structural and theoretical
significance has also significant implications. It is expected to lead to a polynomial
time recognition algorithm for the class of cographic and signed-graphic matroids
and therefore to a polynomial time recognition algorithm for the class of binary
signed-graphic matroids.

As concerns the structural properties of tangled signed graphs, we proved that
the contraction of an m-edge is an operation which preserves the number of negative
cycles. Moreover, we proved that the number of negative cycles in tangled signed
graphs is polynomially bounded by the negative cycles of signed graphs in P(—K})
and P(£C3). As a consequence, condition (ii) of Theorem 10 in [39] can be checked
in polynomial time. Thereby the polynomiality of General Recognition Algorithm
of is implied from the existence of a polynomial time recognition algorithm for
binary signed-graphic matroids.

We provided a characterization for binary signed-graphic matroids which gen-
eralizes a well-known result for graphic matroids (Theorem A3]). To this end we
proved that the incidence matrices of tangled signed graphs are totally unimodular.
What makes the difference between our characterization and existing characteri-
zations for binary signed-graphic matroids is that it also provides a signed-graphic
representation. From our characterization of binary signed-graphic matroids we
derived two algorithms: a polynomial time algorithm for checking whether a bi-
nary and nongraphic matroid is isomorphic to the signed-graphic matroid of a
given jointless signed graph (Binary Algorithm ) and a recognition algorithm for
binary signed-graphic matroids (Binary Signed-graphic Algorithm []).

In the following, we suggest some directions for future research. The first
suggestion concerns the recognition problem of binary signed-graphic matroids.
Binary Signed-graphic Algorithm B has as input a binary matroid and decides
whether the input matroid is signed-graphic. The main obstacle to polynomiality
of the latter algorithm is step 1. Determining an algorithm, which given a basis B
of a binary matroid, checks if there exists a negative 1-tree T with edgeset B such
that the fundamental circuits with respect to B are paths or 1-paths in T, results
in a polynomial time recognition algorithm for binary signed-graphic matroids.
In addition it will imply a polynomial time recognition algorithm for determining
whether a matroid is binary signed-graphic.

The characterization for quaternary signed-graphic matroids which is provided
is about internally 4-connected matroids with not all-graphic cocircuits. There-
fore it is of desire to obtain a recognition algorithm for quaternary signed-graphic
matroids with all-graphic cocircuits or even an excluded minor characterization
similar to that of the binary case. Another open question is the identification of
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the cocircuits which enable the decomposition of quaternary signed-graphic ma-
troids or the decomposition of binary signed-graphic matroids. Although there
exists a polynomial time method for finding a separating cocircuit, if there exists
one, of a given binary matroid presented in [§] there is no polynomial time method
that, given a binary matroid finds a separating and nongraphic cocircuit. More-
over, there is no polynomial time procedure that, given a quaternary matroid, tests
the existence of a nongraphic and bridge-separable cocircuit.
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Appendix 1

Let 3 be a tangled signed graph that belongs to either P(—K,) or P(+C5). In
this appendix, we prove that the number of negative cycles of X is polynomially
bounded. The signed graphs — K, and +C'3 are depicted in Figure and Figure
B2 respectively.

Figure 8.1: —K4

Let us assume first the case where ¥ belongs to P(—K,). We denote by n;
the number of links of the parallel class of i, where ¢ = 1,...,6. The number of
positive links of n; is denoted by n;” while the number of negative links of n; is
denoted by n; . The number of negative cycles of ¥ of length j is denoted by |C;)|
(1 =2,3,4).

e Negative cycles of 3 of length 2 (only parallel edges):

|Clol = Z?:1 nin;

e Negative cycles of 3 of length 3 ({1,2,5},{2,3,4},{3,1,6},{4,5,6}):
C)| = ni (ngns +nyng) +ny (ngng +nyng)+

ny (ning +nyni) +ny (nind +nyny )+

ng (ning +ningd) +n3 (nind +nyng)+

153
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ny (nyng + ndng )+ ny (ndnd +nzng)

e Negative cycles of ¥ of length 4 ({1,2,4,6},{1,3,4,5},{2,3,6,5}):
|Ciyl = ni (n3 (ning +ning) +ny (ning +ning))+

ny (ng (ning +nyng) +ny (ning +ngng))+

ni (ng (nins +ngng) +ng(ning +nyng))+

ny (ny (nyng 4+ nyng) +ng (nyng +nyny))

ny (ng (nng +nzng) +nz (nng +nsng))+

ny (ng (ning + nzng ) + nz (ning + nzng))

Number of negative cycles of X= |Cio)| + |C(3)| + |Cla)|

Let us assume now the case where X belongs to P(£C3). We denote by ny
the number of links of the parallel class of k where £ = 1,...,3. The number of
positive links of ny is denoted by n; while the number of negative links of ny, is
denoted by ;. The number of negative cycles of X of length [ is denoted by |C(,|
(1 =2,3).

Figure 8.2: £C5

e Cycles of 3 of length 2 (only parallel edges):
|CE2)‘ = Z?:l nin;

e Cycles of X of length 3:
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|Clay| = ni (nang +nyng)+
ny (nyn3 +nyny)

Number of negative cycles of ¥= |Cfy | + [C(3)]
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Appendix 2

It is known that the matroids Rj; and Ry are not cographic [?]. Moreover,
among the cographic excluded minors of signed-graphic matroids, there are two,
i.e., M*(G17) and M*(Gyg), that have all-graphic cocircuits. Let .# be the class
of cographic excluded minors of signed-graphic matroids with not all-graphic
cocircuits, i.e., A4 = {M*(Gy),...,M*(Gis), M*(G1s), M*(Gap) ..., M*(Gag)}.
For each cographic matroid M € .# a compact representation matrix over GF(2)
along with a Fournier triple, where two cocircuits are nongraphic, is provided in
the following. The aforementioned Fournier triple was derived by checking the
dual graphic matroid of each M € .# for a circuit C such that M/C has a minor
isomorphic to M(K5) or M(Kj33). Furthermore the following case analysis has
been verified using the MACEK software [28].

The matroid M*(G)

I
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|
w
I
ut
|
[«
|
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Q

=

I

5 © o N o ook w W

[N eleolBoeNoelNoeleNoel
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=T e e e S R i §
— R O+ K KRR ORK
O = = O O =0
O OO OO L, O, OO
L I

OO OO OO R, Rk B o

—
—_

(C*,CF,C5) is a Fournier triple of M*(Gy) where C* = {1,4,—1},
Cy = {-1,-2,2} and Cf = {-1,-2,-3,—4,—-5,—6,—7,1} are nonseparat-
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ing cocircuits. Moreover, M*(G1)\C* and M*(G1)\C5 have a M*(K5) minor.

The matroid M*(Gy)

-1 -2 -3 —4 -5 —6 -7 -8
1111111 1]
21 1 1 0 0 0 0 0
510 0 1 1 1 1 1 1
410 11 1 1 1 1 0

=510 0 0 0O 1 1 1 O
s/ 0 0 0 0 0 1 1 0
10 0 0 1 1 1 0 0
s/ 0 0 0 1 1 0 0 0
o 0 0 0 0 1 1 0 0

(Cr,Cs,C5) is  a  Fournier  triple of M*(Gy) where Cf =
(—1,-2,-3,-4,-5,—6,—7,—8,1}, Ct = {4, 5,8} and C = {—5,—6,9} are
nonseparating cocircuits. Moreover, M*(G2)\Cj and M*(G3)\Cg have a M*(K33)

minor.

The matroid M*(G3)

-1 -2 -3 -4 -5 -6 -T -8
1[0 1 1 1 1 1 1 11
2 1 1 1 0 0 0 0 O
3 1 1 1 1 1 1 1 0
4 o 0 1 1 1 1 1 0
. 510 0 0 1 1 1 1 1
B 10 00 1 10 0 0
7 O 0 0o 1 1 1 0 O
8 O 0 0 0 1 1 1 0
9 O 0 0 0 O 1 1 0
o[ 0 0 0 0 1 1 0 0]
(C*,C5,C%) is a Fournier triple of M*(Gj3) where C* = {-1,-2 3,4},

C; = {-1,-2,-3,2} and C5 = {-1,-2,-3,—-4,-5,—6,—7,3} are nonsep-
arating cocircuits. Moreover, M*(G3)\C* and M*(G3)\Cj have a M*(K;) minor.
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The matroid M*(Gjy)
-1 -2 -3 —4 -5 —6 -7 —8 —9
ifo 1111 0 1 1 1]
2 0 0 1 1 1 0 1 1 0
3|11 1 1 0 0 0 0 0 O
41 1 1 1 1 0 1 1 0
g=510 0 0 1 1 0 1 1 1
¢ 0 0 0O 1 1 1 0 0 O
710 0 0 1 1 0 1 0 O
s 00 0 0 1 0 1 1 0
v/0 0000 1 1 1 0]
(Cg,C%,C%) is a Fournier triple of M*(G4) where Cf = {—4,-5,—6,6},

= {—4,-5,-7,7} and Cf = {—5,—7,—8,8} are nonseparating cocircuits.
8

Moreover, M*(G4)\C§ and M*(G4)\C5 have a M*(K33) minor.

The matroid M*(G5)

-1 -2 -3 —4 -5 —6 -7 -8 —9
1[0 1110 0 0 0 0]
211 1 1.0 0 0 0 0 0
s 11 1 1 1 1 1 1 0

. 4l0 0 1 1 11 1 10

B=510 00 0 0 1 1 1 0
s 0 0 00 1 1 1 0 0
1o o o0 0 11 1 1 1
s{0 0 000 0 1 1 1]

(Cs C’g ,C%) is a  Fournier triple of M*(G;) where Cj
{~1,-2,-3,-4,-5,—6,-7,-8,3}, C: = {-5-6,-7,6} and O
{— 7 8 —9,8} are nonseparating cocircuits. ~ Moreover, M*(G5)\C§
M*(G5)\C§ have a M*(K33) minor.

The matroid M*(G)

and
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[\
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(C3,C5,Cx) is a  Fournier triple of M*(Gg) where C =
(~1,-2,-3,-4,-5,—6,-7,-8,-9,2}, C: =  {-7,-8,-9,6} and
Cs = {—6,-7,-8,7} are nonseparating cocircuits. = Moreover, M*(Gg)\C§
and M*(Gs)\C3 have a M*(K33) minor.

The matroid M*(Gr)
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11

(Cr,C%,C%) is a Fournier triple of M*(G7) where Cf = {—1,-2,-3, -4, —5,1},
Cy = {-1,-2,5} and CI = {—2,—3,7} are nonseparating cocircuits. Moreover,
M*(G7)\C¥ and M*(G7)\C% have a M*(K) minor.

The matroid M*(Gs)
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(C*,Cy,Cry) is a  Fournier triple of M*(Gg) where Cj =
{-1,-2,-3,-4,-5,-6,4}, C* = {—4,5,6} and C}, = {—4,—5,10} are nonsep-
arating cocircuits. Moreover, M*(Gs)\C* and M*(Gg)\C;, have a M* (K3 3) minor.

The matroid M*(Gy)

-1 -2 -3 -4 -5 -6 -7 -8
1[0 0 1 1 1 1 1 0]
2 1 1 1 0 0 0 0 O
3 1 1 1 1 1 1 1 0
, a0 0 0 1 1 1 1 1
=500 0 0 11 10 0
6 O 0 0 0 1 1 1 O
7 o 1 1 1 1 1 1 1
10 0 0 0 0 1 1 1|
(C*,C5,C3) is a Fournier triple of M*(Gg) where C* = {—-1,-2/1,3},

C; = {—1,—2,—3,2} and Cék = {—1,—2,—3, —4, —5,—6,—7,3} are nonsep-
arating cocircuits. Moreover, M*(Gy)\C* and M*(Gy)\C5 have a M*(Ks3)

minor.

The matroid M*(G1p)
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-1 -2 -3 -4 -5 -6 -7
111111 0]

> 1 1 1 1 0 0 0
310 1 1 1 1 0 0
4]0 11 1 1 1 1
go=5]10 0 0 0 1 1 1
6|0 1 1 0 0 0 0
10 0 1 1 1 1 1

s| 0 0 0 1 1 1 1
90 0 1 1 0 0 0

(Cy,C5,C%) is  a  Fournier triple of M*(Gy) where Cf =
{~1,-2,-3,-4,-5,—6,1}, C; = {-1,-6,1,3} and C; = {-5—6,1,2}
are nonseparating cocircuits. Moreover, M*(G19)\C5 and M*(G1p)\C5 have a
M*(K5) minor.

The matroid M*(Gy1)

-1 -2 -3 -4 —5 —6 -7 -8
111 0 0 0 0 0 0]
21 1 1.0 0 0 0 0
s 1 11 1.0 0 0 0
. 41 1 1 1 1 1 1 0
M=ol 0010101 1 1 1
s| 1 0 1 0 1 1 0 1
11 0 1 0 0 0 0 1
s 0 0 1 0 0 0 0 1|
(Cy,C5,C5%) is a Fournier triple of M*(Gyy) where Cf = {-3,-6,5,7},

Cy = {-3,4,7} and C§ = {—6,6,7}. Moreover, M*(G1,)\C} and M*(G11)\C;
have a M*(K33) minor.

The matroid M*(G12)
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[\

N o oo w

O O OO O
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O O =) = = =O
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(
{—-1,-2,-3,-4,-5,-6,1}, C5 = {-8,1,2,3} and Cj = {—1,1,3,4}. Moreover,

¥,C5,C5) is a  Fournier triple of M*(Gis) where Cf =
M*(G12)\C5 and M*(G12)\C5 have a M*(K33) minor.

The matroid M*(G13)

-1 -2 -3 -4 -5 —6 -7 -8
11111 1 1 0]
51 1 1 1 0 0 0 0
510 1 1 1 1 1 1 1
410 00 0 1 1 1 1

ga=510 0 0 1 1 1 1 0
6| 0 1 1 1 1 1 0 0
10 1 1 1 1 0 0 0
s/ 0 0 1 1 1 1 0 0
s 0 0 1 1 1 0 0 0

(Cy,C5,C5) is  a  Fournier triple of M*(Gi3) where Cf =
{-1,-2,-3,-4,-5,-6,—-7,1}, C5 = {-6,6,7} and C; = {-6,8,9} are
nonseparating cocircuits.  Moreover, M*(G13)\C5 and M*(G13)\C5 have a
M*(K33) minor.

The matroid M*(G14)
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-1 -2 -3 -4 -5 —6 -7 -8 -9
[0 0 1 1 1 1 0 0 0]
2 111 1 1 1 0 0 O
31 0 1 1 1 1 1 1 0 0
. 4]0 0 0 0 1 1 1 1 0
M=ol 1111 1 110
6| 0 0 0 1 1 1 1 1 1
710 1 1 1 1 1 1 1 1
s 01 1 1 0 0 0 0 O |
(Cy,C5.C5%) is a Fournier triple of M*(Gh4) where Cf = {-7,-8,2,5},

C; = {-7,-8,4,—6} and C] = {2,3,—7,—1}. Moreover, M*(G14)\C; and
M*(G14)\O§ have a M*(K373) minor.

The matroid M*(Gy5)

-1 -2 -3 -4 -5 -6 -7 -8 -9
1[0 0 0 1 1 1 1 1 1]
2 11 1 1 1 1 1 1 O
3| 0 0 0 O O O 1 1 1
. a1 1 1 1 1 1 0 0 0
B=5 0011101 1 1 1 1
6 O o0 1 1 1 1 1 0 O
710 1 1 1 0 0 0 0 0
100 1 1 100 0 0
(Cy,C5.C5%) is a Fournier triple of M*(Gy5) where Cf = {-7,-8,4,2},

Cy ={-1,-2,-3,-4,-5,—6,—7,-8,2} and Cj = {-7,—8,—9,3} are nonsepa-
rating cocircuits. Moreover, M*(G15)\C} and M*(G15)\C5 have a M* (K3 3) minor.

The matroid M*(G1e)
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-1 -2 -3 -4 -5 -6 -7 -8 -9
o 111 11 1 1 0]
210 0 0 1 1 1 1 1 0
311 1 1 0 0 0 0 0 0
401 1 1 1 1 1 1 0 0
gs=5]10 0 0 0 0 1 1 0 1
6|0 1 1 1 1 0 0 0 1
710 0 0 1 1 1 0 0 0
s/ 0 0 1 1 1 0 0 0 0
90 1 1 1.0 0 0 0 0|
(Cy,C5,C5) is a Fournier triple of M*(Gis) where Cf = {-8,2,3,4},

C5 = {-4,-5,—6,-7,-8,2} and C; = {1,-8,4,—1}. Moreover, M*(G15)\C}
and M*(G16)\C5 have a M*(K33) minor.

The matroid M*(G1g)

Q
—
o0
I
W
_ o O = O O
_ o O = O
—_ O O ==
_ O = ==
— = = = =
O~ = = =
O = O ==
S O O = o=
O O DO = =

(Cy,C5,C%) is a  Fournier triple of M*(Gy) where Cf
(~2,-3,—4,-5,—-6,-7,-8,-9,1}, 5 = {-4,-7.45} and C; =
{-5,—6,—7,5} are nonseparating cocircuits. = Moreover, M*(Gi5)\C; and
M*(Ghs)\C§ have a M*(Kj33) minor.

The matroid M*(Gayp)
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-1 -2 -3 -4 -5 -6 -7 -8
11111 1 0 0 0]
>0 0 0 0 0 1 1 1
510 0 0 1 1 1 1 1
. 4]0 0 0 1 1 1 0 0
207500 111 1 1 0 0
s| 0 1 1 1 0 0 0 0
11 1 1 1 1 1 1 0
s 0 0 1 1 1 1 1 0]
(C*,C¢,C%) is a Fournier triple of M*(Gy) where C* = {-1,-2,7, 8},

Cs = {-2,-3,-4,6} and C3 = {-1,-2,-3,—4,—-5,—6,—7,7} are nonsepa-
rating cocircuits. Moreover, M*(G)\C* and M*(Ga0)\C¢ have a M* (K3 3) minor.

The matroid M*(Gay)

-1 -2 -3 -4 -5 -6 -7

o 0 0 0 1 1 1]

>0 1 1 1 1 0 0 0
510 0 0 1 1 1 1
01 1 1 1 1 1 1
go=51]1 1 1 0 0 0 0
|0 0 1 1 1 0 0
10 1 1 1 1 0 0

s| 0 0 1 1 1 1 0
o0 1 1 1 1 1 0

(Cr,C5,C%) is a Fournier triple of M*(Gy1) where C* = {—4,2,5}, C5 = {3,4,5}
and Cf = {—1,—2,—-3,5} are nonseparating cocircuits. Moreover, M*(Gq;)\C*
and M*(Ga1)\C have a M*(K5) minor.

The matroid M*(Gas)
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-1 -2 -3 -4 -5 -6 -7 -8
1111 0 0 0 0 0]
20 1 1.0 0 0 0 0
s 1 1 0 0 0 0 0 0

., 4]0 0 1 1 1 0 0 0

2= 19 1 1 11 1 0 0
sl 0 0 0 0 1 1 1 0
1o o0 0 0 0 1 1 1
s|1 111 1 1 1 1)

(CY,C5,C%) is a Fournier triple of M*(Gy) where C7 = {-5,-6,-7,6},
C5 = {-6,-7,-8,7} and C5 = {—1,—-2,-3,—4,—5,—6,—7,—8,8} are nonsep-
arating cocircuits. Moreover, M*(Ga2)\C} and M*(Ga2)\C3 have a M*(K5) minor.

The matroid M*(Gag3)

O O OO = ==
O = O = =
— = O = =
— = O = == O
= e e =)
O O = === O
O O~ = O = O
O O = O O = O

O O O =

(CY,C5,C%) is a Fournier triple of M*(Ga3) where Cf = {-—1,-8,3,4},
Cy ={-1,2,-9,4} and C§ = {—1,—2,-3,—4,1} are nonseparating cocircuits.
Moreover, M*(G23)\Cy and M*(Ga3)\C5 have a M* (K3 3) minor.

The matroid M*(Gay)
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— = = O === O O O
O R H O OO F OO+~ O
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(Cy,C5,C5) is a Fournier triple of M*(Gay) where C} = {-1,1,9},
C; = {-1,4,-2} and C = {-1,-2,-3,—4,—5,—6,2} are nonseparating
cocircuits. Moreover, M*(G24)\Cy and M*(Ga4)\C5 have a M*(K5) minor.

The matroid M*(Gas)

-1 -2 -3 —4 -5 —6 -7
1 [ 1 1 1 1 1 0 0]
2 11 1 1 1 1 O
3 11 1 1 1 1 1
4 1 11 0 O 0 O
5 0o 1 1 1 1 0 0
6 0 1 1 1 1 1 O
gs=7 10 1 1 1 0 0 O
8 0 00 1 1 1 0
9 0O 0 0 1 1 1 1
o0 0 0 0 1 1 1
nw|0 0 1 1 0 0 O
2| 0 0 0 0 0 1 1
500 0 0 0 1 1 0
(Cy,C5,C5%) is a Fournier triple of M*(Gy;) where Cf = {-5,10,12},

C; = {1,3,12} and Cj = {—6,—7,12} are nonseparating cocircuits. More-
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over, M*(Gy5)\C7 and M*(Gy5)\Cs have a M*(K5) minor.

The matroid M*(Gag)

-1 -2 -3 -4 -5 —6 -7 -8
11111 1 1 1 0]
2|1 1 1 1 1 1 1 1
3|11 1 1 0 0 0 0 0
410 0 0 0 1 1 1 0
510 1 1 1 1 1 0 0

Ge=6 10 1 1 1 1 1 1 1
710 0 1 1 1 0 0 0
s |0 0 0 1 1 1 1 1
o |0 0 0 0 0 0 1 1
10 o 0 0o o 1 1 1 1
u | o 0 0 O o 1 1 1 |

(Cy,C5,C%) is a Fournier triple of M*(Gag) where CF = {-5,—6,—7,4},
Cy ={-1,-7,1,5} and C§ = {—1,—-2,-3,—4,—5,—6,—7,1} are nonseparating
cocircuits. Moreover, M*(G)\C; and M*(Ga6)\C5 have a M*(Kj5) minor.

The matroid M*(Gar)

ot = w [\
|
—
|
[\
|
w
|
N
|
ot
|
-3
|
oo

* —_
Jor =

© o - o
= e R e

e e e e == R e B
_ = O = O OO = O O =

O OO OO OO ==
O O OO OO =
O O O~ H
O OO === =EO

r 1
el el eoleolNeleoleol

(CY,C5,C%) is a Fournier triple of M*(Ga7) where Cf = {—1,—-2,-3, 4,2},
s ={-1,2,-5,-6,3} and C§ = {—1,—-2, -3, -4, —5,—6, —7,—8, 1} are nonsep-
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arating cocircuits. Moreover, M*(Go7)\C} and M*(Go7)\C5 have a M*(K5) minor.

The matroid M*(Gag)

|
—
|
)
|
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|
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O O O OO OO OO ==
O OO OO OO = ==
OO0 OO K~ K~ B R B L
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O O O = = EEO
O = = =D
— = = = OO
—_—_ O = O = O O =

O OO OO ==

© o N O Ot ks W

(C,C5,C3%) is a Fournier triple of M*(Gy) where Cf = {—1, -2, -3, -4, 5,2},
Ci = {~1,2,—6,-7,3} and C; = {—1,-2,—3,—4,—5,—6,—7,—8,—9,1} are
nonseparating cocircuits.  Moreover, M*(Gog)\C7 has a M*(K5) minor and
M*(Gas)\C5 have a M*(Kj33) minor.

The matroid M*(Gay)

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10
1111 1 1 1 1 0 0 0|
1 1 11100 0 0 0
slo 11111110 0

4]0 0 1 111100 0
20710 000 0 1 1 1 0 0 0
sl 0 0 0000 1 1 1 0
1o o o000 0 0 1 1 1
s[oo0 0 1 1 1 1 1 1 1

(Cy,C5,C%) is a Fournier triple of M*(Gag) where Cf = {—1,—-2, -3, —4, =5, 2},
Cy ={-2,-3,-9,-10,3,8} and Cj = {—1,—2, 1,4} are nonseparating cocircuits.
Moreover, M*(Gas)\Cy and M*(Gas)\C5 have a M* (K3 3) minor.
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In this appendix, we present representation matrices for some of the most known
matroids that appear in the thesis.

The matroid Us 4

The Fano matroid F5

1 00 1 01
fr=10 1 0
001 01
The dual of the Fano matroid F;
1 000111
P 0100110
T lo010101
0001011
The matroid M*(K5)
1 000111
. 01 00110
m; =
001 01Q0°1
00010T171

The matroid M*(K33)

171
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l

100011100
010011010
001 0O0T1O0T171
0001001171

{

The matroid Rj;

-1 -1 -1

0

The matroid Rig

0o -1 -1 -1

1

—1

—1

—1

—1

—1

—1

The matroid Ty

—1
—1

0
-1 0 -1 -1
-1 -1

—1

0

tg =
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(B, )

Y= (G, 0)

Y =3,

independence system

natural numbers

real numbers

integer numbers

non-negative integer numbers

basis of matroid M

set of fields

biased graph

bidirected graph

directed graph

partition of Y as determined by bridge B
contraction of e € E(X) in signed graph X
deletion of e € E(X) in signed graph X
deletion of v € V(X)) in signed graph X
signed graph

signed graph >; isomorphic with signed graph >,
transpose of matrix A

incidence matrix of bidirected graph g

incidence matrix of directed graph 8
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As incidence matrix of signed graph X
Ag incidence matrix of graph G @
C(B, f) fundamental circuit of f with respect to basis B
C(B,v) component determined by bridge B and vertex v @n
(T, f) fundamental cycle of f with respect to spanning tree T°
G/X contraction of X C F(G) in graph G
G.X contraction to X C E(G) in graph G §
G\X deletion of X C F(G) in graph G
G| X deletion to X C E(G) in graph G
Gy =Gy Gy isomorphic with Gy @
G1 UGy union of graphs G and G,
GF(2) binary field
GF(3) ternary field
GF(4) quaternary field
I, n X n identity matrix
Jx set of joints of a signed graph X 12
Ja the set of half-edges and loops of graph G @
M/ X the contraction of X from M
M.X contraction to X in M
M\X the deletion of X from M
M|X deletion to X in M
M(G) cycle matroid of graph G
M = (E, %) matroid M on E with bases family % 19
M = (E, %) matroid M on E with circuit family & IK
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M = (E, %) matroid M on E with independence family .& 19
M = (E,cl) matroid M on E with closure operator cl
M = (E,r) matroid M on F with rank function r
MIA] vector matroid of matrix A 28
M~ dual matroid M
M*(G) bond matroid of graph G 36
M; = M, matroid M; isomorphic with M, 27
M, &1 My 1-sum of matroids M; and M,
M, @9 My  2-sum of matroids M; and M,
M, ©3 My 3-sum of matroids M; and M,
N network matrix 11
0 orientation of signed graph X
si(M) simple matroid associated with matroid M IK
Unm uniform matroid on m elements and rank n

XAY symmetric difference of the sets X and Y

=
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Glossary of terms

almost-regular matroids oyedov-xavovixd unteoeldm

avoidance omog@uYT

arc t6fo

balancing vertex xopugy e€icoppdnnong

base [don

binary matroid oSuadixd untpoeidég

bipartite OSwepéc

bond 6ecoudc

bridge Yyégupa

bridge B, avoids bridge B, 7 yégupa By armogelyel tn yépupa By
bridge-separability oOiuywetouoc yepuonvy

bridge-separable cocircuit ocuyxOxhwua Tou doywellel TiIC YéQUEES
cardinality minduxotnra

circuit xoioya

closure xiewotoTNTAL

closure operator teleotrc xAeloTHTNTOG

cobases cupfdoeig

cocircuit ouyxOxiwua

cographic cuyypogpixd

coindependent ocuvaveZdptnta

corank ocuuPBaduot

connected ocuvexTixde

connected components GUVEXTIXEC GUVIGTOGEC

connectivity ocuvextixotTnTa

connectivity number opiluoc cuvextixdtnTog

cocircuit ovtxOxhwua

coloop cupfpdyog

connected tree ocuvextixd 6évTpo

compact representation matrix cuumiecuévog mivaxag avamapdoTacng
contraction cOviiun
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cut mepwonn

cycle matroid untpoeideg xUxhou

cylindrical signed graphs »uAwdpd tpooTuacuéva YpupuaTo
decomposition theorem Yedpnua arocivieong
deletion of diypogy

deletion to neploploude

duality oSuodixdTn T

dual duwxé

directed xoteuduvéuevoc

elementary octouyeong

excluded minor anoxieldpevo éhaccoyv

faces o(eic

flat »hewo16 (¥ eninedo) clvolo

Fournier triple Fournier tpidda
F-representable [F-avoanapliotduevo

geometric dual yewuetpd duxd

graphic matroids ypougud untpoeldy

head xeqolr

hyperplane unepeninedo

incidence matrix wivoxog tpdonTwOTNg

joint dpdpwon

k-separation k-0l wEloUOC

k-sums k-adpolopota

k-bipartite r-uepec

loop Bpdyoc

partition ouwoTnTa

pivoting od#ynon

planar embedding eninedn anotinwon
matroid untpoetdég

Matroid Theory Ocwpla Mntpoeldmy

minor €\uccov

near-regular matroids meplnou-xoavovixd unteoeldn
network matrix wivaxoc duxtOou
non-separating cocircuit un-oloywpelotind cuyxiXALU
quaternary matroid tetpadixd unTeoeldéc
rank [(odudc

rank function ocuvdptnon Boduoo

regular matroids xovovixd unteoeldy
representability ovanopactacuoTTY



CHAPTER 8. APPENDIX 3 179

signed-graphic matroid npooruacuévo-ypupixd unTeoeldég
separator oLy mEloTAS

separating cocircuit 0OlyweloTG GUYXIXALU

span ootpixt| olvieon

standard representation matrix npdtuTog mivaxag avarapdoTtaong
star composition octpwr| chvideon

tangled signed graph mnepinioxo mpoonuacuévo yedpnua
totally unimodular matrix t-nivoxog

coloop cupfpdyog

twisting meplotpogt|

vector matroid untpocldéc SlaviouaTog

Y-component T-cuvicthoa
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Y-component,
k-separation

exact,

in a graph,

in a matroid,

minimal,

vertical in a graph,

vertical in a matroid,
1-forest,
1-sum

of matroids,

of signed graphs, (7]
2-sum

of matroids,

of signed graphs, (7]
3-sum

of matroids,

of signed graphs,

arc,
head,
tail,
avoidance,

B-necklace,

balancing vertex,

basis,

bipartite,

block,

bond
balancing,
balancing part,
double,

non-separating,
of a graph,

of a signed graph,
separating,

star,

unbalancing,
unbalancing part,

bridge-separability,
bridges,

avoiding,
overlapping,

circuit,

fundamental,
type I handcuff, {1l
type II handcuff, @]

closure,
cobase,
cocircuit,

all-avoiding bridges,
bridge-separable,
graphic,
non-graphic,
non-separating,
separating,

column space,

complete,

contraction

edges in a graph,
edges in a signed graph,
elements in a matroid,

cycle,
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fundamental,

deletion
edges in a graph,
edges in a signed graph,
elements in a matroid,
vertex in a graph,
dimension of a vector space,
disjoint graphs,

edge

bidirected, [I4]

directed,
edge cut,
equivalent representations,
excluded minors,
expansion,

face,
boundary,
contained in the cycle,
incident,
inner,
outer,
sign,
vertex-disjoint,
field
binary,
finite,
quaternary,
ternary,

graph, [7]
O,
k-connected,
biased,
bidirected, [I4]
directed,
planar,
twisted,

half-edge, [7

identification of vertices,
incidence matrix
bidirected graph,
directed graph,
full row rank, [1
graph, [
signed graph, [IT]
independence system,
isomorphic
graphs, [
matroids, 211

joints,

k-biconnectivity,
vertical, [[4]

k-biseparation,
vertical,

line,
line in a matroid,
linear

combination,
dependence, [0
independence,
relation,
link, [7]
loop
in a graph, [
in a matroid,
loose-edge, [0

matrix
binet,
compact representation,
full row rank,
integral,
network, [IT]
standard representation,
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INDEX

totally unimodular,
transpose,

matroid,
F-representable,
basis axioms,
bias or frame,
binary, 27
circuit axioms,
cographic,
connected components,
dual,
dyadic,
graphic,

independent sets axioms,

k-connected,

near-regular,

quaternary,

rank axioms,

regular,

signed-graphic, 41l

simple,

ternary,

uniform,

uniquely representable,
maximization problem, 2]
minor

in a graph,

in a matroid,
minor-closed,
modular set,

negative 1-path,
negative 1-tree,

operations
elementary,
orientation

of a graph,
of a signed graph, [I4]
orthogonality property,

parallel elements,
partial fields,
path,

planar embedding,
power-set,

separator, 24]
elementary,
signed graph, [T
balanced,
cylindrical,
joint unbalanced,
orientation, [I]
planar,
tangled,
unbalanced,
star,
star composition,
subgraph, [7]
induced, [
switching
at a vertex,
equivalent,
symmetric difference,

twisting,
union of graphs,

vector matroid,
vertex of attachment, &7

walk,
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