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“When you ask what are electrons and protons I ought to answer that this question is
not a profitable one to ask and does not really have a meaning. The important thing
about electrons and protons is not what they are but how they behave, how they
move. I can describe the situation by comparing it to the game of chess. In chess, we
have various chessmen, kings, knights, pawns and so on. If you ask what chessman
is, the answer would be that it is a piece of wood, or a piece of ivory, or perhaps just a
sign written on paper, or anything whatever. It does not matter. Each chessman has
a characteristic way of moving and this is all that matters about it. The whole game
os chess follows from this way of moving the various chessmen.”

Paul A.M. Dirac



Περίληψη

Η επιστήμη της κβαντικής πληροφορίας επιδιώκει την κατανόηση, στο ευρύτερο
πλαίσιο της Κβαντομηχανικής, της πληροφορίας ως φυσικό αλλά και ως μαθηματικό
εργαλείο. Έτσι, η κατανόηση των ιδιοτήτων της κβαντικής πληροφορίας (όπως π.χ. του
εναγκαλισμού), κρίνεται απαραίτητη προϋπόθεση για την ανάπτυξη νέων κβαντικών τε-
χνολογιών. Στο πλαίσιο της διδακτορικής μου έρευνας ασχολήθηκα με α). την πλήρη κα-
τανόηση και την περιγραφή της επικοινωνίας μεταξύ των απομακρυσμένων κβαντικών
συστημάτων που αλληλεπιδρούν μέσω ενός κβαντικού πεδίου και β). την κατασκευή
ενός θεωρητικού μοντέλου για την ακριβή περιγραφή του φαινομένου της μετάδοσης
της πληροφορίας, η οποία δεν οδηγεί σε παραβίαση της αιτιότητας (Einstein causality).
Για το σκοπό αυτό, στην παρούσα διατριβή μελετήθηκε το σύστημα των δύο εντοπι-
σμένων ανιχνευτών (αρμονικών ταλαντωτών) που αλληλεπιδρούν μέσω ενός άμαζου
βαθμωτού κβαντικού πεδίου, στην κατάσταση του κενού, μέσω μίας Unruh-DeWitt αλ-
ληλεπίδρασης. Το σύστημα αυτό είναι ισοδύναμο με ένα ανοικτό κβαντικό σύστημα
(QBM model), όπου το πεδίο παίζει το ρόλο του περιβάλλοντος. Είναι ακριβώς επι-
λύσιμο και αποτελεί ένα μοντέλο κατάλληλο για την αντιμετώπιση θεμελιωδών προ-
βλημάτων που αφορούν στις αλληλεπιδράσεις μεταξύ σωματιδίων και πεδίου, όπως
το πρόβλημα της αιτιότητας (causality) και της τοπικότητας (locality) στις μετρήσεις
κβαντικού πεδίου (quantum field measurements) που σχετίζονται και με τα πρόσφατα
προτεινόμενα κβαντικά πειράματα στο διάστημα. Η ανάλυση της ακριβούς λύσης της
χρονικής εξέλιξης του μοντέλου μας, οδήγησε στα ακόλουθα αποτελέσματα. i). Κοινές
προσεγγίσεις που χρησιμοποιούνται για την μελέτη αντίστοιχων ανοικτών κβαντικών
συστημάτων αποτυγχάνουν όταν η απόσταση μεταξύ των ανιχνευτών (συστημάτων) γί-
νεται ίση με την τάξη μεγέθους του χρόνου αποσύνθεσης (relaxation time) του συστήμα-
τος. Συγκεκριμένα, η μελέτη της δημιουργίας των συσχετισμών μεταξύ των απομακρυ-
σμένων ανιχνευτών (συστημάτων) δεν περιγράφεται καλά από τη συνηθισμένη θεωρία
διαταραχών (θεωρία διαταραχών 2ης τάξης) και την προσέγγιση Markov. ii). Υπάρχει
μια μοναδική ασυμπτωτική κατάσταση στην οποία καταλήγει το υπό μελέτη σύστημα,
η οποία είναι κατάσταση συσχετισμού (correlated state), όχι όμως κατάσταση εναγκα-
λισμού (entangled state), εκτός και αν η απόσταση μεταξύ των ανιχνευτών είναι τάξης
μεγέθους του μήκους κύματος του ανταλλασσόμενου μεταξύ τους, κβάντου. iii). Τέλος,
διαπιστώθηκε ότι η εξέλιξη των φαινομενικά εντοπισμένων παρατηρήσιμων μεγεθών
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είναι μη-αιτιακή. Το τελευταίο είναι μια σημαντική επίδειξη του προβλήματος των δύο
ατόμων του Fermi, σε ένα σύστημα που μπορεί να επιλυθεί με ακρίβεια. Υποστηρίζουμε
ότι η έννοια του εναγκαλισμού στα σχετικιστικά συστήματα, και ειδικότερα η μελέτη
της φυσικής σημασίας της εξαγωγής του εναγκαλισμού από το κενό (Harvesting) απαι-
τεί επανακαθορισμό λόγω του προβλήματος της αιτιότητας. Το αποτέλεσμα της έρευνας
αυτής, αναμένεται να συμβάλλει στην ανάπτυξη του τομέα της κβαντικής πληροφορίας,
μέσα από τα αποτελέσματα που αφορούν στην κατανόηση της κβαντικής επικοινωνίας
σε μεγάλες αποστάσεις.
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This thesis is a contribution to the debate on (a) fully understanding and
describing the communication between remote systems through quantum
fields, and (b) constructing a theoretical model for accurately describing the
information transmission, which does not lead to a violation of causality. To
this end, we studied the system of two localized detectors (oscillators) in-
teracting through a mass-less scalar quantum field in a vacuum state via an
Unruh-DeWitt coupling. This system admits an exact solution is providing a
good model for addressing fundamental issues in particle-field interactions,
causality, and locality in quantum field measurements that are relevant to
proposed quantum experiments in space. Our analysis of the exact solu-
tion led to the following results. (i) Common approximations used in the
study of analogous open quantum systems fail when the distance between
the detectors becomes of the order of the relaxation time. In particular, the
creation of correlations between remote detectors is not well described by
ordinary perturbation theory and the Markov approximation. (ii) There is
a unique asymptotic state that is correlated; it is not entangled unless the
detector separation is of the order of magnitude of the wavelength of the
exchanged quanta. (iii) The evolution of seemingly localized observables is
non-causal. The latter is a manifestation of Fermi’s two-atom problem, al-
beit in an exactly solvable system. We argue that the problem of causality
requires a re-examination of the notion of entanglement in relativistic sys-
tems, in particular, the physical relevance of its extraction from the quantum
vacuum.
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Chapter 1

Introduction

Understanding how spatially separated quantum systems interact via rel-
ativistic quantum fields becomes increasingly important. Many proposed
quantum experiments in space lie in the regime where relativistic effects be-
come important. Our ability to construct entangled states of atoms at large
separation will reach a regime where retarded propagation of photons will be
a significant factors, thus, allowing us to explore experimentally the interplay
between entanglement and relativistic causality. Furthermore, the interplay
between localization and causality is a source of long-standing problem in
the foundations of Quantum Field Theory (QFT).

In this research, we study an exactly solvable model that allows us to ad-
dress issues such as the above. The model consists of two harmonic oscilla-
tors interacting with a quantum field through and Unruh-DeWitt coupling
[1, 2, 3]. The field lies initially at the vacuum. The harmonic oscillators can
be viewed as detectors or as crude approximations to atoms (N-level sys-
tems). Finding and analysing the exact solution to the system, we obtain the
following results.

[i]Usual approximations employed in the treatment of similar quan-
tum systems (Markov approximation, perturbative master equation,
Wigner-Weisskopf approximation) fail if the separation of the two de-
tectors becomes of the order of relaxation time or larger. In particu-
lar, the above approximations break down completely in all processes
that involve the exchange of information between the two subsystems.
While this result is derived in a specific model system, the context in
which it is obtained is quite generic for open quantum systems, and
for this reason we believe that it has a broader applicability. It has im-
portant implications. For example, it suggests that at least some en-
tangled states for atoms at large separations manifest significant devi-
ations from exponential decay. There is a unique asymptotic state of
the system that is correlated. Entanglement generation persists at times
of the order of the relaxation scale, and hence, this result goes beyond
most studies of entanglement generation (or harvesting) from the vac-
uum that rely on time-dependent perturbation theory. If we assume
that the variables pertaining to detectors are localized quantum observ-
ables, then the reduced dynamics of the detector are non-causal. This
is a common issue in analogous systems, like for example, the famous
Fermi two-atom problem—see, below. Having an exact solution allows
us to show that this behavior is not an artefact of an approximation in
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the derivation of the dynamics. Rather, its origins are kinematical: we
need to identify new observables that also involve the field degrees of
freedom in order to describe localized measurements. This conclusion
implies that entanglement generated between the detectors may not be
a physically meaningful quantum resource to harvest.

The broader context of our results is the following. Non-Markovian dynamics.

A localized quantum system, such as an atom, in an excited state decays to
the vacuum through its interaction with a quantum field, even if the latter is
in the vacuum state. Such decays are typically exponential. When the system
is treated using the theory of open quantum systems, the exponential decay
law arises as a consequence of Markovian open system dynamics.

Markovian dynamics are generic for weak coupling of the system to en-
vironment. The second-order Markovian master equation become exact at
the van Hove limit [4], where the system-environment coupling λ while the
rescaled time λ2t is constant [5]. It provides an excellent approximation for
a large class of systems, especially in atom optics. However, comparison
with exact solution of the evolution equations—as, for example, in quan-
tum Brownian motion [6]—shows many regimes in which the second order
master equation fails. In particular, the van Hove limit may not be physical
relevant in cases where the open system dynamics are characterized by long
time scales other than the dissipation time. This occurs for example, if the
environment is characterized by resonance frequencies or thresholds [7]. In
this paper, we present another case of failure of the Markovian approximate,
due to the time-scale of traversal time in a bipartite system with components
at large separation.

There is an increased emphasis in recent years towards understanding
non Markovian dynamics in open quantum systems, because of their rel-
evance to many physical contexts, for example, condensed matter physics,
quantum control, quantum biology and quantum optics—see, [8] and refer-
ences therein. Furthermore, our ability to prepare entangled state in multi-
partite systems provides novel technical and conceptual challenges to the
theory of open quantum systems, because they go beyond the traditional
paradigm of a central, localized system weakly interacting with an environ-
ment.

Consider, for example, two atoms prepared in an entangled state and sep-
arated by distance r and interacting with the quantum electromagnetic field.
For small separations, this system is well described by the second order mas-
ter equation, see, for example, Ref. [9]. However, as the separation increases,
approximations involved in the derivations of the second order master equa-
tion break down, for example, the Rotating Wave Approximation [10] ,[11].
When r becomes comparable to the decay time of the atoms Γ−1, the van
Hove limit—descaling the time t but not the distance r—is not a useful ap-
proximation. Simply by analyzing the mathematical assumptions involved
in the Markov approximation, we expect the decay of an entangled pair of
atoms to be strongly non-Markovian, when Γr becomes of order unity or
larger, or equivalently when the decay time scale is of the same order with
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the retarded propagation time-scale. This expectation is verified by our anal-
ysis.

Note that this breakdown of Markovian behavior is a non-perturbative
effect: Γ is proportional to the coupling constant, but we can always find a
distance r such that Γr ' 1. For quantum states relevant Γr ∼ 1 for r of the
order of hundreds of meters or kilometers.

Fermi’s two-atom system. Furthermore, the two-atom system is a classic exam-
ple for understanding transmission of information through quantum fields
that originates from Fermi [12]. He showed that the transmission of informa-
tion between the two atoms occurs in accordance with Einstein locality, i.e.,
there is Fermi assumed that at time t = 0, atom A is in an excited state and
atom B in the ground state. He asked when B will notice A and move from
its ground state—see fig. (1.1). In accordance with Einstein locality, he found
that this happens only at time greater than r. It took about thirty years for
Shirokov to point out that Fermi’s result is an artifact of an approximation
[13], [14].

Several studies followed with conclusions depending on the approxima-
tions used. It was believed that non-causality is due to the use of bare initial
states, and that it would not be present in a renormalised theory. However,
Hegerfeld showed that non-causality is generic [15], [16], as it depends only
on the assumption of energy positivity and on the existence of systems that
are localized in disjoint spacetime regions—see also [17].

FIGURE 1.1: Two systems A and B in the distance r between them. For
t = 0, the system A is located at the excited state and the system B at the

ground state and initially do not interact with each other. [15]

Entanglement generation. It is well known that two systems that do not di-
rectly interact may become entangled through their interaction with a third
system. This general result also applies to localised systems (detectors) in-
teracting with the quantum field. The detectors may develop entanglement
even if the field lies on its ground state [18]. This process is called entangle-
ment harvesting and it has been extensively studied for different initial detec-
tor states, detector trajectories, or spacetime geometries—see, for example,
[19, 20, 21]. Interestingly, this process of entanglement creation may also take
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place between objects that remain spacelike separated, i.e., in some models,
entanglement is seemingly generated outside the lightcone [22, 23, 24].

However, it is far from obvious that the usual notion of entanglement,
defined with reference to non-relativistic physics, is an appropriate quan-
tum resource for relativistic systems described by QFT. A proper quantum
resource should be compatible with strong locality and causality constraints
on acceptable physical observables that are required by QFT. Indeed, Fermi’s
problem is an indication that special care is needed in identifying acceptable
local observables in a relativistic quantum system.

Our model. In this research, we study the causal propagation of information
between separated Unruh-DeWitt (UdW) detectors [2], rather than between
two atoms. An Unruh-DeWitt detector is a point-like quantum system that
interacts with a quantum scalar field through a dipole coupling that mirrors
the coupling of atoms to the electromagnetic field. The interaction of mul-
tiple UdW detectors with a quantum fields has been employed in order to
study, for example, accelerator induced disentanglement [25], entanglement
creation outside the lightcone [24], relativistic teleportation protocols [26],
causal propagation of signals perturbatively [27], and entanglement harvest-
ing [28].

The main benefit of using the UdW detectors for studying information
transfer is that they admit exact solutions. In particular, if (i) the self-Hamiltonian
of each detector corresponds to a harmonic oscillator, and (ii) the initial state
of the field is Gaussian, then the system of N detectors interacting with the
quantum field is mathematically equivalent with a Quantum Brownian Mo-
tion (QBM) model for N oscillators in bath. The latter system is exactly solv-
able [6, 29, 30]. Hence, we can compare the predictions of any approximation
with those of the exact solution.

This Ph.D. thesis is structured as follows.
In Chapter II, we present some basic concepts of the theory of open quan-

tum systems. We provide the derivation of the (Markovian) second order
master equation–which is used to describe the dynamics of an open system–
focusing on the approximations that are usually employed in its derivation.

In Chapter III, we introduce the Quantum Brownian Motion (QBM) model
for multipartite systems. We present the general solution to a QBM model
with N-system oscillators interacting with an environment at a thermal state.

In Chapter IV, we present our model of two Unruh-DeWitt detectors in-
teracting via a massless scalar field. The two-detectors model is a special
case of the N-system QBM model. We find an exact solution to the evolution
equations of the two-detector system. We prove that the Markov approxi-
mation breaks down completely when describing the transfer of information
between remote detectors. In Chapter V, we present some applications of our
model. We derive the generalized uncertainty relations for the two-detectors
system. Employing the Positive Partial Transpose (PPT) criterion, we iden-
tify a unique asymptotic state that is correlated, and entangled at small dis-
tances. Moreover, we demonstrate that our two-detector model exhibit the
same non-causal behaviour to the Fermi’s two atom system, and we discuss
the implications, and how causality can be restored.
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Finally, in Chapter VI, we summarize and discuss the results of our thesis.
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Chapter 2

Open Quantum Systems

In this chapter, first, we present the difference between closed and open
quantum systems. Also, we provide the second-order Master equation that
describes the dynamics for the case of open quantum systems. Besides, we
describe the approximations and the models that we use to construct the
Master equation, i.e., the equation of motion for the reduced density matrix
of the system.

2.1 Theoretical Background

In the Quantum Information Theory, the qubit is considered the basic unit
of organization of information. Unlike the classic bit that can be prepared
at only two states, either |0〉 or |1〉, the qubit can be prepared in the super-
position of state |ψ(t)〉 = a|0〉+ b|1〉, where a, b are complex numbers. Due
to this property, i.e., the superposition principle can be used (a) in quantum
optics for the study of photon polarization, (b) in the physics of concentrated
matter, and (c) in a multitude of other physical systems. A particular interest
is (d) its application to quantum information systems.

For the sake of simplicity, we can represent the qubit states as points on
the Bloch sphere (Fig. 2.1). The states |0〉 and |1〉 are points at the north and
south pole. Also, the eigenstates of the Pauli operators σx and σy corresponds
to the x and y axes.

FIGURE 2.1: Representation of a qubit state on the surface of the Bloch
sphere.
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According to the literature, in order to implement the quantum informa-
tion systems, we can use the open quantum systems. An open quantum sys-
tem interacts with the surrounding environment and loses part of its quan-
tum state in the form of energy and information. The loss of energy between
system and environment is known as decoherence [31], [32], [33], [5], and
is often regarded as the important problem of quantum technologies, as it
destroys all quantum resources of the system, such as entanglement and su-
perposition.

Every open quantum system S interacts with a surrounding system that
it called environment E. The latter is usually approached by many degrees of
freedom. The total S + E system is a closed quantum system. In this access,
we can only have to the degrees of freedom specified by the system S. The
state of this subsystem changes due to its interaction with the environment,
and this development can no longer be described by a Hamiltonian.

The study of open quantum systems requires the evolution of the density
matrix, commonly called the Quantum Master Equation. In the literature, for
the description of open quantum systems, we usually chose two models, the
quantum Brownian motion model [34] and the spin-boson model, The first
model consists of one or more particles interacting with a thermal bath. The
bath is modeled by a set of harmonic oscillators, initially at a thermal state of
temperature T [35].

In the second model, the system interacts with the environment, which
is modeled by a set of 1

2 spin particles. This model is suitable for very low-
temperature environments and for well-located ways of oscillating the envi-
ronment [36]. Therefore, this model can be used very well at the laboratory
[37], [38]. A subcategory of the quantum Brownian model is that in which a
harmonic oscillator interacts with an environment that is treated as a thermal
bath in the equilibrium state and consists of an infinite number of oscillators
[34]. This model completed with the construction of the Master equation, but
also with the finding the solution of [29], [6] and [39], [40]. In most realistic
systems, the Master equation is derived from many approximations. One of
them is the Markov approximation, that is considered the most important,
according to which, the time evolution of the state of the system becomes
in a larger time scale than the time scale that characterizes the environment
correlation. The system does not have a memory of its previous state, and
it is known as the Markovian system. The interaction of open systems with
the environment is suitable for the study of the phenomena such as (a) the
loss of energy from the system to the environment, (b) the diffusion, (c) the
decoherence [31] and (d) the entanglement.

2.1.1 Open quantum systems: description

Most realistic physical systems interact with their environment and exchange
energy and information. For one to study such systems, it should extend the
class of closed systems already existing in quantum mechanics by introduc-
ing a new, general categorization of open quantum systems.
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An open quantum system is a quantum system S, which interacts with
another quantum system called environment E. 1 The total S + E system is
a closed quantum system, and the access we can have is only in the degrees
of freedom defined by the system S (Fig: 2.2). The state of this subsystem
changes due to its interaction with the environment, and a Hamiltonian can
not describe this development. The dynamics of this subsystem are called
reduced system dynamics and the system reduced system.

The shift towards the study of open quantum systems arose from the need
to manipulate the transmission of quantum information, which implies the
control and the full determination of the environmental impact of the quan-
tum system.

Because the theory of the open quantum systems describes the real phys-
ical systems and specifically their interaction with the environment, they are
suitable for studying phenomena such as energy loss from the system to the
environment, dissipation, entanglement, and decoherence. At this point, it is
worth for us to mention that all these phenomena treated by the literature as
extremely critical parameters for (i) the advancement of research and (ii) the
creation of quantum computing.

In contrast to the study of closed systems, whose time evolution was de-
scribed by the Schrodinger equation and a unitary operator, the study of
open quantum systems requires the equation of density matrix evolution.
The equation of evolution of the density matrix is called the Quantum Master
Equation. It is non-unitary and irreversible, and for her construction, we use
some approximations and theoretical models.

An essential model in the study of open quantum systems is the quantum
Brownian motion model. This model describes one or more particles interacting
with a heat bath. The bath is modeled by a large number of harmonic oscilla-
tors initially at the thermal state. It is used to describe even non-Markovian
systems, i.e., open systems that display memory phenomena. There are two
matrices, the dissipation and the noise kernel, that contain all the information
that the open system loses during the interaction with the environment.

2.1.2 The dynamics of closed quantum systems

A quantum system is closed when it does not interchange any information
with its surrounding system. The time evolution of a state |ψ(t)〉 of a closed
quantum system is unitary i.e. can be described by a unitary operator U. So,
for a closed system with Hamiltonian Ĥ(t) = ĤS ⊗ IE + IS ⊗ ĤE + Ĥint, is
given by the Schrodinger equation:

i
d|ψ(t)〉

dt
= Ĥ(t)|ψ(t)〉, (2.1)

1The system that called environment is usually approached by many degrees of freedom,
and for the sake of simplicity it is modeled using spectral density.
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where Ĥ(t) is the Hamiltonian of the system and h̄ = 1. The solution of
Schrodinger equation is determined by the equation:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉. (2.2)

where Û(t, t0) is the unitary time-evolution operator, that satisfies the condi-
tion:

Û†(t, t0)Û(t, t0) = Û(t, t0)Û†(t, t0) = I. (2.3)

With the substitution of the eq. (2.2) into eq. (2.1), the unitary time-evolution
operator Û(t, t0) takes the form:

i
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0), (2.4)

with initial condition:

Û(t0, t0) = I. (2.5)

In the case of a closed isolated system (the Hamiltonian is time independent),
the operator U(t, t0) is given by the equation:

Û(t, t0) = e−iĤ(t−t0). (2.6)

However, if Hamiltonian H is time-dependent, the operator Û(t, t0) is given
by the time-ordered exponential:

Û(t, t0) = T←e−i
[∫ t

t0
dsĤ(s)

]
(2.7)

where T← is the chronological time-ordering operator, which assigns time-
dependent operators from right to left in the direction of the arrow. Assum-
ing that the system is not in a pure state |ψ(t)〉 but in a mixed state, for its
description we use an operator ρ̂, called a density matrix. The density matrix
operator has the following form:

1.2.3.• for a pure state, i.e. a physical state with maximal knowledge

ρ̂0(t) = |ψa(t0)〉〈ψa(t0)|, (2.8)

• for a mixed state, i.e. a physical state with partial knowledge

ρ̂0(t) = ∑
a

wa|ψa(t0)〉〈ψa(t0)| (2.9)

where ρ̂ is a statistical operator and wa are positive weights.

The time evolution of a mixed state with density matrix ρ̂(t) is called the
Liouville-von Neumann equation and can be written as:

dρ̂(t)
dt

= −i[Ĥ(t), ρ̂(t)] (2.10)
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where ρ̂(t) can be written as:

ρ̂(t) = Û(t, t0)ρ̂(t0)Û(t, t0) (2.11)

and h̄ = 1. The equation (2.10) is the quantum analogue of the classical
Liouville equation, which is written as:

dρ̂(t)
dt

= L̂(t)ρ̂(t) (2.12)

where L̂(t) is called Liouville super-operator because it acts on an operator
to yield another operator and is equal to −i[Ĥ(t), ρ̂(t)]. The solution of the
equation (2.12), in correspondence with the expression (2.7) is the following:

ρ̂(t) = T←exp
[∫ t

t0

dsL̂(s)
]

ρ̂(t0) (2.13)

and in the case of independent Hamiltonian take the form:

ρ̂(t) = e[L̂(t−t0)]ρ̂(t0). (2.14)

2.2 The dynamics of open quantum systems

As we mentioned at the beginning of the chapter, an open system is a quan-
tum S system that interacts with another quantum system E called environ-
ment (see Fig. (2.2)). The environment E is usually the system with the infi-
nite number of degrees of freedom, and for its description, particular mod-
eling is used, as well as appropriate initial conditions. The evolution of the
subsystem S is due to the interaction of this subsystem with the environment
E. This interaction is manifested with two essential processes: one of them is
the dissipation, and another is the noise. In the diffusion case, there is a loss
of energy from system S to environment E. On the other hand, in the second
process, there is a loss of energy which returns to the system again. In this
case, however, the system lost any information. Because of these processes,
the time evolution of the system S can not be described with unitary opera-
tors but obeys a dynamic called reduced system dynamics. In this case, the
system is characterized as a reduced quantum system. It follows a schematic
representation of an open quantum system.

Both the system S and the environment E are subsystems of a larger,
closed, generally quantum system S + E. Each individual system is char-
acterized by a Hilbert space. The system S is described by Hilbert HS, the
environment E from HE and the total system S + E from the H ⊗ HE. The
total Hamiltonian consists of three terms and is given by the following ex-
pression:

Ĥtot = ĤS ⊗ IE + IS ⊗ ĤE + Ĥint (2.15)
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FIGURE 2.2: Schematic representation of an open quantum system S + E, with
E = B [33].

where ĤS is the self-Hamiltonian of the open system S, ĤE is the free Hamil-
tonian of the environment E, and Ĥint is the Hamiltonian that describing the
interaction between the system and the environment.

The theory of Open Systems (O.Q.S.) describes the dynamics of the evolu-
tion of the subsystem S with similar techniques with the statistical mechanics
into non-equilibrium quantum systems. An open quantum system is a theo-
retical construct suitable for the study of the dynamics of the non-equilibrium
quantum systems and therefore is very useful for addressing fundamental
issues (such as the transition from quantum to classical theory through the
environment caused by the phenomenon called decoherence).

As mentioned earlier, an open quantum system always interacts with its
environment, and during this interaction, two effects happen. Energy from
the system is transferred to the environment (dissipation), or the information
is transferred from system to environment and a part of this, returns again to
the system. In this case, any information is lost (noise).

The theory of open systems is critical in several fields such as physics of
condensed matter, quantum optics [41], the theory of quantum measurement,
[42], non-equilibrium field theory, quantum cosmology and in semi-classic
gravity.

In most cases, the study of the total system S + E and especially of the
environment E with infinite degrees of freedom is a complex issue. It is nec-
essary to construct a set of differential equations describing the dynamics of
the total system. Also, sometimes, the determining of the quantum quantities
of interest requires finding their expectation value, but it refers to some of the
degrees of freedom of the total system. To be able to describe quantum sys-
tems in which we do not have full access, we use several approximations to
construct a set of physical relevant observables, that is, a level of description
or coarse-graining of the system.

If we consider an observable A, that refer to subsystems in the pure state
with expactation value given by the form:

〈Â〉 = 〈ψ|Â|ψ〉 (2.16)
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and using the definition of density matrix

ρ := |ψ|〉〈ψ|, (2.17)

the expectation value of an observable A, can be written as:

〈Â〉 = trS{Âρ̂S} (2.18)

where

ρ̂S = trEρ̂ (2.19)

is the reduced density matrix of the system S, and is obtained by taking the
partial trace over to the degrees of freedom of the environment E . There are
two classes of state representing by the density matrix ρ̂. The first one is the
pure state, and the second one is the mixed state. In the first case, all the
objects of the ensemble are in the same state, represented by the pure state,
and the expectation value can be written as:

〈A〉 = ∑
n
|c2

n|an (2.20)

where an is the eigenvalue of the Hermitian operator A and |c2
n| is the prob-

ability of the measurement of the an. On the other hand, if the objects of the
ensemble are not in the same state, then they define the statistical mixture or
the mixed-state. So, the reduced density matrix can be calculated as:

ρ̂S(t) = ∑
i

pi|ψi(t)〉〈ψi(t)| (2.21)

and the expectation value as:

〈A〉 = ∑
i

pi〈ψi|A|ψi〉 (2.22)

where |ψi(t)〉 are the orthogonal basis and ∑i pi = 1. The density matrix
has some properties, two of them are an useful tool for the measurement of
mixedness, i.e. :

• Trρ̂ = 1 =⇒ for a pure state

• Trρ̂ ≤ 1 =⇒ for a mixed state.

If we need to determine the dynamics of the system S and not the environ-
ment E, which is considered unchanged, we use the reduced density matrix
operator ρ̂S(t). This operator derives from the density matrix of the total
system ρ̂(t) by taking the partial trace over the degrees of freedom of the
environment, and corresponds to the density matrix ρ̂(t) which obeys the
Liouville-von Neumann equation with h̄ = 1, i.e. the description of its equa-
tion of motion is given by the expression:
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d
dt

ρ̂S(t) = −itrE[Ĥ(t), ρ̂(t)] (2.23)

In most cases, we study complex systems in which finding the reduced den-
sity matrix with the above process is not an easy task. But using the Master
equations, we can directly calculate the density matrix of the system ρ̂S(t)
with the help of the relation:

ρ̂S(t) = V(t)ρ̂(t) (2.24)

where the matrix V(t) is a dynamical map and called super-operator, which
means that acts to operators.

2.3 Quantum Markovian dynamics

The Markov approximation refers to the small memory that displays the en-
vironment when interacting with the system. If we suppose that the interac-
tion between the system S and the environment is weak and if we consider
that at the time t = 0, the state of the total system can be described by the
following equation:

ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0) (2.25)

where ρ̂S(0), ρ̂E(0) are the initial state of reduced system and the initial state
of the environment, respectively. The evolution of the density matrix ρ̂S(t)
from the initial state at time t = 0 to another state ρ̂(t) at time t is given by:

ρ̂S(0)→ ρ̂S(t) (2.26)

where the operator V̂(t) is called super-operator as it acts on the S(HS) of
the reduced density matrix of the system into self.

V(t) : S(HS)→ S(HS) (2.27)

For the total system, we have:

ρ̂(t) = U(t, t0)ρ̂(t0)U†(t, t0) (2.28)

therefore

ρS(t) = trE{U(t, t0)[ρ̂S ⊗ ρ̂E(0)]U†(t, t0)} (2.29)

The above display is called dynamic map and describes the evolution of the
state of the open system at time t. For the study of dynamical map, we use
the spectral decomposition of the density matrix operator ρ̂E. So we have:
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ρ̂E = ∑
i

λi|φi〉〈φi| (2.30)

where |φi〉 is a orthogonal basis into Hilbert space HE and λi are the positive
real number, that satisfy the condition:

∑
i

λi = 1 (2.31)

The map Vt is a completely positive linear mar if it can be represented by the
Kraus representation, which means that it can be described as:

V̂(t)ρ̂S = ∑
α,β

K̂αβ(t)ρSK̂†
αβ(t) (2.32)

where,

K̂αβ(t) =
√

λβ < Φα|Û(t, 0)|Φβ > (2.33)

The operators K̂αβ(t) obey the relation:

∑
αβ

K̂†
αβ(t)K̂αβ(t) = IS (2.34)

So, we get:

trS{V̂(t)ρ̂S} = trSρ̂S = 1 (2.35)

The dynamical map Φt acts at the any initial state ρ̂S(0) of the system and
corresponds the initial state to the state at time t, ρ̂S(t), according to the fol-
lowing representation:

ρ̂S(0) 7→ ρ̂S(t) = V̂tρ̂S(t) (2.36)

The dynamical map V̂t is a completely positive linear map with trace Tr[V̂tρ̂] =
Trρ̂. The dynamical map satisfies the following property:

V̂(t1)V̂(t2) = V̂(t1 + t2), t1, t2 ≥ 0 (2.37)

2.3.1 Quantum Master Equation: Markovian approximation

In the case where the quantum semi-group has the following form:

V̂(t) = eL̂t (2.38)

where L is a linear map, then the dynamics of the system can be describe
from the first order differential equation, that called Markovian Quantum
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Master Equation and has the form:

d
dt

ρ̂S(t) = L̂ρ̂S(t) (2.39)

The construction of the super-operator L̂ requires that the complete basis of
the orthogonal operators Ĝi, i = 1, 2, · · · , N2 can be determined as:

(Ĝi, Ĝj) ≡ trS{Ĝ†
i Ĝj} = δij (2.40)

with trsĜi = 0. Applying the completeness relation to K̂αβ(t) operators, we
obtain:

K̂αβ(t) =
N2

∑
i=1

Ĝi(Ĝi, K̂αβ(t)) (2.41)

In this case, the dynamical map takes the form:

V̂(t)ρ̂S =
N2

∑
i,j=1

cij(t)Ĝiρ̂SĜ†
j (2.42)

where

cij(t) ≡∑
αβ

(Ĝi, K̂αβ(t))(Ĝj, K̂αβ(t))∗ (2.43)

Finally, we have :

L̂ρ̂S = −i[Ĥ, ρ̂S] + {M, ρ̂S}+
N2

∑
i,j=1

αijĜiρ̂SĜ†
j (2.44)

where,

αij = lim
ε→0

cij(ε)

ε
(2.45)

and

M̂ = −1
2

N2−1

∑
i,j=1

aijG†
j Gi (2.46)

If we use the transformation:

Ĝi =
N2−1

∑
k=1

uki Âk (2.47)
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with

uαu† =


γ1 0 . . . 0
0 γ2 . . . 0

0 0 . . . 0
0 0 . . . γN2−1

 (2.48)

we have:

L̂ρ̂S = −i[Ĥ, ρ̂S] +
N2−1

∑
k=1

γk

(
Âkρ̂S Â†

k −
1
2

Â†
k Âkρ̂S −

1
2

ρ̂S Â†
k Âk

)
(2.49)

So, the Master equation can be written as:

d
dt

ρ̂S(t) = −i[Ĥ, ρ̂S(t)] + D(ρ̂S(t)) (2.50)

where

D(ρ̂S(t)) =
N2−1

∑
k=1

γk

(
Âkρ̂S Â†

k −
1
2

Â†
k ÂkρS −

1
2

ρ̂S Â†
k Âk

)
(2.51)

is the dissipator. The equation (2.50) consists of two terms. The first term
corresponds to the unitary evolution of the system and is the Von-Neumann
equation. The second term describes the non-unitary evolution of the system,
and it describes the information needed for dissipation and decoherence. The
equation (2.50) is called the Gorini-Kosakowski-Sudarshan-Lindblad (GKSL)
Master equation or Lindblad Master Quantum Equation. All information on
the system’s interaction with the environment is expressed by the second
term of the right-hand part of the equation (2.50). The operators ÂK are often
called Lindblad operators, and the parameters γk are called relaxation rates
and are the ones that together with the Hamiltonian interaction Ĥint define
the interaction channels with the environment.

We conclude that by working on the Markov approximation, we can con-
struct the quantum Master equation for the system, and it is already known
its form. The quantum Master equation in this approximation has the form
(2.50), of a Lindblad-type quantum Master equation. In the Markov approx-
imation, which is applied at very high temperatures, during system and en-
vironment interaction, the information lost by the system is not saved in the
environment, and therefore, the environment does not display memory ef-
fects.

2.4 Weak-coupling limit: Born approximation

An important approximation to construct a quantum Master equation is the
Born approximation, which works with the Markov approximation, so we
are talking about the Born-Markov approximation. The Born approximation
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is based on the hypothesis of weak coupling approximation between system
and environment. In this approximation, the environment or the reservoir
as we might otherwise find it is a heat bath. It is in thermal equilibrium,
and in the case of this equilibrium perturbation, the environment returns in
a concise time. The time to return to equilibrium, i.e., the response time in
the Born approximation, is very short.

2.4.1 Redfield equation

If we consider the the interacting between the system S and environment is
weak, the total Hamiltonian has the form:

Ĥ = ĤS + ĤE + ĤI (2.52)

where, ĤS, ĤE are the Hamiltonian of the system and environment and ĤI
is the Hamiltonian of interaction between the system and the environment.
The evolution of the total system in the interaction picture, is given by:

ρ(t) = e(HS+HE)tρ(t)e−i(HS+HE)t (2.53)

The von-Neumann equation in the interaction picture for the total density
matrix is:

d
dt

ρ̂(t) = −i[ĤI(t), ρ̂(t)] (2.54)

where

ρ̂(t) = ρ̂(0)− i
∫ t

0
ds[ĤI(s), ρ̂(s)] (2.55)

The equations (2.54) and (2.55) yield:

d
dt

ρ̂s(t) = −
∫ t

0
dstrE[ĤI(t), [ĤI(s), ρ̂(s)]] (2.56)

We suppose that:

trE[ĤI(t), ρ̂(0)] = 0 (2.57)

The equation (2.56) corresponds to the equation of motion for the density
matrix ρ̂(t) of the total system. Using the Born approximation, which the
coupling of the system and the environment is negligible and therefore the
effect of the system on the environment is very small (weak-coupling ap-
proximation), without implying that the system cannot cause any kind of
stimulation in the environment. Therefore, due to this negligible effect of
the system on the environment, the density matrix of the total system can be
written as follows:

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E(t) (2.58)
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and the equation (2.56) becomes:

d
dt

ρ̂S(t) = −
∫ t

0
dstrE[ĤI(t), [ĤI(s), ρ̂S(s)⊗ ρ̂E]] (2.59)

The above equation can be simplified using the Markov approximation, in
which the state of the system refers to the present and it does not depends on
the past history. Therefore the Master equation takes the following form:

d
dt

ρ̂S(t) = −
∫ t

0
dstrE[ĤI(t), [ĤI(s), ρ̂S(t)⊗ ρ̂E]] (2.60)

This equation is called Redfield equation, and although local in time, it is not
a Markovian quantum Master equation since it depends on the initial state
of the equation and substitution of s→ t− s is sufficient. So, we have:

d
dt

ρ̂S(t) = −
∫ ∞

0
dstrE[ĤI(t), [ĤI(t− s), ρ̂S(t)⊗ ρ̂E]] (2.61)

Now, we must introduce the Hamiltonian of interaction. If we assume the
general diagonal form such as:

ĤI(t) = ∑
α

Âα ⊗ B̂α (2.62)

where Â†
α = Âα and B̂†

α = B̂α, the equation (2.61) becomes:

d
dt

ρ̂S(t) = −
∫ ∞

0
ds ∑

αβ

trE[Âα(t)⊗ B̂α(t), [Âβ(t− s)⊗ B̂β(t− s), ρ̂S(t)⊗ ρ̂E]]

to

(2.64)

We define the operators:

Âα(ω) ≡ ∑
ε−ε′

Π(ε)Π(ε′) (2.65)

with the following properties:

[ĤS, Âα(ω)] = −ωÂα(ω) (2.66)[
ĤS, Â†

α(ω)
]

= ωÂ†
α(ω) (2.67)

eiĤSt Âα(ω)e−iĤSt = e−iωt Âα(ω) (2.68)

eiĤSt Âα(ω)e−iĤSt = eiωt Â†
α(ω) (2.69)
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Also,

[ĤS, Â†
α(ω)Âβ(ω)] = 0 (2.70)

Â†
α(ω) = Âα(−ω) (2.71)

∑
ω

Âα(ω) = ∑
ω

Â†
α(ω) = Âα (2.72)

Finally, the Hamiltonian can be written as:

ĤI = ∑
α,ω

Âα(ω)⊗ B̂α = ∑
α,ω

Â†
α(ω)⊗ B̂†

α (2.73)

In the interaction picture:

ĤI = ∑
α,ω

Âα(ω)⊗ B̂α = ∑
α,ω

Â†
α(ω)⊗ B̂†

α (2.74)

where

B̂α(t) = eiĤEtB̂αe−iĤEt (2.75)

with:

trE[ĤI(t), ρ̂(0)] = 0 (2.76)

and finally,

< B̂α(t) >≡ tr{B̂α(t)ρE} = 0 (2.77)

the equation (2.61) becomes:

d
dt

ρ̂S(t) =
∫ ∞

0
dstrE{ĤI(t− s)ρ̂S(t)ρ̂EĤI(t)− ĤI(t)ĤI(t− s)ρ̂S(t)ρ̂E}

+h.c.(2.78)

= ∑
ω,ω′

∑
α,β

ei(ω−ω′)t
αβ (ω)(Âβ(ω)ρ̂S(t)Â†

α(ω
′)− Â†

α(ω
′)Âβ(ω)ρ̂S(t))

+h.c.(2.79)

where

Cαβ(ω) ≡
∫ ∞

0
dseiωs < B̂†

α(t)B̂β(t− s) > (2.80)

Introducing the environment correlation functions, with the relation:

< B̂†
α(t)B̂β(t− s) >≡ trE{B̂†

α(t)B̂β(t− s)ρ̂E} (2.81)

and assuming that the environment is in thermal equilibrium, that is:

[ĤE, ρ̂E] = 0 (2.82)

< B̂†
α(t)B̂β(t− s) > = < B̂†

α(t)B̂β(0) > (2.83)
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We have:

d
dt

ρ̂S(t) = ∑
ω

∑
αβ

Cαβ(ω)(Âβ(ω)ρ̂S(t)Â†
α(ω)− Â†

α(ω)Âβ(ω)ρ̂S(t))

+h.c. (2.84)

where

Cαβ(ω) =
1
2

γαβ(ω) + iSαβ(ω) (2.85)

and

Sαβ(ω) =
1
2i
(Cαβ(ω)− C∗αβ(ω)) (2.86)

γαβ = Cαβ(ω) + C∗αβ(ω) =
∫ ∞

0
dseiωs〈B̂†

α(t)B̂β(0)〉 (2.87)

Finally, the Master equation in the interaction picture is as follows:

d
dt

ρ̂S(t) = −i[ĤLS, ρ̂S(t)] + D(ρ̂S(t)) (2.88)

with

ĤLS = ∑
ω

∑
αβ

Sαβ(ω)Â†
α(ω)Âβ(ω) (2.89)

and

D(ρ̂S(t)) = ∑
αβ

γα,βγαβ(ω)

(
Âβ(ω)ρ̂S(t)Â†

α(ω)− 1
2
{Â†

α(ω)Âβ(ω), ρ̂S}
)
(2.90)

The coefficients γαβ is the relaxation rates for the different decay modes of
the open system and are given in the terms of the correlation functions of
the environment. Also, this coefficients contain all the information about the
energy and information that losed of the system during its interaction with
the environment. The RWA [33] approach should also be used to convert the
above equation to Lindblad form. Using this approximation also results:

d
dt

ρ̂S(t) = −i[ĤLS, ρ̂S(t)]−
1
2 ∑ kµkµ[L̂µ, [L̂µ, ρ̂S(t)]] (2.91)

All the physics is at the coefficients kµ and most of the time it’s a difficult task
to calculate.

At this point, it is worth noting that the description of the dynamics of the
reduced quantum system using the Markovian quantum master equations
for time scale greater than the order of magnitude of the correlation time tE
has not yet been resolved (tS � tE).
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2.5 Rotating Wave Approximation

The Rotating Wave Approximation (R.W.A.) is a useful approximation for the
construction of the Lindblad Master equation and is divided into two cate-
gories. The first one, which we call pre-trace rotating wave (pre-TRWA), is
the approach applied before we trace out the degrees of freedom of the en-
vironment and which results in a new Hamiltonian, free from all its terms
Hamiltonian interaction oscillate very fast. The second category that distin-
guishes R.W.A. is called post-TRWA, refers to the conversion of the Master
equation for the open quantum system, to a Lindblad Master equation, and is
applied after tracing out the degrees of environmental freedom in the Master
equation. According to the report [11] for a detailed description of the quan-
tum state of an open quantum system and the calculation of entanglement
dynamics, the R.W.A. approach is not recommended. In particular, in the
case of a thermal environment in equilibrium state or multi-frequency envi-
ronment, only post-TRWA gives valid results. Therefore, the R.W.A. approx-
imation is not a useful approximation for finding accurate results, especially
in the case of qubit study over a very long distance.

2.6 Perturbation theory

The Master equation is a differential equation describing the evolution of the
reduced density matrix of an open system. The Master equation for linear
coupling to the high-temperature ohmic environment was first developed by
Caldeira-Leggett [34], expanded by Unruh and Zurek [43] and eventually
emerged for the general environment (i.e., arbitrary spectral density func-
tion) by Hu, Paz, and Zhang [6]. This effect can be extended to the case of
nonlinear coupling using perturbation theory by leading only second-order
terms.

In quantum mechanics, the perturbation theory is a set of approximations
used to describe a complex system with a simpler matrix. Using the solu-
tions mentioned in the Hamiltonian of the simple system, we can derive the
solutions for many complex quantum systems. Since it is an approximation
method, we can use it to construct a Master equation, that is, an equation
describing the time evolution of an open quantum system. The perturba-
tion theory applies only in the case of weak system-environment interaction,
and in most cases, we hold conditions up to second order. Finally, mainly
in quantum optics, one more approach, the Wigner-Weisskopf approach, is
used to study phenomena that require the construction of a Master equation.

The approximations mentioned above allow us to construct the Master
equation more easily. In most models, the Master equations are of the second
order Lindblad type, and the system-environment interaction is expressed
through the Ak operators of the equation (2.51). Although this equation gives
us valid results for the evolution of an open quantum system, since it has
been extracted using approximations, it has no general validity. It can be ap-
plied in the case of high temperatures and when the interaction between the
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system and the environment is weak. It cannot be applied at low temper-
atures if the quantum system under study is degenerate and when we are
interested in studying quantum entanglement.

Therefore, for the study of open quantum systems in which non-Markovian
phenomena occur, and therefore the second-order Master equation cannot be
applied, we use higher-order Master equations or theoretical models such as
the quantum Brownian model and the spin-boson model. In the case of open
quantum systems, the quantum Brownian motion model is mainly used. We
describe this model in more detail in the next section.

2.6.1 System of one harmonic oscillator:
Caldeira-Leggett Model

In 1981 Amir Caldeira and Anthony J. Leggett proposed a simple quantum
model for the studying of the local dissipation for the high temperature en-
vironment. This model consists of a Brownian quantum particle in one di-
mension that interacts with a high temperature thermal reservoir [34]. This
particle has a mass of m and a position of x and is described by the following
free Hamiltonian:

ĤS =
1
2

p̂2 + V(x) (2.92)

where p is the momentum of the particle. The thermal bath with which the
particle interacts consists of a set of harmonic oscillators, with frequencies ωn
and mass mn and is described by the Hamiltonian:

ĤE = ∑
n

ωn

(
αnα†

n +
1
2

)
= ∑

n

(
1

2mn
p̂2

n +
1
2

mnω2
n x̂2

n

)
(2.93)

where α†
n, αn are the creation and annihilation operators of the environment,

and xn, pn are the corresponding coordinates and canonical conjugate mo-
mentum. The Hamiltonian interaction is as follows:

ĤI = −x̂ ∑
n

kn x̂n ≡ −x̂B̂ (2.94)

where

B̂ = ∑
n

kn x̂n = ∑
n

kn

√
h̄

2mnωn

(
α̂n + α̂†

n

)
(2.95)
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The Hamiltonian of the interaction has the form:

Ĥ = ĤS + ĤE + ĤI + ĤC

=
1

2m
p̂2 + VC(x) + ∑

n

(
1

2mn
p̂2

n +
1
2

mnω2
n x̂2

n

)
− x̂ ∑

n
kn x̂n (2.96)

where

VC(x) = V(x) + x2 ∑
n

k2
n

2mnω2
n

(2.97)

and

ĤC = x2 ∑
n

k2
n

2mnω2
n

(2.98)

The term HC is called counter-term and it applies only to the Hilbert space
HS of the particle. To study the motion equation of this particle, a Master
equation must be found. At the weak coupling limit and at high tempera-
ture the Markovian Master equation is called Master Caldeira-Leggett [34]
equation, which corresponds to the Markovian regime and has the form:

d
dt

ρ̂S(t) = −i[ĤS, ρ̂S(t)]− iγ[x̂, { p̂, ρ̂S(t)}]− 2mγkBT[x̂, [x̂, ρ̂S(t)]] (2.99)

The equation (2.99) was introduced by Caldeira-Leggett for the case where
the environment is ohmic and using the spectral density J(ω), is defined as:

J(ω) = ∑
k

k2
n

2mnωn
δ(ω−ωn) (2.100)

and for ω → 0, takes the form:

J(ω) =
2mγ

π
ω (2.101)

The equation (2.99) consists of three terms, with a different physical in-
terpretation. The first term in the right part of the equation describes the
unitary evolution of its system dynamics. The second term, which is pro-
portional to the relaxation constant γ, corresponds to the energy loss due to
the system’s interaction with the environment. The last term is proportional
to temperature and is the one describing the diffusion phenomena observed
when interacting with the environment. The diffusion term describes the
temperature fluctuations and is fundamental to the theoretical description of
the decoherence.

The Master Caldeira-Leggett equation is a Markovian master equation
but it is not of the Lindblad type. This equation can be converted to Lindblad
by adding a term which, at the high temperature limit, is small. Therefore,



2.7. Non-Markovian dynamics 25

by adding this term, we obtain the following Lindblad Master equation:

i∂tρ̂ = [Ĥ0, ρ̂]− γ[x̂, ρ̂P̂ + P̂ρ̂]− 2iMγT[X̂, [X̂, ρ̂]] (2.102)

The eq. (2.102) consists of three terms: the first term corresponding to
unitary evolution, the second term describing energy losses, and the last one
describing the diffusion term.

2.7 Non-Markovian dynamics

In previous sections, we present the Markovian master equations that only
applied if the environmental memory effects can be ignored. However, in
many cases (e.g., in a low-temperature environment), the Markovian Master
equation is not satisfied, and there is a strong dependence of the evolution
of the system on its capture in the past times. So, we must introduce the
non-Markovian master equations [44]. These equations are not local in time
and are generally difficult to solve in detail. For any non-Markovian Master
equation

dρ̂(t)
dt

=
∫ t

0
K̂(t− τ)ρ(τ) (2.103)

with the propagator Ĝ(t): ρ(0)→ ρ(t), corresponds a Master equation of the
form

dρ̂(t)
dt

= K̂(t)ρ̂(τ) (2.104)

where K̂(t) = Ĝ(t)Ĝ(t)−1. This equation is time non-local and it can be de-
termined via Laplace transformation. I.e., there are many other cases where
non-Markovian equations are local in time and they are in the form of Marko-
vian differential equations.

dρ̂(t)
dt

= K̂(t)ρ̂(t) (2.105)

where the K̂(t) is a super-operator, that depends explicitly on time (but not
from earlier times, which makes this equation local in time). The eq. (2.105) is
a linear first-order differential equation for the open system state. In the next
chapter, we will see a case of a local time non-Markovian equation master
(e.g. quantum Brownian motion).

The study of open quantum systems requires the construction of the equa-
tion of motion, i.e., a Master equation. Because this construction is not easy,
we use different approximations or theoretical models for the understanding
of the non-Markovian dynamics. By using the above methods, we end up
constructing a Lindblad Master Equation. The quantum Brownian motion
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model is a theoretical model for the description of the loss of energy and de-
coherence, even in the case of the studying of the non-Markovian systems. In
this model, all information consist of two functions, which we will see in de-
tail in the next section, the dissipation kernel and the noise kernel contain all
the information needed to describe open quantum systems. In the following
section, we describe the formalism of the quantum Brownian motion model
(Q.B.M.), and we construct the Master equation using the Wigner function.
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Quantum Brownian motion model
for general case

In this chapter, we begin by defining the formalism of the quantum Brownian
motion model for the case of multipartite systems [29]. Then, we construct
the homogeneous equation of motion of our system, and we determine the
expansion of two matrices that containing all physics of the open system. The
matrices called dissipation and noise kernel. After the constructing of the
equations of motion and the calculation of these matrices, we calculate the
corresponding expansions for the simple model of a system of one harmonic
oscillator.

For the study of open quantum systems, it is important to define a Hilbert
space HS+E, which includes system S and environment E, and it determines
the level of description. One of the most common models in open systems
theory, which is very useful in quantum theory, quantum optics, and deco-
herence, is the Quantum Brownian motion model. One of the advantages of
quantum Brownian motion model is that they can accurately describe many
physical processes. According to this model, the selected degrees of freedom,
that is, what we call a system, are described by the Hilbert space HS, and the
remaining degrees of freedom (environment) by the Hilbert space ĤE. It is
described by the Hilbert space HS+E. The time evolution of the whole system
is described by Schrodinger’s equation with Hamiltonian H. This Hamilto-
nian is a sum of three terms: the Hamiltonian of the system Hsys, the Hamil-
tonian of the environment Ĥenv and the Hamiltonian of interaction Ĥint.

Specifically, the study of open quantum systems requires the description
of the time evolution of the reduced density matrix of the system. The re-
duced density matrix is defined by the partial trace of the density density
ρ̂(t) of the total system, with the relation ρ̂S(t) = TrEρ̂(t). The most general
method of producing the Master equation is that of [6] where they used route
basic techniques and, most importantly, the Feynman-Vernon path integral.

For describing the time evolution of an open quantum system, we must
construct a Master equation. If we assume that, at the initial time, the system
and the environment are separable and not interacting, in the SchrÃűdinger
picture, the density matrix can be written as a direct product of the density
matrix of the system and the density matrix of the environment. I.e.

ρ̂(t0) = ρ̂syst(t0)⊗ ρ̂env(t0) (3.1)
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Working at the Heisenberg picture, we assume that the density matrix at the
time t is equal with the density matrix at the time t0,

ρ̂ = ρ̂syst ⊗ ρ̂env (3.2)

If the density matrix is known for a set of degrees of freedom in the repre-
sentation position, we can always define the corresponding Wigner function,
which contains precisely the same information. The reduced Wigner func-
tion is similar to the distribution function in the phase space coordinates,
although it is not always defined positively. The equation that describes the
time evolution of the Wigner function is similar to the Fokker-Planck equa-
tion for classical statistical systems.

The most important and useful tool of the study of the open quantum sys-
tems is the Wigner function propagator, which in the case of linear systems,
is a δ function[45]. It is, therefore, possible that the effects of the environment
on the system are divided into two categories: unitary and non-unitary. In
the case of linear systems, the Wigner function propagator can be calculated
just for arbitrary temperatures and is Gaussian. In the case of systems with
more general dynamics, it can not be calculated precisely, except where a
semi-classic approach can be used.

Using the Wigner function, we have:

W(X, P) =
1

(2π)N

∫
dζe−ı P·ζ ρ̂

(
X +

1
2

ζ, X +
1
2

ζ

)
(3.3)

with inverse:

ρ̂(X, Y) =
∫

dPeıP·(X−X′)W
(

1
2
(X + X′), P

)
(3.4)

3.1 Time evolution in QBM models

The time evolution for initial state in QBM models, defined by the equation[29]
:

ρ̂t(X f , Y f ) =
∫

dNX0dNY0 J(X f , Y f , t|X0, Y0, 0)ρ̂0(X0, Y0), (3.5)

where J(X f , Y f , t|X0, Y0, 0): is the density matrix propagator and it is inde-
pendent of initial state.

The Wigner function propagator K(X f , P f , t|X0, P0, 0) can be defined as:

K
(
X f , P f , t|X0, P0, 0

)
=

∫ dζ f dζ0

(2π)N eıP0·ζ0−ıP f ·ζ f

× J
(

X f +
ζ f

2
, X f −

ζ f

2
, t|X0 +

ζ0

2
, X0 −

ζ0

2
, 0
)

,(3.6)



3.1. Time evolution in QBM models 29

with the coordinates:

ξa = (X1, X2, · · ·XN, P1, P2, · · · , PN) ,
a = 1, 2, · · · , 2N, (3.7)

the Wigner function propagator Kt(ξ f , ξ0) can be written as:

Wt =
∫ d2Nξ0

(2π)N Kt
(
ξ f , ξ0

)
W0(ξ0) (3.8)

where W0 and Wt is the Wigner function for the time t = 0 and for the time t,
respectively.

The Wigner function propagator in the case of QBM models is the Gaus-
sian, and defined as follow:

Kt(ξ f , ξ0) =

√
detS−1

πN × exp
[
−1

2
[ξa

f − ξa
cl(t)]S

−1
ab (t)[ξ

b
f − ξb

cl]

]
, (3.9)

where ξa
cl,ξ

b
cl are the solutions of classical equation of motion for the system

variables and can be calculated with the equation ξa
cl = Ra

b(t)ξ
a
0. Also the

matrix S−1
ab (t) is the positive and it is important for the construction of Master

equation.

3.1.1 Covariance matrix

The Wigner function propagator as we can see from the eq. (4.6,4.7) depends
on the matrices R(t), S(t). To find this matrices, we start by calculating by
the covariance matrix Vt. As we will see follow, this matrix contains both the
matrix R(t) and S(t).

The two-point correlation matrix V, can be defined by the following equa-
tion:

Vab
de f
=

1
2

Tr[ρ̂(ξ̂aξ̂b + ξ̂bξ̂a)]− Tr(ρ̂ξ̂a)Tr(ρ̂ξ̂b) (3.10)

Using the equations (4.6) and (4.7), the two-point correlation matrix V for the
time t, can be written as 1

Vt = R(t)V0RT(t) + S(t) (3.11)

where V0 is the correlation matrix of the initial state and S(t) is the correlation
function.

The eq. (3.11) has two terms. The term R(t)V0RT(t) of the equation (3.11)
expresses the time evolution of the correlation functions according to the clas-
sical equation of motion. The second term is independent of the initial state
and describes the information of the interaction between the system and the
environment. The fact that the matrix S(t) does not depend on the initial state

1In Appendix C there are a detailed description of the proof of the equation 4.9.
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indicates to us, how to determine it, we only use the part of the correlation
matrix that is independent of the initial state.

3.2 The system of N harmonic oscillators

3.2.1 Quantum Brownian models

We consider a system of N harmonic oscillators of masses Mr and frequencies
Ωr interacting with a heat bath. The bath is modelled by a set of harmonic
oscillators of masses mi and frequencies ωi. The Hamiltonian of the total
system can be written as:

Ĥ = Ĥsyst + Ĥenv + Ĥint (3.12)

where

Ĥsyst = ∑
r

(
1

2Mr
P̂2

r +
MrΩ2

r
2

X̂2
r

)
(3.13)

Ĥenv = ∑
i

(
1

2mi
p̂2

i +
miω

2
i

2
q̂2

i

)
(3.14)

Ĥint = ∑
i

∑
α

cirX̂r q̂i = X̂r ⊗∑
i

ciq̂i ≡ X̂r ⊗ Ê (3.15)

3.2.2 The evolution of the oscillators of the bath

The time evolution of the oscillators of the environment can be de described
with following equations, according to [29]:

¨̂qi(t) + ω2
i q̂i(t) = ∑

r

cir

mi
X̂r(t) (3.16)

q̂i(t) = q̂0
i (t) + ∑

r

cir

miωi

∫ t

0
ds sin[ωi(t− s)]X̂r(s) (3.17)

where

q̂0
i (t) = q̂icos(ωit) +

p̂i

miωi
sin(ωit) (3.18)

.
For the oscillators of the system, the equation of motion is defined as:

¨̂Xr(t) + Ω2
r X̂r(t) +

2
Mr

∑
r

∫ t

0
dsγrr′(t− s)X̂r′(s) = ∑

i

cir

Mr
q̂0

i (t) (3.19)

where

γrr′(s) = −∑
i

circir′

2miω
2
i

sin(ωis), (3.20)
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is the dissipation kernel.
The solution of Eq.(3.19) is :

X̂r(t) = ∑
r′

(
u̇rr′ X̂r′ +

1
Mr′

urr′ P̂r

)
+ ∑

r′

1
Mr′

∫ t

0
dsurr′(t− s)∑

i
cir q̂0

i (s).(3.21)

The solution of the homogeneous part of equation (3.19), with initial condi-
tions urr′(0) = 0 and u̇rr′(0) = δrr′ is:

u(t) = L−1[A−1
rr′ (z)] (3.22)

where

A−1
rr′ (z) = (z2 + Ω2

r ) +
2

Mr
γ̃rr′(z) (3.23)

and γ̃rr′(z) is the Laplace transform of the dissipation kernel. Therefore, for
the construction of the matrix R(t), first of all we must to calculate the dissi-
pation kernel for our system, then the inverse Laplace of this and finally the
solution of classical equation of motion u(t).

3.2.3 Equations of correlation functions of harmonic oscilla-
tors

In the case we have a system of harmonic oscillators in a thermal temperature
T, the correlation functions S(t) can be writen as [29]:

SXrXr′
= ∑ qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(s)vqq′(s− s′)uq′r′(s′), (3.24)

SPrPr′
= Mr Mr′ ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′u̇rqvqq′(s− s′)u̇q′r′(s′), (3.25)

SXrPr′
= Mr′ ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(s)vqq′(s− s′)u̇q′r′(s′) (3.26)

where the symetric matrix vrr′(s) is the noise kernel, and can be defined as

vrr′(s) = ∑
i

circir′

2miω
2
i

coth
(ωi

2T

)
cos(ωis) (3.27)

3.2.4 The Master equation for a system of N harmonic oscil-
lators

The Wigner function can be written as:

Wt(ξ) =
∫ d2Nξ0

(2π)N Kt(ξ f , ξ0)W0(ξ0) (3.28)
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where Wt and W0 is the Wigner functions at times 0, t. In Quantum Brownian
motion models, if the system has quadratic Hamiltonian and the initial state
for the environment is Gaussian, the Wigner function propagator is Gaussian
and can be written as

Kt(ξ f , ξ0) =

√
detS−1(t)

πN × exp
[
−1

2

[
ξa

f − ξa
cl(t)

]
S−1

ab (t)
[
ξb

f − ξb
cl(t)

]]
,(3.29)

The equations 3.28 and 3.29, yield:

Wt(ξ) =
∫ d2Nξ0

(2π)N

√
detS−1(t)

πN

× exp
[
−1

2

[
ξa

f − ξa
cl(t)

]
S−1

ab (t)
[
ξb

f − ξb
cl(t)

]]
W0(ξ0). (3.30)

Using the identities∫ d2Nξ0

2πN (ξ − ξcl)
a Kt

(
ξ f − ξ0

)
W0(ξ0) = −Sab ∂Wt(ξ)

∂ξb , (3.31)

∫ d2Nξ0

(2π)N (ξ − ξcl)
a (ξ − ξcl)

b Kt(ξ f , ξ0)W0(ξ0) = Sab + SacSbd ∂2Wt(ξ)

∂ξc∂ξd ,(3.32)

finally, we have:

∂Wt

∂t
= −

(
ṘR−1

)a

b

∂(ξbWt)

∂ξa +

(
1
2

Ṡab − (ṘR−1)
(a
c Scb)

)
∂2Wt(ξ)

∂ξa∂ξb (3.33)

The above Eq. (3.33) is the Master equation for the system and is a sum of two
terms. The first of them corresponds to the dissipation terms, and describes
the irreversible process that take place in homogeneous systems. Finally, the
second one corresponds to the diffusion terms.

In summary, the recipe for deriving the coefficients of the master equation
for QBM models in an environment is a follow. First, we compute the dissi-
pation and noise kernel; second, we solve the classical equations defined by
the elementary functions urr′(s). In the next chapter, we calculate the exact
solutions to the open system dynamics for the system of two harmonic oscil-
lators, and we show that the system of two harmonic oscillators is a special
case of the Q.B.M. for the N-system oscillators.
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Chapter 4

Exact solutions to the open system
dynamics

In this chapter, we present the general solution to the QBM model with N-
system oscillators interacting via an environment, and show that for the case
of the system of two detectors interacting through a scalar field is a special
solution. Also, we find the explicit solution to the two-detector system, and
we prove that the Markov approximation breaks down completely for the
transmission of information between two remote detectors.

4.1 The model

4.1.1 QBM in a multi-partite system

The Hamiltonian

We consider a system of N harmonic oscillators of masses Mα and frequencies
Ωα interacting with a heat bath. The bath is modeled by a set of harmonic
oscillators of masses mi and frequencies ωi. The Hamiltonian of the total
system is

Ĥ = Ĥsyst + Ĥenv + Ĥint (4.1)

where

Ĥsyst = ∑
α

(
1

2Mα
P̂2

α +
MαΩ2

α

2
X̂2

α

)
, (4.2)

Ĥenv = ∑
i

(
1

2mi
p̂2

i +
miω

2
i

2
q̂2

i

)
, (4.3)

Ĥint = ∑
i

∑
α

ciαX̂αq̂i, (4.4)

where ciα are coupling constants.
Since the total Hamiltonian is quadratic concerning all positions and mo-

menta, the evolution operator e−iĤt can be explicitly constructed, and its po-
sition matrix elements are Gaussian.
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We consider a factorized initial condition ρ̂sys ⊗ ρ̂env for the total system.
If ρ̂env is Gaussian, then the reduced density matrix propagators can be com-
puted explicitly. For N = 1, the reduced dynamics leads to the Hu-Paz-
Zhang master equation [6].

In general, the assumption of a factorized initial condition between field
and detectors is meaningful only as far as the field modes with energies of
the order of the frequencies Ωα is concerned. There is no preparation that
can enforce separability for photons at the infra-red and ultra-violet edges
of the spectrum. However, a non-factorized initial condition does not allow
us to consider general initial states for the field [46] in many model systems,
including QBM, the effect of the non-factorizing initial state die out after a
time-scale of the order of a high-frequency cut-off [47].

The Wigner function propagator

In this paper, we will employ the solution to the multi-partite QBM model
in the Wigner representation [48, 49, 29]—another form of the general solu-
tion is found in [30]. The Wigner function for the reduced density matrix is
defined as

W(X, P) =
1

(2π)N

∫
dζe−ı P·ζ ρ̂

(
X +

1
2

ζ, X− 1
2

ζ

)
. (4.5)

We use the coordinates ξa = (X1, X2, . . . , XN, P1, P2, . . . , PN) on phase space;
the Wigner function is expressed as W(ξ). Dynamics in the Wigner picture is
implemented by the Wigner function propagator Kt(ξ f , ξ0), namely, a kernel
that evolves the initial Wigner function W0 to the Wigner function Wt at time
t,

Wt(ξ f ) =
∫ d2Nξ0

(2π)N Kt
(
ξ f , ξ0

)
W0(ξ0). (4.6)

For QBM models, the Wigner function propagator is Gaussian. The most
general form of a Gaussian propagator is

Kt(ξ f , ξ0) =

√
detS−1

πN exp
[
−1

2
[ξa

f − ξa
cl(t)]S

−1
ab (t)[ξ

b
f − ξb

cl(t)]
]

. (4.7)

where Sab is positive definite matrix and

ξa
cl(t) = Ra

b(t)ξ
b
0. (4.8)

The matrix Ra
b defines the solution to the classical equations of motion. The

matrix Sab determines the evolution of the environment-induced fluctuations.
To see this, we consider the correlation matrix

Vab :=
1
2

Tr[ρ̂(ξ̂aξ̂b + ξ̂bξ̂a)]− Tr(ρ̂ξ̂a)Tr(ρ̂ξ̂b). (4.9)

By Eq. (4.7),
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V(t) = R(t)V(0)RT(t) + S(t) (4.10)

where V0 is the correlation matrix of the initial state.
The explicit form of the matrices R and S was derived in [29]. They de-

pend on two kernels, the dissipation kernel,

γαα′(s) = −∑
i

ciαciα′

2miω
2
i

sin(ωis), (4.11)

and the noise kernel,

ναα′(s) = ∑
i

ciαciα′

2miω
2
i

coth
(ωi

2T

)
cos(ωis). (4.12)

The crucial step in the determination of the matrices R and S is to find the
solution to the linear integro-differential equation [29]

üα(t) + Ω2
r uα(t) +

2
Mα

∑
α′

∫ t

0
dsγαα′(t− s)uα′(s) = 0 (4.13)

with initial conditions u̇αα′(0) = δαα′ and uαα′(0) = 0. Eq. (4.13) is essentially
the classical equation of motion with a non-local-in-time dissipation term
defined by the dissipation kernel.

Given the solution u(t), we define the matrix R as

R =

(
u̇(t) u(t)M−1

Mü(t) Mu̇(t)M−1

)
(4.14)

where M = diag(M1, ..., MN) is the mass matrix for the system.
The matrix elements of S are given by

SXαXα′
= ∑

ββ′

1
MβMβ′

∫ t

0
ds
∫ t

0
ds′uαβ(s)νββ′(s− s′)uβ′α′(s′), (4.15)

SPαPα′
= MαMα′ ∑

ββ′

1
MβMβ′

∫ t

0
ds
∫ t

0
ds′u̇αβ(s)νββ′(s− s′)u̇β′α′(s′),(4.16)

SXαPα′
= Mα′ ∑

ββ′

1
MβMβ′

∫ t

0
ds
∫ t

0
ds′uαβ(s)νββ′(s− s′)u̇β′α′(s′) (4.17)

4.1.2 Two UdW detectors

We consider a system of two identical static harmonic oscillators of mass
M = 1 and frequency Ω interacting with a scalar field through the Unruh-
DeWitt interaction Hamiltonian. The Hamiltonian of the total system form,
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where we assume that the detectors are localized at xxx = xxx1 and xxx = xxx2

Ĥint = λ

(∫
d3xφ̂(xxx)q̂1δ3(xxx− xxx1) +

∫
dnxφ̂(x)q̂2δ3(xxx− xxx2)

)
. (4.18)

where λ is a coupling constant.
For a free scalar field, the total Hamiltonian

φ̂(x) =
∫ d3k

(2π)3
1√
ωk

(â(k)eikkk·xxx + â†(k)e−ikkk·xxx), (4.19)

is a special case of the QBM Hamiltonian. The index i corresponds to three
momenta kkk, mi = 1, ωkkk = |kkk| and ckkkα

= λ√
2ωk

eıkxα .
It is straightforward to evaluate the dissipation kernel. By Eq. (4.11),

γ(s) = γ0(s)
(

1 0
0 1

)
+ γr(s)

(
0 1
1 0

)
(4.20)

where

γ0(s) = − λ2

8π2

∫ ∞

0
dksin(ks) (4.21)

γr(s) = − λ2

8π2r

[∫ ∞

0
dk

sin(kr) sin(ks)
k

]
. (4.22)

The function γ0(s) is the dissipation kernel of the one-detector system that
has been extensively studied in the literature [34]. It must be regularized, for
example, by introducing a high-frequency cut-off Λ. For r → 0, γr coincides
with γ0. In principle, we should introduce the same cut-off Λ to γr, however
γr is little affected unless r is of the order of Λ−1 or smaller. Alternatively, we
can regularize γ0 be equating it with γr0 for some r0 << r.

By Eq. (4.12), the noise kernel is

ν(s) = ν0(s)
(

1 0
0 1

)
+ νr(s)

(
0 1
1 0

)
, (4.23)

where

ν0(s) =
λ2

8π
δ(s) (4.24)

νr(s) = ν21(s) =
λ2

32πr
[sgn(r− s) + sgn(r + s)] . (4.25)
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4.2 The classical equations of motion

4.2.1 The inverse Laplace transform

Next, we evaluate the solutions uαα′(t) of the classical equations of motion
(4.13). Since Eq. (4.13) is linear, it can be solved by a Laplace transform. It
is straightforward to evaluate the Laplace transform ũ(z) of u(t) as A−1(z),
where A(z) is the 2× 2 matrix with elements

Aαα′(z) = (z2 + Ω2
α)δαα′ + 2γ̃αα′(z), (4.26)

where γ̃αα′(z) is the Laplace transform of the dissipation kernel. The Laplace
transforms of γ0 and γr are

γ̃0(z) = − λ2

16π2 ln
(

1 +
Λ2

z2

)
' − λ2

8π2 ln
(

Λ
z

)
(4.27)

γ̃r(z) = − λ2

16πrz
[e−rzĒi(rz)− erzEi(−rz)], (4.28)

where we simplified γ0(z) by assuming that the relevant values of z satisfy
|z| << Λ; Ei stands for the exponential integral function, defined by [50]

Ei(z) = γ + ln z +
∞

∑
1

zn

n!n
(4.29)

where γ is the Euler-Mascheroni constant.
Then, we obtain

ũ(z) =
1
2

[
1

z2 + Ω2 + 2γ̃0(z) + 2γ̃r(z)

(
1 1
1 1

)
+

1
z2 + Ω2 + 2cγ̃0(z)− 2γ̃r(z)

(
1 −1
−1 1

)]
(4.30)

Hence, u(t) takes the form,

u(t) =
1
2

[
f+(t)

(
1 1
1 1

)
+ f−(t)

(
1 −1
−1 1

)]
, (4.31)

in terms of the functions f±(t) that is defined by the Bromwich integrals

f±(t) =
1

2πi

∫ c+i∞

c−i∞
dz

ezt

z2 + Ω2 + 2γ̃0(z)± 2γ̃r(z)
. (4.32)

The integrated functions in (4.32) have a branch cut at z = 0. For this
reason, we integrate the function ezt

z2+Ω2+2γ̃0(z)±2γ̃r(z)
along the contour of Fig.
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1 that circles around the branch cut.
Using Cauchy’s theorem, we find that the functions f±(t) consists of two

parts,

f±(t) = f 0
±(t) + I±(t). (4.33)

The part f 0
±(t) contains the contribution from the poles in the region enclosed

by the contour, as in Fig. 4.1—we will refer to it as the pole term. The part
I±(t) includes the contribution from the negative imaginary axis; we refer to
this term as the branch-cut term [51], [52].

4.2.2 The pole term

For sufficiently small λ, the poles can be identified perturbatively. To this
end, we set z±+ = ±iΩ + λ2x, and we solve the equation

z2 + Ω2 + 2γ̃0(z)± 2γ̃r(z) = 0 (4.34)

to leading order in λ2. We find that the poles associated to f+ are at z±+ =
±iΩ + iδΩ+ − Γ+ and the poles associated to f− at z±− = ±iΩ + iδΩ− − Γ−,
where

δΩ± = − λ2

8π2Ω

(
ln
(

Λ
Ω

)
± cos(rΩ)

rΩ
Si(rΩ)∓ sin(rΩ)

rΩ
Ci(rΩ)

)
(4.35)

Γ± = Γ0

(
1± sin(rΩ)

rΩ

)
(4.36)

Γ0 =
λ2

16πΩ
. (4.37)

The constant Γ0 is the decay rate of a single oscillator interacting with a scalar
field.

Besides the two poles above, there exists a pole that is not accessible by
perturbation theory. This solution corresponds to the regime |z| << Ω. For
example, as r → ∞, so that the contribution of the γ̃r(z) term is negligible, Eq.
(4.34) has a root for Rez ' Λe−8π2Ω2/λ2

. This root is positive, and it leads to
runaway solutions, i.e., it induces a term in u(t) that blows up exponentially
as t → ∞. This term is unphysical, as it is incompatible with the dissipative
nature of the open system evolution. Its analog appears in the Abraham-
Lorentz classical treatment of radiation reaction that leads to a third-order
equation for a particle’s position [53]. In fact, the exponentially runaway
solution in this system was first found by Planck [54]. For the appearance of
such terms in QBM models of particle field interaction, see, Ref. [55].

These runaway solutions originate from the inadequacy of the particle-
field coupling to account for soft photons. In the present context, runaway
solutions can be avoided by an infra-red regularization. For example, we can
regularize by assuming a finite mass µ for the scalar field. This is equivalent,



4.2. The classical equations of motion 39
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c + iR

c− iR
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z(−)+
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−

z(−)−

FIGURE 4.1: Bromwich contour, branch cut and poles related to Eq. (4.32).
Integration is along a straight line from c − i∞ to c + i∞, where c is a
real constant larger than the real part of the poles of the integrand. The

contour is closed by a semicircle of radius R→ ∞.

to shifting the zero of γ0(z) by µ, so that we redefine

γ0(z) = −
λ2

16π2 ln
(

1 +
Λ2

(z + µ)2

)
. (4.38)

For µ > Λe−8π2Ω2/λ2
, the third pole has a negative real part and does not lead

to runaway solutions. A result of this regularization is that the integrating
function manifests branch cuts at z = −µ± iΛ, which have to be taken into
account by appropriate modification of the contour integral. In the weak-
coupling limit (Γ0/Ω << 1), µ−1 is much larger, and Λ−1 is much smaller
than physically relevant time-scales, so we can simply ignore the contribu-
tion of this pole at the intermediate regimes.

We conclude that in the weak-coupling limit, the pole term is well ap-
proximated by, except at very early times (t ∼ λ4).

f (0)± (t) =
sin Ω̃±t

Ω̃±
e−Γ±t. (4.39)
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4.2.3 The branch-cut term

To evaluate the integral along the negative near axis, we use the following
identities.

γ̃0(−s± iε) = F(s)∓ i
λ2

16π
(4.40)

γ̃r(s± iε) = G(s)∓ i
λ2

16πsr
sinh(rs), (4.41)

for positive ε→ 0. The functions F(s) and G(s) are

F(s) = − λ2

8π2 ln
(

Λ
s

)
(4.42)

G(s) = − λ2

8π2rs
[cosh(rs)Shi(rs)− sinh(rs)Chi(rs)] (4.43)

where Shi is the hyperbolic sine integral function and Chi the hyperbolic
cosine integral function are defined by

Shi(z) =
∫ t

0

sinh(t)
t

dt, (4.44)

Chi(z) = γ + lnz +
∫ z

0

cosh(t)− 1
t

dt (4.45)

Then,

I±(t) = −
λ2

8π2

∫ ∞

0
dse−st 1± sinh(rs)

rs

(s2 + Ω2 + 2F(s) + 2G(s))2 +
(

λ2

8π

)2 (
1± sinh(rs)

rs

)2 .(4.46)

The function I±(t) cannot be evaluated exactly. A good approximation that
is valid for t > r is to ignore the terms of order λ2 in the denominator, so that

I±(t) = −
λ2

8π2

∫ ∞

0
dse−st 1± sinh(rs)

rs
(s2 + Ω2)2 (4.47)

For t < r, the approximation above does not hold, because dropping the
terms of order λ2 in the denominator renders the integral divergent.

For Ωt >> 1, Eq. (4.47) becomes

I±(t) = −
λ2

8π2Ω4

[
1
t
± 1

r
tanh−1(r/t)

]
. (4.48)

In Fig.(4.2) we see the evolution of the function I± as a function of Γt for
different values of Ωr. It is negative-valued and increases asymptotically to
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(A) Ωr = 1 (B) Ωr = 1

(C) Ωr = 10 (D) Ωr = 10

(E) Ωr = 1000 (F) Ωr = 1000

FIGURE 4.2: Evolution of ΩI± as a function of Γ0t for different values of
Ωr, where Γ0/Ω = 10−3.

zero. It is unlike the pole term, in that it does not involve any oscillations.

4.2.4 The Markov approximation

Eq. (4.32) is similar for the equation for the persistence amplitude of an un-
stable quantum state in the random phase approximation [7]. In fact, the two
kernels γ̃0 and γ̃r are similar to the ones that appear in the evolution of a pair
of atomic qubits interacting with the EM field [56]. The difference is that the
dominant term contains a quadratic rather than a linear term with respect to
z, reflecting that in a harmonic oscillator, we consider both positive frequency
and negative frequency solutions.

The split (4.33) into a pole term and a branch-cut term are generic when-
ever the kernels describing the effect of the environment contain branch-cuts.
A common approximation in the study of unstable systems is the Wigner-
Weisskopf approximation (WWA), in which (i) the branch-cut term is ne-
glected, and (ii) the poles are calculated to leading-order in perturbation the-
ory. The WWA approximation leads to exponential decay. It coincides with
the van-Hove limit, namely, taking the limit λ → 0, with λ2t kept constant.
In the open quantum system context, the van Howe limit leads to the second-
order master equation that describes Markovian dynamics [5].
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It is straightforward to evaluate the van Howe limit of Eq. (4.32). We can
write any function of the form

f (t) =
1

2πi

∫ c+i∞

c−i∞
dz

ezt

z2 + Ω2 + λ2a(z)
, (4.49)

for some kernel λ2a(z), as

f (t) =
1

2πi

∫ c+i∞

c−i∞

dz
i
√

Ω2 + 2λ2a(z)

[
1

z− i
√

Ω2 + 2λ2a(z)
+

1
z− i

√
Ω2 + 2λ2a(z)

]
.(4.50)

We set z = iΩ + λ2x in the first term and z = −iΩ + λ2x in the second. Then,
we take the limit λ→ 0, with λ2t constant, to obtain

f (t) =
1
Ω

(
e−iΩt− λ2a(iΩ)

Ω t − eiΩt− λ2a(−iΩ)
Ω t

)
, (4.51)

i.e., the pole term with a perturbative evaluation of the poles.
The van Howe limit essentially substitutes the classical equation of mo-

tion with non-local in time dissipation, with an equation that is local in time.
Hence, it removes memory effects from the evolution equation. A local-in-
time equation for dissipation is necessary (but usually not a sufficient condi-
tion) for Markovian dynamics. This can be seen in path integral derivations
of the QBM master equation [34, 6]; Markovian behavior requires that the
noise kernel also becomes local.

To summarize, the Markov approximation to the system under study pre-
supposes the validity of the WWA approximation. Hence, its violation is a
definite sign of the existence of non-Markovian dynamics.

4.2.5 Non-Markovian dynamics

The WWA, and consequently, the exponential decay law, cannot be valid at
all times. Exponential decay fails at very early times due to quantum Zeno
dynamics 1. It also fails at very late times: the branch cut term typically falls
off as an inverse power of t, and eventually becomes larger than the pole
term that decays exponentially. However, the time scale for this decay is
much larger than relaxation time. For example, in optical systems, even for
Γ/Ω as large as 10−3, the breakdown of the exponential decay takes place at
Γt ∼ 30, when less than 1 : 1026 of the initial systems remains in the excited
state.

A violation of the WWA is physically meaningful only if it takes place at
time-scales compatible with the dissipation time, i.e., if it happens when Γt
is a small number. We will show that this takes place in the system studied
here when the detectors are separated by a large distance r.

1Quantum Zeno dynamics called the breakdown of the unitary time evolution at the
quantum systems due to the interaction with the environment or the measurement.
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Eq. (4.31) implies that u11 = u22 = 1
2( f+ + f−) and that u12 = u21 =

1
2( f+− f−). The terms u11 and u12 describe the dependence of the variables of
one detector to the initial conditions of the second detector, while u12 and u21
essentially describe the correlations developed between the two detectors.

Eq. (4.35, 4.36) imply that as r → ∞, Γ+ = Γ− and δΩ+ = δΩ−. By Eq.
(4.39), f (0)+ (t) = f (0)− (t) as r → ∞, for all t. Hence, the pole part of u12(t)
vanishes for all t as r → ∞. In contrast, the branch-cut term remains finite.
By continuity, for any given t there is a finite distance r, at which the branch
cut term dominates over the pole term, and hence, the WWA fails.

We have verified this behavior numerically, as can be seen in Fig. (5.3).
There, we present a semi-logarithmic plot of the pole term in u12 divided by
the full u12, as a function of time. By construction, this term is very close to
zero if the WWA applies and differs significantly from 0 if the WWA fails.
The plots show that the behavior of this function changes when r becomes
of the order of Γ−1

0 . At this scale, we see significant violations of the WWA
at the scale of Γt ∼ 1 , and a complete breakdown as Γt becomes about 5.
Note that both violations and the breakdown of the WWA occur early when
a significant fraction of energy remains in the system.

The WWA is well preserved for u11 and u22 at the regime where it fails
for u12. Nonetheless, it also fails at sufficiently large times. This is to be
expected because—as mentioned earlier— the WWA is guaranteed to fill in
the long-time limit. What is rather unexpected, is that for sufficiently large
r, the WWA breaks down even for u11 and u22 at relatively early times. We
found that for Γr < 10, the breakdown of the WWA occurs at Γt ' 15, i.e., at
a time where a negligible amount of energy remains on the system. However,
for Γr > 50, the WWA breaks down at Γt ' 5.

In all regimes that we have studied, the WWA breaks down at the u12
term both earlier and more strongly than it does at the u11 and u22 terms.
Therefore, its primary failure is for terms that describe the creation of the
correlation between distant detectors. For these terms, the branch-cut contri-
bution dominates. Hence, the creation of correlations over large distances is
a non-perturbative effect. It cannot be described correctly by perturbative ap-
proximation schemes, such as the von-Hove limit or the second-order master
equation.

The conclusion above is unquestionable for the present model, because
we have an exact solution, and consequently, full control over all approxima-
tion schemes. However, the open system evolution of the oscillator detector
should not be significantly different from that of a N-level system coupled
to a scalar field. For this reason, we expect that our conclusion is relevant to
all systems with a similar Hamiltonian, in particular, to atoms coupled with
the electromagnetic field. We have to move beyond the second-order mas-
ter equation to describe the dynamics of entangled atoms if these atoms are
found at separations r of the order of Γ−1.

The system is also non-Markovian at the opposite regime r → 0, as γr →
γ0, and f− becomes simply 1

Ω sin Ωt. This behavior has been extensively
studied in multi-partite QBM models, see, for example, [57, 58]. We will not
be concerned with this regime here, because of the limit Ωr << 1 is not
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I)

FIGURE 4.3: Evolution of the quantity
ftot[Γt]
utot[Γt]

for the non-diagonal elements

of the solution u(t) as a function of Γt and for different values of Γr. In
this plot Γ/Ω = 10−3.

compatible with either the identification of the oscillators with atoms or with
particle detectors.
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Chapter 5

Applications

In this chapter, we are going to introduce some applications of our exact solv-
able model. The first application is related to the generalized uncertainty re-
lations. We derive generalized uncertainty relations for our model described
in Sec. 4, and we continue with the discussion of the entanglement genera-
tion and the challenge of causality.

5.1 General Uncertainty Relations

Within the conception of quantum mechanics, Heisenberg (1927) introduces
a mathematical inequality according to which, it is impossible to measure si-
multaneous and with precise the position and momentum coordinates. This
relation called uncertainty relation or Heisenberg uncertainty relation and
took the approximate form:

∆q̂∆ p̂ ≥ h̄
2

(5.1)

where h̄ is the reduced Planck constant. Kennard-Robertson expected this
inequality to an arbitrary pair of operators X̂, P̂

(∆X̂)2(∆Ŷ)2 ≥ 1
4
|< [X̂, Ŷ] >|2 (5.2)

where (∆X̂),(∆Ŷ) is the variances (dispersions) of the observables X̂, Ŷ.

Definition 1. Heisenberg- Kennard- Robertson inequality If A,B are an arbi-
trary pair of operators and ∆A ,∆B are the uncertainties (precisions) of the measure-
ments of two quantum observables, then

(∆Â)2(∆B̂)2 − Ĉ2
AB ≥

1
2
| Tr(ρ̂[Â, B̂]) |2 (5.3)

(∆Â)(∆B̂) ≥ 1
2
| Tr(ρ̂[Â, B̂]) | (5.4)
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The uncertainties relation make a statement about the preparation of a
quantum state. In special case of the operators X̂,P̂ the eq.(1) becomes

(∆X̂)(∆P̂) ≥ 1
2

(5.5)

The eq. (5.1) it seems to be the same with the Heisenberg uncertainty relation
but it is not. In eq. (1) the precisions (∆X̂) and (∆P̂) is the uncertainties of the
measurements of two quantum observables at two different experiment but
in eq. (5.1) the (∆X̂) and (∆P̂) is refereed at the apparatus that measurement
the position and the momentum of one particle. Finally, the uncertainties
relation cause limitations on the measurement precision and improve the ac-
curacy of the measurement devices. So, the study of these uncertainties it is
very important.

5.1.1 Uncertainty relations and QBM models

In this section, using the Peres-Horodecki criterion and the Wigner function,
we study the separability of a bipartite state. In the phase space coordinates
the commutation relation, take the form:

[ξa, ξb] = iΩ (5.6)

with a, b = 1, 2, . . . , 2N, and the symplectic matrix

Ω =

(
J 0
0 J

)
(5.7)

with

J =
(

0 1
−1 0

)
(5.8)

In the Wigner distribution and with the partial transpose operation, we have
[59]

W(q1, p1, q2, p2) −→W(q1, p1, q2,−p2) (5.9)

which means that the mirror reflection acts only the p2.

ξ −→ Λξ, Λ = diag(1, 1, 1,−1) (5.10)

So, the Peres-Horodecki criterion becomes as: [59, 60]

Definition 2. If ρ̂ is separable, then its Wigner distribution necessarily over into a
Wigner distribution under the phase space mirror reflection Λ.
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If we work for the variables:

X̂± = X̂1 +±X̂2 (5.11)
P̂± = P̂1 +±P̂2 (5.12)

the Peres-Horodecki partial transpose operation acts only at the momentum
and we have:

Λ(X̂+, P̂+, X̂−, P̂−) = (X̂+, P̂−, X̂−, P̂−) (5.13)

and therefore, the uncertainties become, [29]

AX+P+ := (∆X2
+)(∆P+)2 −V2

X+P+ ≥
1
4

(5.14)

AX−P− := (∆X2
−)(∆P−)2 −V2

X−P− ≥
1
4

(5.15)

and

AX+P− := (∆X2
+)(∆P−)2 −V2

X+P− ≥
1
4

(5.16)

AX−P+ := (∆X2
−)(∆P+)2 −V2

X−P+ ≥
1
4

(5.17)

The quantities AX+P− ,AX−P+ and the inequalities eq.(5.16, 5.17) play an im-
portant role for the characterisation of any quantum state. When any quan-
tum state satisfies the inequalities eq.(5.16, 5.17) then this state is factorized.
On the other hand, if the inequalities violated, then the quantum state is en-
tangled.

The uncertainty relations play an important role in quantum mechanics.
First of all, they introduce limitations at the measurement precision, and sec-
ond, they are a useful tool for the determination of precision of measurement
apparatus. If we consider the covariance matrix Vt, as

Vab =
〈
{∆ξ̂a, ∆ξ̂b}

〉
(5.18)

we can define the standard uncertainty relation as the following form:

V0 +
i
2

Ω̃ ≥ 0 (5.19)

where

Ω̃ = ΛΩΛ (5.20)
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i.e.

Ω =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 (5.21)

and

Vt = R(t)V0RT(t) + S(t) (5.22)

where V0: is the correlation function of initial state.
In this section, we define the matrix V0 for two cases of initial state. The

first one is the state |ψ >= |0 > |0 > and the second one is the cat state with
wave-function |ψ = 1√

2
(|0 > |0 > ±|0 > |0 >). In the first case, we have

that.

V0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.23)

and in the second case

V0 =
1
2


1 1 0 0
1 1 0 0
0 0 1 1
0 1 0 1

 (5.24)

The correlation function of initial state satisfies the inequality (5.19), so

Vt ≥ −
i
2

R(t)ΩRT(t) + S(t) (5.25)

The inequality (5.25) is a generalized uncertainty relation that contains
the effect of the environment. It depends on the Wigner function propagator
and specifically on the matrices R(t), S(t). This inequality describes the cor-
relation matrix at time t, and the equality is achieved only for Gaussian states
[29].

5.1.2 Covariance matrix

The two-point correlation matrix V of a quantum state ρ̂, defined by:

Vab =
1
2

Tr[ρ̂(ξ̂aξ̂b + ξ̂bξ̂b)]− Tr(ρ̂ξ̂a)Tr(ξ̂b) (5.26)

where

Vt = R(t)V0RT(t) + S(t) (5.27)
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and

R =

(
u̇(t) u(t)M−1

Mü(t) Mu̇(t)M−1

)
, (5.28)

RT(t) =
(

u̇(t) Mü(t)
u(t)M−1 Mu̇(t)M−1

)
(5.29)

V0: is the correlation matrix of the initial state and satisfies the inequality.
Given that,

V ≥ − i
2

Ω (5.30)

we have

V(t) ≥ − i
2

R(t)ΩRT(t) + S(t). (5.31)

Specifically, for our model, we calculate the covariance matrix analytically,
and we find that this matrix has the form

V(t) ≥ − i
2


VX+X+(t) VX+X−(t) VX+P+(t) VX+P−(t)
VX−X+(t) VX−X−(t) VX−P+(t) VX−P+(t)
VP+X+(t) VP+X−(t) VP+P+(t) VP+P−(t)
VP−X+(t) VP−X−(t) VP−P+(t) VP−P−(t)

+ S(t) (5.32)

where

VX+X+(t) = SX1X1(t) + SX2X1(t) (5.33)
VX+X−(t) = 0 (5.34)
VX−X+(t) = 0 (5.35)
VX−X−(t) = SX1X1(t)− SX2X1(t) (5.36)

V(t) ≥ − i
2

(
VP+P+(t) VP+P−(t)
VP−P+(t) VP−P−(t)

)
(5.37)

VP+P+(t) = SP1P1(t) + S2P1(t) (5.38)
VP+P−(t) = 0 (5.39)
VP−P+(t) = 0 (5.40)
VP−P−(t) = SP1P1(t)− SP1P2(t) (5.41)



50 Chapter 5. Applications

V(t) ≥ − i
2

(
VX+P+(t) VX+P−(t)
VX−P+(t) VX−P−(t)

)
(5.42)

VX+P+(t) = E(t) + C(t) + SX1P1(t) + SX2P1(t) (5.43)
VX+P−(t) = 0 (5.44)
VX−P+(t) = 0 (5.45)
VX−P−(t) = E(t)− C(t) + SX1P1(t)− SX1P2(t) (5.46)

where

E(t) = −M(ü11(t)u11(t) + ü12(t)u12(t)M + M(u̇2
11(t) + u̇2

12(t))M−1 (5.47)

C(t) = −M(ü11(t)u12(t) + ü12(t)u11(t)M + M(u̇12(t) + u̇11(t))M−1 (5.48)

Finally, we calculate the covariance matrix Vt analytically and arithmetical
using the Wolfram Mathematica. This covariance matrix is necessary for the
study of the factorizability of a given state at time t.

5.2 Entanglement: Theoretical background

In this section, we are going to note some applications of our model in quan-
tum information theory and quantum computation. The first one is to under-
stand an important fundamental quantum phenomenon, the entanglement.

5.2.1 Partial Transpose Criterion

We consider a density matrix ρ̂ at the Hilbert space H1 ⊗ H2 and an orthogo-
nal basis |n〉 at Hilbert space H1 and an orthogonal basis |m〉 at Hilbert space
H2. Also, we define the partial trace of ρ̂, the density matrix ρ̂2 at Hilbert
space H2 as ρ̂2 = TrH1 ρ̂. The states ρ̂1, ρ̂2 often called reduced density matrix
and contain the information of the total system, that extract from the measure
of the first or second subsystem. There is a criterion for checking if a given
quantum state is entangled, that proposed by Schmidt.

Definition 3. Schmidt Decomposition Even vector |ψ〉 ∈ H1⊗H2 with dimen-
sion N2 can be written as:

|ψ〉 =
N

∑
i=1

c1|φ1〉 ⊗ |ψi〉 (5.49)

where ci > 0 and the |φi〉, |ψi〉 can be called the Schmidt modes, and defines in terms
of the orthogonal basis of the Hilbert space H1, H2, respectively. The number N is
called Schmidt number of vector |ψ〉 and is smaller or equal of the dimensions of H1
and H2.
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So, we can see that if N = 1, the state |ψ〉 is separable, and if N〉1, the state
is entangled. Using the Schmidt decomposition, we can write the reduced
density matrix ρ̂1 and ρ̂2 as

ρ̂1 =
N

∑
1
|ci|2|φi〉〈φi| (5.50)

ρ̂2 =
N

∑
1
|ci|2|ψi〉〈ψi| (5.51)

The pure state |ψ〉 is entangled if it can not written as |ψ〉 = |ψi〉|φ1〉.
In the particular case where N = dimH1 = dimH2, the reduced density

matrices are the maximum mixed states, and therefore the state |psi〉 is the
state of maximum entanglement.

In the case of mixed states ρ̂ = ∑i pi|φi〉〈φi|, ρ̂ is called separable if it
can be written as ρ̂ = ∑j pjρ̂

a
j ρ̂b

j , ∑j pj = 1. If it is not separable, it called
entangled.

Beyond of the Schmidt Decomposition, Peres and Horodecki ([59],[60])
propose a criterion, called Positive Partial Transpose (PPT) for the checking of
the separability of any given bipartite continuous-variable state. According
to this criterion, if any given state has an operator that can not be density
matrix (i.e., it has one negative eigenvalue), then the state ρ̂ is entangled. The
PPT criterion is a necessary condition for checking the separability, but it is
not sufficient. Only in the 2× 2 and 2× 3 dimensional cases, the PPT criterion
can be a necessary and sufficient condition for separability. In our research,
using the PPT, we show that the open system dynamics of the system of two
detectors lead to a different asymptotic state.

5.2.2 Entanglement dynamics

Many of the most modern technologies use quantum theory and several
quantum phenomena, such as superposition and entanglement, in practical
applications, which perform better than similar technologies based on classi-
cal physics theory [31]. Most of these applications are mainly related to quan-
tum computers, quantum cryptography, and quantum simulation [32]. For
the case of Gaussian states, have been developed a variety of the measures of
the entanglement, such as the negativity EN. This measure can be calculated
in the Wigner function distribution and using the symplectic eigenvalues of
the covariance matrix, Vt. If the covariance matrix has the form:

Vt =

(
A B
M MT

)
(5.52)

where

A =

 〈
X2

1
〉 〈

X1P1+P1X1
2

〉〈
X1P1+P1X1

2

〉 〈
P2

1
〉

 (5.53)
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B =

 〈
X2

2
〉 〈

X2P2+P2X2
2

〉〈
X2P2+P2X2

2

〉 〈
P2

2
〉

 (5.54)

and

M =

 〈
X1X2+X2X1

2

〉 〈
X1P2+P2X1

2

〉〈
X2P1+P1X2

2

〉 〈
P1P2+P2P1

2

〉  (5.55)

According to the Positive Partial Transpose criterion by Peres-Horodecki, the
minimum eigenvalue of the transpose of Vt must satisfy the equality:

λ2
± =

(
∆(Vt)±

√
∆(Vt)2 − 4Det(Vt)

)
2

(5.56)

where

∆(Vt) = Det(A) + Det(B)− 2Det(M) (5.57)

When λmin ≥ 1
2 , the Gaussian states are separable, and for the measure-

ment of entanglement, we can use the logarithmic negativity. This measure
is given by the following equation:

EN = max{0,−ln(2lmin)} (5.58)

Using the PPT criterion, we investigate the dependence of entanglement on
the distance r. First, we study the case where the initial state is a vacuum
state |ψ(t)〉 = |0〉|0〉. For this state, we calculate the correlation matrix of the
initial state, and using this, we continue with the definition of the covariance
matrix Vt.

5.3 Asymptotic states and generation of entangle-
ment

In this section, using the PPT criterion, we show that the open system dy-
namics of our model, i.e., the detectors, lead to a unique asymptotic state.
This state is correlated, and it is entangled for small separations.

5.3.1 Asymptotic state

In Chap. 2, we showed that the reduced density matrix propagator for this
model is fully determined by the matrices R(t) and S(t). In Sec. 4.2, we
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(A) SX1X2 , Γ0r = 0.01 (B) SX1X2 , Γ0r = 0.1

(C) SX1X2 , Γ0r = 1.

FIGURE 5.1: Evolution of the correlation functions SX1X2 , as a function of
Γt and for different values of Γ0r. In this plot Γ0/Ω = 10−3.

evaluated R(t) and showed its non-Markovian behaviour for Γr ≥ 1. The
matrix S(t) is determined by Eqs. (4.15—4.17).

When evaluating the matrix elements Sab(t), we find that even for the
non-diagonal elements the dominant contribution comes from the functions
u11(t) and u22(t) and their derivatives. These functions are well described by
the pole term except for very long times. Hence, we expect that the WWA is
accurate for Sab(t). Numerically, we find that the difference between Sab cal-
culated via the WWA and the exact expression is of the order of Γ0/Ω << 1.
If we substitute the pole term for u(t) in Eqs solely. (4.15—4.17), integration
can be carried out analytically. They lead to an analytic expression for Sab(t)
that is accurate to order Γ0/Ω.

The functions uαα′(t) vanish as t → ∞, hence, so does the matrix Rab(t).
Eq. (4.7) implies that as t → 0, the Wigner function propagator becomes in-
dependent of ξ0. Numerical evaluation of Sab(t) shows that it asymptotic to
a constant matrix for large t—we denote this matrix by S(∞). Hence, asymp-
totically the system is described by the Wigner function

W∞(ξ) =
1

π
√

det S(∞)
exp

[
−1

2
S−1

ab (∞)ξaξb
]

, (5.59)

By Eq. (4.10), the correlation matrix at infinity Vab(∞) coincides with Sab(∞).
Interestingly, the matrix S(∞) involves correlations between the two de-

tectors: the matrix elements SX1X2(∞), SP1P2(∞) and SX1P2(∞) that describe
such correlations are non-zero. To see this, we use the fact that the dominant
contribution to Sab(∞) is well approximated by the WWA. Substituting Eq.
(4.39) into Eqs. (4.15—4.17), taking the limit t → ∞, and keeping terms to
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(A) SP1P2 , Γ0r = 0.01 (B) SP1P2 , Γ0r = 0.1

(C) SP1P2 , Γ0r = 1. (D) SX1P2 , Γ0r = 0.01

(E) SX1P2 , Γr = 0.1 (F) SX1P2 , Γr = 1.

FIGURE 5.2: Evolution of the correlation functions SP1P2 , SX1P2 as a func-
tion of Γt and for different values of Γ0r. In this plot Γ0/Ω = 10−3.

leading order in Γ0/Ω, we obtain

SX1X1(∞) = SX2X2(∞) =
Γ0

Ω

[
1

Γ+
+

1
Γ−
− 1

2Ωr

(
sin(Ω+r)

Γ+
− sin(Ω−r)

Γ−

)]
(5.60)

SP1P1(∞) = SP2P2(∞) = Γ0Ω
[

1
Γ+

+
1

Γ−
− 1

2Ωr

(
sin(Ω+r)

Γ+
− sin(Ω−r)

Γ−

)]
(5.61)

SX1P1(∞) = SX2P2(∞) =
2Γ0

Ω

(
δΩ
Ω

+
sin(Ω+r)− sin(Ω−r)

4Ωr

)
(5.62)

(5.63)

SX1X2(∞) = SX2X1(∞) =
Γ0

Ω

[
1

Γ+
− 1

Γ−
− 1

2Ωr

(
sin(Ω+r)

Γ+
+

sin(Ω−r)
Γ−

)]
(5.64)

SP1P2(∞) = SP2P1(∞) = Γ0Ω
[

1
Γ+
− 1

Γ−
− 1

2Ωr

(
sin(Ω+r)

Γ+
+

sin(Ω−r)
Γ−

)]
(5.65)

SX1P2(∞) = SX2P1(∞) =
Γ0

Ω

(
−1 +

sin(Ω+r) + sin(Ω−r)
2Ωr

)
(5.66)



5.3. Asymptotic states and generation of entanglement 55

Remarkably, the correlation terms SX1X2 and SP1P2 turn out to be of order
(Γ0/Ω)0, i.e., of the same order with the diagonal terms. However, unlike the
diagonal terms, correlation terms are suppressed as Ωr becomes significantly
larger than unity. For Ωr ' 20 or smaller, there is significant residual correla-
tion between the detectors. This may appear surprising, but we note that the
destruction of correlations is a common feature of either high-temperature
baths, or systems of qubits, and not a generic property of open quantum sys-
tems. The existence of asymptotic correlations appears more intuitive when
viewing the oscillators as actual particle detectors. We would expect the de-
tectors to develop correlations if they dominantly interact with particles with
de Broglie wavelength of the order of their distance1.

Next, we examine whether the asymptotic state is entangled. To this end,
we employ the Positive Partial Transpose (PPT) separability criterion of Peres
and Horodecki [59, 60]. In the present context, the PPT criterion is applied to
the correlation matrix V. A correlation matrix on L2(RRR)⊗ L2(RRR) is separable
if it satisfies

V ≥ − i
2

Ω̃, Ω̃ = ΛΩΛ (5.67)

where Ω is the symplectic form on the four-dimensional phase space of two
particles and Λ is the matrix of the PPT operation Λ = diag(1, 1, 1,−1) [61].

In Fig.(5.4), we plot the minimal eigenvalue of S(∞) + i
2 Ω̃ as a function

of Ωr. A negative value of λ− indicates an entangled Gaussian state, a pos-
itive value of a separable Gaussian state. We see that the asymptotic state
is entangled for Ωr / 1.79 and that the entanglement is stronger as r → 0.
The results are qualitatively compatible with the analysis of Ref. [18] (that
ignores backreaction) and the analysis of Ref. [58] (that employs a pertur-
bation expansion scheme). We note that Eqs. (5.60—5.66) provide the exact
asymptotic expression of S in the weak coupling limit.

5.3.2 Entanglement generation

Having established the asymptotic behavior of the two-detector system, and
identified the asymptotic behavior of entanglement, we examine how entan-
glement is generated in time. Again, we employ the separability criterion
(5.67). We consider an initial factorized state |z〉 ⊗ |z′〉, which is a product of
coherent states. In Fig. (5.5), we plot the lowest eigenvalue of Vt +

i
2 Ω̃ as a

function of Γ0t, where Vt is given by Eq. (4.10). As expected, entanglement is
generated only at early times.

1There is no lower limit to Ω in our model—except for the infra-red cut-off— so the de-
tectors could be correlated even if they are separated by microscopically large distances. Of
course, actual particle detectors are macroscopic systems, and the variables X̂α are highly
coarse-grained. The inclusion of additional degrees of freedom to the detector would intro-
duce decoherence effects that would suppress such correlations beyond some length scale
L.
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The choice of the initial state |z〉 ⊗ |z′〉 does not significantly affect the en-
tanglement creation. Other factorized initial states exhibit the same behavior.

For z = z′ = 0, the initial state is |0, 0〉, i.e., the ground state of the system
of two oscillators. However, this state is not the lowest energy state for the
full field-detector Hamiltonian. For this reason, the energy of the detector
degrees of freedom momentarily increases as a result of the interaction with
the environment, which would be paradoxical if |0, 0〉 were a true ground
state.

The state |0, 0〉 may be viewed as a ground state of the system if we can
assume a set-up in which the field-detector coupling switches on at t = 0. As
long as the switching on takes place at time-scales much smaller than Γ−1,
the solutions to the reduced dynamics derived here are applicable.

In this context, the creation of entanglement from an initial vacuum state
is referred to as harvesting of the QFT vacuum. Most research on harvesting
focuses on the evaluation of the effect in the lowest order of time-dependent
perturbation theory. This is a good approximation as long as the interac-
tion is switched on for a time interval much smaller than the relaxation time.
For longer times, an open-quantum system treatment that takes backreaction
into account is essential. To see this, note that for small separations between
the two detectors, entanglement is generated at early times, but this entan-
glement is degraded in time, leading to an asymptotic state with classical
correlations. This implies that studies of entanglement extraction that ignore
backreaction may significantly overestimate the amount of harvested entan-
glement.

Finally, we note that there is no significant generation of entanglement
outside the light-cone for static detectors.

5.4 The challenge of causality

An important motivation of this work is to understand how causality is im-
plemented in the communication of separated localized quantum objects that
are interacting through a massless quantum field. The present model, be-
ing exactly solvable, provides an explicit demonstration of Fermi’s two-atom
problem, in which the fundamental physical issues are not obscured by ques-
tions about the validity of approximations.

It is straightforward to verify that the classical equations of motion (4.13)
are not causal: X2(t) depends on the value of X1(0), even for times t < r.
In some sense, this result is to be expected. Eq. (4.13) describes the inter-
action between the oscillators in terms of direct coupling in position—even
if it is non-local in time—and it is well known that direct particle coupling
cannot lead to causal dynamics in relativistic systems. The problem is that
Eq. (4.13) describes the evolution of the expectation values of the observables
X̂1,2; hence, its non-causal behavior seemingly implies superluminal signals.

Having an exactly solvable model allows us to demonstrate explicitly that
this non-causal behavior is not an artifact of common approximations em-
ployed in such systems—for causality violation in Unruh-DeWitt detectors
in a perturbative evaluation, see [62, 63]. First, non-causality is not due to the
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choice of a factorizing initial condition, that was employed in the derivation
of the density matrix propagator. Such a condition is arguably unphysical be-
cause any preparation of the system cannot affect arbitrarily high energies of
the field. Factorizability holds at most up to a cut-off energy scale. However,
as mentioned in Sec. (4)existing models in the theory of open quantum sys-
tems strongly suggest such correlations are mostly significant at early times
and that their effects become negligible as correlations are established be-
tween system and environment due to dynamical interaction.

More importantly, we can derive an exact evolution equation for the ex-
pectation value 〈X̂r〉 [29]

d2

dt2 〈X̂α(t)〉+ Ω2
α〈X̂α(t)〉+ 2 ∑

α′

∫ t

0
γαα′(t− s)〈X̂α′(s)〉 = ∑

i

ciα

Mr
〈q̂i(t)〉,(5.68)

where q̂i is the field operator associated to the i-th mode, evolving according
to the free equations of motion for the field. We can also choose the initial
state to satisfy 〈φ(x)〉 = 〈π(x)〉 = 0, where π̂(x) is the field conjugate mo-
mentum2. This condition implies that 〈q̂i(t)〉 = 0, hence, 〈X̂α(t)〉 satisfies to
Eq. (4.13). Mean values evolve non-causally, irrespective of the initial condi-
tion.

The situation is analogous to that of Fermi’s two-level atom that was
mentioned in the introduction. In this sense, it is generic to all relativistic
systems with well-localized subsystems. Hegerfeld proved with minimal as-
sumptions that for any systems A and B, in disjoint regions, that interacting
through a quantum field, the excitation probability of B is nonzero immedi-
ately after t = 0 [15]. The present model exemplifies Hegerfeld’s theorem in
an exactly solvable system.

Hence, this type of non-causality is not a feature of unphysical dynam-
ics, for example, due to the limited validity of the field-particle coupling of
this model. To see this, note that field-particle couplings can be derived for
the dynamics of a N-level atom coupled to the electromagnetic field [64].
The harmonic oscillators considered here can be viewed as atoms with equal
spacing in the levels and N → ∞. The starting point in such derivations is
the full Quantum Electrodynamics. The crucial condition that leads to cou-
plings of the form (4.18) is the dipole approximation. This asserts that the size
of the localized systems is much smaller than the wavelength of the emitted
radiation. Since the size of those systems defines the cut-off frequency of Λ,
the dipole approximation is expected to hold with an accuracy of the order
of Ω/Λ. Hence, corrections to the dipole approximation (and, hence, to the
field particle coupling) are expected to increase with Ω and to be sensitive on
the cut-off Λ. This is the case for the runaway solutions that are regularized
away—see Sec. 3.2. In contrast, the non-causal behavior that characterizes
Eq. (4.13) is insensitive to Ω or Λ.

2This is a natural condition for a state that behaves like the field vacuum. In any case, the
mean value of the field and its conjugate momentum can be shifted to any value by a unitary
action of the Weyl group, that is generated by the field canonical algebra.
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For this reason, we believe that the problem of causality in detector-field
interactions is fundamentally kinematical and not dynamical. This is sup-
ported by several theorems on the impossibility to define localization observ-
ables in relativistic quantum systems [65, 66, 67]. Existing definitions of lo-
calized observables conflict the requirement of relativistic causality. Observ-
ables that appear to be local and causal in classical theory or non-relativistic
quantum theory (e.g., a particle’s position) fail to be so in relativistic quantum
theory. In particular, this is the case for the quantities X̂α and P̂α that describe
the degrees of freedom of the oscillator detectors in the present model. Once
the interaction with the field is present, they canno longer be viewed as local-
ized observables pertaining to a single detector. Being non-local observables,
their non-causal evolution is not problematic.

This also means that a causal description of the relativistic transmission
of information requires a consistent definition of localized observables. The
Hilbert space of the systemHtot = Hd1⊗Hd2⊗H f ield, whereHdα is a Hilbert
space associated to the α detector andH f ield the field Hilbert space. An oper-
ator that corresponds to a measurement in the detector 1 should not be of the
form Â ⊗ Î ⊗ Î. Still, rather, it should be a non-factorized operator on Htot
that reduces to the factorizing form for λ → 0. Rather heuristically, a local
observable should include a contribution virtual photons before in order to
be compatible with causality [16].

It is doubtful that self-adjoint operators that generalize X̂α and P̂α for the
interacting system can be defined in a way that is compatible with causality.
There are strong arguments-that ideal measurements—i.e., measurements
corresponding to self-adjoint operators—are incompatible with causality in
QFT [68]. These arguments are completely independent of Fermi’s two-atom
problem. This means that we must express QFT measurements in terms of
Positive-Operator-Valued measures (POVMs). One of us has proposed the
use of time-extended observables for the description of particle localization
[69]. Time extended observables correspond to POVMs that partly depend
upon the dynamics of the quantum system [70]. Hence, a model with exactly
solvable dynamics, such as the one analyzed here, is important for the ex-
plicit construction of such observables and for testing their causal behavior.

Implications to entanglement generation. We argued that operators of the form
Â ⊗ Î ⊗ Î could not be viewed as corresponding to a local measurement of
the first detector, and similarly for operators of the form Î ⊗ Â ⊗ Î in rela-
tion to the second detector. However, the representation of local measure-
ments with operators of this form is a cornerstone of quantum information
theory. In particular, it is a prerequisite for identifying entanglement as a
quantum resource. Of course, this representation is based fundamentally on
non-relativistic quantum physics. It does not directly apply to relativistic
quantum systems, and it does not incorporate the severe restrictions raised
by QFT.

Hence, there is no fundamental justification that the usual measures of en-
tanglement between the detectors define a genuine quantum resource when
the detectors are coupled to a quantum field. One cannot assert that these
measures describe non-classical correlations between localized measurements.
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Hence, the physical relevance of entanglement harvested by the vacuum of
entanglement generation outside the light-cone questionable.

In our opinion, we must first resolve the issue of defining an appropriate
notion of localized observables in relativistic QFT, as exemplified by Fermi’s
problem. Then we can attempt to define a new quantum resource that repre-
sents Bell-type correlations in the QFT context.
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(A) SX1X1 , Γ0r = 0.01 (B) SX1X1 , Γ0r = 0.1

(C) SX1X1 , Γ0r = 1. (D) SP1P1 , Γ0r = 0.01

(E) SP1P1 , Γ0r = 0.1 (F) SP1P1 , Γ0r = 1.

(G) SX1P1 , Γ0r = 0.01 (H) SX1P1 , Γr = 0.1

(I) SX1P1 , Γr = 1.

FIGURE 5.3: Evolution of the correlation functions SX1X1 , SP1P1 , SX1P1 as a
function of Γt and for different values of Γ0r. In this plot Γ0/Ω = 10−3.
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FIGURE 5.4: The minimal eigenvalue λ− of the matrix S(∞) + i
2 Ω̃ as a

function of Ωr.

(A) Ωr = 0.5 (B) Ωr = 10

(C) Ωr = 100 (D) Ωr = 1000

FIGURE 5.5: The evolution of minimal eigenvalue λ− of Vt +
i
2 Ω̃ for ini-

tial factorized state |z〉 ⊗ |z′〉 and for different values of Ωr. We see that
entanglement is generated only for small r.
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5.5 Summary and Conclusion

The next-generation quantum experiments in space lie in the regime where
the relativistic effects become significant. For this reason, it is crucial to in-
vestigate how separated quantum systems interact via relativistic quantum
fields. Summarizing, we studied the evolution of the system of two local-
ized detectors (oscillators) interacting through a massless quantum field in
a vacuum state via an Unruh-DeWitt coupling. This system admits an ex-
act solution is providing a good model for addressing fundamental issues
in particle-field interactions, causality, and locality in quantum field mea-
surements that are relevant to proposed quantum experiments in space. Our
analysis of the exact solution leads to the following results.

1. Common approximations (Markov approximation, perturbative mas-
ter equation, Wigner-Weisskopf approximation) used in the study of
analogous open quantum systems fail when the distance between the
detectors becomes of the order of the relaxation time or larger, i.e. rdet ≈
τrelax. Even if this result is derived in a specific model, we believe that
can be generalize for any system interact with the environment with
Hamiltonian of the form:

Ĥint = ∑
i,r

ci,rX̂r q̂i (5.69)

In particular, the creation of correlations between remote detectors is
not well described by ordinary perturbation theory and the Markov
approximation.

2. There is a unique asymptotic state that is correlated; it is not entan-
gled unless the detector separation is of the order of magnitude of the
wavelength of the exchanged quanta. So, the entanglement generation
in this regime, persists at times of the order of relaxation scale, beyond
the most recent studies of the entanglement generation from vacuum
(harvesting) [71].

3. The evolution of seemingly localized observables is non-causal. The
latter is a manifestation of Fermi’s two-atom problem, albeit in an ex-
actly solvable system. We argue that the problem of causality requires
a re-examination of the notion of entanglement in relativistic systems,
in particular, the physical relevance of its extraction from the quantum
vacuum.

We believe that the model presented here provides an important tool for ad-
dressing foundational issues in QFT, because it has a formal exact solution,
and provides full mathematical control to all approximation schemes. It may
be used for constructing localized observables to address the Fermi problem,
for understanding causal propagation of information in QFT, and for gener-
alizing existing quantum information concepts to relativistic systems.
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5.6 Thesis Features and Conventions

The description of the causal propagation of information between two sepa-
rated harmonic oscillators, presented in this work is suited for studying in-
formation transfer and non-Markovian dynamics for any system with Hamil-
tonian that can be written in terms of

Hint = ∑
i,r

X̂r q̂i. (5.70)

Our results can be applied for any system of atoms that interacts with an
electromagnetic field. Also, our exact solvable system can be applied for the
studying of the Non-Markovian dynamics for a system of two-qubits in gen-
eral bath and for the studying of the entanglement dynamics in two-qubits
system. Finally, our exact solvable system provides an exact mathematical
control for all systems are based on approximations. It may be used for the
understanding of causal propagation of information in Quantum Informa-
tion Field (Q.F.T.). It is also useful for the understanding of causality and
locality in relativistic quantum information theory. Last but not least, it may
be used for the checking of the Fermi problem at the upcoming experiments
in space that can be studied at the Lunar Gateway (NASA)—see. fig. (5.6).

FIGURE 5.6: Representation of space based quantum optics experiments
for foundational QM, GR and QFT leading to test of Quantum Gravity.

(https://www.nasa.gov)

Many different applications have been left for the future. We want to
continue our research by studying the case of one harmonic oscillator for the
case of the strong coupling between system and environment. In appendix
D, we present some of the calculations of significant quantities for the case of
a system of one harmonic oscillator interacting with the environment. Also,
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we would like to describe the causal propagation of information between
two separated harmonic oscillators in one dimension.

Finally, for our system, we would like to determine:

1. the discussion term of a Master equation Dab(t), that incorporates the
effect of environment-induced fluctuations,

2. and the uncertainty function AXiPj , which provide the witness of entan-
glement of any quantum state.
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Appendix A

System of two harmonic oscillator:
Calculation of solution of
homogeneous equation of motion
urr′(t)

In this appendix, we give the explicit form of the solution of homogeneous
part of equation of motion for the system of two harmonic oscillators.

A.1 Evaluation of the Laplace Transform Integral
of matrix A−1

For the case of the system of two harmonic oscillators interacting with a
scalar field, in order to calculate the solution urr′(t) = L−1Ã−1(z) of the ho-
mogeneous part of equation of motion and determine the matrix R(t), it is
important to calculate the matrix A−1(z). The matrix Ã−1(z) can be written
as:

Ã−1(z) =
1
2

[
1

z2 + Ω2 + 2γ̃0(z) + 2γ̃r(z)

(
1 1
1 1

)
+

1
z2 + Ω2 + 2γ̃11(z)− 2γ̃12(z)

(
1 −1
−1 1

)]
, (A.1)

so that

A−1(t) =
1
2

[
f+(t)

(
1 1
1 1

)
+ f−(t)

(
1 −1
−1 1

)]
, (A.2)

in terms of

f±(t) =
1

2πi

∫ c+i∞

c−i∞
dz

ezt

z2 + Ω2 + 2γ̃0(z)± 2γ̃r(z)
(A.3)
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The integrad A.3 have a branch cut at z = 0 and two branches cut at z = −ε±
iΛ. So, for the calculation of the inverse Laplace, we integrate the function

ezt

z2 + Ω2 + 2γ̃0(z)± 2γ̃r(z)
(A.4)

using the Bromwich contour, see the fig. (A.1).
Using the Cauchy’s theorem we find the functions f±(t) and we can see

that this function is a sum of two terms:

f±(t) = f 0
± + I±(t) (A.5)

The first term of the function A.5 called pole term and the second called branch-
cut term.

A.2 Calculation of the pole term

The calculation of poles of the eq (A.1) is done by solving the following equation:

z2 + Ω2 + 2γ̃0(z) + 2γ̃r(z) = 0. (A.6)

Using the perturbation theory for:

z+− = −iΩ + λ2z1

z++ = +iΩ + λ2z2

and leading order in λ2, we have:

z++ = −Γ+ + iΩ+, (A.7)
z+− = −Γ+ − iΩ− (A.8)

where

Γ+ =
λ2

16πΩ

(
1 +

sin(rΩ)

rΩ

)
,

Ω+ = − λ2

8π2Ω

(
cos(rΩ)

rΩ
Si(rΩ) + ln

(
1 +

Λ2

(Ω + ε)2

)
− Sin(rΩ)

rΩ
Ci(rΩ)

)
+ Ω (A.9)

The second equation that we have to solve, is

z2 + Ω2 + 2γ̃0(z)− 2γ̃r(z) = 0, (A.10)
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with:

z−− = −iΩ + λ2z1,

z−+ = iΩ + λ2z2

and we have:

z−+ = −Γ− + iΩ− (A.11)
z−− = −Γ− − iΩ− (A.12)

where

Γ− =
λ2

16πΩ

(
1− sin(rΩ)

rΩ

)
Ω− = − λ2

8π2Ω

(
−cos(rΩ)

rΩ
Si(rΩ) + ln

(
1 +

Λ2

(Ω + ε)2

)
+

Sin(rΩ)

rΩ
Ci(rΩ)

)
+ Ω (A.13)

and the Ω± is the Lamb shift.

A.3 Calculation of Inverse Laplace Transform

Closing the left yields (schematically), the integrals
∫

CRA
,
∫

CRB
,
∫

CRC
,
∫

CRD
,
∫

CRε
,
∫

CR
ε′

,

vanish as R→ ∞. Therefore the integral f(t) take the form:

f±(t) =
∫ c+ı∞

c−ı∞
dz

ezt

z2 + Ω2 + 2γ0(z)± 2γr(z)
(A.14)

f+(t) =
∫ 0

−∞
dz

ezt

z2 + Ω2 + 2γ0(z) + 2γr(z)
+
∫ −∞

0
dz

ezt

z2 + Ω2 + 2γ0(z) + 2γr(z)

f−(t) =
∫ 0

−∞
dz

ezt

z2 + Ω2 − 2γ0(z) + 2γr(z)
+
∫ −∞

0
dz

ezt

z2 + Ω2 − 2γ0(z) + 2γr(z)

for z+ = −s + ıε and z− = −s + ıε the equation A.15 can be written as

I+(t) = −2
∫ 0

−∞
dse−st(

(γ0(−s−)− γ0(−s+)) + (γr(−s−)− γr(−s+))
(s2 + Ω2 + 2γ0(−s+) + 2γr(−s+))(s2 + Ω2 + 2γ0(−s−) + 2γr(−s−))

)
and

I−(t) = −2
∫ 0

−∞
dse−st(

(γ0(−s−)− γ0(−s+))− (γr(−s−)− γr(−s+))
(s2 + Ω2 + 2γ0(−s+)− 2γr(−s+))(s2 + Ω2 + 2γ0(−s−)− 2γr(−s−))

)
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Rez

Imz

c + iR

c− iRA

B

D E
FG

H I

JK

L ÎIJ

ÎİÎ§

ε

ε

CRA

CRB

CRC

CRD

Cε

C′ε

Cg

iΛ

−iΛ

z(+)
2

z(−)2

z(+)
1

z(−)1

FIGURE A.1: Bromwich contour, brunch cut and poles of the Laplace
transformed diagonal and non diagonal elements of urr′(t). Integration is
along a straight line from c− i∞ to c+ i∞, where c is a real constant larger
than the real part of the poles of the integrand. The contour is closed by a

semicircle of radius R→ ∞.

where

γ0(z+)− γ0(z−) = −i
λ2

8π
(A.15)

γ0(z+)− γ0(z−) = −i
λ2

8π

sinh(rs)
rs

(A.16)

Therefore

I+(t) = −i
λ2

4π

∫ ∞

0
dse−st 1 + sinh(rs)

rs

(s2 + Ω2 + 2F(s) + 2G(s))2 +
(

λ2

8π

)2 (
1 + sinh(rs)

rs

)2

and

I−(t) = −i
λ2

4π

∫ ∞

0
dse−st 1− sinh(rs)

rs

(s2 + Ω2 + 2F(s)− 2G(s))2 +
(

λ2

8π

)2 (
1 + sinh(rs)

rs

)2
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In fig. (A.2) we can see the evolution of the following terms:

1. Non-Markovian term I±(t),

2. Markovian term f 0
±(t),

3. and the total term u11(t), u12(t).

for the parameter Ωr = 100.
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(A) Non-Markovian term
ΩI+(t) as a function of

Γ0t, for Ωr = 100
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(B) Non-Markovian term
ΩI−(t) as a function of

Γ0t, for Ωr = 100

FIGURE A.2: Time evolution of the ΩI±(t), as a function of Γ0t and for
value of Ωr = 100.
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(A) Markovian term f 0
+(t)

as a function of Γ0t, for
Ωr = 100
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(B) Markovian term f 0
−(t)

as a function of Γ0t, for
Ωr = 100
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(C) Markovian and Non-
Markovian term u11 as a
function of Γ0t for Ωr =

100.
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(D) Markovian and Non-
Markovian term u12 as a
function of Γ0t for Ωr =

100.

FIGURE A.3: Time evolution of the u11(t), f 0
+(t), f 0

−(t), u12(t) as a function
of Γ0t and for value of Ωr = 100.
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Appendix B

Exact solution for the system of two
harmonic oscillators

We showed that the reduced density matrix propagator for this model is fully deter-
mined by the matrices R(t) and S(t). In chapter 4 , we evaluated R(t) and showed its
non-Markovian behavior for Γr ≥ 1. When evaluating the matrix elements Sab(t),
we fnd that even for the non-diagonal elements the dominant contribution comes
from the functions u11(t) and u22(t) and their derivatives. These functions as we
can see at the following plot, are well described by the pole term for very long times.

B.1 Correlation function of harmonic oscillators in
a thermal state at temperature T=0, SXrXr′

We begin from the definition of the correlation function S(t), then we present the
asymptotic expansion of them and finally we can see the evolution of them at the
corresponding plot.

SXrXr′
=

〈
∑
q

1
Mq

∫ t

0
dsurq(t− s)∑

i
cir q̂0

i (s)∑
q′

1
Mq′

∫ t

0
ds′ur′q′ ∑

j
cjr′ q̂0

j (s
′)

〉

SXrXr′
= ∑

q

1
Mq

∫ t

0
dsurq(t− s)∑

i
cir ∑

q′

1
Mq′

∫ t

0
ds′ur′q′(t− s)∑

j
cjr′
〈

q̂0
i (s)q̂

0
j (s
′)
〉

The correlation functions for the case of harmonic oscillators in a thermal state with
temperature T, can be written as:

〈
q̂0

i (s)q̂
0
j (s
′)
〉

T
= δij

1
2miωi

coth
(ωi

2T

)
cos

[
ωi(s− s′)

]
(B.1)
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SXrXr′
= ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(t− s)ur′q′(t− s)

× ∑
i

circir′

2miωi
coth

(ωi

2T

)
cos[ωi(s− s′)]

where the noise kernel, can be defined as

vrr′(s) = ∑
i

circir′

2miωi
coth

(ωi

2T

)
cos(ωis) (B.2)

with asyptotic form:

SXrXr′
= ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(t− s)vrr′(s− s′)ur′q′(t− s) (B.3)

vrr′(s) = ∑
i

circir′

2miωi
coth

(ωi

2T

)
cos(ωis) (B.4)

In our model we consider taht T = 0⇒coth
(ωi

2T
)
→ 1 (vacuum).

Finally, the correlation matrix take the form:

SX1X1 =
λ2

8π

∫ t

0
ds[u11(s)]2 +

λ2

8π

∫ t

0
ds[u12(s)]2

+
λ2

16πr

(∫ t

0
ds
∫ t

0
ds′u12(s)(H[(s− s′) + r]− H[(s− s′)− r])u11(s′)

+
∫ t

0
ds
∫ t

0
ds′u11(s)(H[(s− s′) + r]− H[(s− s′)− r])u21(s′)

)
(B.5)

SX1X1 =
λ2

16π

{ 1
Γ+(Ω2

+ + Γ2
+)

+
1

Γ−(Ω2
− + Γ2

−)
+

Γ+

2Ω2
+(Ω

2
+ + Γ2

+)

− Γ−
2Ω2
−(Ω

2
− + 4Γ2

−)
− 1

2r
sin(Ω+r)

Ω3
+Γ+

+
1
2r

sin(Ω−r)
Ω3
−Γ−

}
(B.6)

B.2 Correlation function of harmonic oscillators in
a thermal state at temperature T=0 , SX1X2

We continue with the matrix SX1X2 , that calculating with the same way as the matrix
SX1X1 .

SX1X2 = SX2X1 (B.7)
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The final expansion is:

SX1X2 =
λ2

16π

{ 1
Γ+(Ω2

+ + Γ2
+)

+
1

Γ−(Ω2
− + Γ2

−)
+

Γ+

2Ω2
+(Ω

2
+ + Γ2

+)

+
Γ−

2Ω2
−(Ω

2
− + 4Γ2

−)
− 1

2r
sin(Ω+r)

Ω3
+Γ+

+
1
2r

sin(Ω−r)
Ω3
−Γ−

}
(B.8)
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(A) Correlation function SX1X1 ,for
r = 100

��� ����������� ��	 
��-��������� ���

� � � � �

���

���

���

���

���

���

��

�
�
�
�
�

(B) Correlation function SX1X1 , for
r = 1000

FIGURE B.1: (a)SX1X1 for parameters of our system Γr = 0.1, a = 10−3,
Ω = 1.0, Λ = 100 and (b) SX1X1 for parameters of our system Γr = 1 ,

a = 10−3,Ω = 1.0, and Λ = 100
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(A) Correlation function SX1X2 , for
r = 100

��� ����������� ��	 
��-��������� ���

� � � � � �

�����

�����

�����

�����

�����

�����

��

�
�
�
�
�

(B) Correlation function SX1X2 , for
r = 1000

FIGURE B.2: (a)SX1X2 for parameters of our system Γr = 0.1, a = 10−3,
Ω = 1.0, and Λ = 100 and (b) SX1X2 for parameters of our system Γr = 1 ,

a = 10−3, Ω = 1.0, and Λ = 100

B.3 Correlation function of harmonic oscillators in
a thermal state at temperature T=0, SP1P1

The matrices SP1P1 and SP1P12 can be defined as

SPrPr′
= 〈PrPr′〉 = 〈Mr

˙̂Xr Mr′
˙̂Xr′〉
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SPrPr′
= Mr Mr′〈 ˙̂Xr

˙̂Xr′〉

SPrPr′
= Mr Mr′

〈
∑
q

1
Mq

∫ t

0
dsu̇rq(t− s)∑

i
cir q̂0

i (s)

∑
q′

1
Mq′

∫ t

0
ds′u̇r′q′(t− s′)∑

j
cjr′ q̂0

j (s
′)

〉

SPrPr′
= Mr′Mr′ ∑

q

1
Mq

∫ t

0
dsu̇rq(t− s)∑

i
cir

∑
q′

1
Mq′

∫ t

0
ds′u̇r′q′(t− s′)∑

j
cjr′
〈

q̂0
i (s)q̂

0
j (s
′)
〉

〈
q̂0

i (s)q̂
0
j (s
′)
〉
= δij

1
2miωi

coth(
ωi

2T
) cos

[
ωi(s− s′)

]
However

SPrPr′
= Mr Mr′ ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′u̇rq(t− s)u̇r′q′(t− s′)

× ∑
i

circjr′

2miωi
coth

(ωi

2T

)
cos

[
ωi(s− s′

)
]

where vrr′(s) is the noise kernel, defined by:

vrr′(s) = ∑
i

circir′

2miωi
coth

(ωi

2T

)
cos

[
ωi(s− s′)

]
therefore:

SPrPr′
= Mr Mr′ ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′u̇rq(t− s)vrr′(t− s)u̇r′q′(t− s′) (B.9)

with asymptotic expansion:

SP1P1 =
λ2

16π

{ 1
Γ+

+
1

Γ−
− Γ+

2(Ω2
+ + Γ2

+)
+

Γ−
2(Ω2

− + Γ2
−)

− sin(Ω+r)
2Ω+Γ+r

+
sin(Ω−r)
2Ω−Γ−r

+
Γ3
+

2Ω2
+(Ω

2
+ + Γ2

+)

−
Γ3
−

2Ω2
−(Ω

2
− + Γ2

−)
− Γ+ sin(Ω+r)

2Ω3
+

+
Γ− sin(Ω−r)

2Ω3
−

}
(B.10)
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(A) Correlation function SP1P1 ,for
r = 100
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(B) Correlation function SP1P1 , for
r = 1000

FIGURE B.3: (a)SP1P1 for parameters of our system Γr = 0.1, a = 10−3, Ω =
1.0, Λ = 100 and (b) SP1P1 for parameters of our system Γr = 1, a =

10−3, Ω = 1.0, Λ = 100

and

SP1P2 =
λ2

16π

{ 1
Γ+
− 1

Γ−
+

Γ+

2(Ω2
+ + Γ2

+)
+

Γ−
2(Ω2

− + Γ2
−)

− sin(Ω+r)
2Ω+Γ+r

− sin(Ω−r)
2Ω−Γ−r

+
Γ3
+

2Ω2
+(Ω

2
+ + Γ2

+)

+
Γ3
−

2Ω2
−(Ω

2
− + Γ2

−)
− Γ+ sin(Ω+r)

2Ω3
+

− Γ− sin(Ω−r)
2Ω3
−

}
(B.11)

B.4 Correlation function of harmonic oscillators in
a thermal state at temperature T=0 , SXrPr′

Finally we define the matrix SXrPr′
as:

SXrPr′
= 〈X̂rP̂r′〉 = 〈X̂r Mr′

˙̂Xr′〉 = Mr′〈X̂r
˙̂Xr′〉

SXrPr′
= Mr′

〈
∑
q

1
Mq

∫ t

0
dsurq(t− s)∑

i
cir q̂0

i (s)

∑
q′

1
Mq′

∫ t

0
ds′u̇r′q′(t− s′)∑

j
cjr′ q̂j0(s′)

〉

SXrPr′
= Mr′ ∑

qq′

1
MqMq′

∫ t

0
dsurq(t− s)∑

i
cir

∑
q′

1
Mq′

∫
ds′u̇r′q′(t− s′)∑

j
cjr′〈q̂0

i (s)q̂
0
j (s
′)〉
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(A) Correlation function SP1P2 ,for
r = 100
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(B) Correlation function SP1P2 , for
r = 1000
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(C) Correlation function SP1P2 , for
r = 1000

FIGURE B.4: (a)SP1P2 for parameters of our system Γr = 0.1, a = 10−3,
Ω = 1.0, Λ = 100, (b) SP1P2 for parameters of our system, Γr = 1 , a =

10−3, Ω = 1.0, Λ = 100
and (c) SP1P2 for parameters of our system, Γr = 50 , a = 10−3, Ω = 1.0,
Λ = 100

〈q̂0
i (s)q̂

0
j (s
′)〉 = δij

1
2miωi

coth
(ωi

2T

)
cos

[
ωi(s− s′)

]
,

Therefore:

SXrPr′
= Mr′ ∑

qq′

1
MqMq′

∫ t

0
dsurq(t− s)∑

i
cir′

∫ t

0
ds′u̇r′q′(t− s′)

× ∑
j

cjr′δij
1

2miωi
coth

(ωi

2T

)
cos[ωi(s− s′)]

SXrPr′
= Mr′ ∑

qq′

1
MqMq′

∫ t

0
ds
∫

0
ds′urq(t− s)vrr′(s− s′)u̇r′q′(t− s′), (B.12)

where
vrr′(s) = ∑

i

circir′

2miωi
coth

(ωi

2T

)
.cos(ωis)
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Finally:

〈X̂r′ P̂r′〉 = Mr′ ∑
qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(t− s)vrr′(s− s′)u̇r′q′(t− s′)

with asymptotic expansion of the correlation functions SX1P1 , SX1P2 , the:

SX1P1 =
λ2

16π

{
− 1

2(Ω2
+ + Γ2

+)
+

1
2(Ω2

− + Γ2
−)
− Γ2

+

2Ω2
+(Ω

2
+ + Γ2

+)

+
Γ2
−

2Ω2
−(Ω

2
− + Γ2

−)
− sin(Ω−r)

2rΩ−Ω2
−
+

sin(Ω+r)
2rΩ+Ω2

+

}
(B.13)
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(A) Correlation function SX1P1 ,for
r = 100
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(B) Correlation function SX1P1 , for
r = 1000

FIGURE B.5: (a)SX1P1 for parameters of our system Γr = 0.1, a = 10−3, Ω =
1.0, Λ = 100 and (b) SX1P1 for parameters of our system, Γr = 1, a =

10−3, Ω = 1.0, Λ = 100

SX1P2 =
λ2

16π

{
− 1

2(Ω2
+ + Γ2

+)
− 1

2(Ω2
− + Γ2

−)
− Γ2

+

2Ω2
+(Ω

2
+ + Γ2

+)

− − Γ2
−

2Ω2
−(Ω

2
− + Γ2

−)
+

sin(Ω−r)
2rΩ−Ω2

−
+

sin(Ω+r)
2rΩ+Ω2

+

}
(B.14)
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(A) Correlation function SX1P2 ,for
r = 100
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(B) Correlation function SX1P2 , for
r = 1000

FIGURE B.6: (a)SX1P2 for parameters of our system, Γr = 0.1, a =
10−3, Ω = 1.0, Λ = 100 and (b) SX1P2 for parameters of our system ,

Γr = 1, a = 10−3, Ω = 1.0, Λ = 100
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Appendix C

Two-point correlation matrix

Proof of the equation (4.10)
The two-point correlation matrix in phase space coordinates, can be calculated

as:

Vab =
1
2

Tr[ρ̂(ξ̂aξ̂b + ξ̂bξ̂a)]− Tr(ρ̂ξ̂a)Tr(ρ̂ξ̂b) (C.1)

Vt = R(t)V0RT(t) + S(t) (C.2)

Proof.

Vab =
1
2

Tr[ρ̂(ξ̂aξ̂b + ξ̂bξ̂a)]− Tr(ρ̂ξ̂a)Tr(ρ̂ξ̂b) (C.3)

Vab = Vab =
1
2

Tr[ρ(ξaξb + ξbξa)]− Tr(ρξa)Tr(ρξb) (C.4)

We know that the expectation value of an observable O depending on the
system variables, can be expressed from the expansion:

〈O(t)〉 = Tr(Oρ(t)) (C.5)

In the eq.(C.4) the trace of the corresponding variables, takes the form:

Tr[ρ(ξaξb + ξbξa)] = Tr[(ξaξb + ξbξa)ρ] = 〈ξaξb + ξbξa〉 (C.6)
Tr(ρξa) = Tr(ξaρ) = 〈ξa〉 (C.7)
Tr(ρξb) = Tr(ξbρ) = 〈ξb〉 (C.8)

Finally, we have:

Vab =
1
2〈ξaξb + ξbξa〉 − 〈ξa〉〈ξb〉, with 〈ξa〉 = 0 and 〈ξb〉 = 0 (C.9)

Also, we can use the bellow equation in Wigner distribution:

〈· · · 〉Xi,Pi ≡
∫ +∞

−∞
dXi

∫ +∞

−∞
dPi · · ·Wr(Xi, Pi, t)

(C.11)
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〈ξaξb + ξbξa〉 =
∫ +∞

−∞
dξ(ξaξb + ξbξa)Wt(ξ) (C.12)

Wt(ξ) =
∫ d2nξ0

(2π)N Kt(ξ f , ξ0)W0(ξ0) (C.13)

Kt(ξ f , ξ0) =

√
detS−1(t)

πN (C.14)

× exp
[
−1

2
[ξa

f − ξa
cl(t)]S

−1
ab (t)[ξ

b
f − ξb

cl(t)]
]

(C.15)

with

〈ξaξb + ξbξa〉 =
∫

dξ(ξaξb + ξbξa)

√
detS−1(t)

πN

×e−
1
2 [ξ

a
f−ξa

cl(t)]S
−1
ab (t)[ξb

f−ξb
cl(t)]W0(ξ0) (C.16)

but,

1
2

Tr[ρ̂(ξ̂aξ̂b + ξ̂bξ̂a)] =
1
2
〈ξaξb + ξbξa〉 = 〈ξaξa〉 (C.17)

〈ξaξb〉 =
∫

dξ(ξaξb)

√
detS−1(t)

πN

e−
1
2 [ξ

a
f−Ra

b(t)ξ
b
f ]S
−1
ab (t)[ξb

f−Rb
c(t)ξc

0] (C.18)

in terms of:

ξa − Ra
b(t)ξ

b
0 = ξ ′a =⇒ ξa = ξ ′a + Ra

b(t)ξ
b
0 (C.19)

ξb − Rb
c(t)ξ

c
0 = ξ ′b =⇒ ξb = ξ ′b + Rb

c(t)ξ
c
0. (C.20)
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Finally, the eq.(C.18) takes the form:

〈ξaξb〉 =
∫

dξ(ξ ′a + Ra
b(t)ξ

b
0)(ξ

′
b + Rb

c(t)ξ
b
0)

√
detS−1(t)

πN e−
1
2 ξa ′S−1

ab (t)ξ ′bW0(ξ0)

=
∫

dξ(ξ ′aξ ′b + ξ ′aRb
c(t)ξ

b
0 + Ra

b(t)ξ
b
0ξ ′b + Ra

b(t)ξ
b
0Rb

c(t)ξ
b
0)√

detS−1(t)
πN e−

1
2 ξa ′S−1(t)ξb ′W0(ξ0)

=
∫

dξ(ξ ′aξ ′b)

√
detS−1(t)

πN e−
1
2 ξ ′aS−1

ab (t)ξ ′bW0(ξ0)

+
∫

dξ(ξ ′aRb
c(t)ξ

b
0)

√
detS−1(t)

πN e−
1
2 ξ ′aS−1

ab (t)ξ ′bW0(ξ0)

+
∫

dξ(Ra
b(t)ξ

b
0ξ ′b)

√
detS−1(t)

πN e−
1
2 ξ ′aS−1

ab (t)ξ ′bW0(ξ0)

+
∫

dξ(Ra
b(t)ξ

b
0Rb

c(t)ξ
b
0)

√
detS−1(t)

πN e−
1
2 ξ ′aS−1

ab (t)ξ ′bW0(ξ0)

= I1 + I2 + I3 + I4 (C.21)

with

I1 =
∫

dξ ′(ξ ′aξ ′b)

√
detS−1(t)

πN e−
1
2 ξ ′aS−1

ab (t)ξ ′bW0(ξ0) (C.22)

Using the Gaussian integrals, which are defined by the following identity:
Gaussian integrals

∫
xk1 · · · xk2N exp

(
− 1

2

n

∑
i,j=1

Aijxixj

)
dnx =

√
(2π)n

detA
1

2N N!

× ∑
σ∈S2N

(A−1)kσ(1)kσ(2)···(A−1)kσ(2N−1)kσ(2N) (C.23)

The integrals I1(t), I2(t), I3(t), I4(t) becomes:

I1 =

√
(2π)2N

detS−1
1

2N Sab = Sab (C.24)

I2 =

√
detS−1(t)

πN

∫
dξ ′(ξ ′aRb

c(t)ξ
b
0)e
− 1

2 ξ ′aS−1
ab (t)ξ ′bW0(ξ0) = 0 (C.25)

I3 =

√
detS−1(t)

πN

∫
dξ ′(Ra

b(t)ξ
b
0ξ ′b)e

− 1
2 ξ ′aS−1

ab (t)ξ ′bW0(ξ0) = 0 (C.26)

(C.27)
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and

I4 =

√
detS−1(t)

πN

∫
dξ ′(Ra

b(t)ξ
b
0Rb

c(t)ξ
b
0)e
− 1

2 ξ ′aS−1
ab (t)ξ ′bW0(ξ0) (C.28)

=

√
detS−1(t)

πN

√
(2π)2N

detS−1
1

2N Ra
b(t)RbcV0bc (C.29)

= RabV0bcRT
cb (C.30)

= (RV0RT)ab (C.31)

Finally,

〈ξaξb〉 = I1 + I2 + I3 + I4 = Sab + 0 + 0 + (RV0RT)ab (C.32)
〈ξaξb〉 = (RV0RT)ab + Sab (C.33)

Vab = (RV0RT)ab + Sab (C.34)

Therefore, we find that the two point correlation matrix V(t) at time t, can be
written as:

V(t) = R(t)V0RT(t) + S(t) (C.35)

where V0 the correlation function of initial state.
The first term of the right side of the eq. (C) describes the evolution of the sys-

tem according to the classical equations of motion. On the other hand the second
term corresponds to effects of the environment to the system and therefore would be
contains all the information that the system loses and trasmitt to the surrounding
environment.
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Appendix D

Exact solutions to the open system
dynamics

D.1 The case of the system of one harmonic oscil-
lator

In this section, all the expressions expressed initially (in Sec. 3.2), will be used in
the case of a system consisting of a harmonic oscillator and which interacts with an
environment that we consider to be a scaled field. Initially, we should construct our
model, that is, define it the Hamiltonian of the total system. So, we consider a system
of one harmonic oscillator of mass Mr and of frequency Ωr that interacts with a
environment, that modelled as harmonic oscillator. The total system describes from
the following Hamiltonian:

Ht = Hsyst + Henv + Hint (D.1)

where

Hsyst =
1

2m
p2

1 +
1
2

mω1q2
1 (D.2)

Henv =
∫

dnx
[

1
2

π2 +
1
2
(∇φ)2 +

1
2

m2φ2
]
=
∫

dnkωkα†
kαk (D.3)

Hint = λ

(∫
dnxφ(x)q1δ(x− x1)

)
= λ ∑

~k

X1
1√
2ωk

qkeikx1 (D.4)

D.1.1 Calculation of dissipation kernel

The matrix γrr′ is the dissipation kernel and is defined by

γrr′(s) = −∑
c∗ircir′

2miωi
sin(ωis) (D.5)

Having compared the Eq.(D.4) with the following equation

Hint = ∑
i

∑
r

cirX̂r q̂i, r = 1, 2
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we find,
cir →

{
c~k1

= λ√
2ωk

eıkx1

therefore, for the system of one harmonic oscillator and for m = 1, the Eq. (D.5) can
de written as

γ11(s) = −λ2
∫ dnk

(2π)n
1√
2ωk

1√
2ωk

1
2ωk

sin(ωks)

γ11(s) = −λ2

4

∫ dnk
(2π)n

1
2ω2

k
sin(ωks) (D.6)

. The equation (D.6) for 3 dimensions can be written as:

γ11(s) = −
λ2

8π2

∫ ∞

0
dk sin(ks) (D.7)

and for 1 dimension, the dissipation kernel γ11(s) with ωk = |~k| , can be written as:

γ11(s) = −
λ2

8π

∫ ∞

0

sin(ks)
k2 dk (D.8)

D.2 Definition of matrix Ã−1
11 (z)

The definition of the solution of homogeneous part of equation of motion requires the
calculation of matrix A(z) and then the inverse of it. For this definition, firstly we
define the matrix A11(z), as follow:

A11(z) = z2 + Ω2 − λ2

8π2 ln
(

1 +
Λ2

z2

)
(D.9)

Secondly, we take the inverse of the matrix D.9, this matrix can be written as:

A−1
11 (z) =

1

z2 + Ω2 − λ2

8π2 ln
(

1 + Λ2

z2

) (D.10)

The last step of this process is to compute the inverse Laplace transform. For this
calculation, we have to calculate the poles of the function (D.10), ie to solve the
equation:

z2 + Ω2 − λ2

8π2 ln
(

1 +
Λ2

z2

)
= 0 (D.11)

Solving the above equation, using Mathematica, we found a positive root. This root
is naturally not acceptable because when an open quantum system interacts with
its environment, the system loses energy. To get rid of this positive root, we enter a
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small correction on matrix A−1
11 (z), the quantity ε. Hence, the matrix Ã−1(z) can

be written as:

Ã−1
11 (z) =

1

z2 + Ω2 − λ2

8π2 ln
(

1 + Λ2

(z+ε)2

) (D.12)

so that

A−1
11 (t) = f (t) (D.13)

in terms of

f (t) =
∫ c+i∞

c−i∞
dz

ezt

z2 + Ω2 + 2γ̃11(z)
(D.14)

To compute f(t) for the z = −Γ− iΩR and the z = −Γ + iΩR where,

Γ =
λ2

16πΩ
(D.15)

and

ΩR = − λ2

16π2Ω
ln
(

Λ2

Ω2 − 1
)
+ Ω (D.16)

D.3 Calculation of solution urr′(t)

The solution of homogeneous part of (4.13), can be expressed as follow

u(t) = L−1[A−1(z)] (D.17)

In a weak coupling approximation, for the system of one harmonic oscillator we cal-
culate exactly the solution urr′(t). This solution can be written as,

urr′(t) = −
λ2

16πΩ4

(
1
t

)
+

1
2πı ∑

ı
Res(zı) (D.18)

where

∑
i

Res(zi) = e−Γt


[

ıλ2

2π2ΩR
− 4Γ

]
cos[ΩRt] + 4ΩR sin[ΩRt]

4Γ2 − λ2

16π4Ω2
R
− ıλ2Γ

π2ΩR
+ 4Ω2

R
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In weak coupling approximation, the above equation was simplified. Therefore,

∑
i

Res(zi) =
e−Γt

ΩR
sin (ΩRt) (D.19)

and the solution urr′(t) take the form [72]

u(t) = − λ2

16πΩ4

[
1
t

]
︸ ︷︷ ︸

Non-Markovian term

+
1

2πı
e−Γt

ΩR
sin (ΩRt)︸ ︷︷ ︸

Markovian term

(D.20)

D.4 Noise kernel

The noise kernel for the system of one harmonic oscillator take the form

v11(s) =
λ2

8π2

∫ ∞

0
dk coth

(
k

2T

)
cos(ks) (D.21)

D.5 Correlation functions

To calculate the correlation functions, we use the relation:

〈XrXr′〉 = ∑
qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(s)vqq′(s− s′)uq′r′

for the case of a system of one harmonic oscillator we have: vqq′(s − s′) =
2MγTδ(s− s′) = v(s− s′)

It follows that:

〈XX〉 = ∑
q

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(s)v(s− s′)uqr′

〈XX〉 = ∑
q

1
M2

q

∫ t

0
ds
∫ t

0
ds′uq(s)v(s− s′)uq(s)

〈XX〉 = 2MγT ∑
q

1
M2

q

∫ t

0
ds
∫ t

0
ds′uq(s)δ(s− s′)uq(s′)

〈XX〉 = 2γT ∑
q

1
Mq

∫ t

0
dsuq(s′)uq(s′)

Finally,

〈X2〉 = 2γT ∑
q

1
Mq

∫ t

0
dsu2

q(s
′) (D.22)



D.5. Correlation functions 87

Also,

SPrPr′
= 〈PrPr′〉 = Mr Mr′ ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′u̇rq(s)vqq′(s− s′)u̇q′r′(s′)

The noise kernel for N = 1 is defined as:

vqq′(s− s′) = v(s− s′) = 2MγTδ(s− s′).

The equation D.22 with the expansion of the noise kernel takes the form :

〈PP〉 = Mr Mr′ ∑
qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′u̇q(s)2MqγTδ(s− s′)u̇q(s′)

〈PP〉 = Mr Mr′ ∑
q

1
M2

q
2MqγT

∫ t

0
ds
∫ t

0
ds′u̇q(s)δ(s− s′)u̇q(s′)

〈PP〉 = Mr Mr′ ∑
q

2γT
Mq

∫ t

0
dsu̇q(s′)u̇q(s′)

〈PP〉 = 2γTMr Mr′ ∑
q

1
Mq

∫ t

0
dsu̇q(s′)u̇q(s′)

Therefore:

SPP = 2γTMr Mr′ ∑
q

1
Mq

∫ t

0
dsu̇2

q(s
′) (D.23)

Finally, we have:

SXrPr′
= 〈XrPr′〉 = Mr′ ∑

qq′

1
MqMq′

∫ t

0
ds
∫ t

0
ds′urq(s)vqq′(s− s′)u̇q′r′(s′)

For N = 1:

vqq′(s− s′) = v(s− s′) = 2MqγTδ(s− s′)

and finally:

〈XP〉 = Mr′ ∑
q

1
M2

q

∫ t

0
ds
∫ t

0
ds′uq(s)2MqγTδ(s− s′)u̇q(s′)

〈XP〉 = Mr′ ∑
q

2MqγT
M2

q

∫ t

0
ds
∫ t

0
ds′uq(s)δ(s− s′)u̇q(s′)

〈XP〉 = Mr′ ∑
q

2γT
Mq

∫ t

0
dsuq(s′)u̇q(s′)

〈XP〉 = 2γTMr′ ∑
q

1
Mq

∫ t

0
dsuq(s′)u̇q(s′)
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i.e.,

SXP = 2γTMr′ ∑
q

1
Mq

∫ t

0
dsuq(s′)u̇q(s′) (D.24)

The equations (D.22) - (D.24) and the classical equations of motion (??) determine
exactly the Wigner function propagator. At this point it is worth mentioning that
for the case of a harmonic oscillator system we have calculated all the necessary ex-
pressions that give us information on the interaction of this open system with its
environment.

D.6 Master equation for the system of a harmonic
oscillator

In the case of a harmonic oscillator in a thermal bath, in an ohmic environment and
at the Fokker-Planck limit (high temperature limit), the Master equation, as noted
by Halliwell, Yu [73] has the form:

∂W̃
∂t

= − p
M

∂W̃
∂q

+ MΩ2
renq

W̃
∂p

+ 2γ
∂W̃
∂p

+ 2MγT
∂2W̃
∂p2 (D.25)

where
Ω̃ren = Ω2 − 2γδ(0)

and its inverse:

∂ρ

∂t
= −i[HR, ρr]− iΓ[x, [p, ρr]]−MDpp[x, [x, ρr]]− Dxp[x, [p, ρr]] (D.26)

The eq.(D.26) expresses the time evolution of the density matrix, so it is a Master
equation.
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Special functions

E.1 Cosine integral

E.1.1 Definition

The cosine integral has the form:

Ci(x) = −
∫ ∞

x

cos tdt
t

(E.1)

= γ + ln x +
∫ x

0

cos t− 1
t

dt (E.2)

=
1
2
[Ei(ix)− Ei(−ix)] (E.3)

= −1
2
[E1(ix) + E1(−ix)] (E.4)

and Ci(x) has the series expansion:

Ci(x) = γ + ln x +
∞

∑
k=1

(−x2)k

2k(2k!)
(E.5)

E.1.2 Asymptoitc expansions

Ci(x) = −γ− ln x +
∫ x

0

1− cos t
t

dt

∼ −γ− ln x +
x2

2 ∗ 2!
− x4

4 ∗ 4!
+

x6

6 ∗ 6!
− x8

8 ∗ 8!
+ · · · , for x << 1

(E.7)

and

Ci(x) =
cos x

x

(
1!
x
− 3!

x3 +
5!
x5 − · · ·

)
− sin x

x

(
1!− 2!

x2 +
4!
x4 − · · ·

)
, for x >> 1
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(E.9)

where γ : is the Euler-Mascheroni constant, defined by:

γ = lim
n→∞

(
1 +

1
2
+

1
3
+ · · ·+ 1

n
− ln n

)
= 0.577215664902 (E.10)

E.2 Sine integral

E.2.1 Defintion

The sine integral has the form:

Si(x) =
∫ x

0

sin t
t

dt (E.11)

E.2.2 Asymptotic expansion

Si(x) ∼ x
1 ∗ 1!

− x3

3 ∗ 3!
+

x5

5 ∗ 5!
− x7

7 ∗ 7!
+ · · · , for x << 1

(E.12)

and

Si(x) =
π

2
− sin x

x

(
1!
x
− 3!

x3 +
5!
x5 − · · ·

)
− cos x

x

(
1!− 2!

x2 +
4!
x4 − · · ·

)
, for x >> 1

(E.14)

.
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torsâĂŞField Interactions, Class. Quantum Grav. 29, 224005 (2012).

[4] L. Van Hove, Quantum-Mechanical Perturbations Giving Rise to a Statis-
tical Transport Equation, Physica 21, 517 (1955).

[5] E. B. Davies, Quantum Theory of Open Systems, (Academic Press, London
1976).

[6] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a gen-
eral environment: Exact master equation with nonlocal dissipation and
colored noise, Phys. Rev. D45, 2843 (1992).

[7] C. Anastopoulos, Decays of unstable quantum systems, Int. J. Theor. Phys.
58, 890 (2019).

[8] I. de Vega and D. Alonso, Dynamics of non-Markovian Open Quantum
Systems, Rev. Mod. Phys. 89, 015001 (2017).

[9] Z.Ficek and R. Tanas, Entangled States and Collective Nonclassical Effects
in Two-Atom Systems, Phys. Rep. 372, 369 (2002).

[10] G. S. Agarwal, Rotating-Wave Approximation and Spontaneous Emis-
sion, Phys. Rev. A 4, 1778 (1971).

[11] C. Fleming, N. I. Cummings, C. Anastopoulos, and B. L. Hu, The Rotating-
Wave Approximation: Consistency and Applicability from an Open Quan-
tum System Analysis, J. Phys. A: Math. Theor. 43, 405304 (2010).

[12] E. Fermi, Quantum Theory of Radiation, Rev. Mod. Phys. 4, 87 (1932).

[13] M.I.Shirokov, Yad.Fiz. 4, 1077 (1966)[Sov. J. Nucl. Phys. 4 ,774(1967)].

[14] B. Ferretti, Propagation of Signals and Particles "Old and New Problems in
Elementary Particles" ed. by G. Puppi, (Academic Press, New York 1968);

[15] G.C. Hegerfeldt, Causality problems for Fermi’s two-atom system, Phys.
Rev. Lett. 72, 596 (1994).



90 BIBLIOGRAPHY

[16] G. C. Hegerfeldt, Problems about Causality in FermiâĂŹsTwo-Atom
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