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ABSTRACT Enterobacter strains are among the dominant symbiotic bacteria in the gas-
trointestinal tract of insects, with the ability to fulfill diverse roles. In this announcement,
we describe the draft genome sequence of Enterobacter hormaechei strain ENT5, isolated
from wild adult Zeugodacus cucurbitae flies.

Symbiotic bacterial communities associated with insects are continuously drawing at-
tention as a means to improve environmentally friendly techniques, such as the sterile

insect technique (SIT), for the effective control of insect pest populations (1). Many fruit flies,
members of the family Tephritidae, are good examples of persistent, destructive agricul-
tural pests with the ability to affect a variety of cultivated plants worldwide (2–5).

Enterobacter spp. are Gram-negative, rod-shaped, facultatively anaerobic bacteria
that are components of the gastrointestinal symbiotic communities of insects (6–9) and
are responsible for the provision of nutrients (10, 11), pathogen transmission (12), commu-
nication (13), and interactions with the host plant (14). Another interesting aspect of this
association is the probiotic effect that many Enterobacter strains exhibit, which results
in the enhancement of important biological parameters of many mass-reared fly species,
including Zeugodacus cucurbitae (15–17).

In this article, we report the draft genome sequence of Enterobacter hormaechei
ENT5, isolated from wild Z. cucurbitae flies that were collected in Mauritius in 2014. Flies
were surface sterilized with 70% ethanol and washed with a sterile 1% phosphate-
buffered saline (PBS) solution. Three male and three female adult flies were pooled and
homogenized in the sterile 1% PBS solution. The homogenate was serially diluted, and
100 �l was plated on Luria-Bertani (LB) medium (1% [wt/vol] peptone, 1% [wt/vol] NaCl,
0.5% [wt/vol] yeast extract, and 1.5% [wt/vol] agar) and incubated at 25°C under
aerobic conditions. The E. hormaechei strain was identified among the isolates, and its
genomic DNA was extracted from a single colony using lysis buffer containing ly-
sozyme, according to Haught et al. (18). The DNA was sent to MicrobesNG (Birmingham,
UK) for whole-genome sequencing. DNA was quantified using the Quant-iT double-
stranded DNA (dsDNA) high-sensitivity (HS) assay (Invitrogen) in an Eppendorf AF2200
plate reader. A genomic DNA library was prepared using the Nextera XT library prep kit
(Illumina, San Diego, CA, USA), following the manufacturer’s protocol. The library was
quantified using the Kapa Biosystems library quantification kit for Illumina on a Roche
LightCycler 96 quantitative PCR (qPCR) machine and sequenced with 75-fold coverage
on the Illumina HiSeq 2500 using a 250-bp paired-end protocol, producing 1,243,783
reads. Reads were trimmed using Trimmomatic v.0.3, with a sliding window quality
cutoff of Q15 (19), and their quality was assessed using FastQC 0.11 (20). Default
program parameters were used. Reads were de novo assembled into 446 contigs using
SPAdes 3.7 (21). The quality of the assembly was evaluated with QUAST 5.0.2 (22).
Taxonomic assignment of reads was performed with Kraken 2.0.7 (23), and genome
annotation was performed using Prokka 1.11 (24). Protein function was predicted by
performing sequence similarity queries against UniProtKB (25).
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The assembled draft genome was 4,774,740 bp long, with a GC content of 55.93%. The
N50 was 201,158 bp, the L50 was 8, and the largest contig was 675,820 bp long. Almost half
of the reads (41.4%) were classified within the genus Enterobacter, while 42.92% remained
unclassified, and the reads showed 98.9% similarity based on average nucleotide identity
(ANI) to those of the type genome of Enterobacter hormaechei. The draft genome contained
4,344 protein-coding sequences, 968 of which were identified as hypothetical proteins.
Sequences coding for 81 tRNA genes, 8 5S rRNA genes, and 1 16S rRNA gene were also
identified. Genome annotation revealed the genes nfsA and nfsB, which code for oxygen-
insensitive NAD(P)H nitroreductases responsible for nitrogen fixation.

Data availability. The whole-genome shotgun project of E. hormaechei ENT5 has
been deposited at DDBJ/ENA/GenBank under the accession number VTSZ00000000,
BioProject number PRJNA562639, and BioSample number SAMN12646888. Raw se-
quencing reads were deposited to the Sequence Read Archive under accession number
SRR10028728. The version described in this paper is version VTSZ01000000.
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