
CloudAgora: Democratizing the Cloud

Katerina Doka, Tasos Bakogiannis, Ioannis Mytilinis, and Georgios Goumas

Computing Systems Laboratory,
National Technical University of Athens, Greece

{katerina,abk,gmytil,goumas}@cslab.ece.ntua.gr

Abstract. In this paper we present CloudAgora, a platform that enables
the realization of a democratic and fully decentralized cloud computing
market where participating parties enjoy significant advantages: On one
hand, cloud consumers have access to low-cost storage and computation
without having to blindly trust any central authority. On the other hand,
any individual or company, big or small, can potentially serve as cloud
provider. Idle resources, be it CPU or disk space, are monetized and
offered in competitive fees, regulated by the law of supply and demand.
In the heart of the platform lies the blockchain technology, which is
used to record commitment policies, publicly verify off-chain services
and trigger automatic micropayments. Our prototype is built on top of
the Ethereum blockchain and is provided as an open source project.

1 Introduction

The advent of cloud computing has revolutionized the IT sector worldwide, by
allowing organizations and individuals alike to opt for remote resources - be it
storage, computation or applications - instead of costly and hard-to-maintain
local infrastructure. In the last years, cloud computing has indeed prevailed
over traditional on-premise environments as a means of executing applications
and/or offering services for a wealth of reasons, including reduced costs, seem-
ingly infinite resources purchased in a pay-as-you-go manner, scalability, ease
of maintenance, etc., [8]. This fact has highly impacted a multitude of industry
domains in the way they do business and has fundamentally transformed our
everyday lives in the way we work and communicate [5].

Cloud services are mainly based on (a handful of) large providers that act as
trusted entities for the transfer, storage and processing of user or company data.
Thus, despite their reliance on fundamental principles of distributed computing,
they fail to achieve full decentralization. The main disadvantages of this cloud
computing model are summarized in the following:

– It carries the intrinsic weaknesses of any model based on trust: Users take
for granted that providers act in the interest of their customers rather than
opportunistically.

– The leading Cloud providers have invested huge amounts of money to build
massive server farms and consume enormous amounts of energy for run-
ning and cooling them. Although they can provide prices that render infras-
tructure renting more appealing than on-premise infrastructure operation

in the majority of cases, pricing could be even more affordable, had there
been a greater competition [21]. Thus, the public cloud market has become
a functional monopoly where a few providers define the prices, which are
non-negotiable and can be prohibitively high for applications demanding
specialized hardware.

– Sovereignty over data and control over computations performed on top of
them are surrendered to the big players, who thus accumulate knowledge,
gaining significant competitive advantage and strengthening their already
privileged position.

The missing traits, i.e., full decentralization, strong guarantees for secu-
rity and integrity based on proof rather than trust and transparency in any
user-provider interaction, are the ones that blockchain technology can provide.
Blockchain started off as the driving force behind Bitcoin - a distributed ledger
where transactions are ordered, validated and, once recorded, immutable. With
the addition of smart contracts - pieces of code which are executed automati-
cally, in a distributed manner - it quickly rose as one of the most groundbreaking
modern technologies, offering a new approach to decentralized applications and
disrupting a wide range of fields such as finance, IoT, insurance, voting etc., [18].

However, blockchain technology is not a panacea. Especially when it comes to
storage and power devouring applications, blockchains fall short of their require-
ments due to the limited computing and storage capacity they offer. Typically,
the most prevalent blockchains, such as Ethereum, support blocks of at most a
few Megabytes, achieve a throughput of a few tens of transactions per second
and accommodate a limited number of operations per smart contract [9]. As
such, blockchains and smart contracts cannot be adopted as storage providers
or computing engines per se, but rather as an enabling technology which keeps
track of and validates off-chain operations. The challenge in this scenario is to
find a secure way to guarantee the correctness of the off-chain service through
the use of a publicly verifiable proof [12].

To that end we present CloudAgora, a truly decentralized cloud that allows
for on-demand and low-cost access to storage and computing infrastructures.
The goal of CloudAgora is to create a blockchain-based platform where partici-
pants can act either as providers, offering idle CPU and available storage, or as
consumers, renting the offered resources and creating ad-hoc virtual cloud infras-
tructures. Storage and processing capacities are monetized and their prices are
governed by the laws of supply and demand. Thus, CloudAgora democratizes the
cloud computing market, allowing potential resource providers - ranging from
individuals to well established companies in the field - to compete with each
other in a fair manner, maintaining their existing physical infrastructure.

In a nutshell, CloudAgora offers users the ability to express a request for
storage or computation and take bids from any potential provider in an auction-
style manner. Anyone who can supply storage and/or computing power can
become a CloudAgora provider, ranging from individuals or companies offering
idle or under-utilized resources to large datacenters, traditionally operating in
the Cloud market. Customers are automatically matched to resource providers

according to the height of their bid and their reputation. The agreement be-
tween providers and consumers is encoded as a smart contract, which allows for
traceability of actions and automatic triggering of payments. While storage and
processing is performed off-chain, the integrity and availability of stored data as
well as the correctness of the outsourced computation are safeguarded through
proper verification processes that take place on the chain. Special consideration
has been dedicated to offering the necessary incentives for a fair game, both from
the provider as well as the customer perspective.

Such a solution offers significant advantages compared to the traditional,
datacenter-only based cloud computing model: Providers can exploit existing
idle resources for profit while consumers enjoy lower fees due to competition
without having to blindly trust any central authority or big company. Through
the use of blockchain technology, all services performed in the cloud are recorded
and payments are automated accordingly.

Approaches similar to CloudAgora in the competitive landscape either focus
exclusively on data hosting [22, 2, 20] or target specific applications, such as 3D
rendering [3]. Other solutions that address secure, off-chain computation have
limited applicability due to the restrictions they pose on the type of computation
supported [23]. Many of these projects rely on their proper blockchain and native
coins, complicating the redemption of rewards. Contrarily, CloudAgora is a fully
open-source, based on Ethereum platform, which provisions both storage and
computation resources.

In this paper we make the following contributions:

– We propose an open market platform, where users can trade storage and
computation resources without relying on any central authority or third
party. By enabling any user to become a potential resource provider, our
work breaks the monopoly of the few and creates of a truly democratic and
self-regulated cloud market.

– We offer a solution that addresses the provision of both storage and compute
resources in a unified manner based on smart contracts. The proper publicly
verifiable proofs that the off-chain service, either data or computation re-
lated, was correctly completed have been identified and incorporated to our
platform.

– We implement the proposed platform on top of the most prevalent smart
contract blockchain, Ethereum and provide it to the community as an open
source project.

2 Architecture Overview

CloudAgora is a system that provides the basic primitives and tools for enabling
a truly decentralized cloud infrastructure. Anyone that joins CloudAgora can
act either as a cloud user, a cloud provider or both. By taking advantage of
blockchain technology, we establish an environment where rational participants
do not diverge from their expected behavior, monopoly effects are eliminated
and prices dynamically adjust according to market rules. Henceforth, we refer to

CloudAgora users that provide resources as service providers and to users that
consume resources as clients.

As we consider that the adoption of a system highly depends on the ease of
installation and use, we propose a lightweight design that operates on top of any
blockchain technology that supports smart contracts. Although our approach to
the design of the system is blockchain-agnostic, we base our prototype imple-
mentation on Ethereum, one of the most popular and advanced smart contract
platforms, while we keep its internals intact. This way, the whole cloud envi-
ronment can run as a common application in every public or private Ethereum
blockchain.

The system is hierarchically structured in two layers, namely the market
layer, and the storage/compute layer. At the highest level, there is the market
layer. This is an abstraction of the way the economy of CloudAgora works.
This layer comprises a set of algorithms that define participants’ incentives and
mechanisms for the regulation of prices. The creation of a new cloud job, the
decision on price levels and the assignment to a specific provider all belong to
the market layer. The CloudAgora market rules are enforced through a set of
smart contracts that work on-chain.

At the bottom layer, actual cloud services are provided: data persistence
and computations take place. Furthermore, this layer contains algorithms that
can work both on- and off-chain and ensure the provably proper operation of
the whole system. The contracts of this layer audit clients and providers and
guarantee that none is making profit against the rules of the market. In the fol-
lowing sections, we describe in more detail the two layers of our system. Section
1 presents the market layer, Section 4 demonstrates our approach to decentral-
ized storage and Section 5 shows how CloudAgora can provide provably correct
computations in a decentralized cloud environment.

3 The Market Layer

In a typical cloud scenario nowadays, a user willing to consume resources will
have to choose among a few known providers (e.g., Amazon, Google, Microsoft),
accept the prices they offer without the right to negotiate it and finally deploy
her job. The deficiencies of this approach are twofold: (i) as only a few cloud
providers determine price levels, cloud deployments in many cases end up too
costly to afford and (ii) large companies accumulate vast amounts of data and
get a great head start in races like the ones of machine learning and big data
processing.

CloudAgora remedies these drawbacks by enabling a free market where each
player can participate on equal terms. Moreover, prices are not fixed but are
determined through an auction game. Since potentially anyone can be a service
provider, data does not end up in the possession of a few powerful players but
are expected to be distributed among all members of the system.

Let us assume a client that needs resources for either storing a dataset D or
computing a task T . The client broadcasts a description of D or T and initiates an

struct Task{
 teskID
 deadline
 description
 inputs
 properties
}

Struct Auction{
 taskID
 bidArray
 deadline
}

TaskManager Auction
Cloud Agora
Market Layer

User
Service Providers

Cre
ate

 T
as

k

N
otify

Bid

Finalize Auction

Auction
W

inner

Fig. 1: Market Layer

auction game. Based on this description and the assessed difficulty/cost, anyone
interested in providing resources can make an offer. The client finally selects the
provider with the most appealing offer (in terms of both price and credibility)
and assigns her the job. For guaranteeing integrity and transparency, the market
layer is implemented as a set of smart contracts that operate on-chain.

Figure 1 illustrates the workflow followed in a CloudAgora auction. For sup-
porting the required functionality for both clients and service providers, we have
implemented the corresponding NodeJS clients. Each CloudAgora client is a
Dapp that exposes a specific API and can interact with the blockchain.

Initially, the client interacts with the TaskManager contract and creates a
new task (storage or computational). Each task comprises a structure that con-
tains a set of mandatory and a set of optional fields. The mandatory fields of
a task are: (i) its unique id, (ii) an expiry date, until when the service provider
commits to deliver resources and (iii) a description indicative of the tasks’s diffi-
culty. For storage tasks, this description can be the size of the dataset the client
needs to store and for computational tasks, the amount of required gas if user
code is converted to Ethereum Virtual Machine (EVM) assembly. The optional
fields may contain task-specific information (e.g., the schema of a dataset, an
application parameter, etc.).

As soon as the task is created, the TaskManager contract calls the Auction
contract and creates a new auction. Every auction carries three pieces of infor-
mation: (i) the corresponding task id, (ii) bid array: a structure where all bids
are maintained and (iii) a deadline. If the deadline expires and a winner has
not been found, the Auction contract cancels both the auction and the task.
Auction deadlines are measured in chain blocks. When both the task and the
auction are ready, a taskCreation event is emitted on the blockchain and all
interested parties, i.e., service providers, listen to it. Any service provider that

is interested in getting paid for the specific task places her bid at the Auction
contract. Upon the receipt of a new bid, the contract checks if the received bid
is better than the best it currently maintains in its structure. If not, the bid is
discarded. Otherwise, the bid array is updated and a newBid event is emitted
to both the client and the service providers. The client can inspect the current
bid and if it suits her, she can finalize the auction and select provider. A service
provider can also inspect the last submitted bid and evaluate if she is willing to
make a new offer or not.

We mentioned that only offers better than the current best are inserted into
the bid array. A question that naturally arises is what is the criterion for com-
paring bids. A naive approach would suggest to always choose the provider that
offers the lowest price. However, this would encourage malicious players to offer
services in extremely low prices. For tackling this problem, in CloudAgora, we
employ two distinct mechanisms. When the auction is finalized, the selected
provider has to put a collateral until the corresponding task expires. If the
provider fails to deliver, the collateral is never returned to her but instead is
handed to the client as a refund. The size of the collateral is automatically set
to a value greater than the total payoff that the provider will receive if she suc-
cessfully delivers the task. This way, the provider is incentivized to play by the
rules.

Along with the collateral, we also establish a reputation-based system. Provi-
ders with a bad reputation should be penalized even when they offer appealing
prices and providers that are renowned for their quality of work should have
the right to claim higher prices. Thus, for comparing bids we use a function
f (price, reputation) ∈ < in order to meet both criteria. The bid that wins the
auction is the one with the highest f -value.

However, it is still unclear how reputation scores are computed and assigned.
Upon the completion of a task (be it storage or computational) the client calls
the finalize function of the TaskManager contract. This function takes as input
a proof of the task’s success and a binary reputation score: 1 denotes success and
0 states that the provider failed to deliver. As the proof of success is sent along
with the reputation score, the miners that execute the finalize function can verify
if reputation is correctly assigned and prevent an unfair ratings attack [10]. The
aggregate reputation of a provider is calculated by summing up all reputation
scores that have ever been assigned to her. It is this aggregate reputation that
is used by the f -function in order to compare bids.

4 Storage

In this section we highlight challenges we met and describe our approach to
implementing decentralized storage over blockchain in CloudAgora. First, we
describe a number of desired properties we consider for a remote data storage
system. Then we elaborate on how we provide guarantees for those properties
on a trustless environment. Finally, we outline a typical storage workflow in
CloudAgora.

4.1 Challenges Specific to Storage

When we consider remote data storage we often come across a wide variety
of client requirements. However, all seem to be related to a small number of
properties we want a remote data storage system to have. Specifically, in the
evaluation of such a system we mostly consider Data Integrity, Data Availability,
Data Recovery and Privacy. That is the ability to retain our data intact, to access
our data at any time, to be able to address data loss and to keep others from
accessing our data.

Moving from the more established cloud storage model to a decentralized
storage model over blockchain requires us to reconsider our approach regarding
the above properties. Existing cloud storage systems are based on trust, repu-
tation and SLAs, however these mechanisms are not directly transferable to a
trustless environment such as a blockchain.

At this point we have to note that the blockchain itself can guarantee those
properties. However, as we mentioned before, it is not designed to be used as a
decentralized storage layer. The cost of storing large data volumes on-chain is
prohibitive and its use as a decentralized storage system is impractical since all
the data have to be replicated in all the peers. As a result, we have to develop
off-chain solutions that can guarantee data integrity, availability, recovery and
privacy using the blockchain only for bookkeeping, that is only as a distributed
ledger that cannot be tampered.

4.2 Our Approach

Given CloudAgora should operate on a trustless environment we have to estab-
lish ways to enforce the desired behavior for each one of the participants. Since
we base CloudAgora on a open, permission-less blockchain we observe that we
cannot enforce any particular behavior. That is because the participants are
free to join or leave the process at any time, or even continue with a different
identity. As a result we restrict our hypothesis and assume that the participants
are rational players that do not exhibit altruistic behaviors. This assumption
allows us to use incentives to guide the participants behavior and provide some
guarantees related to the desired properties of a remote data storage system. In
practice we use a combination of incentives and cryptographic tools to ensure
those properties.

In a typical remote data storage scenario we would have a client who wants
to store data remotely and one or more providers who offer data storage. From
the market layer we have a way to choose one provider for a client. Therefore,
from now on we assume that we have two parties a client and a provider. They
can interact either on- or off-chain, their on-chain interactions are governed by a
smart contract. We call this smart contract the storage contract, it is a contract
between the two parties for storing specific data on the provider’s side. It has
an end date provided by the client and the provider’s payment as it is defined
by the market layer. The payment amount is transfered from the client to the
storage contract and therefore it is managed by it. Given this configuration, in

the following Sections, we describe how we approach and guarantee each one of
the properties mentioned.

Data Integrity: To ensure that the data of the client will not be tampered
while at rest we use two different mechanisms: incentives and Merkle trees.

We first incetivize the provider to guarantee the integrity of data by requiring
from her to provide collateral in case of data tampering. In order for the provider
to accept the storage contract she has to transfer to the contract a previously
agreed upon amount. As a result if the provider cannot prove to the storage
contract that the data have not been tampered, she will lose the collateral.

We further icentivize the provider through our reputation system used in
the market layer. Having in place a reputation system that aids providers with
good reputation to get better storage deals, we can penalize the reputation of
a provider that fails to guarantee data integrity. This penalty will influence its
future deals and therefore as a rational player she is encouraged to provide good
data integrity guarantees.

The mechanism we use to enable the provider to prove that she owns the
client’s data is based on Merkle trees [16]. The client calculates the Merkle tree
of the data to be stored and saves its root hash in the storage contract. In the
same manner the provider verifies the root hash before accepting the contract.
As a result, at any point in time the provider can send a number of Merkle
proofs [16] to the storage contract. The contract by verifying that the given
proofs match the root hash of the data’s Merkle tree, ensures that the provider
still owns at least part of the original data. Increasing the number of proofs
required, increases the probability that the original data remain intact.

Data Availability: To deal with availability we require the provider to reply
within a certain time frame to random challenges initiated by the client. Those
challenges involve the client asking for a Merkle proof of a specific part of the
data. The client can perform the challenge either on- or off-chain. In the first
case it is the storage contract that verifies the proof in the second it is the
client. If the check is performed on-chain and the provider fails to reply within
the specified time frame the contract is invalidated and she loses the collateral
as well as reputation. That way the provider is incentivized to have a certain
response time in regard to data availability. Having the response time frame
specified as part of the contract gives the provider a way to implement hot or
cold storage options.

Data Recovery: The incentives provided for Data Availability and Integrity
could be considered sufficient to cover the case of data loss as well. In such
a case the provider would not be able to prove that she owned the original
data and eventually lose its collateral and reputation. However, given that the
Merkle proofs mechanism can only guarantee the availability of a percentage
of the original data, we incorporate erasure codes as a way of lowering even

further the possibility of data loss or corruption. In a nutshell, erasure coding
expands and encodes a dataset with redundant data pieces and breaks it into n
fragments in a way such that the original dataset can be recovered from a subset
of the n fragments. There is a large collection of erasure codes available today,
we opted for the Reed-Solomon codes [17] because of their popularity and wide
use. By erasure encoding the data before sending them to the provider, the client
ensures that retrieving only a part of the stored data is enough to restore all
of the original data. This process is transparent to the provider and the storage
contract, that is both the contract and the provider treat the client’s data the
same way whether they are erasure encoded or not.

Privacy: The simplest way to handle privacy is at the client side by encrypting
the data before transmission. As with erasure codes, the provider and storage
contract handle the client’s data identically whether they are encrypted or not.
That gives the client the freedom of choosing any encryption algorithm or even
not using encryption if not required.

Thus, by assuming rational players and through the use of monetary and
reputation based incentives, we are able to guarantee Data Integrity, Availability
and Recovery. This is enabled by creating Merkle trees on the client’s data and
using erasure codes to lower the probability of data loss.

4.3 Storage Workflow

In this section we describe in detail the remote data storage workflow as well as
the life-cycle of a storage contract and its state transitions.

Storage Workflow: At this point we assume that the client has already in-
teracted with the market layer and the corresponding auction is finalized. As
a result a storage contract is created that binds a client with a provider. The
contract contains the addresses of the client and the provider, the root hash of
the Merkle tree of the client’s data, the end date of the contract as well as the
payment and collateral amounts. Those amounts are transfered to the contract
upon its creation and therefore managed by the contract logic. We note that any
preprocessing to the data to be stored should be performed by the client before
the initial auction phase. Typically the data preprocessing includes encryption
and erasure encoding as mentioned in the previous section. Given that in the
storage contract we store the root hash of the Merkle tree of the data we must
perform any preprocessing before the Merkle tree calculation.

As a second step, the client sets up a server to serve the data. The provider
downloads the data, computes their Merkle tree and verifies their integrity by
matching the root hash of the tree with the one stored in the storage contract. If
the hashes match, the provider activates the contract. From that point on, the
client can safely assume that the data are stored remotely.

After the end date of the contract, the provider can collect the payment. To
do so she has to prove that she still has the data at its possession, he does so by

sending a number of Merkle proofs to the storage contract, if the proofs are valid
the contract releases the funds and transfers them to the provider’s address.
If the provider cannot prove that she possesses the client’s data the contract
transfers all the funds to the client’s address since it assumes that the provider
lost the data and therefore the client should receive the collateral.

At any point in time after the contract activation and before the end date
of the contract, the client can request its data from the provider, this operation
is performed off-chain. Although, it is not possible for the client to request
the data on-chain, she can achieve the same goal by asking a sufficient number
of Merkle proofs and restoring its original data from the proofs. This second
alternative, however, is not practical but the system’s incentives are against it,
since providing a Merkle proof to the storage contract costs to the provider gas.

Additionally, while the contract is active the client can challenge the provider
by requesting a Merkle proof for a specific data block. This process can be per-
formed either on- or off-chain and is used as a safeguard against data tampering.

In the case of an off-chain challenge, we have to note that for the client to be
able to challenge the provider she would have to decide beforehand on a number
of challenges and store that number of data blocks locally before serving the
data to the provider. This is because at the time of the challenge in addition to
the Merkle proof the data block that matches that proof is also verified. Thus,
when the client challenges the provider to prove that she owns a specific data
block D, the provider sends back to the client the given data block D as well as
the path of the Merkle tree from D to the root of the tree. At that point, the
client can verify that the provider has D at its possession as well as that D is
part of the original data.

In the case of an on-chain challenge, the client requires from the provider to
prove that she owns a number of different data blocks. As a result the provider
has to send to the storage contract a given number of randomly selected data
blocks as well as the corresponding Merkle tree proofs. At that point the stor-
age contract produces the hash of each data block and combines it with the
corresponding proof verifying if the block leads to the Merkle tree root that is
stored on the contract. By requesting a given number of Merkle proofs at each
challenge the client can ensure with good probability that the provider has the
original data at its possession.

Storage Contract Life-Cycle: The life-cycle of a storage contract can be
represented by its state transitions as depicted in Fig. 2. The dashed transitions
represent actions performed by the provider while the solid ones by the client.

Transitions t2, t4 and t7 are triggered by the provider. In t2 the provider
receives the data and proves that she owns it in order to activate the contract.
In t4 the provider proves on-chain that she still has possession of the data while
in t7 performs the same proof in order to complete the contract and receive the
payment.

Transitions t0, t1, t3, t5 and t6 respectively are triggered by a client action. In
t0 the client through his interaction with the market layer creates a new storage

Created

Cancelled

Active

Challenged Complete

Invalid

t0

t1

t2

t3

t4

t5

t6

t7

Fig. 2: Storage Contract State Diagram

contract and specifies payment amount, collateral, provider and contract end
date. In t1 the client has the option to cancel the contract before it is accepted
by the provider. In t3 the client challenges the provider by requesting an on-chain
proof that she still owns the data. t5 can be triggered by the client in the case
the provider failed to prove that she owns the data, in that case the contract is
invalidated and the collateral is transfered to the client. Finally, in t6 we have
the same transition with t5 only after the contract end date.

5 Compute

Providing secure computations by untrusted parties presents its own challenges.
For the following discussion, we make two observations:

a) In CloudAgora there exists a trusted network (blockchain) that
correctly performs small computational tasks. While any algorithm can be
developed as a smart contract and executed on the blockchain, we particularly
focus on small tasks. Heavy contracts lead miners to the notorious Verifier’s
Dilemma. On-chain verifications that require non-trivial computational efforts
will fail to execute correctly in rational miners and the whole chain will be
vulnerable to serious attacks [14].

b) Participants are rational in the sense that they act to maximize
individual profits. A CloudAgora member is eager to solve or verify a task
only if she expects to have a monetary profit.

Based on these observations we develop a truebit-like [19] game, where out-
sourced algorithms are executed off-chain and blockchain is only used for cor-
rectness proofs. The outline of such a game consists of the following steps:

– The user announces a task and a task description is placed on-chain.

– Depending on the protocol, a solver is selected for executing the task. In the
traditional truebit game, the solver is selected at random. In CloudAgora, a
solver/provider is selected based on the auction described in Section 3.

– The solver privately performs computations off-chain and only after comple-
tion, she reveals the solution on the blockchain.

– While solver is computing the task, any other member of the system can also
compute it in private and act as a verifier. If a verifier agrees with the solution
provided by the solver, the solver gets paid and the game stops. In case of a
disagreement, the verifier can challenge the solver and an interactive proof
takes place on-chain. If the solver proves to be malicious, the verifier receives
solver’s reward and solver looses the deposited collateral we discussed in
Section 3. If the verifier has triggered a false alarm, she is obliged to pay for
the resources wasted due to the interactive game.

5.1 Interactive proof

In this Section we discuss how disputes are resolved in case of disagreement
between a solver and a verifier. First of all, we must be sure that both parties
compute exactly the same program and that the architecture of the infrastruc-
ture that each party has employed does not affect the result. For this reason,
an announced task is first converted to an assembly-like intermediate represen-
tation. Then, both parties privately compile a tableau of Turing Machine (TM)
configurations, where each time step of the task is mapped to its complete in-
ternal representation (tape contents, head position, machine state). The game
also determines a parameter c that declares how many configurations the solver
broadcasts to the blockchain in each roud and a timeout period within which
verifiers and the solver must respond. Failing to do so leads to immediate loss
for the non-responding party.

The main loop of the game goes as follows:

– The solver selects c configurations equally spaced in time across the current
range of dispute. She then computes c Merkle trees of the Turing tableau
where each tree corresponds to the 1

c of the current range of dispute. Each
leaf of these trees is the complete TM state for a specific time step. The
roots of all these Merkle trees are placed on the blockchain.

– The verifier responds on-chain with a number i ≤ c, indicating the first time
step in this list that differs from her own.

– The process continues recursively, considering as dispute range the one be-
tween the (i− 1)-st and i-th indexed configurations.

After some rounds, the game converges to the first disputed computational
step t. The solver then provides paths from the Merkle tree root to its leaves for
the moments t− 1 and t. The transition of the TM state at time t− 1 to the one
at time t is computed on-chain and the disagreement is resolved by the miners.

6 Prototype Implementation

We implemented a prototype of CloudAgora as a dApp over Ethereum. As a
result the contracts that implement the auction and govern the on-chain client,
provider interactions are in Solidity. All the off-chain logic is implemented in
NodeJS using web3.js to interface with the Ethereum blockchain. We used parts
of the truebit codebase to implement the compute module of CloudAgora while
the Storage is implemented from scratch.

CloudAgora introduces a non-negligible performance overhead to an appli-
cation execution compared to executing the application over the same hardware
without using CloudAgora. This overhead includes the latency of smart con-
tract operations, the latency of commiting transactions to the blockchain as
well as the overhead attributed to the truebit protocol. Thus, the blockchain of
choice heavily determines the performance overhead. Since our prototype relies
on Ethereum, CloudAgora inherits its performance characteristics [11].

7 Related Work

CloudAgora is a platform that facilitates the provision of storage and computa-
tion resources in a fully distributed and democratic manner, using the Ethereum
blockchain to record commitment policies, publicly verify them and automate
micropayments. Related work includes blockchain-based projects that offer off-
chain computations, data hosting and processing services.

In the domain of data hosting, projects such as Storj, Filecoin and Sia permit
users to rent unused storage space, using a blockchain to guarantee the correct-
ness of the service offered. Sia [20] supports smart contracts between storage
suppliers and users, which are stored and executed in its proper blockchain. In-
tegrity and existence of a piece of data on a remote host is guaranteed using
Merkle proofs and associated final payment is enforced automatically through
the contract. Storj [22] is based on Kademlia Distributed Hash Table (DHT) [15]
to offer a P2P cloud storage network that builds on top of any smart contract
blockchain. Erasure coding is employed as a redundancy mechanism, while audits
are based on Merkle proofs. Filecoin [2] relies on zk-SNARK [7], a cryptographic
tool for zero-knowledge verifiable computation, to provide what the creators call
Proof-of-SpaceTime, i.e., evidence that some data has been stored throughout
a period of time. This is made possible through iterations of challenges and
responses. All the above solutions exclusively address the case of storage provi-
sioning, while CloudAgora provides both storage and computational resources.

Projects such as GridCoin, Enigma, Golem, Dfinity and iExec offer both
distributed storage and computation services.

The GridCoin [4] project creates a cryptocurrency as a reward for compu-
tations provided to BOINC-based volunteer projects for scientific purposes. It
utilizes its own consensus protocol, called Proof-of-Research, which replaces the
traditional Proof-of-Work puzzle with useful work. Since it purely concerns vol-
unteer grid computing projects, it is mainly limited to altruistic sharing of re-
sources for scientific research.

Enigma [23] utilizes Multi-Party Computation (MPC) [13] protocols to en-
sure correct execution while preserving data privacy. Due to the fact that it
heavily relies on homomorphic encryption to allow nodes to operate on encrypted
shards of data, it poses restrictions regarding the type of computation it can sup-
port, thus limiting its applicability and hindering its wide adoption in practice.

Golem [3] is built on top of the Ethereum blockchain. It mainly offers soft-
ware services and thus focuses on specific computation tasks (e.g., 3D rendering).
Proof of correct execution is available through Truebit style challenges, where
user reputation is not (yet) taken into account. Contrarily, CloudAgora aims to
support any type of task. Moreover, although CloudAgora too employs Truebit
as a means of verifying the correctness of the outsourced computation, the repu-
tation mechanism and the auction game it adopts for matching resource requests
to providers enhances Truebit’s mechanism of allocating tasks to Solvers.

Dfinity [1] is a blockchain aiming to act as a replacement to smart contract
platforms like Ethereum by creating a decentralized cloud computer, the “In-
ternet computer”, which will host the next generation of Dapps. iExec [6] is a
project where computation audits are performed through the so called Proof-
of-Contribution. This proof is based on a voting scheme that takes into account
user reputation and distributes rewards based on it in a weighted manner. It
builds its proper blockchain with trusted nodes using a Proof-of-Stake consen-
sus mechanism. CloudAgora is an open-source platform, based on Ethereum,
which is an already popular and widely adopted blockchain.

8 Conclusions

In this paper we presented CloudAgora, a platform that allows for on-demand
and low-cost access to storage and computing infrastructures. In CloudAgora
participants can act either as providers, offering idle resources, or as consumers,
requesting resources. Such requests are expressed as auction smart contracts,
where any potential provider can place bids. The height of the offer and the
credibility of the provider determines the final choice. The agreement between
providers and consumers is encoded as a smart contract, which allows for trace-
ability of actions and automatic triggering of payments. While storage and pro-
cessing is performed off-chain, the integrity and availability of stored data as
well as the correctness of the outsourced computation are safeguarded through
proper verification processes that take place on the chain. Our prototype imple-
mentation uses Ethereum as the underlying blockchain technology.

Acknowledgments

This research is co-financed by Greece and the European Union (European Social
Fund- ESF) through the Operational Programme “Human Resources Develop-
ment, Education and Lifelong Learning 2014-2020” in the context of the project
“Data Sovereignty through the use of Blockchain”(MIS 5004883).

References

1. dfinity: The Internet Computer. https://dfinity.org/
2. Filecoin. https://filecoin.io/
3. Golem. https://golem.network/
4. GridCoin White Paper. https://www.gridcoin.us/assets/img/whitepaper.pdf
5. How cloud computing is changing the world ... without you knowing.

https://www.theguardian.com/media-network/media-network-blog/2013/sep/
24/cloud-computing-changing-world-healthcare

6. iExec Blockchain-Based Decentralized Cloud Computing. https://iex.ec/
7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero

knowledge for a von neumann architecture. In: 23rd USENIX Security Symposium,
USENIX Security 14). pp. 781–796 (2014)

8. Boss, G., Malladi, P., Quan, D., Legregni, L., Hall, H.: Cloud computing. IBM
white paper 321, 224–231 (2007)

9. Croman, K., et al.: On scaling decentralized blockchains. In: International Confer-
ence on Financial Cryptography and Data Security. pp. 106–125. Springer (2016)

10. Dennis, R., Owen, G.: Rep on the block: A next generation reputation system based
on the blockchain. In: 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST). pp. 131–138. IEEE (2015)

11. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A
framework for analyzing private blockchains. In: Proceedings of the 2017 ACM
International Conference on Management of Data. pp. 1085–1100. ACM (2017)

12. Eberhardt, J., Tai, S.: On or off the blockchain? insights on off-chaining computa-
tion and data. In: European Conference on Service-Oriented and Cloud Computing.
pp. 3–15. Springer (2017)

13. Goldreich, O.: Secure multi-party computation. Manuscript 78 (1998)
14. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-

sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 706–719. ACM (2015)

15. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the xor metric. In: International Workshop on Peer-to-Peer Systems. pp. 53–65.
Springer (2002)

16. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Ap-
plications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings. pp. 369–378 (1987)

17. Reed, I.S., Solomon, G.: Polynomial Codes Over Certain Finite Fields. Journal of
the Society for Industrial and Applied Mathematics pp. 300–304 (1960)

18. Swan, M.: Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.” (2015)
19. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains. URL:

https://people. cs. uchicago. edu/teutsch/papers/truebit pdf (2017)
20. Vorick, D., Champine, L.: Sia: Simple decentralized storage. White paper available

at https://sia. tech/sia. pdf (2014)
21. Wang, H., Jing, Q., He, B., Qian, Z., Zhou, L.: Distributed systems meet economics:

pricing in the cloud (2010)
22. Wilkinson, S., Boshevski, T., Brandoff, J., Buterin, V.: Storj a peer-to-peer cloud

storage network (2014)
23. Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized computation plat-

form with guaranteed privacy. arXiv preprint arXiv:1506.03471 (2015)

