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Abstract

We extend the Coleman–Weinberg inflationary model where a scalar field φ is non-
minimally coupled to gravity with the addition of the R2 term. We express the theory
in terms of two scalar fields and going to the Einstein frame we employ the Gildener–
Weinberg formalism, compute the one-loop effective potential and essentially reduce
the problem to the case of single-field inflation. It turns out that there is only one
free parameter, namely, the mixing angle between the scalars. For a wide range of
this angle, we compute the inflationary observables which are in agreement with the
latest experimental bounds. The effect of the R2 term is that it lowers the value of the
tensor-to-scalar ratio r.

——————————————————————————————————————————–

1alkaram@cc.uoi.gr
2thpap@cc.uoi.gr
3tamvakis@uoi.gr

1

mailto:alkaram@cc.uoi.gr
mailto:thpap@cc.uoi.gr
mailto:tamvakis@uoi.gr


1. Introduction

Most of the problems of the Big Bang cosmology can be solved if one postulates that the Universe
underwent a quasi–de Sitter expansion in its early stages. This inflationary era, when treated
quantum-mechanically, can also produce and amplify the small inhomogeneities which have re-
sulted in the large scale structures and the anisotropy in the temperature of the cosmic microwave
background (CMB) [1–4] we observe today.

One of the simplest and most successful inflationary models is that of Starobinsky [5]. By
extending the Einstein-Hilbert action with the addition of an R2 term, one may express the
inflationary observables, i.e. the scalar spectral index ns and tensor-to-scalar ratio r, in terms of
the number of e-folds N as [6, 7]

ns = 1− 2

N
, (1.1)

r =
12

N2
. (1.2)

Then, for N = 55 one obtains ns = 0.9636 and r = 0.004. These values lie within the sweet spot of
the latest results from the Planck collaboration [8] which have recently further constrained these
parameters to be

ns = 0.9649± 0.0042 at 68% CL , (1.3)

r0.002 < 0.064 at 95% CL . (1.4)

Starobinsky inflation belongs to the general class of f(R) models [9–20] which are equivalent to
the scalar-tensor theories of gravity [15,21–45]. Other simple and popular scenarios have been the
monomial potentials with integer powers of the inflaton field. These, however, are all now excluded
with possibly the exception of linear inflation which gives r = 0.066 [38,46–49]. Recently, popular
ideas such as Higgs inflation have been combined with the Starobinsky model [50–66]. The analysis
of these models, however, becomes more complicated, since the appearance of the scalaron in the
Einstein frame results in a two-field inflaton potential.

The fact that the R2 term of the Starobinsky model dominates over the linear term during
inflation suggests that at very high energies gravity is scale invariant. In recent years, numerous
scale-invariant models have been proposed [37,38,42,46–49,67–89], both in relation to gravity but
also to beyond the Standard Model physics. The measured value of the scalar spectral index ns,
which is close to 1, suggests a nearly scale-invariant power spectrum. But since exact scale invari-
ance is excluded above 5σ, the symmetry must be broken dynamically by quantum corrections via
the Coleman–Weinberg mechanism [90,91]. Furthermore, by coupling the scalar field(s) to gravity
in a non-minimal way, the Planck scale can by generated in a dynamical way through the vacuum
expectation value (VEV) of the scalar(s).

The paper is organised as follows. In the next section, we present the model in the Jordan
frame. By using a Weyl transformation, we bring it to the Einstein frame, thus obtaining the tree-
level potential which depends on two fields. Then, in Section 3, we analyze the scalar potential by
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employing the Gildener-Weinberg formalism, which is a generalization of the Coleman-Weinberg
mechanism for multiple fields. Ultimately we arrive at the one-loop corrected potential which is
effectively one dimensional along the flat direction in the field space. In Section 4, we use the
one-loop potential to compute the inflationary observables and compare them to the experimental
constraints. Finally, in Section 5 we summarize and conclude.

2. The Model

We start by presenting the model to be studied and defining our notations. In the context of
classical scale invariance we consider the following Lagrangian density in the Jordan frame:

LJ =
√
−ḡ
[
ξφ2

2
R̄ +

α

2
R̄2 − 1

2
∇̄µφ∇̄µφ−

λφ
4
φ4

]
, (2.1)

where a bar indicates quantities in the Jordan frame. We have ommitted the Lagrangian Lm(ψ, φ, ḡµν)
describing the rest of the matter fields interacting with the scalar φ and gravity through scale-
invariant interactions, the details of which are not directly relevant to what we are about to
discuss. It is known [92–94] that a general scalar-tensor theory of gravity f(φ,R) can be expressed
in terms of an additional auxiliary scalar. In our case this amounts to writing the Lagrangian in
the classically equivalent way

LJ =
√
−ḡ
[

1

2

(
ξφ2 + αχ2

)
R̄− α

8
χ4 − 1

2
∇̄µφ∇̄µφ−

λφ
4
φ4

]
. (2.2)

Then we consider a Weyl rescaling of the metric

gµν = Ω2ḡµν , (2.3)

where gµν is the Einstein frame metric and the conformal factor is

Ω2 =
(
αχ2 + ξφ2

)
/M2

Pl (2.4)

or, equivalently expressed in terms of an auxiliary field ζ as

Ω2 =
ζ2

6M2
Pl

. (2.5)

The scale MPl introduced by the conformal transformation (2.3) will be identified with the Planck
mass and will ultimately be related to VEV of the field ζ. The Lagrangian density in the Einstein
frame takes the form

LE =
√
−g
[
M2

Pl

2
R− 6M2

Pl

ζ2

(
1

2
∇µφ∇µφ+

1

2
∇µζ∇µζ

)
− V (0)E(φ, ζ)

]
, (2.6)

3



where the tree-level potential becomes

V (0)E(φ, ζ) =
36M4

Pl

ζ4

[
λφ
4
φ4 +

1

8α

(
ζ2

6
− ξφ2

)2
]
. (2.7)

It is convenient to rewrite (2.7) as

V (0)E = A

(
φ

ζ

)4

+B

(
φ

ζ

)2

+ C , (2.8)

where we have defined

A ≡ 9M4
Pl

(
λφ +

ξ2

2α

)
, (2.9)

B ≡ − 3ξ

2α
M4

Pl , (2.10)

C ≡ M4
Pl

8α
. (2.11)

The mass matrix for (2.7) can then be written in compact form as

M2
ij ≡

(
∂2φV

(0)E ∂φ∂ζV
(0)E

∂ζ∂φV
(0)E ∂2ζV

(0)E

)∣∣∣∣
φ=υφ,ζ=υζ

=
B

3M2
Pl

 −2
√
−2B

A√
−2B

A
B
A

 , (2.12)

where υφ and υζ are the VEVs of the two fields.

3. Gildener–Weinberg Approach

The tree-level potential (2.7) contains two scalar fields which obtain nonzero VEVs, namely φ
and ζ. An elegant and simple formalism for analyzing spontaneous symmetry breaking due to
quantum corrections in theories with multiple scalar fields was proposed by E. Gildener and S.
Weinberg (GW) [91].

According to the GW approach [91], due to the running of the couplings of the theory, the tree-
level potential is flat at some renormalization scale ΛGW and has a degenerate valley of minima
along a ray that extends out from the origin in field space. Then, by including the one-loop
corrections, the effective potential obtains a radial shape along this ray and a non-zero VEV is
dynamically generated, along with a mass for the radial component of the fields.

The conditions for the minimization of V (0)E yield the same constraint for the parameter space
of the model, namely

dV (0)E

dφ

∣∣∣
φ=vφ

=
dV (0)E

dζ

∣∣∣
ζ=vζ

= 0 , (3.1)
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which gives

v2φ = − B

2A
v2ζ . (3.2)

In the GW prescription, the mass matrix of the scalars φ and ζ contains the direction along the
dynamically generated VEVs as one of its eigenvectors

1√
v2φ + v2ζ

(
vφ
vζ

)
. (3.3)

The scalar masses may be diagonalized by a two-dimensional orthogonal rotation, parametrized
by an angle ω, as (

φ
ζ

)
=

(
cosω − sinω
sinω cosω

)(
s
σ

)
, (3.4)

We can relate the VEVs through this mixing angle ω as

tanω =
vζ
vφ

. (3.5)

The diagonalization of the mass matrix (2.12) then yields the following masses for the two scalar
fields along the flat direction:

m2
s = 0 , (3.6)

and

m2
σ =

ξ (ξ + 12λφα + 6ξ2)

6α (2λφα + ξ2)
M2

Pl , (3.7)

the first corresponding to the massless pseudo-Goldstone boson of broken scale invariance (scalon)

s = φ cosω + ζ sinω , (3.8)

while the second corresponds to the mass of the orthogonal state σ = −φ sinω + ζ cosω. Employ-
ing (3.5), along the flat direction the VEVs of the fields are related as

vs =
vφ

cosω
=

vζ
sinω

. (3.9)

The kinetic terms of the original φ and ζ bosons are

6M2
Pl

ζ2

(
1

2
∇µφ∇µφ+

1

2
∇µζ∇µζ

)
=

6M2
Pl

ζ2

(
1

2
∇µs∇µs+

1

2
∇µs∇µσ

)
, (3.10)

where σ = − sinω φ + cosω ζ is the orthogonal (massive) combination. Along the σ = 0 direction
in field space ζ = sinω s + cosω σ can be replaced with just ζ = s sinω and its kinetic term
reduced to

1

2

(
6M2

Pl

sin2 ω

)
(∇s)2

s2
=

1

2
(∇sc)2 =⇒ sc − vsc =

√
6MPl

sinω
ln

s

vs
(3.11)
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where sc is the corresponding canonical field. In the following, we only work with the canonically
normalized inflaton s and we omit the subscript c for brevity.

At this point we may define the scale MPl that was introduced by the conformal transformation
in terms of the dynamically determined vev of the field ζ through the relation

v2ζ = 6M2
Pl , v2 =

6M2
Pl

sin2 ω
, (3.12)

The one-loop contribution to the potential, modulo derivative interactions of σ, in terms of the
canonical field is given by [81,91]

V (1) =
m4
σ

64π2v4s
s4
[
log

(
s2

v2s

)
− 1

2

]
, (3.13)

where v2s = v2φ + v2ζ is the VEV of the pseudo-Goldstone boson of broken classical scale invariance
s. We require the vanishing of the one-loop effective potential at the minimum. This requirement
ensures that the cosmological constant is zero at the one-loop level. We have

V (vs) ≡ V (0)E(vs) + V (1)(vs) = 0 . (3.14)

Then, the total one-loop effective potential along the flat direction is given by

V (s) =
m4
σ

128π2

[
sin2 ω

36M4
Pl

s4
(

2 ln

[
s2 sin2 ω

6M2
Pl

]
− 1

)
+ 1

]
. (3.15)

From the above potential we can obtain the radiatively generated mass for the s boson

m2
s =

sin2 ω

48π2

m4
σ

M2
Pl

. (3.16)

We see that the mass of s is loop-suppressed with respect to that of σ. This means that the
orthogonal state σ effectively decouples during inflation and the pseudo-Goldstone boson s plays
the role of the inflaton along the flat direction.

Assuming a FLRW metric, the Klein–Gordon equation for the inflaton field s has the form

s̈+ 3Hṡ+ V ′(s) = 0 , (3.17)

where H = ȧ/a is the Hubble parameter and a the scale factor.

In Fig. 1 we fix the values of the parameters to ξ = 0.3, α = 0.01 and ω = 0.16, we numerically
solve the Klein–Gordon equation (3.17) for a plethora of initial conditions for the inflaton s and
plot the s− ṡ phase space. Clearly, the potential exhibits an attractor behavior since, regardless
of the initial conditions, all trajectories in the phase space (green-dotted curves) quickly converge
in a single trajectory that terminates at the location of the minimum.
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Figure 1: The attractor behavior of the one-loop effective potential (3.15) in the s− ṡ phase space,
where we have used ξ = 0.3, α = 0.01 and ω = 0.16. With the black curve we show the normalized
(5V (s)/V (0)) potential.

Notice that the conditions (3.2) and (3.12) constrain the free parameters of the model. As a
result we find that

v2φ = v2 − v2ζ = 6M2
Pl cot2 ω . (3.18)

Then, upon substituting (3.12) and (3.18) into (3.2) one obtains

2A cot2 ω = −B . (3.19)

Equivalently we have the constraint(
12αλφ + 6ξ2

)
cot2 ω = ξ , (3.20)

and so we are left with 3 free parameters. If we choose to solve (3.20) for the coupling λφ we have
that1

λφ =
ξ

12α

[
tan2 ω − 6ξ

]
. (3.21)

1Note that we have ignored the running of the couplings ξ and α, assuming that their β-functions are such that
their values do not vary much over the inflaton field excursion.
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4. Observables

The imposition of the constraint (3.20), has reduced the number of the free parameters of the
system to three, namely the non-minimal coupling of the field (ξ), the Starobinsky parameter
(α), and the mixing angle (ω). As we shall now demonstrate, it is only the angle ω that affects
the predictions for observables and the other two parameters come into play via the VEVs that
determine the value of ω.

In the slow-roll approximation, the expressions for the tensor-to-scalar ratio r, the tilt ns of the
scalar power spectrum and the running αs of the scalar spectral index are given in terms of the
values of the potential slow-roll parameters εV , ηV and ξ2V at horizon crossing as

r ≈ 16ε∗V , (4.1)

ns ≈ 1− 6ε∗V + 2η∗V , (4.2)

and
αs = 16ε∗V η

∗
V − 24ε2∗V − 2ξ2∗V , (4.3)

where

εV ≡
M2

Pl

2

(
V ′(s)

V (s)

)2

, ηV ≡M2
Pl

V ′′(s)

V (s)
, ξ2V ≡M4

Pl

V ′(s)V ′′′(s)

V (s)2
, (4.4)

and ∗ has been used to denote the value of the slow-roll parameters at horizon crossing.

By performing a direct computation it is straightforward to show that the slow-roll parameters
for the potential (3.15) take the form

εV = M2
Pl

32s6 log
[

6M2
Pl

s2 sin2 ω

]
sin8 ω[

36M4
Pl + s4 sin4 ω

(
2 log

[
s2 sin2 ω
6M2

Pl

]
− 1
)]2 , (4.5)

ηV = M2
Pl

8s2
[
2 + 3 log

(
s2 sin2 ω
6M2

Pl

)]
sin4 ω

36M4
Pl + s4 sin4 ω

(
2 log s2 sin2 ω

6M2
Pl
− 1
) , (4.6)

and

ξ2V = M4
Pl

128s4 sin8 ω log
(
s2 sin2 ω
6M2

Pl

)(
3 log

(
s2 sin2 ω
6M2

Pl

)
+ 5
)

(
s4 sin4 ω

(
2 log

(
s2 sin2 ω
6M2

Pl

)
− 1
)

+ 36M4
Pl

)2 , (4.7)

Thus it is evident that the sole parameter that plays a role in the expressions (4.1) and (4.2) for
the observables is the mixing angle ω2. Note that an inflaton field excursion can occur on either

2This is already clear from (3.15) where the parameters ξ and α enter the expression of the potential only via
the mass mζ and the latter cancels out in the expressions for εV , ηV and ξ2V .
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side of the minimum of the potential (3.15), corresponding to small and large field inflation. In the
following, however, we will not deal with the large field scenario since it yields a tensor-to-scalar
ratio which is excluded by observations.

In Fig. 2, we plot the slow-roll parameters εV and ηV , given in Eqs. (4.5)–(4.6), as a function
of the inflaton field s for a few fixed values of the mixing angle ω. We observe that both slow-roll
parameters become unity around the same inflaton field value.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

s/MPl

ε
V
,η
V

Figure 2: The slow-roll parameters εV (solid curves) and ηV (dashed curves) as a function of the
inflaton field s for fixed values of the mixing angle at sinω = 0.07 (blue curves), sinω = 0.12 (red
curves) and sinω = 0.30 (green curves).

The number N of e-folds of inflation elapsed in the Einstein frame is defined as dN = Hdt
where H and t are the Hubble parameter and time coordinate respectively. In terms of the slow
roll parameter εV one has

N =

∫ sf

s∗

1√
2εV (s)

ds , (4.8)

where s∗ is the value of the inflaton field at the time of horizon crossing while sf is its value at
the end of inflation.

In the case of the model under consideration, the total number of e-folds is given by the following
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analytic expression:

N =

{
3

8 sin2 ω

[
li

(
6 sin2 ωM2

Pl

s2

)
− li

(
sin2 ω s2

6M2
Pl

)]
+

s2

8M2
Pl

} ∣∣∣∣∣
s∗

sf

, (4.9)

where li(z) is the logarithmic integral (li(z) =
∫ z
0

1
log t

dt).

The required amount of inflation in order for the horizon and flatness problems to be solved is
N ≈ 60. Inflation ends exactly when the first Hubble slow-roll parameter εH ≡ −Ḣ/H2 = 1 but
in the slow-roll approximation εH ≈ εV and so it is often the condition εV = 1 that is used instead
in order to obtain sf .

An example of an inflaton excursion in our model (3.15) that yields a sufficient amount of
inflation is given in Fig.3. The red-dashed line corresponds to the value sf of the inflaton where
inflation ends subject to the condition εV = 1. The green-dashed line corresponds to the value s∗
of the inflaton at the time of horizon crossing that is obtained by the requirement N ≈ 60. By

Figure 3: An inflaton excursion that yields N = 59.3 when sinω = 0.15. Inflation starts(ends) at
the green(red)-dashed line. The values of the observables in this case are (r, ns) = (0.014, 0.963).

considering different values for s∗ we vary the total number of e-folds of inflation elapsed during
the field excursion and consequently obtain different predictions for the observables r and ns.

In Fig.4 we considered different values for the mixing angle ranging from sinω = 0 up to
sinω = 0.23 that yield 50 6 N 6 70 and plot the predictions of the model in the ns − r plane
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against the current bounds set by the Planck collaboration [8]. One can see that for small values
of the mixing angle the predictions of the model converge to the ones obtained by the minimal
quadratic inflation model. This is explained by the fact that the potential (3.15), for sinω → 0
and around its minimum, is approximated by

V (s) ' m4
σ sin2 ω

96π2M2
Pl

(s− vs)2 . (4.10)

Finally, in Fig. 5, for various values of the mixing angle ω and for N = 50− 70 e-folds we plot
the running of the scalar spectral index αs. All of the resulting values are compatible with the
observational constraints [8] αs = −0.0045± 0.0067 at 68% CL.

Figure 4: The predictions of the model (3.15) for a wide range of values for the mixing angle ω and
for field excursions that yield sufficient amount of inflation i.e. 50 to 70 e-folds.
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Figure 5: The running of the scalar spectral index αs for values of the mixing angle in the range
sinω = 0− 0.25 and for a number of e-folds between N = 50− 70.

5. Summary and Conclusions

In this work, we considered slow-roll inflation in the theory of a scalar field with scale-imvariant
interactions coupled to gravity non-minimally in the presence of an R2 term. The gravitational
sector in the Jordan frame consists of a nonminimal coupling term of the inflaton to the Ricci scalar
and an R2 correction. Expressing the action in terms of an auxiliary scalar field and transforming
it to the Einstein frame by means of a Weyl rescaling of the metric, the theory consists of two real
scalar fields with non-canonical kinetic terms subject to a two-dimensional inflationary potential.
By applying the formalism of Gildener and Weinberg we were able to effectively describe inflation
by means of a single scalar field (s), the pseudo-Goldstone boson along the flat direction of the
tree-level potential. We obtained the one-loop corrected potential along the flat direction and
in turn, by numerically solving the Klein-Gordon equation, we have verified that it exhibits an
inflationary attractor behavior.

Then, we studied the predictions for the tensor-to-scalar ratio (r), the scalar spectral index
(ns) and the running of the scalar spectral index (αs). We found that the only free parameter
that affects the predictions is the mixing angle (ω) between the two scalar degrees of freedom. For
various field excursions of the inflaton s that produce a sufficient amount of inflation, i.e. 50 to
70 e-folds, and for a wide range of values for ω we found that the model yields predictions that
lie well within the recent, strict bounds for the allowed region in the (ns − r) parametric space
set by the Planck collaboration. For the aforementioned field excursions and values of the mixing
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angle the predictions for the running of the spectral index are also in excellent agreement with the
observations.

In conclusion, the present model is able to successfully describe inflation and at the same time
generate the Planck scale in a dynamical way by means of the Coleman-Weinberg mechanism.
The inclusion of the R2 term affects mainly the predictions of r. Larger values of the Starobinsky
coupling α correspond to larger values of the mixing angle ω, which in turn result to smaller values
for r.
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perfect fluid and F (R) gravity and its comparison with observational data,” Phys. Rev.
D90 (2014) 124061, arXiv:1410.3993 [hep-th].

[18] B. J. Broy, F. G. Pedro, and A. Westphal, “Disentangling the f(R) - Duality,” JCAP 1503
no. 03, (2015) 029, arXiv:1411.6010 [hep-th].

[19] S. D. Odintsov and V. K. Oikonomou, “Inflationary α-attractors from F (R) gravity,” Phys.
Rev. D94 no. 12, (2016) 124026, arXiv:1612.01126 [gr-qc].

[20] C. Guzzetti, M., N. Bartolo, M. Liguori, and S. Matarrese, “Gravitational waves from
inflation,” Riv. Nuovo Cim. 39 no. 9, (2016) 399–495, arXiv:1605.01615 [astro-ph.CO].

[21] R. V. Wagoner, “Scalar tensor theory and gravitational waves,” Phys. Rev. D1 (1970)
3209–3216.

[22] T. Damour and G. Esposito-Farese, “Tensor-multi-scalar theories of gravitation,” Classical
and Quantum Gravity 9 no. 9, (1992) 2093.

[23] T. Damour and K. Nordtvedt, “Tensor-scalar cosmological models and their relaxation
toward general relativity,” Physical Review D 48 no. 8, (1993) 3436.

[24] J. D. Barrow, “Slow-roll inflation in scalar-tensor theories,” Physical Review D 51 no. 6,
(1995) 2729.

[25] J. Garcia-Bellido and D. Wands, “Constraints from inflation on scalar - tensor gravity
theories,” Phys. Rev. D52 (1995) 6739–6749, arXiv:gr-qc/9506050 [gr-qc].

[26] H. Boutaleb-Joutei and A. L. Marrakchi, “General scalar-tensor theories for induced gravity
inflation,” Nuovo Cim. B112 (1997) 1605–1624.

[27] B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A. Starobinsky, “Reconstruction of a

14

http://arxiv.org/abs/0807.0685v1
http://arxiv.org/abs/0801.4843v1
http://dx.doi.org/10.12942/lrr-2010-3
http://arxiv.org/abs/1002.4928
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://arxiv.org/abs/1108.6266
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
http://dx.doi.org/10.1088/1475-7516/2014/08/015
http://arxiv.org/abs/1406.1096
http://dx.doi.org/10.1103/PhysRevD.90.124061
http://dx.doi.org/10.1103/PhysRevD.90.124061
http://arxiv.org/abs/1410.3993
http://dx.doi.org/10.1088/1475-7516/2015/03/029
http://dx.doi.org/10.1088/1475-7516/2015/03/029
http://arxiv.org/abs/1411.6010
http://dx.doi.org/10.1103/PhysRevD.94.124026
http://dx.doi.org/10.1103/PhysRevD.94.124026
http://arxiv.org/abs/1612.01126
http://dx.doi.org/10.1393/ncr/i2016-10127-1
http://arxiv.org/abs/1605.01615
http://dx.doi.org/10.1103/PhysRevD.1.3209
http://dx.doi.org/10.1103/PhysRevD.1.3209
http://dx.doi.org/10.1103/PhysRevD.52.6739
http://arxiv.org/abs/gr-qc/9506050


scalar tensor theory of gravity in an accelerating universe,” Phys. Rev. Lett. 85 (2000) 2236,
arXiv:gr-qc/0001066 [gr-qc].

[28] J. Morris, “Generalized slow-roll conditions and the possibility of intermediate scale
inflation in scalar-tensor theory,” Classical and Quantum Gravity 18 no. 15, (2001) 2977.

[29] G. Esposito-Farese and D. Polarski, “Scalar tensor gravity in an accelerating universe,”
Phys. Rev. D63 (2001) 063504, arXiv:gr-qc/0009034 [gr-qc].

[30] T. Chiba, “1/r gravity and scalar-tensor gravity,” Physics Letters B 575 no. 1, (2003) 1–3.

[31] A. Stabile, A. Stabile, and S. Capozziello, “Conformal transformations and weak field limit
of scalar-tensor gravity,” Physical Review D 88 no. 12, (2013) 124011.

[32] T. Chiba and M. Yamaguchi, “Conformal-Frame (In)dependence of Cosmological
Observations in Scalar-Tensor Theory,” JCAP 1310 (2013) 040, arXiv:1308.1142
[gr-qc].

[33] Y. N. Obukhov and D. Puetzfeld, “Equations of motion in scalar-tensor theories of gravity:
A covariant multipolar approach,” Physical Review D 90 no. 10, (2014) 104041.

[34] L. Järv, P. Kuusk, M. Saal, and O. Vilson, “Transformation properties and general
relativity regime in scalar–tensor theories,” Classical and Quantum Gravity 32 no. 23,
(2015) 235013, arXiv:1504.02686 [gr-qc].

[35] P. Kuusk, L. Jarv, and O. Vilson, “Invariant quantities in the multiscalar-tensor theories of
gravitation,” Int. J. Mod. Phys. A31 no. 02n03, (2016) 1641003, arXiv:1509.02903
[gr-qc].

[36] O. Vilson, “Some remarks concerning invariant quantities in scalar-tensor gravity,” Adv.
Appl. Clifford Algebras 27 no. 1, (2017) 321–332, arXiv:1509.02481 [gr-qc].

[37] G. Tambalo and M. Rinaldi, “Inflation and reheating in scale-invariant scalar-tensor
gravity,” Gen. Rel. Grav. 49 no. 4, (2017) 52, arXiv:1610.06478 [gr-qc].

[38] M. Artymowski and A. Racioppi, “Scalar-tensor linear inflation,” JCAP 1704 no. 04, (2017)
007, arXiv:1610.09120 [astro-ph.CO].

[39] S. Bhattacharya, K. Das, and K. Dutta, “Attractor Models in Scalar-Tensor Theories of
Inflation,” arXiv:1706.07934 [gr-qc].

[40] K. Bhattacharya and B. R. Majhi, “Fresh look at the scalar-tensor theory of gravity in
Jordan and Einstein frames from undiscussed standpoints,” Phys. Rev. D95 no. 6, (2017)
064026, arXiv:1702.07166 [gr-qc].

[41] D. Burns, S. Karamitsos, and A. Pilaftsis, “Frame-Covariant Formulation of Inflation in
Scalar-Curvature Theories,” Nucl. Phys. B907 (2016) 785–819, arXiv:1603.03730
[hep-ph].

[42] A. Karam, T. Pappas, and K. Tamvakis, “Frame-dependence of higher-order inflationary
observables in scalar-tensor theories,” Phys. Rev. D96 no. 6, (2017) 064036,
arXiv:1707.00984 [gr-qc].

15

http://dx.doi.org/10.1103/PhysRevLett.85.2236
http://arxiv.org/abs/gr-qc/0001066
http://dx.doi.org/10.1103/PhysRevD.63.063504
http://arxiv.org/abs/gr-qc/0009034
http://dx.doi.org/10.1088/1475-7516/2013/10/040
http://arxiv.org/abs/1308.1142
http://arxiv.org/abs/1308.1142
http://dx.doi.org/10.1088/0264-9381/32/23/235013
http://dx.doi.org/10.1088/0264-9381/32/23/235013
http://arxiv.org/abs/1504.02686
http://dx.doi.org/10.1142/S0217751X16410037
http://arxiv.org/abs/1509.02903
http://arxiv.org/abs/1509.02903
http://dx.doi.org/10.1007/s00006-015-0567-4
http://dx.doi.org/10.1007/s00006-015-0567-4
http://arxiv.org/abs/1509.02481
http://dx.doi.org/10.1007/s10714-017-2217-8
http://arxiv.org/abs/1610.06478
http://dx.doi.org/10.1088/1475-7516/2017/04/007
http://dx.doi.org/10.1088/1475-7516/2017/04/007
http://arxiv.org/abs/1610.09120
http://arxiv.org/abs/1706.07934
http://dx.doi.org/10.1103/PhysRevD.95.064026
http://dx.doi.org/10.1103/PhysRevD.95.064026
http://arxiv.org/abs/1702.07166
http://dx.doi.org/10.1016/j.nuclphysb.2016.04.036
http://arxiv.org/abs/1603.03730
http://arxiv.org/abs/1603.03730
http://dx.doi.org/10.1103/PhysRevD.96.064036
http://arxiv.org/abs/1707.00984


[43] S. Karamitsos and A. Pilaftsis, “On the Cosmological Frame Problem,” PoS CORFU2017
(2018) 036, arXiv:1801.07151 [hep-th].

[44] S. Karamitsos and A. Pilaftsis, “Frame Covariant Nonminimal Multifield Inflation,” Nucl.
Phys. B927 (2018) 219–254, arXiv:1706.07011 [hep-ph].

[45] A. Karam, A. Lykkas, and K. Tamvakis, “Frame-invariant approach to higher-dimensional
scalar-tensor gravity,” Phys. Rev. D97 no. 12, (2018) 124036, arXiv:1803.04960 [gr-qc].

[46] K. Kannike, A. Racioppi, and M. Raidal, “Linear inflation from quartic potential,” JHEP
01 (2016) 035, arXiv:1509.05423 [hep-ph].

[47] A. Racioppi, “Coleman-Weinberg linear inflation: metric vs. Palatini formulation,” JCAP
1712 no. 12, (2017) 041, arXiv:1710.04853 [astro-ph.CO].

[48] A. Racioppi, “New universal attractor in nonminimally coupled gravity: Linear inflation,”
Phys. Rev. D97 no. 12, (2018) 123514, arXiv:1801.08810 [astro-ph.CO].

[49] A. Karam, L. Marzola, T. Pappas, A. Racioppi, and K. Tamvakis, “Constant-Roll
(Quasi-)Linear Inflation,” JCAP 1805 no. 05, (2018) 011, arXiv:1711.09861
[astro-ph.CO].

[50] M. Artymowski, Z. Lalak, and M. Lewicki, “Inflationary scenarios in Starobinsky model
with higher order corrections,” JCAP 1506 (2015) 032, arXiv:1502.01371 [hep-th].

[51] C. van de Bruck and L. E. Paduraru, “Simplest extension of Starobinsky inflation,” Phys.
Rev. D92 (2015) 083513, arXiv:1505.01727 [hep-th].

[52] T. Asaka, S. Iso, H. Kawai, K. Kohri, T. Noumi, and T. Terada, “Reinterpretation of the
Starobinsky model,” PTEP 2016 no. 12, (2016) 123E01, arXiv:1507.04344 [hep-th].

[53] M. Artymowski, Z. Lalak, and M. Lewicki, “Saddle point inflation from higher order
corrections to Higgs/Starobinsky inflation,” Phys. Rev. D93 no. 4, (2016) 043514,
arXiv:1509.00031 [hep-th].

[54] S. Kaneda and S. V. Ketov, “Starobinsky-like two-field inflation,” Eur. Phys. J. C76 no. 1,
(2016) 26, arXiv:1510.03524 [hep-th].

[55] X. Calmet and I. Kuntz, “Higgs Starobinsky Inflation,” Eur. Phys. J. C76 no. 5, (2016)
289, arXiv:1605.02236 [hep-th].

[56] C. van de Bruck, P. Dunsby, and L. E. Paduraru, “Reheating and preheating in the simplest
extension of Starobinsky inflation,” Int. J. Mod. Phys. D26 no. 13, (2016) 1750152,
arXiv:1606.04346 [gr-qc].

[57] Y.-C. Wang and T. Wang, “Primordial perturbations generated by Higgs field and R2

operator,” Phys. Rev. D96 no. 12, (2017) 123506, arXiv:1701.06636 [gr-qc].

[58] Y. Ema, “Higgs Scalaron Mixed Inflation,” Phys. Lett. B770 (2017) 403–411,
arXiv:1701.07665 [hep-ph].

[59] T. Mori, K. Kohri, and J. White, “Multi-field effects in a simple extension of R2 inflation,”
JCAP 1710 no. 10, (2017) 044, arXiv:1705.05638 [astro-ph.CO].

16

http://dx.doi.org/10.22323/1.318.0036
http://dx.doi.org/10.22323/1.318.0036
http://arxiv.org/abs/1801.07151
http://dx.doi.org/10.1016/j.nuclphysb.2017.12.015
http://dx.doi.org/10.1016/j.nuclphysb.2017.12.015
http://arxiv.org/abs/1706.07011
http://dx.doi.org/10.1103/PhysRevD.97.124036
http://arxiv.org/abs/1803.04960
http://dx.doi.org/10.1007/JHEP01(2016)035
http://dx.doi.org/10.1007/JHEP01(2016)035
http://arxiv.org/abs/1509.05423
http://dx.doi.org/10.1088/1475-7516/2017/12/041
http://dx.doi.org/10.1088/1475-7516/2017/12/041
http://arxiv.org/abs/1710.04853
http://dx.doi.org/10.1103/PhysRevD.97.123514
http://arxiv.org/abs/1801.08810
http://dx.doi.org/10.1088/1475-7516/2018/05/011
http://arxiv.org/abs/1711.09861
http://arxiv.org/abs/1711.09861
http://dx.doi.org/10.1088/1475-7516/2015/06/032
http://arxiv.org/abs/1502.01371
http://dx.doi.org/10.1103/PhysRevD.92.083513
http://dx.doi.org/10.1103/PhysRevD.92.083513
http://arxiv.org/abs/1505.01727
http://dx.doi.org/10.1093/ptep/ptw161
http://arxiv.org/abs/1507.04344
http://dx.doi.org/10.1103/PhysRevD.93.043514
http://arxiv.org/abs/1509.00031
http://dx.doi.org/10.1140/epjc/s10052-016-3888-0
http://dx.doi.org/10.1140/epjc/s10052-016-3888-0
http://arxiv.org/abs/1510.03524
http://dx.doi.org/10.1140/epjc/s10052-016-4136-3
http://dx.doi.org/10.1140/epjc/s10052-016-4136-3
http://arxiv.org/abs/1605.02236
http://dx.doi.org/10.1142/S0218271817501528
http://arxiv.org/abs/1606.04346
http://dx.doi.org/10.1103/PhysRevD.96.123506
http://arxiv.org/abs/1701.06636
http://dx.doi.org/10.1016/j.physletb.2017.04.060
http://arxiv.org/abs/1701.07665
http://dx.doi.org/10.1088/1475-7516/2017/10/044
http://arxiv.org/abs/1705.05638


[60] S. Pi, Y.-l. Zhang, Q.-G. Huang, and M. Sasaki, “Scalaron from R2-gravity as a heavy
field,” JCAP 1805 no. 05, (2018) 042, arXiv:1712.09896 [astro-ph.CO].

[61] M. He, A. A. Starobinsky, and J. Yokoyama, “Inflation in the mixed Higgs-R2 model,”
JCAP 1805 no. 05, (2018) 064, arXiv:1804.00409 [astro-ph.CO].

[62] D. Gorbunov and A. Tokareva, “Scalaron the healer: removing the strong-coupling in the
Higgs- and Higgs-dilaton inflations,” arXiv:1807.02392 [hep-ph].

[63] D. M. Ghilencea, “Two-loop corrections to Starobinsky-Higgs inflation,” arXiv:1807.06900

[hep-ph].

[64] S.-J. Wang, “Quintessential Starobinsky inflation and swampland criteria,”
arXiv:1810.06445 [hep-th].

[65] I. Antoniadis, A. Karam, A. Lykkas, and K. Tamvakis, “Palatini inflation in models with an
R2 term,” arXiv:1810.10418 [gr-qc].

[66] A. Gundhi and C. F. Steinwachs, “Scalaron-Higgs inflation,” arXiv:1810.10546 [hep-th].

[67] F. Cooper and G. Venturi, “Cosmology and Broken Scale Invariance,” Phys. Rev. D24
(1981) 3338.

[68] M. Shaposhnikov and D. Zenhausern, “Scale invariance, unimodular gravity and dark
energy,” Phys. Lett. B671 (2009) 187–192, arXiv:0809.3395 [hep-th].

[69] J. Garcia-Bellido, J. Rubio, M. Shaposhnikov, and D. Zenhausern, “Higgs-Dilaton
Cosmology: From the Early to the Late Universe,” Phys. Rev. D84 (2011) 123504,
arXiv:1107.2163 [hep-ph].

[70] V. V. Khoze, “Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant
Standard Model,” JHEP 11 (2013) 215, arXiv:1308.6338 [hep-ph].

[71] F. Bezrukov, G. K. Karananas, J. Rubio, and M. Shaposhnikov, “Higgs-Dilaton Cosmology:
an effective field theory approach,” Phys. Rev. D87 no. 9, (2013) 096001, arXiv:1212.4148
[hep-ph].

[72] E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal, and C. Spethmann,
“Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter,”
Phys. Rev. D89 no. 1, (2014) 015017, arXiv:1309.6632 [hep-ph].

[73] A. Salvio and A. Strumia, “Agravity,” JHEP 06 (2014) 080, arXiv:1403.4226 [hep-ph].

[74] C. Csaki, N. Kaloper, J. Serra, and J. Terning, “Inflation from Broken Scale Invariance,”
Phys. Rev. Lett. 113 (2014) 161302, arXiv:1406.5192 [hep-th].
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