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Hippocampal pathology in Amyotrophic Lateral Sclerosis (ALS) remains surprisingly

under recognized despite compelling evidence from neuropsychology, neuroimaging and

neuropathology studies. Hippocampal dysfunction contributes significantly to the clinical

heterogeneity of ALS and requires structure-specific cognitive and neuroimaging tools

for accurate in vivo evaluation. Recent imaging studies have generated unprecedented

insights into the presymptomatic and longitudinal processes affecting this structure

and have contributed to the characterisation of both focal and network-level changes.

Emerging neuropsychology data suggest that memory deficits in ALS may be

independent from executive dysfunction. In the era of precision medicine, where the

development of individualized care strategies and patient stratification for clinical trials are

key priorities, the comprehensive review of hippocampal dysfunction in ALS is particularly

timely.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is relentlessly progressive neurodegenerative condition with
considerable clinical heterogeneity (1). One of the key clinical dimensions of disease heterogeneity
in ALS is the varying severity and profile of cognitive impairment. The quality of life implications
of cognitive impairment in ALS and its impact on caregiver burden (2), compliance with assistive
devices (3) and survival (4) are now universally recognized. The discovery of hexanucleotide
expansions in C9orf72 in 2011 (5) has given fresh momentum to neuropsychology research in ALS
by confirming shared etiological factors between frontotemporal dementia (FTD) and ALS. The
momentous conceptual advances in the neuropsychology of ALS have taken place in a remarkably
short period of time, from sporadic observations, through the development of diagnostic criteria
(6), to robust family aggregation (7) and genetic studies, to the development of disease-specific
screening instruments (8, 9). The current consensus criteria (6) distinguish ALS with cognitive
impairment; ALS with behavioral impairment; ALS with cognitive and behavioral impairment;
ALS-FTD; ALS-dementia (non-FTD, i.e., Alzheimer dementia (AD), vascular dementia,
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mixed dementia). One of the most exciting aspects of ALS
neuropsychology studies is their localization potential to specific
anatomical circuits and that their observations are widely
corroborated by neuropathology (10–12) and neuroimaging
studies (13). Memory deficits in ALS have traditionally been
regarded as atypical and considered suggestive of coexisting
AD-type pathology. The recognition that memory deficits are
part of the spectrum of ALS-associated cognitive impairment is
relatively recent.

MEMORY IMPAIRMENT IN ALS

Early neuropsychology studies of ALS have predominantly
examined frontal lobe-mediated neuropsychological domains,
and highlighted executive dysfunction, impaired phonemic
fluency, poor set shifting, reduced cognitive flexibility,
impaired response inhibition, planning deficits, problem-
solving difficulties, selective attention, and impaired social
cognition (14). More recently, the spectrum of memory
impairment has been specifically evaluated, including encoding
and retrieval functions (primary memory system) (15, 16) and
storage/consolidation domains (secondary memory system)
(17). Furthermore, population-based studies identified cognitive
phenotypes without executive impairment (18, 19). The
description of episodic memory deficits without coexisting
executive dysfunction in ALS drew attention to temporal lobe
network dysfunction which has been elegantly corroborated by a
series of neuropathology and neuroimaging studies (20).

ANATOMICAL OVERVIEW

The hippocampus (Figure 1A) is a bilaminar structure and
consists of the cornu ammonis (CA) and the dentate gyrus (DG).
Based on its cytoarchitecture and projections, the CA is further
divided into four histological subfields, named CA1-CA4 by
Lorente de No in his seminal paper (21). The dentate gyrus is
a narrow, dorsally concave structure which envelops CA4. The
cornu ammonis, the dentate gyrus, and the subiculum together
form the “hippocampal formation” (Figure 1B). The subiculum
is divided into the following segments: the prosubiculum, the
subiculum proper, the presubiculum, and the parasubiculum.

Each segment of the hippocampal formation receives
afferentation from its neighboring regions but these connections
are not all bidirectional (22). For example, the “trisynaptic
circuit” (23) is a unidirectional network, which arises from layer

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-r, revised ALS

functional rating scale revised; ALSnci, ALS with no cognitive impairment;

aMCI, amnestic mild cognitive impairment; C9orf72 HRT, chromosome 9 open

reading frame 72 hexanucleotide repeats; CA, cornu ammonis; DG, dentate

gyrus; DTI, diffusion tensor imaging; DWI, diffusion weighted imaging; ECAS,

Edinburgh cognitive and behavioral ALS screen; FTD, frontotemporal dementia;

GM, gray matter; HARDI, high angular resolution diffusion imaging; HC, healthy

control; MND, motor neuron disease; NeuroC, neurological controls; NODDI,

neurite orientation dispersion and density imaging; PP, perforant pathway;

PtwoCI, patients without cognitive impairment; PtwCI, patients with cognitive

impairment; PtwoD, patients without dementia; PtwD, patients with dementia;

TBSS, tract-based spatial statistics; VBM, voxel-based morphometry; WM, white

matter; MRS, magnetic resonance spectroscopy.

II of the entorhinal cortex, its axons perforate the subiculum,
and form the “perforant pathway” (PP). Duvernoy (24) coined
the term “polysynaptic pathway” for the intrinsic hippocampal
circuitry, which refers to a circuit of at least four synapses
that connect the entorhinal cortex, the dentate gyrus, the CA
subfields, and the subiculum. A direct intrahippocampal pathway
has also been identified, which originates from layer III of the
entorhinal cortex and projects directly to the CA1 but not
through the PP (25). The perforant pathway (Figure 1C) arises
from layer II-III neurons of the lateral and medial entorhinal
cortex (26), which is also the origin of the polysynaptic pathway
(27). The PP perforates the subiculum to reach the dentate
gyrus and the hippocampus proper, but minor projections
also originate from the presubiculum and parasubiculum (28).
The majority of the PP fibers reach the stratum moleculare
of the dentate gyrus through the vestigial hippocampal sulcus
(24). The PP contributes to the “Papez circuit” (26, 29, 30)
which is relayed through the following structures; entorhinal
cortex → dentate gyrus → hippocampus → hypothalamus →
thalamus → cingulate cortex→ presubiculum → entorhinal
cortex. In addition to the intrinsic hippocampal circuitry, there
are numerous extrinsic hippocampal projections to subcortical
and cortical regions (31). The main input to the hippocampus
enters via the entorhinal area (31).

INSIGHTS FROM NEUROPATHOLOGY

Neuropathological changes have been consistently reported in
the hippocampus in ALS (Table 1). Early reports highlighted
ubiquitin-positive intraneuronal inclusions (32–35) in medial
temporal structures, neuronal loss in the medial cortex of the
temporal tip (36, 69) and focal depletion of pyramidal neurons in
the pes hippocampi in both patients with and without dementia
(33, 36, 69). A specific focus of interest in histopathological
studies is the PP zone, which has been comprehensively studied
in most neurodegenerative conditions, especially in AD. While
AD is characterized by the extraneuronal deposits of the amyloid
β-protein (Aβ) and the intraneuronal tauopathy (70), ALS is
primarily associated with TAR DNA-binding protein 43 (TDP-
43) deposits (71). ALS patients with and without dementia (37,
38) show neuropathological changes in the dentate gyrus and the
outer lamina of the molecular layer where the PP terminals are
distributed (26, 30, 72). In ALS, the molecular layer of the dentate
gyrus is primarily affected, a pattern which is distinctly different
from AD. The inner molecular layer, which is innervated by the
CA4 (73), is the least affected layer in ALS (38). The intermediate
layer, which receives projections from layer II of the medial
entorhinal cortex, is affected (38), but the outer layer, is the most
affected region in ALS (38). Despite considerable mesial temporal
lobe involvement in both ALS and AD, the distribution of
disease-specific inclusions is strikingly different. Neurofibrillary
tangles in AD are mostly found in the entorhinal cortex and
are positive for tau, whereas the main proteinopathy of ALS is
TDP-43 and mostly affects the transentorhinal cortex (38).

It is now widely recognized that phosphorylated TDP-43
(pTDP-43) aggregates are the hallmark pathology of sporadic
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FIGURE 1 | Anatomical depiction of hippocampus on sagittal, axial and coronal plane of high resolution T1 image from a healthy control subject (A) and schematic

representation of (B) the anatomy of the hippocampus-entorhinal cortex-parahippocampal gyrus system and (C) the intrahippocampal connections. L, left

hemisphere; PHG, parahippocampal gyrus; PreSub, Presubiculum; Sub, Subiculum; CA, Cornu Ammonis; CA1-CA4, Cornu Ammonis subfields; DG, Dentate gyrus;

EC, Entorhinal cortex; I-IV, Layer I-IV; mf, mossy fibers; Sc, Schaffer collaterals.

ALS (39, 74, 75). Based on postmortem observations, a sequential
staging system of pTDP-43 pathology has been proposed, using
stage-defining involvement of specific cortical and subcortical
regions (12). According to this four-stage model of disease
propagation, the PP is predominantly affected in stage IV. A
three-stage model has also been suggested for PP degeneration
(38) where stage I is the “inclusion stage” defined by TDP-
43-positive cytoplasmatic inclusions appearing in the granular
cells of the dentate gyrus, stage II is the “early perforant stage”
where gliosis and neuronal loss of the transentorhinal cortex
are observed, and stage III is the “advanced perforant stage”
defined by the degeneration of the molecular layer of the dentate
gyrus and neuronal loss in the transentorhinal cortex (38). The
chronological stages of hippocampal pathology are closely linked
to its structural anatomy, confirming that disease propagation
occurs along connectivity patterns (76). The TDP-43 stages of
ALS are in line with the notion that gray matter (GM) regions
become sequentially involved via the WM pathways that connect
them (77–79).

THE CONTRIBUTION OF NEUROIMAGING

Neuroimaging studies have already contributed meaningful
structural, metabolic and functional insights in ALS (80,

81) and recent technological advances in imaging techniques
offer unprecedented opportunities to characterize hippocampal
changes in vivo. Following sporadic reports of hippocampal
degeneration (82–85) in whole-brain exploratory studies, recent
studies have specifically focused on the evaluation of this
structure (43) (Table 1). Emerging imaging methods not only
highlight hippocampal volume reductions, but have the potential
to characterize specific sub-regions (78), shape changes (42),
density alterations (20), progressive longitudinal changes (43),
altered connectivity profiles, and functional changes (40, 46, 47).

Structural Neuroimaging
Computational neuroimaging techniques have consistently
captured hippocampal GM changes which was initially thought
to be more significant in ALS patients carrying the C9orf72
hexanucleotide repeats (40), but later studies showed similarly
extensive hippocampal degeneration in C9orf72 negative ALS-
FTD patients (78). Interestingly, unilateral hippocampal changes
were not only captured in patients with cognitive impairment
(42), but also in cognitively intact cohorts (41). Shape and
density analyses of the hippocampus in ALS highlighted
phenotype-specific patterns of hippocampal degeneration (42).
A longitudinal study of hippocampus, which included a small
(∼6%) number of C9orf72 positive patients, identified baseline
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TABLE 1 | Research studies with hippocampal-related neuropathological, neuroimaging, or neuropsychological findings in ALS included in the present review.

References Authors (Date) Sample size Diagnostic

criteria

Genetic

Status

Dementia Cognitive status

NEUROPATHOLOGICAL STUDIES

(32) Wightman et al., 1992 33 ALS N/A N/A Included 19 PtwoCI; 14 PtwCI-D*

(33) Okamoto et al., 1991 27 ALS/50 HC N/A N/A 1 PtwD N/A (1PtwD)*

(34) Okamoto et al., 1992 10 MND N/A N/A 10 PtwD Dementia*

(35) Okamoto et al., 1996 2 ALS N/A N/A N/A Mental changes*

(36) Nakano et al., 1993 54 ALS/35 non

ALS

N/A N/A 10 PtwD 44 PtwoD; 10 PtwD

(37) Takeda et al., 2007 12 ALS N/A N/A 12 PtwD Demented

(38) Takeda et al., 2009 14 ALS N/A N/A 9 PtwD 9 PtwD* (6 PtwMI)

(39) Brettschneider et al.,

2012

102 ALS El Escorial-R N/A 12 PtwD 88 PtwoD; 12 PtwD; 2 unknown

(12) Brettschneider et al.,

2013

76 ALS El Escorial-R 11 C9orf72(+) 5 PtwD 71 PtwoD*; 5 PtwD*

NEUROIMAGING STUDIES: STRUCTURAL GM

(40) Bede et al., 2013 39 ALS/44 HC El Escorial 9 C9orf72(+) N/A Cognitive exam; Unspecified cognitive

groups

(41) Abdulla et al., 2014 58 ALS/29 HC El Escorial-R 3 C9orf72(+) N/A Cognitive exam; Unspecified cognitive

groups

(42) Machts et al., 2015 67 ALS/ 39 HC El Escorial-R C9orf72(-) 7 PtwD Cognitive exam; 42 PtwoCI; 18 PtwCI; 7

PtwFTD

(43) Westeneng et al., 2015 112 ALS/60 HC El Escorial-R 7 C9orf72(+) N/A N/A

(44) Sage et al., 2007 28 ALS/26 HC El Escorial N/A PtwoD No behavioral or cognitive changes;

Unspecified cognitive exam

(45) Sage et al., 2009 28 ALS/26 HC El Escorial N/A PtwoD No behavioral or cognitive changes;

Unspecified cognitive exam

NEUROIMAGING STUDIES: STRUCTURAL WM

(46) Barbagallo et al., 2014 24 ALS/22 HC El Escorial-R N/A N/A 13Pt cognitively examined; Unspecified

cognitive groups

(47) Thivard et al., 2007 15 ALS/25 HC El Escorial-R N/A PtwoD N/A

(48) Prell et al., 2013 17 ALS/17 HC El Escorial-R N/A PtwoD No significant frontal or cognitive

dysfunction; Unspecified cognitive exam

(49) Keil et al., 2012 24 ALS/24 HC El Escorial-R N/A PtwoD No cognitive exam

(50) Kassubek et al., 2014 111 ALS/74 HC El Escorial-R N/A N/A N/A

(51) Christidi et al., 2017 42 ALS/25 HC El Escorial-R N/A PtwoD Cognitive exam; Memory impairment based

on normative data; Unspecified cognitive

groups

(52) Steinbach et al., 2015 16 ALS/16HC El Escorial-R N/A 16 PtwD Cognitive exam; Cognitive categories

based on Phukan criteria#

NEUROIMAGING STUDIES: TASK fMRI

(53) Stoppel et al., 2014 14 ALS/14 HC El Escorial-R N/A PtwoD Cognitive exam; Memory impairment based

on normative data; Cognitive categories

based on Phukan criteria#

NEUROIMAGING STUDIES: RESTING-STATE fMRI

(54) Agosta et al., 2011 26 ALS/15 HC El Escorial-R N/A PtwoD N/A

(55) Zhu et al., 2015 22 ALS/22 HC El Escorial-R N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(56) Heimrath et al., 2014 9 ALS/11 HC El Escorial-R N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(57) Loewe et al., 2017 64 ALS/38 HC El Escorial-R N/A PtwoD Cognitive exam; Specified cognitive

groups#

(Continued)
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TABLE 1 | Continued

References Authors (Date) Sample size Diagnostic

criteria

Genetic

Status

Dementia Cognitive status

NEUROPSYCHOLOGICAL STUDIES

(58) Abrahams et al., 1997 12 ALS/25 HC N/A N/A N/A Cognitive exam; Unspecified cognitive

groups

(59) Chari et al., 1996 50 MND/27

HC/23 NeuroC

El Escorial N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(60) Frank et al., 1997 74 ALS/56 HC N/A N/A N/A Cognitive exam; Unspecified cognitive

groups

(61) Hanagasi et al., 2002 20 ALS/13 HC El Escorial N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(62) Iwasaki et al., 1990 18 ALS/15 HC N/A N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(63) Ludolph et al., 1992 17 ALS/12 HC N/A N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(64) Massman et al., 1996 146 ALS El Escorial N/A N/A Cognitive exam; Cognitive impairment

based on normative data; Unspecified

cognitive groups

(65) Mantovan et al., 2003 20 ALS/20 HC El Escorial N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(66) Christidi et al., 2012 22 ALS/22 HC El Escorial-R N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(67) Machts et al., 2014 40 ALS/39

aMCI/40 HC

El Escorial-R N/A 3 PtwD Cognitive exam; Unspecified cognitive

groups

(68) Burke et al., 2017 203 ALS/117 HC El Escorial-R C9orf72(–) 30 PtwD Cognitive exam; 117 PtwoCI; 56 PtwCI; 30

PtwD

ALS, amyotrophic lateral sclerosis; HC, healthy control; MND, motor neuron disease; N/A, non-available; PtwoCI, patients without cognitive impairment; PtwCI-D, patients with cognitive

impairment-dementia; PtwD, patients with dementia; PtwoD, patients without dementia; PtwMI, patients with memory impairment; PtwCI, patients with cognitive impairment; PtwFTD,

patients with frontotemporal dementia; *unspecified cognitive status; #no comparison between cognitive groups; El Escorial-R, El Escorial revised criteria; C9orf72(+), C9orf72 positive

status; GM, gray matter; WM, white matter.

changes in the left presubiculum, and progressive CA2/3, CA4
and the left presubiculum involvement at follow-up (43).

While diffusion-weighted imaging (DWI) is primarily used
to study white matter (WM) structures, there is increasing
evidence that it may provide useful information on aspects of
GM integrity (86). Evaluation of diffusion tensor imaging (DTI)
metrics have consistently shown low fractional anisotropy (44,
49) and increased mean diffusivity in both hippocampal (44–47)
and parahippocampal regions (48).

DTI has been initially used to characterize medial temporal
lobe WM regions and later to assess limbic circuit integrity
(i.e., fornix; uncinate fasciculus) (87–89). One of the most
unique applications of hippocampal DTI in ALS however
is the ability to reconstruct and evaluate of the PP. (50,
51). Based on in vivo assessments, these studies have not
only confirmed previous neuropathological observations but
also revealed structure-specific clinical correlations (51). The
use of DWI-based PP imaging (90) has contributed to our
understanding of impaired memory processing in a range of
conditions from mild cognitive impairment, through AD, to
traumatic brain injury (91–94). PP imaging is therefore a
relatively well-established approach which has only recently been
applied to ALS. A longitudinal tractography study of ALS (52)
found increased connectivity between the visual cortex and
medial temporal lobe regions which increased further at 3-month

follow-up. Increased connectivity over time in ALS is not an
isolated finding (95) and is often interpreted as a compensatory
mechanism.

Functional Neuroimaging
There are relatively few paradigm-based functional magnetic
resonance imaging (fMRI) studies specifically evaluating
hippocampal function, but a longitudinal fMRI study
identified increased novelty-evoked hippocampal activity
over time (53). Resting-state studies have consistently captured
increased connectivity between the left sensorimotor cortex and
contralateral cortical regions including the parahippocampal
gyrus (54). Additionally, increased low-frequency amplitudes
have been observed in the right parahippocampal cortex
(55). Increased functional connectivity was also identified
between parahippocampal components of the default-mode
network (56). In a relatively large sample of ALS patients
with only minor cognitive changes, (57) decreased functional
connectivity was identified between temporal lobe structures,
including hippocampal and parahippocampal regions. This
was thought to represent early metabolic disturbances before
cell-loss occurs but highlight the fact that increased and
decreased connectivity is both reported in fMRI studies
of ALS.
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INSIGHTS FROM NEUROPSYCHOLOGY

Contrary to the consensus around executive dysfunction in
ALS (96–99), there are strikingly inconsistent reports about
the incidence of memory impairment in ALS (Table 1). Intact
memory function, mild dysfunction, executive functionmediated
memory impairment, and moderate memory deficits have all
been reported (58–65, 97). The primary substrate of amnestic
deficits is still under investigation. Most studies agree that the
primary deficit is in encoding-retrieval (65) which is often linked
to frontal dysfunction, attention, and other executive-based
processes (65–68). However, recognition deficits and memory
consolidation difficulties are likely to be just as important
(66). Compelling evidence also exist for pure episodic memory
dysfunction based on impaired picture recall, word list-learning,
pair associations, and story-recall. These observations would
suggest that memory impairment in non-demented ALS patients
cannot be exclusively attributed to executive dysfunction (100–
102).

In a combined neuroimaging-neuropsychology study,
abnormal immediate and delayed recall scores were identified in
23% of non-demented ALS patients (102). While the ALS cohort
of this study did not exhibit reduced hippocampal volumes in
comparison to healthy controls, their memory performance
correlated with hippocampal volumes. These findings are echoed
by other studies which rely on volumetric analyses and verbal
list-learning test and report significant correlations between the
hippocampal volumes and verbal memory indices such as total
learning, delayed recall, and recognition (41).

While direct clinico-radiological correlations are often
regarded as contentious (103), a positive association has been
reported between verbal memory indices and hippocampal
volumes in several ALS subgroups, including ALSci and ALS-
FTD (42). DTI studies have consistently revealed correlations
between memory performance and memory-associated WM
tracts such as the fornix (88), the uncinate fasciculus (87, 88), and
the hippocampal PP (51). Emerging reports of similar episodic
memory performance in ALS and amnestic mild cognitive
impairment patients (67) corroborates neuropathological
findings of comparable PP changes (37, 38).

Testing Recommendations
Traditionally, the assessment of episodic memory includes tests
for immediate and delayed recall, and performance evaluated
from a learning, retention and recognition perspective. More
recently, distinct memory processes are specifically assessed,
such as encoding, consolidation, and retrieval. (104–106) List-
learning tests (e.g., California Verbal Learning Test; Rey Auditory
Verbal Learning Test; Hopkins Verbal Learning Test etc.)
are particularly useful to assess hippocampus-mediated verbal
memory dysfunction in ALS. These tests enable the clinician to
evaluate immediate recall, delayed recall, and recognition and
can be readily interpreted in terms of encoding, consolidation,
and retrieval performance (66). Story-recall tests, such as the
Wechsler-Memory Scale, are also sensitive to detect episodic
memory impairment and ideally, both list-learning and story-
recall should be performed to comprehensively evaluate episodic

memory in ALS. The accurate assessment of visual episodic
memory is often confounded by motor disability in in ALS
or by coexisting executive dysfunction which may affect the
organization and encoding of complex figures (e.g., Rey-
Osterreith Complex Figure Test). The limitations of short, non-
ALS, cognitive screening tools such as MMSE; ACE; MoCA are
widely recognized in the ALS research community, as these tests
have been developed for other neurodegenerative conditions.
The administration of ALS specific screening tools (ECAS,
ALS-CBS) should be followed by specialist neuropsychological
evaluation if memory impairment is identified or reported by the
patient or caregiver.

DISCUSSION

The synthesis of insights from neuropathology, neuroimaging
and neuropsychology enables the systematic discussion of
structural and functional aspects of hippocampal degeneration
in ALS and helps to integrate focal pathology into a network
perspective.

While hippocampal pathology used to be primarily evaluated
in ALS patients with comorbid dementia (34, 37, 38), recent
studies have increasingly focused on non-demented patient
cohorts (12, 32, 69, 71). With the increased recognition
of neuropsychological deficits beyond executive dysfunction,
imaging studies of ALS have gradually started to evaluate mesial
temporal lobe structures and memory domains have now been
incorporated in ALS-specific cognitive screening tools (8). The
targeted evaluation of memory function and reliance on more
sophisticated indices of episodic memory (65–68) not only
help to characterize the heterogeneity of cognitive profiles but
also confirm that pure episodic memory dysfunction is not
uncommon in ALS and can be detected in the absence of FTD.

Despite the momentous advances in characterizing
hippocampal degeneration in ALS, considerable shortcomings
and inconsistencies can be identified. The commonest problem
is sample size limitations followed by the inclusion of poorly
characterized patients. The comprehensive neuropsychological
assessment of patients is paramount and administering screening
tests alone is not sufficient. Reliance on non-ALS specific
batteries, such as Addenbrooke’s Cognitive Examination, Mini-
Mental State Examination, Montreal Cognitive Assessment, is
not sufficient to characterize ALS-associated cognitive change.
A common shortcoming of ALS neuropsychology papers is
overlooking the confounding effect of medications which affect
cognitive performance. Anticholinergics commonly used for
sialorrhea, tricyclic antidepressants, opiates, benzodiazepines
are all widely used in ALS and have a significant impact
on attention, registration, and recall. Other disease-specific
confounding factors such as hypoxia, hypercapnia, physical
discomfort, fatigue, apathy, low mood, depression also need
careful consideration. Despite established consensus criteria (6)
different batteries are used in different centers to test memory.
There is a paucity of reports where caregivers or family members
are interviewed about the sort of memory impairment they
may have observed. A few targeted questions if the patient

Frontiers in Neurology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 523

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Christidi et al. Hippocampal Dysfunction in ALS

gets lost in familiar places, misplaces items, forgets names, or
dates etc. may be worth asking from the caregivers. Given the
strikingly quick progression rates observed in ALS compared to
other neurodegenerative conditions, resource allocation, care
planning, assessment of capacity may be important at an early
stage of the disease. ALS patients have to make a number of
important financial, personal, and end-of-life decisions which
may or may not be affected by memory impairment.

The practice of excluding patients with dementia in
neuroimaging studies (44, 47, 49, 55) to evaluate clinically
homogenous samples may also be counterintuitive. More recent
imaging papers include comprehensive cognitive testing (55–
57) which aids the interpretation of extra-motor changes (107).
The lack of cognitive profiling of the healthy controls in many
neuroimaging studies also precludes robust statistics as only
the patient group is then used for correlative analyses. Often,
reference normative neuropsychology data are used for the
interpretation of patient’s memory performance, data which is
independent from the given study and originate from volunteers
who have not been scanned as part of the given study. The
patients’ neuroimaging data on the other hand are contrasted
to scans of controls who had no detailed neuropsychological
evaluation. This unfortunately is a common study design, which
essentially uses a different imaging and neuropsychology control
group. Another common shortcoming of ALS neuroimaging
studies is the lack of adjustment for education, which may impact
on both structural and functional imaging data (80). A binary,
comparative study design of patients versus controls and the
contrasting of two clinically or genetically defined cohorts is not
entirely satisfactory either. The inclusion of mimic cohorts, or
a “disease-control” group with an alternative neurodegenerative
condition such as MCI, AD, or Parkinson disease would also be
desirable. The selection bias of relatively well patients who are
able to lie flat in the scanner and able to make the journey to a
radiology department is seldom acknowledged. It is conceivable
that progressive hippocampal changes occur as the disease
progresses, but these patients are no longer able to partake in
imaging studies. Clinical trial designs are not only hampered
by late recruitment of clinically heterogeneous cohorts, but they
overwhelmingly rely on motor, respiratory, nutritional markers
(108–110). Patient stratification based on cognitive performance
prior to inclusion and monitoring performance during the trial
seems essential, especially given the survival implications of
cognitive impairment (3, 4, 111).

Despite initial enthusiasm that hexanucleotide repeats
account for most of the ALS-FTD cohort (112, 113), it has
quickly become apparent that C9orf72 hexanucleotide repeats

only explain a minority of ALS-FTD cases (114). Emerging
studies confirm that a subgroup of C9orf72 negative patients may
show neuroanatomical alterations similar to the ones observed
in patients carrying the hexanucleotide expansion. Furthermore,
temporal lobe changes have been captured in asymptomatic
hexanucleotide carriers, who also exhibited subcortical gray
matter degeneration prior to symptom onset (115).

Existing multimodal studies which combine neuroimaging
and neurocognitive measures either support a close association
between anatomical changes and memory performance or
highlight a relative dissociation between the two methods. This
inconsistency is epitomized by reports of absent neuroimaging
changes in patients with established memory deficits and
the detection of significant hippocampal changes in patients
with mild memory impairment (41, 42, 102). Based on the
shortcomings of existing hippocampal studies in ALS, future
studies should include large sample sizes, disease-controls,
longitudinal designs, paradigm-based fMRI, comprehensive
neuropsychological profiling, “disease-controls,” anatomical
corrections for education, and genetic screening for mutations
implicated in ALS, FTD, and AD. Furthermore, reliance on
high directional diffusion models such as neurite orientation
dispersion and density imaging (NODDI), high angular
resolution diffusion imaging (HARDI), or Q-ball imaging
may be desirable to characterize early WM alterations in
parahippocampal regions. Finally, combined imaging and post-
mortem studies may provide a validation of the in vivo findings.

In conclusion, hippocampal pathology is a clinically and
academically relevant field of ALS research which has gained
unprecedented momentum in recent years and is likely to
contribute important further insights in the coming years.
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