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Abstract

This paper proposes a novel matheuristic algorithm for solving the Production Routing Problem (PRP).
The PRP is a hard-to-solve combinatorial optimization problem with numerous practical applications in
the field of freight transportation, logistics and supply chain management. A manufacturer is responsible
for determining production decisions, as well as the timing and the quantity of replenishment services
offered to a set of geographically dispersed customers over a multi-period time horizon. The problem
calls for jointly optimizing the production, inventory, distribution and routing decisions. The paper
provides a novel two-commodity flow formulation and proposes a two-phase infeasible space matheuristic
algorithm for solving the examined problem. The first phase deals with a relaxation of the problem
to construct production-distribution plans. In the second phase, these are completed with routing
information and optimized via a local search framework which oscillates between the feasible and the
infeasible solution space. The framework is equipped with mixed integer programming components
for restoring infeasibility and for diversifying the conducted search. Computational experiments
demonstrate that the infeasibility space exploration significantly contributes to the quality of the final
solutions. The results obtained by the proposed matheuristic out-match the results of state-of-the-art
approaches. More specifically, 594 and 55 new best solutions out of 1440 and 90 instances of two
well-established benchmark data sets of small-medium and large instances are reported, respectively.

Keywords: transportation, integrated routing problem, production routing, matheuristic, infeasible
space search

1. Introduction

A supply chain of a product consists of several activities such as the production, inventory control,
distribution and routing that can take place in geographically different areas. All these activities are
interdependent and their coordination is required to ensure good system performance. According to
recent research, the total logistics industry costs for 2018 are calculated to the staggering amount of
$1,700 billion and $9,044 billion for EU and worldwide, respectively (Mazareanu 2020). Despite the
evident importance, the common practices for decision-making rely on the fragmentation of the above
processes in discrete stages that are optimized hierarchically, usually from production to consumption,
without feedback of every stage to the other ones. Practically, this means that the system is divided into
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isolated sub-problems and the decision-making process becomes myopic, inelastic and often ineffective.
However, regardless of the significantly lower quality of this decision-making approach, it remains
the common practice as the integrated decision making often leads to extremely complex logistics
management problems that are difficult to tackle (Archetti and Speranza 2016).

During the last few years, computational advances have enabled researchers to develop more and
more case-specific and realistic integrated models, as well as optimization methodologies to tackle
these arising intractable problems. The new models exploit the benefits of integrated optimization
as opposed to the “traditional” hierarchical optimization processes which are usually adopted for
tackling realistic industrial problems. Regarding the well-known Inventory Routing Problem (IRP)
that jointly coordinates distribution, timing, quantities and routing decisions, Archetti and Speranza
(2016) claim that inventory and routing cost savings achieved by the Vendor Managed Inventory (VMI)
policy in comparison to the Retailer Managed Inventory (RMI) policy may range up to approximately
10% for well-known benchmark data sets. In the context of the Production Routing Problem which
generalizes the IRP by incorporating the production decisions, Absi et al. (2016) compare an integrated
approach with the performance of two sequential ones: results show that the dominance of the integrated
approach depends on the balance between production and distribution costs and on the balance between
production setup and inventory costs in production facility. By incorporating location decisions into a
production routing variant, Darvish and Coelho (2018) show that all tested sequential decision-making
approaches are dominated by an integrated method.

One integrated problem arising in numerous supply chains, is the well-studied Production Routing
Problem (PRP). The PRP is an NP-hard combinatorial optimization problem aimed at jointly optimizing
the production, inventory, distribution and routing decisions over a period of time. It incorporates the
cost-saving VMI policy according to which a retailer is responsible for replenishing the inventory of
geographically dispersed customers ensuring that no stock-outs occur at any time. The suppliers have
complete knowledge of the inventory level of customers throughout the planning horizon, and therefore
can decide on the timing, quantities and transportation plans for customer inventory replenishment.
Thus, VMI creates a win-win situation, as on the one hand, customers save resources from inventory
control and order placement and on the other hand, suppliers are able to better coordinate production,
inventory and distribution processes (Archetti and Speranza 2016). Additionally, PRP incorporates
the lot-sizing problem in terms of deciding the timing and the quantities of the production. Therefore,
it combines two well-known problems (lot-sizing - LSP, vehicle routing - VRP). It can also be seen as a
generalization of the lot-sizing problem with direct shipment and of the IRP (Adulyasak et al. 2015b).

The Production Routing Problem has been introduced in 1993 (Chandra 1993) and it has been
pointed out that an integrated production, inventory and routing planning can reduce the total
operating cost by 3%–20% (Chandra and Fisher 1994). It has received increasing research attention,
with most works published during the last few years. The combined nature of the problem makes it
directly applicable to various industry fields. In practice, companies such as Kellogg (Brown et al.
2001) and Frito-Lay (Çetinkaya et al. 2009) have recorded significant savings by jointly optimizing the
decision levels considered by PRP. The broad applicability of PRP has driven researchers to introduce
numerous variants to cope with a realistic spectrum of business settings. For instance, Adulyasak
et al. (2015a) consider a stochastic PRP variant with demand uncertainty, whereas Qiu et al. (2019)
consider the PRP for perishable products and experiment with different selling policies to minimize
value losses. In a similar manner, Dayarian and Desaulniers (2019) model and solve the problem of
a catering company that delivers meals with short life-span, including features such as multi-trips
and time-windows. Motivated by the petrochemical industry, Schenekemberg et al. (2021) study the
Two-Echelon PRP with pickups and inventory control of ethanol from the suppliers, production and
inventory of pure and commercial gasoline, and deliveries of commercial gasoline to the final customers.
The interested reader is referred to the reviews of Dı́az-Madroñero et al. (2015) and Adulyasak et al.
(2015a) for surveys on optimization models for integrated production, inventory and routing decisions.
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Due to the high complexity of PRP, the majority of early approaches are based on decomposing the
master problem to subproblems that are usually tackled sequentially via metaheuristics such as Greedy
Randomized Adaptive Search Procedure (GRASP) with path relinking (Boudia et al. 2007), two-stage
local search algorithms (Boudia et al. 2008), memetic algorithms with population management (Boudia
and Prins 2009), tabu seach schemes with path relinking and both short and long-term memories
(Armentano et al. 2011), etc. The exact approaches are scarce and capable of tackling relatively small
instances. For example, for the single vehicle case, Archetti et al. (2011) apply an exact approach
solving six period instances, whereas Qiu et al. (2018b) propose a Branch-and-Cut (BnC) with new
valid inequalities solving instances with only three periods and up to 100 customers. Adulyasak et al.
(2014b) compares the performance of vehicle-indexed and non-vehicle indexed formulations for several
cases via single core and parallel computing BnC. Recently, the same relatively small instances are
solved for perishable inventory by a BnC strengthened with lot-sizing and lifted Miller–Tucker–Zemlin
subtour elimination constraints (Qiu et al. 2019).

Hybrid algorithms that combine metaheuristics and mathematical programming methods, referred
to as matheuristics, have promising performance at solving complex routing problems (Archetti
and Speranza 2014). The majority of recent PRP works focus on the combination of metaheuristic
algorithms with exact Mixed Integer Programming (MIP). Adulyasak et al. (2014a) introduces an
adaptive large neighborhood search heuristic with production, inventory, and shipment quantities
determined by solving a minimum cost network flow subproblem. Similarly, Absi et al. (2015) and
Miranda et al. (2018) propose two-phase iterative schemes with production-distribution and routing
subproblems solved by Travelling Salesman Problem (TSP) and Vehicle Routing Problem (VRP)
solvers within a local search framework. Decomposition techniques that lead to the formulation of
MIP subproblems have been also used within the context of genetic algorithms, in order to generate
good quality individuals from the population (Senoussi et al. 2018).

The basic PRP version, that serves as a starting point for numerous extensions, has been introduced
by Adulyasak et al. (2015a). For this standard PRP variant, the best performing methods are mainly
multi-phase matheuristics. Russell (2017) uses mathematical programming for a relaxed PRP version,
to determine an initial solution which is completed by a metaheuristic tabu search scheme based on
the concept of seed routes. Solyalı and Süral (2017) propose a five-phase heuristic, with overlapping
subproblems formulated as MIPs and solved via exact algorithms. In a similar manner, other multi-
phase approaches decompose the problem into the setup, distribution and routing decision levels which
can be faced either by exact algorithms (Chitsaz et al. 2019), or by fix-and-optimize strategies (Li et al.
2019). A more straightforward scheme is the multi-start scheme of Avci and Yildiz (2019) in which an
MIP-based local search procedure is iteratively applied. On the contrary, hybrid algorithms combining
metaheuristics components have been also introduced (skewed general variable neighborhood search
and guided variable neighborhood descent) (Qiu et al. 2018a). Most recently, Schenekemberg et al.
(2021) introduced a parallelized hybrid of local search with BnC.

The concept of exploiting information from infeasible solutions has produced promising results
in the VRP literature. One of the first such papers, proposed the concept of intermediate infeasible
solutions in terms of capacity and length violations within a Tabu Search (TS) scheme (Gendreau et al.
1994). Since then, this approach has been employed to deal with hard-to-solve extensions of the classic
VRP, such as the VRP with stochastic demands and customers (Gendreau et al. 1996) and the periodic
and Multi-Depot VRP with time windows (Cordeau et al. 2001). A guide for designing heuristic and
metaheuristic algorithms suggests that the blend of feasible and infeasible solutions reduces the chances
of getting trapped in local optima during the search (Cordeau et al. 2002). More recently, Felipe et al.
(2011) used intermediate infeasible solutions to diversify the search process. The concept of infeasible
solution search is coupled with procedures that restore feasibility by using infeasibility measures to
control the ”distance” from the feasible space.

The contribution of the paper lies on the benefits enabled by integrated logistics models, the high
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complexity of PRP and the effectiveness of infeasible space search. In specific, the present paper
presents a novel matheuristic algorithm that oscillates between feasible and infeasible space of the
basic PRP model. A novel PRP two-commodity flow formulation is proposed along with adapted and
new valid inequalities. The proposed matheuristic scheme is mainly based on a hybrid local search
framework equipped with MIP and LP procedures to tackle various subproblems. The production-
distribution decisions are taken by solving a PRP relaxation which considers approximated routing
costs for customer visits. Afterwards, a heuristic GRASP algorithm completes the partial solution with
routing information. The complete solution is then iteratively improved by a local search framework.
The main novelty of the proposed local search framework is the exploration of both the feasible and
the infeasible regions of the solution space. Specifically, solutions that violate the capacity constraint
are allowed and then repaired by employing an MIP procedure capable of inserting, removing and
relocating customers. Extensive computational experiments have been conducted on 1530 well-known
PRP instances to analyze the proposed algorithm performance and to access its effectiveness. The
obtained results outperform the results of the state-of-the-art PRP methods. Several new best solutions
for two well-known benchmark data sets have been generated.

The remainder of the paper is organized as follows. Section 2 provides the two-commodity flow
formulation along with valid inequalities. The proposed matheuristic is described in detail in Section 3
which also provides the motivation of the algorithmic design and describes the course of the algorithm
development. Next, Section 4 reports extensive computational experiments for tuning and analyzing the
infeasibility space search impact, as well as to compare the proposed algorithm against state-of-the-art
PRP approaches. Finally, Section 5 concludes the paper and offers some promising research directions.

2. Two-commodity flow formulation

The generic PRP variant examined in this paper describes the situation in which a manufacturer
of a product is responsible for production and replenishment of customers inventories over a given
time horizon, ensuring that no stock-outs occur. The decision-maker is responsible for deciding: i) the
time periods at which the production takes place, ii) the product quantities that are produced, iii) the
timing for replenishing each customer inventory, iv) the associated replenishment quantity and v) the
routing of all customer services, with respect to the minimization of the total cost of the system.

For the sake of completeness of the paper, we provide a new formulation for the PRP which extends
the well-performing formulation of Manousakis et al. (2021) for the similar IRP. The basic model and
valid inequalities are given for a complete PRP definition, and they are also employed for modeling
individual subproblems tackled in the context of the proposed algorithm.

Let an undirected graph G = (V,E), where V = {0, 1, . . . , n, n + 1} is the set of nodes and
E = {(i, j) : i, j ∈ V, i < j} is the edge set. Node 0 represents the production facility and node
n + 1 represents the production facility clone, where the inverse flow originates from. The set
Vc = {1, 2, . . . , n} is used to denote the customers. The problem spans over a set of time periods
T = {1, 2, . . . , |T |}. Each node i ∈ V starts with initial inventory I0i at period 0 and incurs a unit
holding cost hi for every period t ∈ T . Customer i ∈ Vc faces a per period t ∈ T demand dti and
has a limited maximum inventory capacity Li. At the start of period t ∈ T , the production facility
(depot) may produce any non-negative quantity pt up to the per period production capacity limit C,
whereas the end inventory It0 cannot exceed the production facility storage capacity L0. The production
facility faces a setup cost st for each period that any non-zero quantity is produced, whereas a unit
production cost of ut also applies for each unit of production. The produced quantity may be directly
used to satisfy customer demand at the same period t. Each edge (i, j) ∈ E is associated with a
non-negative travel cost cij that represents the cost for traversing this edge. The supplier delivers
any non-negative quantity to each customer i ∈ Vc at t ∈ T , such that no stock-outs occur. For every
period, a homogeneous vehicle fleet of vehicles K = {1, 2, . . . , |K|} each of capacity Q is available at
the depot.
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We assume a symmetric transportation cost matrix, i.e., cij = cji. We use binary undirected routing
variables xtij = 1 for i, j ∈ V, i < j iff any vehicle k ∈ K traverses edge (i, j) in any direction at period
t ∈ T . Binary variables zti take a value of 1 iff i is visited by any vehicle at period t ∈ T . Similarly,
binary variables yt take a value of 1 iff production takes place at the production facility during period
t. Non-negative continuous flow variables f tij and f tji represent the load and the residual capacity
of the vehicle travelling from i to j at time t ∈ T , respectively. Let pt be the quantity produced at
period t, whereas qti denotes non-negative product quantity delivered to customer i ∈ Vc at time t ∈ T .
Finally, continuous variables Iti for each node i ∈ V represent the inventory at the end of period t ∈ T .
The objective of the PRP with the ML inventory policy is to minimize the overall fixed and variable
production, transportation and inventory holding costs for both the supplier and the customers.
Below, the two-commodity flow formulation for the PRP with the maximum level (ML) inventory
policy is provided, henceforward named TCF :

minimize
x,y,z,f,p,q,I

g =
∑
t∈T

(
utpt + styt +

∑
i∈V

hiI
t
i +

∑
i∈V

∑
j∈V, i<j

cijx
t
ij

)
(1)

subject to ∑
j∈V,i>j

xtji +
∑

j∈V,i<j
xtij = 2zti i ∈ Vc t ∈ T (2)

∑
j∈Vc

xt0j ≤ |K| t ∈ T (3)

∑
j∈Vc

xt0j =
∑
i∈Vc

xti(n+1) t ∈ T (4)

f tij + f tji = Qxtij i, j ∈ V, i < j t ∈ T (5)∑
j∈V,i 6=j

f tij = Qzti − qti i ∈ Vc t ∈ T (6)

∑
j∈Vc

f t0j =
∑
i∈Vc

qti t ∈ T (7)

∑
i∈Vc

f ti(n+1) = 0 t ∈ T (8)

pt ≤ min
{
C,
∑
i∈Vc

|T |∑
t′=t

dt
′
i

}
yt t ∈ T (9)

pt ≤
∑
i∈Vc

( |T |∑
t′=t

dt
′
i − It−1i

)
− It−10 t ∈ T (10)

It0 = It−10 + pt −
∑
i∈Vc

qti t ∈ T (11)

Iti = It−1i + qti − dti i ∈ Vc t ∈ T (12)

qti ≤ Li + dti − It−1i i ∈ Vc t ∈ T (13)

xtij ∈ {0, 1} i, j ∈ V, i < j t ∈ T (14)

yt ∈ {0, 1} t ∈ T (15)
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zti ∈ {0, 1} i ∈ Vc t ∈ T (16)

0 ≤ f tij ≤ Q i, j ∈ V, i 6= j t ∈ T (17)

0 ≤ qti ≤ min
{
Li + dti, Q,

|T |∑
t′=t

dt
′
i

}
i ∈ Vc t ∈ T (18)

0 ≤ pt ≤ min
{
C,
∑
i∈Vc

|T |∑
t′=t

dt
′
i

}
t ∈ T (19)

0 ≤ Iti ≤ Li i ∈ V t ∈ T (20)

The objective function g represents the sum of the depot setup and unit production costs, the
transportation costs and the inventory holding costs of both the depot and the customers over the
planning horizon. Note that the holding costs of the initial inventory at period t = 0 are also taken into
account, whereas no inventory holding costs are considered for the artificial depot node. Constraints (2)
are the degree constraints for the customers, while constraints (3) and (4) equate the number of vehicles
leaving and returning to the depot and ensure that this number does not exceed |K|. Constraints (5)
ensure that the total flow (normal and inverse of an edge) is equal to the vehicle capacity if and only
if the edge is traversed by a vehicle. Constraints (6) imply the flow as they force the total sum of
the flows originating from a node to be reduced by the delivery quantity absorbed by the node. The
total product quantity starting from the depot is given by (7). Accordingly, constraints (8) ensure
that no products arrive at the depot when routes are terminated, thus guaranteeing that the total
product quantity leaving the depot is equal to the quantity delivered to the customers. Constraints (9)
ensure that the produced quantity may be positive only when the production facility is open. In this
case, the produced quantity cannot exceed the total production capacity or the sum of the remaining
demand of all customers. More specifically, according to constraints (10) the produced quantity and
the remaining depot inventory cannot exceed the remaining demand after subtracting the existing
customer stocks as in any other case the solution would be sub-optimal. Constraints (11) and (12)
represent the inventory flow preservation over the periods of the planning horizon for the depot and the
customers, whereas constraints (13) implement the ML policy. Finally, constraints (14)–(20) enforce
integrality, as well as lower and upper bounds on the decision variables. The flow variables ytij are
defined by (17) for each edge and direction as the existence of flows imposes direction to the model.
Note that period t = 0 contributes to the overall holding costs; however, no transportation takes place
at this period. It should be underlined that the TCF formulation, as a flow model, directly implies the
sub-tour elimination from the flow related constraints (5)–(8). Therefore, there is no need to introduce
2|V | additional constraints to implement the classic DFJ sub-tour elimination constraints (i.e., one
for each subset of V ) or new variables for the alternative MTZ sub-tour elimination constraints. In
our formulation sub-tours are prevented by imposing the continuous flow of the load and the residual
capacity. Hence, it can be solved as-is via any off-the-shelf Mixed Integer Linear Programming (MILP)
solver. For completeness, adapted and new valid inequalities are provided in Appendix A.

Regarding the maximum delivery quantity of customer i at period t, we distinguish between two
cases that have appeared in the PRP literature. The common practice, is to allow the delivered
quantity qti to exceed the maximum capacity Li making sure that the excessive quantity is consumed
during this period t, so that the inventory Iti at the end of the period does not exceed maximum
capacity Li. However, other research works, adopt a stricter assumption forcing the delivery quantity
qti ≤ Li, ∀i ∈ Vc, t ∈ T (Adulyasak et al. 2014b, 2015b, Qiu et al. 2018a). In the present work and to
enable comparisons, we consider the former case. However, the proposed model can be modified to
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capture the latter case by replacing constraints (13) and (18) with (21) and (22):

qti ≤ Li − It−1i i ∈ Vc t ∈ T (21)

0 ≤ qti ≤ min
{
Li, Q,

l∑
t′=t

dt
′
i

}
i ∈ Vc t ∈ T (22)

Furthermore, in order to facilitate the methodology description, additional notation is introduced
for all the algorithmic procedures that refer to a specific solution S. We define ỹt, z̃ti , x̃

t
ij , p̃

t q̃ti , Ĩ
t
i

and f̃ tij to be the currently assigned values of yt, zti , x
t
ij , p

t qti , I
t
i and f tij in the solution S. Every

solution consists of a set of routes R and each route r ∈ R is assigned to a specific vehicle. Let function
ζ : (Vc, T )→ R, return the route r in which customer i ∈ Vc is assigned for period t ∈ T . Additionally,
let V r

c ⊆ Vc be the subset of customers that are included in route r ∈ R.

3. Methodology

This section presents the proposed matheuristic approach for the generic version of PRP. It starts
with a high-level outline of the proposed algorithmic scheme. Next, a relaxation for obtaining a partial
solution, as well as a randomized construction heuristic for generating routes and completing the partial
solution are introduced. Then, the core of the approach, which is a local search algorithm integrated
with exact optimization components, is described. Finally, the section is concluded with the motivation
of design of the proposed approach.

We propose a two-phase matheuristic approach for solving the PRP. Inspired by the use of
mathematical programming components and infeasible space search, the algorithm is named Hybrid
Infeasible Space Matheuristic (HISM ). In Phase I, a partial initial solution is generated by solving a
relaxation of the TCF master problem, called PD-Rel. This generates a partial PRP solution, and
more specifically a production-distribution schedule which ignores the routing decision level (Section
3.1). In Phase II, the partial solution is firstly completed with routing information and then iteratively
improved. To complete the partial solution, a greedy randomized adaptive search procedure (GRASP)
probabilistically constructs routes according to the predetermined production-distribution plans (Section
3.2). Afterwards, the complete solution is optimized by a matheuristic local search algorithm (Section
3.3) equipped with exact components (Section 3.4). This algorithm oscillates between infeasible and
feasible space by allowing vehicle capacity infeasibilities and applying an infeasibility restoration MIP
procedure, respectively. It is referred as Feasible-Infeasible Local Search (FILS ).

The outline of the overall HISM framework is presented in Algorithm 1.
Phase I is an initialization phase. More specifically, the PD-Rel relaxation is solved, so that an

initial solution which consists of the delivery schedule and quantities for all customers, is generated
(line 2). The second phase is repeated for εr restarts (line 3). The routing decisions are incorporated in
the partial solution by means of the GRASP routing heuristic (line 4) which constructs the routes and
assigns customers to vehicles with respect to the determined delivery quantities. The complete initial
solution S0 is then improved by FILS to obtain a solution Sb which denotes the best solution generated
through restart b (line 5). Obviously, the final solution returned by the HISM is the best solution
identified over all restarts. Note that, all restarts share the same production-distribution schedule and
quantities, however each restart is differentiated according to the probabilistically generated route set.
The individual components of HISM are described in the following sections.

3.1. Production-distribution relaxation

The construction of an initial PRP solution is a challenging task. Common construction heuristics
cannot straightforwardly decide the continuous production and delivery quantities which obviously are
interconnected with the routing decision level. A simple heuristic design is difficult to ensure feasibility
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Algorithm 1 Overall Scheme of HISM

Phase I
1: S0 ← ∅, S∗ ← ∅
2: y, z, p, q, I ← PD-Rel()

Phase II
3: for b← 1 to εr do
4: S0 ← GRASP(z, q, I)
5: Sb ← FILS(S0)
6: if Z(Sb) < Z(S∗) then
7: S∗ ← Sb
8: end if
9: end for

10: return S∗

due to the three interconnected decision levels. To overcome this challenge, our proposed heuristic
solves a production-distribution relaxation of the proposed TCF formulation, named PD-Rel. The
aim is to generate a partial solution with approximated routing costs. Note that the production setup
decisions are crucial for the quality of the final solution, due to the fact that they usually make up for
the largest part of the total objective. This means that it is highly unlikely to obtain a good quality
solution from a partial solution with poor production schedule characteristics, and vice versa.

The ineffectiveness of modifying the production setup decisions during an iterative improvement
procedure is also stated in Adulyasak et al. (2014a). Indeed, preliminary experiments have indicated that
modifying the production setup in the context of the hybrid local search causes excessive diversification
due to the drastic objective value changes. Therefore, in the proposed scheme, the production setup
information defined by PD-Rel is maintained throughout the optimization process, whereas the
production quantities, the delivery quantities, and distribution plans may be modified.

We adapt the production-distribution relaxation of Adulyasak et al. (2014a) to our two-commodity
flow formulation. PD-Rel ignores the original routing cost matrix and considers aggregated vehicle
capacity over each period. Therefore, the complexity of the problem is drastically reduced, and
thus, a high-quality solution of the relaxed problem is usually obtained within limited computational
time. Similar to Adulyasak et al. (2014a) for each node i ∈ V , an approximation of the routing
(transportation) cost σi is calculated as shown in (23)

σi = min
{

2c0i, min
j,b∈V,j 6=b

{cij + cib}
}

(23)

The approximation of the cost of visiting a node i, is the minimum between: i) the sum of the distances
of the two closest nodes and ii) twice the distance between i and the depot (direct shipping). This is
the most optimistic approximation of the visit cost of each node.

The PD-Rel formulation is presented below:

minimize
y,z,p,q,I

ĝ =
∑
t∈T

(
utpt + styt +

∑
i∈V

hiI
t
i +

∑
i∈Vc

σiz
t
i

)
(24)

subject to ∑
i∈Vc

qti ≤ |K|Q t ∈ T (25)
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Constraints (9)–(13), (15), (16), (18)–(20).
The objective function (24) is similar to the objective function of the original problem, except for the

fact that the last sum involves the approximated and not the actual transportation costs. Constraints
(25) ensure that the total delivered quantity for each period t does not exceed the aggregated capacity
of all available vehicles. Note that split deliveries are forbidden by the original TCF model, thus the
aggregated capacity constraint may generate delivery schedules which are TCF infeasible. Therefore,
it is possible that for a period t, although the aggregated capacity constraint is satisfied for all vehicles
together, the delivered quantities cannot be split in a way that the capacity constraint of each individual
vehicle is respected. To ensure feasibility, the RHS of inequality (25) is commonly multiplied by a
factor between zero and one. The factor is iteratively reduced until a feasible TCF production and
distribution schedule is constructed (Absi et al. 2015, Chitsaz et al. 2019). However, this is quite
restrictive and sacrifices the quality of the solution for the sake of feasibility. Since our algorithm
handles infeasible solutions, we have not adopted such a restricting approach.

3.2. Routing construction heuristic

A PRP partial solution obtained via PD-Rel incorporates the production-distribution plans, but
lacks actual routing sequences. Routing plans need to be integrated in this partial solution to form
a complete TCF solution. To do so, a GRASP construction heuristic inspired by Feo and Resende
(1995) is applied. The goal is to construct the routes of every period, to implement the predetermined
customer visits (z), while respecting all other decision variables also determined by the PD-Rel. The
GRASP algorithm is executed for each period separately: one independent VRP is solved for each
period t ∈ T .

Customer visits are iteratively pushed in the solution. More specifically, a customer visit represented
by zti = 1 is assigned to period t. Then, all available insertion positions (both in terms of the various
routes of period t, as well as the various positions within each of these routes) are evaluated and stored
in a candidate list RCL. The cost of each insertion is set to promote solution feasibility: Let ci be
the actual routing cost increase of a candidate insertion. If the insertion is infeasible due to violated
vehicle capacity constraint (the TCF model contrary to the PD-Rel relaxation forbids split deliveries),
this actual cost is augmented by a very large positive value M. This is to favor feasible insertions by
guaranteeing that the cost of every feasible insertion is better than the cost of any infeasible one. RCL
is then sorted in increasing order of the associated insertion costs. The insertion applied is randomly
selected among the top RCLN candidates of the RCL, with all candidates sharing the same selection
probability.

3.3. Feasible-infeasible local search

The FILS method is the core optimization component of the overall framework. It is responsible
for improving the partial solution generated by the PD-Rel relaxation and completed by the GRASP
heuristic. As its name suggests, FILS is able to handle both the feasible and infeasible solutions
of the TCF problem. It is an iterative local search algorithm which explores six different types of
neighborhoods which deal with the timing, as well as the routing decisions (Section 3.3.1). In addition,
through neighborhood search exploration, it employs an efficient procedure to uniquely define customer
delivery quantities when the associated replenishment schedules are modified. A central characteristic
of this procedure is that the delivery schedule of a single customer is modified by each tentative local
search move. Thus, the delivery quantities for the affected customer are determined by assuming all
other customer delivery quantities fixed (Section 3.3.2). To counterbalance this assumption which
greedily generates delivery quantities from the perspective of the affected customer, the FILS scheme
occasionally uses the QOPT Linear Programming (LP) component for jointly re-optimizing all delivery
and production quantities (Section 3.4.1). Finally, as it will be seen in the computational results section,
the most powerful feature of FILS is that it dynamically switches between both feasible and infeasible
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solutions. In this way, feasible solution regions that could not be examined under computational time
restrictions may be explored. Obviously, the optimal solution of a convex polytope is an extreme
point/vertex. Therefore, the infeasible space may be used to drive the search out of these extreme
points. By using the FR MIP component (Section 3.4.2), the infeasible solution is restored and the
search is diversified towards a distant feasible region of the solution polytope.

FILS employs three inventory operators and three routing operators, the application of which is
described in the following. The boolean variable oinv indicates if the inventory operators are enabled
during the neighborhood exploration. In the beginning, only routing operators are used in order to
speed up the initial solution improvements (unless the starting solution is infeasible). The inventory
operators are switched on whenever the search is moved to the infeasible space and they remain
enabled until a new best feasible solution is identified. It should be noted that routing operators affect
only the routing aspect of the solution and are much faster than the inventory ones. Therefore, the
proposed scheme has a twofold role: it accelerates the search, and promotes the identification of high
quality routing plans for given delivery schedule and quantity configurations (since repetitive inventory
modifications prevent the algorithm from identifying optimal routing plans).

The oscillation between feasible and infeasible search phases is controlled by two counters. The
enter counter iin designates the iteration number at which the search is allowed to enter the infeasible
space. This transition is enabled by increasing vehicle capacity to Qe = γQ (henceforward referred to
as effective vehicle capacity). Parameter γ is randomly valued from [1.02, 1.04, 1.06] with 50%, 30% and
20% probability, respectively, each time the infeasible phase begins. The exit counter iout designates
the iteration number at which the search is tunneled back to the feasible space by applying FR to
solution Srep which represents the infeasible phase solution to be repaired. The iin and iout counters
are updated as follows, where i denotes the current local search iteration:

iin =

{
iout + θin|V |+ U(1, |V |) if infeasible search is enabled

i+ θin|V |+ U(1, |V |) otherwise
(26)

iout = iin + θout|V |+ U(1, |V |) (27)

The term U(1, |V |) denotes the discrete uniform distribution between 1 and |V | and it is used to
randomly extend both feasible and infeasible phases, and thus promote diversification. Note that in
the computational results, we provide experiments on the optimal value of the θin and θout parameters
which have been seen to strongly impact the algorithm performance.

The FR MIP is solved for a solution Srep obtained during the infeasible space search. During the
infeasible space search, we record the best solutions in terms of the total objective, in terms of the
routing objective, as well as the incumbent solution. The solution to be repaired Srep, is selected
probabilistically among the aforementioned solutions with selection probability of 70%, 15% and 15%,
respectively. These probabilities were seen to lead to an effective intensification-diversification balance.
The second exact component, the QOPT LP is executed every εQOPT local search iterations if the
incumbent is feasible.

For instances involving an unlimited vehicle fleet, the algorithm has a dynamic control over the
number of vehicles, since it makes sure that exactly one additional empty vehicle is always available.
FILS terminates after εt feasible-infeasible space transitions with no solution improvement or after a
CPU hour. The outline is presented in Algorithm 2.

The algorithm is initialized by setting the incumbent S′ and the best S∗ solutions to S0 and ∅,
respectively. Furthermore, the inventory operators are disabled, unless S0 is infeasible, in which case
the oinv switch is set to true. Additionally, the number of feasible-infeasible space transitions without
improvement φ and the iteration counters are initialized (line 1). While the number of non-improving
feasible-infeasible transitions does not exceed εt or the time limit is not violated, the following repetitive
procedure is applied: At each iteration, the best solution is updated if improved (line 4). In this case,
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Algorithm 2 FILS

Input: S0

1: S′ ← S0, S∗ ← ∅, oinv ← false, φ← 0, i← 0
2: while φ < εt and noTimeViolation() do
3: if isFeasible(S′) and Z(S′) < Z(S∗) then
4: S∗ ← S′

5: updateCounter(iin, iout), oinv ← false, φ← 0, Qe = Q
6: continue
7: end if
8: S′ ← neighborhoodExploration(S′, oinv, Qe)
9: if i = iin then

10: Qe ← γQ
11: updateCounter(iin), oinv ← true
12: else if i = iout then
13: S′ ← FR(Srep)
14: updateCounter(iout), φ← φ+ 1, Qe = Q
15: else if i mod εQOPT = 0 and isFeasible(S′) then
16: S′ ← QOPT (S′)
17: end if
18: i← i+ 1
19: end while
20: return S∗

the enter and exit counters are also updated, and the inventory operators are disabled operators polish
the solution routing aspects during the next iterations. Of course, the φ and the effective vehicle
capacity Qe are reset (line 5) and the algorithm skips to the next iteration (line 6). The incumbent
solution is set to the best solution of the neighborhoods explored (line 8). Next, the algorithm checks
if the counters dictate to transition from feasible to infeasible space or vice versa (lines 9 and 12). If
the infeasibility phase starts, the effective capacity is determined (line 10), the enter counter value is
set to designate the beginning of the next infeasible phase, and the inventory operators are enabled
(line 11). On the other hand, if the number of the iteration matches the value of iout, the infeasibility
phase is terminated (line 12): the FR method repairs Srep, to create the new incumbent solution S′

(line 13). Afterwards, the exit, as well as the feasible-infeasible space transitions counters are updated
and the effective vehicle capacity is reset to the actual capacity (line 14). Every εQOPT iterations and
if the solution is feasible, the QOPT method jointly optimizes the production and delivery quantities
(line 16). At the end of each iteration, the counter i is updated (line 18). Finally, upon termination,
the best solution obtained S∗ is returned (line 20).

3.3.1. Neighborhood exploration

The proposed local search framework employs six operators and operated according to the best
admissible scheme (i.e., neighborhoods are explored and the search is moved to the highest quality
admissible neighbor identified). Note that the effective vehicle capacity is used to decide on move
admissibility.

The operators deal either with the timing aspect of the delivery plans (inventory operators) or the
routing decisions of each period t (routing operators). The inventory operators are: the Period Deletion,
the Period Insertion and the Period Relocation. Obviously, when a delivery service is introduced
in a customer schedule, a customer visit is necessary. To identify this additional service position,
all routing positions are examined and the one which is admissible and minimizes the additional
routing cost is selected. The aforementioned operators affect the timing of replenishment services, and
thereafter, the delivery quantities, as well as the inventory levels. Regarding the routing operators, the
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well-known intra- and inter-route operators Customer Relocation, Customer Swap and 2-Opt are used.
The neighborhood structures of the aforementioned operators are summarized below:

• Period Deletion: includes all solutions derived by removing a visit of any customer i from any
period t, such that z̃ti = 1 (O(|Vc||T |)).

• Period Insertion: includes all solutions derived by inserting a new visit for any customer i at any
period t, such that z̃ti = 0 (O(|Vc||T ||K|)).

• Period Relocation: includes all solutions derived by relocating an existing visit of customer i
from period t1 such that z̃t1i = 1, to period t2 such that z̃t2i = 0 (O(|Vc||T ||K|)).

• Customer Relocation: includes all solutions derived by changing the service position of any
customer i at any period t, to every other available service position of the same period t
(O(|Vc|2|T ||K|)).

• Customer Swap: includes all solutions derived by exchanging the service positions of customers i
and j visited at any period t (O(|Vc|2|T ||K|)).

• 2-Opt : includes all solutions derived by applying the 2-opt operator to any edge pair traversed at
any period t (O(|Vc|2|T ||K|)).

Note that a move is considered admissible, if it respects the problem constraints and respects the
following tabu policy (Zachariadis et al. 2015): When a Period Deletion, or a Period Relocation move
is applied to a solution S, so that the service of customer i is removed from period t, we set a threshold
value ρti = Z(S). The insertion of any customer i into period t leading to solution S′ is only allowed
when ρti > Z(S′). Similarly, when a move eliminates a set of edges F ⊆ E at period t from a solution
S, we set a threshold value ρtij = Z(S),∀(i, j) ∈ F . Local search moves introducing any edge (i, j) ∈ F
at period t leading to solution S′, are only allowed when ρtij > Z(S′). It is worth to highlight that
the thresholds described above can be used to diversify the local search process, and for this reason,
they are periodically set to infinity each time a new best solution is found, a number of iterations ερ is
completed, or the search transitions from infeasible to feasible space.

Since all problem aspects are intertwined, it is not possible to optimize against one aspect of the
problem, without modifying the others. However, to employ local search on the delivery schedules of
customers, a systematic way for determining customer delivery quantities is necessary. To do so, when
inserting (or removing) any customer i into (or from) period t, the customer delivery quantities for all
time periods are decided, so that the sum of the depot and customer i inventory cost is minimized, under
the assumption that all other decisions are fixed. The procedure that determines delivery quantities,
when the replenishment schedule of a customer is modified is given in section 3.3.2. Note that changes
in the routing component of the objective function can be assessed in O(1), since they involve the
replacement of a constant number of edges. On the contrary, the complexity of the proposed delivery
quantity determination (necessary for inventory cost change evaluation) is O(|T |). The neighborhood
exploration returns to the FILS the best tabu feasible solution after exploring all defined operators.

3.3.2. Customer inventory calculation

A challenging aspect of LS approaches for problems with continuous decisions variables, such as
the PRP, is their quantization. During the development of local search framework for the PRP, the
management and the calculation of the customer delivered quantities (q) is not a straightforward task.
The PRP literature contains some ways to overcome this obstacle. One of the most common, is to
solve an exact subproblem to identify the delivered quantities (e.g., Minimum Cost Flow problem
(Adulyasak et al. 2014a)). This approach requires solving an exact subproblem for evaluating each
solution. Therefore, it is difficult to be integrated within neighborhood exploration, since it would lead
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to excessive computational times. Another approach is to adopt the well-known OU replenishment
policy and therefore the common assumption that the quantity delivered to a customer at the time of
visit, should be equal to the quantity required to reach the maximum stock level. This approach, despite
being computationally efficient, is practically unrealistic and significantly deteriorates the quality of
the final solutions (Archetti et al. 2011). This is particularly the case for instances that involve high
maximum customer capacity, and thus just a few customers may fully occupy the available capacity
of a vehicle, leading to a very inefficient routing and possibly causing shortages to other customers.
In addition, since the unit holding cost of customers and the depot can significantly differ, the OU
policy may lead to increased total inventory costs. To avoid the disadvantages of the aforementioned
approaches, we propose an efficient computational method for calculating the delivered quantities to
a customer, assuming all other replenishment variables (delivery schedule of the customer involved,
delivery schedule and quantities for all other customers) are fixed. This method is used when one of the
operators modifies the visit schedule (zi) of a customer. We distinguish two separate cases according
to the relationship of customer i and depot unit holding costs (hi, h0):

• Case 1. hi > h0: Inventory accumulations with early deliveries of product to the customer lead
to increased total holding costs. Therefore, it is preferable to preserve this stock in the depot
location. In other words, customer i is preferably served as late as possible to minimize the
inventory costs incurred.

• Case 2. hi ≤ h0: Inventory accumulations with early deliveries of product to the customer lead
to decreased total holding costs. Therefore, it is preferable to preserve this stock in the customer
location. In other words, customer i is preferably served as early as possible to minimize the
inventory costs incurred.

On this basis, we propose two delivery quantities calculation algorithms for Case 1 and Case
2 customers, respectively. When the neighborhood exploration is performed, given the incumbent
solution S and the visit schedule of customer i (z̃i), one of the aforementioned algorithms is applied to
calculate the delivery quantities that minimize the total inventory costs. Note that, each one of the two
methods uniquely defines a set of delivered quantities for the affected customer. For the exceptional
case of instances, where hi = 0 ∀i ∈ Vc, we randomly classify each customer to one of the two cases
with equal probability. This is to balance the delivery volumes through the planning horizon. Both
methods can be executed with a single pass of the periods of the planning horizon (O(|T |)), thus they
can be efficiently executed during the neighborhood exploration stage of the FILS algorithm.

To facilitate presentation, we introduce some auxiliary variables for any given solution: Auxiliary
variable q−i runs through the planning horizon. For any t ∈ T , q−i represents the deficit quantity for
customer i equal to the current stock-out. In other words, q−i is the minimum delivery quantity that
must be delivered to the customer i at period t ∈ T to avoid stock-outs. On the contrary, the variable
q+i denotes the current customer surplus quantity (current inventory) or in other words the product

quantity that can be taken out from customer i without stock-out. Let Ît0 be a equal to the depot
inventory slack of period t ∈ T . It should be highlighted, that all customer currently decided quantities
q̃ti∀t ∈ T are reallocated to the depot upon the beginning of the described procedure. Similarly, let Q̂tr
be the remaining capacity (slack) of vehicle travelling route r at period t.

For the Case 1 customers, the goal is to deliver quantities that minimize the customer holding cost,
since it is preferable to preserve stock in depot rather than the customer location. To do so, for each
period the minimum of five different quantities must be identified:

1. Depot slack Ît0
2. Vehicle slack Q̂tr
3. Maximum customer capacity Li
4. Minimum quantity to avoid stock-out q−i
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5. Total remaining demand for the remaining planning horizon
∑

t∈T d
t
i − I0i −

∑|T |
τ=t+1 q

τ
i

Note that, for customers of Case 1, deliveries should be made as late as possible. Thus, the method
traverses the planning horizon backwards. At any iteration, if the delivery quantity is negative, the
evaluated visit schedule is considered infeasible. Algorithm 3 presents the replenishment quantity
calculation for Case 1 customers.

Algorithm 3 Customer qi calculation (Case 1)

Input: S, i
1: q−i ← 0
2: for t← 1 to |T | do
3: Ît0 ← Ĩt0 +

∑t
τ=1 q̃

τ
i

4: end for
5: for t← |T | to 1 do
6: qti ← 0
7: q−i ← q−i + dti
8: if z̃ti = 1 then
9: r ← ζ(i, t)

10: Q̂tr ← Qe −∑j∈V r
c \{i} q̃

t
j

11: qti ← min(Ît0, Q̂
t
r, Li + dti, q

−
i ,
∑

t∈T d
t
i − I0i −

∑|T |
τ=t+1 q

τ
i )

12: q−i ← q−i − qti
13: Îτ0 ← Îτ0 − qti ∀τ ∈ [t, |T |]
14: end if
15: end for
16: return qi

The procedure starts with the initialization of the customer deficit quantity (line 1) and the
calculation of the depot inventory slack (lines 2-4). The depot slack considers the inventory for period
t and all the quantities from τ = 1 until t horizon that have been assigned to the customer. Therefore,
we temporarily assign all quantities of customer i back to the depot. Lines 5-14 represent the loop that
starts at period t = |T | and ends at period t = 1. Line 6 initializes the delivery quantity to zero for
the case that no customer delivery takes places at the specific period. Line 7 increases the temporary
deficit quantity by customer demand at t (product consumption). If customer is replenished at t, the

route r serving the customer is retrieved (line 9). On line 10, the vehicle capacity slack Q̂tr is calculated
as by considering the delivery quantity for all other customers (the q̃ti has been assigned back to depot).
The new quantity for period t is set to the minimum of the vehicle capacity slack, the depot inventory
surplus, the maximum allowed customer delivery quantity, the deficit stock-out quantity and the total
remaining demand (line 11). After obtaining, the new delivery quantity the deficit quantity and the
depot inventory surplus are updated accordingly (lines 12-13). Finally, the new delivery quantities for
customer i are returned.

For the Case 2 customers, the goal is to front-load the delivery schedule. This is to deliver large
product quantities to the customers as early as possible, to minimize the inventory holding cost incurred
by storing products at the depot. To do so, for each period the minimum of four different quantities
must be identified:

1. Minimum depot slack Îmin0 for the remaining periods

2. Vehicle slack Q̂tr
3. Current remaining customer capacity Li − q+i
4. Total remaining demand for the remaining planning horizon

∑
t∈T d

t
i − I0i −

∑t−1
τ=1 q

τ
i
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Since it is preferable to preserve stock in depot rather than the customer location, deliveries should be
made as early as possible and therefore, the planning horizon is traversed forward. At any iteration, if
the delivery quantity is negative, the evaluated visit schedule is considered infeasible. Algorithm 4
presents the delivery schedule calculation for Case 2 customers.

Algorithm 4 Customer qi calculation (Case 2)

Input: S, i
1: q+i ← 0
2: for t← 1 to |T | do
3: Ît0 ← Ĩt0 +

∑t
τ=1 q̃

τ
i

4: end for
5: for t← 1 to |T | do
6: qti ← 0
7: q+i ← q+i − dti
8: if z̃ti = 1 then
9: r ← ζ(i, t)

10: Q̂tr ← Qe −∑j∈V r
c \{i} q̃

t
j

11: Îmin0 ← min
(
Îτ0 ∀τ ∈ [t+ 1, |T |]

)
12: qti ← min(Îmin0 , Q̂tr, Li − q+i ,

∑
t∈T d

t
i − I0i +

∑t−1
τ=1 q

τ
i )

13: q+i ← q+i + qti
14: Îτ0 ← Îτ0 − qti ∀τ ∈ [t, |T |]
15: end if
16: end for
17: return qi

The algorithm is similar to the one described in Algorithm 3 with a few differences. Firstly, at each
period the consumption is subtracted from the current surplus (inventory) (line 7) and the current
surplus is increased by the decided quantity (line 13). Additionally, we use a look-ahead minimum
inventory calculation for the depot. In particular, we calculate the minimum depot inventory surplus
for all the remaining periods Îmin0 (line 11). This is a upper bound for the customer delivery, as any
quantity exceeding this bound would cause a depot inventory stock-out during one or more of the
following periods (but not during the current period). Finally, the calculation of the total remaining
demand until the end of the time horizon considers periods 1 to t− 1, due to the fact that the planning
horizon is traversed from start to end.

3.4. Mixed integer linear programming components

The FILS incorporates two exact components: i) the QOPT which simultaneously optimizes the
continuous variables of the delivery, production and inventory quantities, and ii) the FR which restores
the feasibility of a capacity infeasible solution. Both exact components are presented below.

3.4.1. Quantity optimization method QOPT

The quantity optimization method QOPT is responsible for optimizing the production and delivery
quantities in pursuit of total inventory costs minimization, given the ỹt, z̃ti , x̃ij and f̃ tij values of an
incumbent solution S. QOPT is responsible for counterbalancing the assumption of fixed decision
when a customer delivery quantities are calculated during neighborhood exploration (see Section
3.3.2). To do so, it jointly optimizes all delivery and production quantities. The quantity optimization
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sub-problem tackled by QOPT is as follows:

minimize
p,q,I

g1 =
∑
t∈T

(
utpt +

∑
i∈V

hiI
t
i

)
(28)

subject to ∑
i∈V r

c

qti ≤ Q r ∈ R t ∈ T (29)

(10)–(13) and the variable bounds (9), (18), (20).
The objective function (28) is made up of the production and inventory terms of the original

TCF objective function. Note that, routing and setups decisions are not modified by the QOPT
model. Constraints (29) ensure that the vehicle capacity is not violated. Finally, since y variables are
unaffected by the model, the RHS of (9) is a constant stronger variable bound and thus, replaces (19).

3.4.2. Feasibility repair method FR

Similarly, to the QOPT, the FR, optimizes the production and delivery quantities of a given solution
S. However, FR can also insert, remove and relocate customer visits. In addition, as earlier stated
QOPT is applied only to feasible solutions, whereas FR is applied to both feasible, as well as infeasible
solutions. Therefore, the underlying model faced by FR extends the QOPT sub-problem presented
above. To ensure a fast performance, all customer removal and insertions costs are approximated. The
number of customer visits that can be added, removed or relocated is bounded, to ensure that: i)
the repaired solution is similar to the original one, and ii) the approximation impact on the solution
quality is kept to manageable levels. To eliminate capacity infeasibilities, the sub-problem faced by FR
penalizes vehicle capacity violations. Note that, FR not only restores the feasibility of a solution in a
near optimal way, but also diversifies the solution by applying several routing modifications, contrary to
the FILS that can only apply minor routing changes at each iteration. The use of approximation costs
instead of the original ones, further enhances the model ability to diversify the search by performing a
leap in the solution space. Every repaired solution is further optimized by solving the TSP associated
with each route of each period to balance the approximation trade-off.

Let ξ denote the per unit penalty for excess vehicle load. The continuous variable etr denotes the
excess load of route r at period t over the actual capacity Q and up to the effective capacity Qe.
Obviously, if any etr > 0, route r at period t is infeasible. Also, let constant ∆t

i denote the minimal
insertion cost of customer i in any of the routes of period t. Note that, this is defined even for customers
already visited in period t, since the model allows them to be relocated to other routes, or even within
the same route. Given the triangular inequalities, the cheapest insertion for any customer cannot be
in an empty route. For cases, where the number of vehicles is not limited, this fact does not allow
the algorithm to exploit routing alternatives, which involve additional vehicles. In addition, this leads
to routes serving many customers which are difficult to be repaired. For these cases, if FR cannot
restore feasibility, it is executed again with the following modification: the ”cheapest” insertion of
a customer is set to an empty route with a 25% probability. Let function ζ ′ : (Vc, T ) → R return
the route of cheapest insertion of customer i in period t. Similarly, constants Λt

i are the savings of
removing customer i from period t and are defined only when z̃ti = 1.

Additionally, let us introduce binary variables δti and λti equal to 1 iff customer i is added or
removed from period t, respectively. Variables λti can be only defined for customers such that z̃ti = 1.
To avoid non-linear constraints, we introduce delivery quantity variables q′ti representing the delivery
quantity of relocated customers (moved to another service position of the same period). Therefore, if a
customer i is relocated (by being removed and re-inserted), q′ti is used instead of qti for the delivery
quantity. Finally, parameter a bounds the number of insertions and deletions per route. The value
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of a depends on the relationship of the objective of the solution to be repaired Z(Srep) and the best

objective Z(S∗) obtained so far: if |Z(S
rep)−Z(S∗)|
Z(S∗) < 0.01, then a = a− and otherwise a = a+. This is

to control the structural changes caused by the MIP to the solution, depending on the distance of the
infeasible solution objective from the best known objective. For conciseness, we denote the constant
upper bound of the delivery quantity to customer i at period t, qti, as shown in equation (30):

qti = min

{
Li + dti, Q,

|T |∑
t′=t

(dt
′
i )

}
i ∈ Vc t ∈ T (30)

Below, the FR MIP is presented:

minimize
δ,λ,p,q,q′,I

g2 =
∑
t∈T

(
utpt +

∑
i∈V

hiI
t
i +

∑
r∈R

ξetr +
∑
i∈Vc

∆t
iδ
t
i +

∑
i∈Vc:z̃ti=1

Λtiλ
t
i

)
(31)

subject to ∑
i∈V r

c

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃ti=0

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃ti=1

q′
t
i ≤ Qe r ∈ R t ∈ T (32)

etr ≥
∑
i∈V r

c

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃ti=0

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃ti=1

q′
t
i −Q r ∈ R t ∈ T (33)

δti ≤ λti i ∈ Vc t ∈ T : z̃ti = 1 (34)

qti ≤ (1− λti)qti i ∈ Vc t ∈ T : z̃ti = 1 (35)

q′
t
i ≤ δtiqti i ∈ Vc t ∈ T : z̃ti = 1 (36)

q′
t
i ≤ λtiqti i ∈ Vc t ∈ T : z̃ti = 1 (37)

qti ≤ δtiqti i ∈ Vc t ∈ T : z̃ti = 0 (38)

∑
i∈Vc:ζ′(i,t)=r

δti ≤ a r ∈ R t ∈ T (39)

∑
i∈V r

c

λti ≤ a r ∈ R t ∈ T (40)

δti ∈ {0, 1} i ∈ Vc t ∈ T (41)

λti ∈ {0, 1} i ∈ Vc t ∈ T : z̃ti = 1 (42)

0 ≤ etr ≤ Qe −Q r ∈ R t ∈ T (43)

0 ≤ q′ti ≤ qti i ∈ Vc t ∈ T : z̃ti = 1 (44)

(10)–(13) and variable bounds (9), (18), (20).
Objective function (31) minimizes the total unit production and holding cost, the excessive capacity

penalty, as well as the costs for inserting and removing customers. Constraints (32) ensure that the
augmented total capacity Qe (allowing infeasibility) of any vehicle will not be exceeded by the sum
of the existing customers delivery quantities (first term), the customers inserted delivery quantities
(second term), as well as to customers relocated to the associated route (third term). In a manner
similar, constraints (33) sets the augmented vehicle capacity slack variable for excess load. Next,
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constraints (34) guarantee solution consistency by allowing the addition of an existing customer i
in period t iff this customer is removed from its current delivery position (relocation). For existing
customers (i.e., z̃ti = 1), constraints (35) ensure that qti = 0 if customer i is removed. Note that, if
customer i is relocated to new delivery position of the same period t, qti = 0 and the delivery quantity
associated with the new delivery position is represented by a non-zero q′ti = 0. Constraints (36) and
(37) ensure that the relocated delivery quantity q′ti may be positive only if customer i is both inserted
and removed (i.e., relocated). For any customer i inserted in any period t (i.e., z̃ti = 0), constraint (38)
sets the associated delivery quantity to qti . Inequalities (39) and (40) limit the number of insertions
and deletions per route period to a. Additionally, (41)–(44) provide the bounds of the new variables
introduced. Note that, the removal, as well as the relocated delivery quantity variables, are defined iff
customers are not already routed at the associated period. Finally, since y variables are unaffected by
the model, the RHS of (9) is a constant stronger variable bound and thus, replaces (19). It should be
noted that, for the interested reader, a substantially more compact and comprehensible formulation of
the aforementioned model is provided in Appendix B. This model does not make use of the q′ variables
and thus is non-linear. Preliminary experiments with the non-linear model demonstrated significantly
inferior performance compared to the linear one.

3.5. Motivation of the proposed algorithm structure

This section summarizes the course of the proposed algorithm development and provides the
motivation behind the main algorithmic components. Our central goal was to build an algorithm
capable of generating high quality PRP solutions within acceptable computational times, even for the
largest scale instances considered in the literature. Initially, the local search framework. which has
proven effective for vehicle routing problems, was selected as the backbone of the proposed algorithm.
To avoid cycling the well-tested promise mechanism of Zachariadis et al. (2015) was integrated into the
local search. Preliminary experiments with operators that modified the production setup decisions (y
variables) through the algorithm execution resulted in a repetitive drastic modification of the objective
function, so that the local search becomes excessively diversified. This is mainly because for most of
the test instances the production setup costs make up for the largest share of the overall objective, as
also discussed by Adulyasak et al. (2014a). To overcome this issue, a two phase approach was decided:
in the first phase a production-distribution relaxation is solved, whereas in the second phase, all
decisions are optimized given the production setup schedule determined in the first phase. Experiments
demonstrated that a high quality production plans lead to high quality final solutions, thus there is no
need to iterate through different production plans.

Regarding the second phase which constitutes the core of our optimization algorithm, one of
the basic challenges faced was how to handle the continuous production and delivery quantities (p
and q variables, respectively) through the local search. Initially, we designed the QOPT method to
jointly re-optimize the production and delivery quantities, given the routing and visit decisions of the
incumbent solution. However, the computational overhead of repetitively calling the QOPT method
when the local search move evaluation takes place led to excessive computational times. As a result, we
focused on heuristic mechanisms. On this basis, the algorithms for determining the customer delivery
quantities (Algorithms 3 and 4) were developed. Their goal is to optimize the delivery quantities of
a customer, given the corresponding visit schedule and assuming that all other decisions cannot be
modified. These algorithms were efficient to be integrated within the neighborhood explorations. To
add some flexibility on the delivery quantities, the QOPT method is periodically used to override the
decisions made by the aforementioned algorithms. Experiments with the above described components
demonstrated satisfactory performance, but still worse than the majority of the best known PRP
solution scores. By analyzing the objective curves of the solutions visited through the local search, we
realized that some extra diversification should be introduced to drive the search towards unexplored
regions. To do so, we experimented with allowing violations of the vehicle capacities. We observed
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that the increase of vehicle capacities let additional customers to be served by already used routes and
this resulted in significant routing and inventory savings. Thus, an appropriate feasibility restoration
mechanism would be adequate to introduce drastically modified and at the same time promising
solution features. Our first attempt with a heuristic feasibility restoration method was rather ineffective
for the following two reasons: i) feasibility cannot be straightforwardly guaranteed and ii) even when it
is achieved, the solution quality might be excessively deteriorated. Thus, we decided to proceed with
the development of a mathematical programming component (FR method) for effectively restoring
feasibility. Our final goal was to decide which of the infeasible solutions visited through the infeasible
phase had to be restored by the FR method. The algorithm demonstrated the best performance
when the solution was randomly selected among i) the lowest total cost solution observed through the
infeasibility phase, ii) the lowest routing cost solution observed through the infeasibility phase and iii)
the incumbent infeasible solution. This can be attributed to the fact that diverse solution features are
built and introduced to the incumbent solution.

4. Computational results

This section summarizes computational experiments and results obtained by the proposed matheuris-
tic on well-known PRP benchmark data sets. Initially, the benchmark data sets are introduced. In
addition, state-of-the-art methodologies proposed for the PRP variant are briefly described. Then,
tuning experiments on key algorithm parameters are reported. To motivate the proposed algorithm
design, detailed experiments on the infeasible space contribution are provided. Finally, we draw analytic
comparisons of the proposed algorithm results against state-of-the-art PRP methodologies.

The proposed algorithm (HISM ) was coded in C#. All exact components (i.e., PD-Rel, QOPT,
FR and TSP) were tackled by Gurobi 9.0.2. The overall algorithm (both local search and exact
components) were executed as a single thread to enable comparisons. The computational experiments
were carried out on an Intel Core i7-7700 3.60 GHz CPU with 16 gigabyte RAM x64 Windows 10
machine.

4.1. Benchmark data sets

Tuning experiments and performance comparisons were carried out on the two most widely used
benchmark data sets: i) a data set of small-medium PRP instances, named A (Archetti et al. 2011) and
ii) a data set of large scale PRP instances data set, named B (Boudia et al. 2007). Data set A consists
of A1, A2 and A3 subsets involving six time periods and 14, 50, and 100 customers, respectively. The
per period demand is constant and the customer starting inventory is non zero. Plant production
and inventory capacity are set to infinity, whereas no plant starting inventory is considered. Each of
the three subsets includes 480 problems: five instances for each of 96 instance types (96× 5 = 480).
Subset A1 considers one vehicle, whereas A2 and A3 assume unlimited vehicles. The 96 instance
types are further categorized into four main classes: Class I (1-24) corresponds to the instances with
the basic configuration of production, inventory and transportation costs. Class II (25-48) and Class
III (49-72) involve high production costs (i.e., base unit production costs are multiplied with 10) and
transportation variable costs (i.e., node coordinates multiplied by 5), respectively. Finally, Class IV
(73-94) considers no inventory holding cost for customers.

The second benchmark data set B is significantly more challenging: it consists of three subsets
B1, B2 and B3, each one with 30 large or very large instances of 50, 100, and 200 customers and
20 time periods. Unlike data set A, the maximum production capacity per period, plant inventory
capacity, and maximum number of vehicles are restricted. In addition, contrary to data set A, where
dt = d for ∀t ∈ T , the customer demand is time-varying and no inventory holding cost is considered for
customers. According to Boudia et al. (2007), production in period t becomes available not earlier
that period t+ 1, but no inventory costs are incurred for period t. Thus, two clarifications need to be
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made: firstly, the demand at period t = 1 has to be satisfied from the initial inventory at the plant.
We adopt the common literature practice which sets the initial inventory at the plant equal to the
total customer demand in the first period. As earlier stated no inventory holding cost is incurred for
the initial inventory between periods 0 and 1. The second clarification is that according to our model,
the quantity produced for any period t is available directly, whereas according to Boudia et al. (2007)
the quantity is available at t+ 1 but without incurred holding costs. To represent this business setting,
we adopt the workaround of Adulyasak et al. (2014a), which sets y1 = 0, enforcing p1 = 0, i.e., the
production made available in period 1 is equal to zero and thus the total customer demand is satisfied
by the initial inventory at the plant. In this way, the quantity produced at any period t > 1 for our
model, would have been produced at period t− 1 in the case of Boudia et al. (2007) without extra
holding costs incurred. Therefore, the exact same operational scenario of Boudia et al. (2007) is solved
and thus comparisons on the instances of data set B are enabled.

Overall, the characteristics of data sets A and B which comprise of 1530 PRP instances are
demonstrated in Table 1.

Table 1: Overview of the Benchmark Instances (Adulyasak et al. 2014a)

Benchmark instance set
Archetti et al. (2011) Boudia et al. (2007)
A1 A2 A3 B1 B2 B3

No. of instances 480 480 480 30 30 30
No. of periods 6 6 6 20 30 30
No. of customers 14 50 100 50 100 200
No. of trucks 1 ∞ ∞ 5 9 13
Demand C C C V V V
Production capacity ∞ ∞ ∞ C C C
Plant inventory capacity ∞ ∞ ∞ C C C
Customer inventory capacity C C C C C C
Initial inventory at plant 0 0 0 V V V
Initial inventory at customers V V V 0 0 0
Vehicle capacity C C C C C C
V: Varying, C: Constant, ∞: Unlimited

4.2. State-of-the-art approaches

The results of the proposed method are compared against the results of state-of-the-art PRP
approaches which are summarized in Table 2.

Table 2: Benchmark algorithms for A and B data sets

Reference Approach Threads Solver Data sets
Adulyasak et al. (2014a) MIP-based ALNS Default CPLEX 12.2 A, B
Absi et al. (2015) Iterative MIP heuristic Default CPLEX 12.1 A2, A3, B
Solyalı and Süral (2017) MIP-based heuristic 12 CPLEX 12.5 A, B
Russell (2017) MIP-based heuristic Default CPLEX 12.6 A2*, A3*, B
Qiu et al. (2018a) VNS/MIP 1 CPLEX 12.6 A, B
Chitsaz et al. (2019) Decomposition Matheuristic 1 CPLEX 12.6 A, B
Li et al. (2019) MIP-based heuristic Default CPLEX 12.6 A, B
Avci and Yildiz (2019) MIP-based Local Search Default CPLEX 12.6 A
Schenekemberg et al. (2021) ALNS-BnC hybrid 6 Gurobi 8.1 B1, B2
This paper MIP-based Local Search 1 Gurobi 9.0.2 A, B
*: the author solves only the first 96 problems

Due to the complexity of PRP, the most effective approaches are hybrid combinations of heuristic and
exact components. Adulyasak et al. (2014a) (ACJ) propose an ALNS scheme with exact optimization
components, whereas Absi et al. (2015) (AADF) develop a two-stage approach that solves the lot-sizing
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and routing subproblems iteratively, feeding information of the former stage to the latter, and vice versa.
Similarly, Solyalı and Süral (2017) (SS) propose a one-shot five stage heuristic integrated with exact
components that tackles a sequence of overlapping problems. Russell (2017) (RR) uses the concept of
predetermined routes and seed routes and solves a set-covering problem. The lot-sizing and routing
subproblems are tackled with exact components and Tabu Search, respectively. Qiu et al. (2018a)
(QWXFP) employ a skewed general variable neighborhood search and guided variable neighborhood
descent, whereas Chitsaz et al. (2019) (CCJ) propose a three-phase decomposition matheuristic that
relies on the iterative solution of different subproblems. Li et al. (2019) (LCCZ) suggest a mathematical
programming based heuristic made up of a two-phase iterative method, a repairing strategy, and a
fix-and-optimize procedure to find near-optimal solutions. Avci and Yildiz (2019) (AY) propose an
iterative MIP-based local search procedure. Most recently, Schenekemberg et al. (2021) (SSPGC)
present both an ALNS algorithms enhanced by MIPs, as a well as a parallel hybrid ALNS and BnC
algorithm.

4.3. Setting of general parameters

Preliminary runs on PRP data sets, led to the following decisions regarding general HISM parameters.
The RCL length of the GRASP heuristic is set to RCLN =

⌈min(|V |,50)
5

⌉
, whereas QOPT is used every

εQOPT = 200 iterations. The promise reinitialization is set to ερ = |V | throughout the experiments,
whereas each one of the εr = 100 restarts stops after εt = 20 consecutive feasible-infeasible space
transitions without solution improvement. For the QOPT and TSP, the default solver settings are
used with the exception of lazy constraints addition used for the TSP. On the opposite, for FR, we
impose a maximum time of 40 seconds, MIPFocus is set to one to quickly generate feasible solutions
and the per unit penalty is set to ξ = 10, 000, to promote the infeasibility restoration. The time limit
for the PD-Rel relaxation is set to three minutes for data set A, whereas the time limit is set to three,
five and five minutes for B1, B2 and B3, respectively. Also, note that in order to ensure acceptable
computational times, for the very large scale B3 instances, the local search algorithm examines only
two randomly selected neighborhoods instead of all six for every solution.

4.4. Entering and exiting the infeasible space

Some of the most crucial parameters of the proposed HISM algorithm are the θin and θout, which
jointly determine the number of iterations before entering and before exiting the infeasible space.
To tune these parameters, we selected a subset of problems from the more challenging and realistic
data set B. Two problems for each customer size (i.e., 50, 100, 200) are selected according to the
following criterion: maximization of the gap between the best solutions reported (see Table 2). This
can be interpreted as a measure of the complexity of an instance. The new data set B′⊂B contains the
following six problems: instances 9 and 30 of B1, instances 20 and 27 of B2 and instances 9 and 30 B3.
Table 3 summarizes the results of the experiment for θin (rows) and θout (columns) ranging within
[1− 5] and [1− 4], respectively. Each entry represents the average percentage gap for all six instances.
The gap of each problem is the relative difference of the objective achieved by the corresponding
parameter pair and the best objective achieved over all tested pairs. Note that for the sake of more
meaningful comparisons, the considered objective ignores the production setup cost which is identical
for all parameter pairs.
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Table 3: Tuning of θin and θout parameters

θin \θout 1 2 3 4 Avg.
1 0.360 0.294 0.148 0.199 0.250
2 0.068 0.269 0.319 0.239 0.224
3 0.350 0.345 0.350 0.350 0.349
4 0.537 0.539 0.532 0.539 0.537
5 0.650 0.650 0.650 0.650 0.650
Avg. 0.393 0.419 0.400 0.395

Low θin values of up to 3 seem to be consistently better. Therefore, frequent applications of the
infeasible local search phase improves the algorithmic performance. The value θin = 2 yields the best
results on average. In terms of the θout parameter, the iterations spent in the infeasible space search
seem to have a negligible impact on the quality of the final solution. This is expected, as the solution
to be repaired is either the best infeasible (in terms of total or routing objective) found during the
infeasible space search, or the incumbent, and therefore it is not heavily affected by the number of
iterations in infeasible space search. The synergy of the two parameters is shown for pairs 1-3 and
1-4: high exit counter values seem to compensate for the low number of iterations spent in the feasible
space. The best performing value pair is θin = 2 and θout = 1 and is used for all algorithm runs.

4.5. Effect of allowed per modifications on infeasible tunneling

A very important algorithm feature is the flexibility provided to the FR MIP, to restore the
feasibility of a solution. High flexibility allows more structural differences between the infeasible and
the restored feasible solution. Parameter a determines the maximum number of per route insertions
and deletions, thus it defines the flexibility provided to FR method. As mentioned above, when the
objective of the selected infeasible solution is less than 1% worse than the current restart best feasible
solution objective identified so far, a is set to a−. Otherwise, a = a+. To decide on the a− and a+

values, tuning experiments were conducted on data set B′, with both parameters ranging within [1, 5]
(Table 4). As in the previous tuning experiment, each entry represents the is the average gap over
all six instances. For each instance, the gap is equal to the relative difference between the objective
achieved by the corresponding parameter value pair and the best objective achieved by all tested pairs.

Table 4: Tuning a− and a+ parameters

a− \a+ 1 2 3 4 5 Avg.
1 0.603 0.681 0.441 0.693 0.707 0.625
2 0.383 0.593 0.422 0.404 0.441 0.448
3 0.687 0.639 0.600 0.467 0.593 0.597
4 0.540 0.603 0.462 0.415 0.389 0.482
5 0.519 0.419 0.472 0.402 0.568 0.476
Avg. 0.546 0.587 0.480 0.476 0.540

The results highlight the importance of the parameters. When the infeasible solution objective is
close to the optimal known, good results are obtained by a− = 2, whereas higher values of 4 and 5
yield similar results, on average. On the contrary, a− = 1 yields the worst results. Conclusively, it
seems that high flexibility for restoring solution feasibility is required to obtain high quality solutions.
However, given that the solution may be structurally similar to the best solution already identified
through the search, a relative conservative value of 2 seems to be the best option to avoid excessive
diversification caused by feasibility restoration. The tuning experiments demonstrate lower sensitivity
to the a+ parameter. All tested values yielded comparable average results, with the values of 4 and
3 appearing to be the best options. Again, a balanced flexibility is the best option. However, this
balanced flexibility is higher than before due to the fact that the objective of the solution to be repaired
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is far from the best identified objective, probably because of a completely different solution structure.
Specifically, the optimal values of the parameters tested are a− = 2 and a+ = 1. This pair yields
average results similar to the ones provided by pair (4, 5). However, the value pair a− = 2 and a+ = 1
lead to lower FR computational times, thus it was selected for the standard parameter setting of the
HISM algorithm. It should be pointed out that extended experiments with the (4, 5) value pair failed
to improve the results yielded by the optimal value pair.

4.6. Contribution of the infeasible space search

This section investigates the role of the infeasible space search, which is the cornerstone of FILS.
Initially, the relationship between feasible and infeasible space transitions and the objective trajectory is
illustrated. Specifically, Figure 1 presents the trajectory of the objective for a restart of one of the most
challenging instances solved (instance 20 of subset B2 ). To improve presentation, the first iterations
which lead to significant improvements are omitted. The green trajectory line corresponds to feasible
solutions, whereas the red line to infeasible ones. The vertical black lines represent FR executions
aimed at restoring solution feasibility. The black horizontal line and the star mark correspond to the
best solution identified.

Figure 1: Feasible and infeasible space transitions (Instance 20 of subset B2 )
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The figure demonstrates the importance of the infeasible space search. The feasible solution
objective trajectory (green line) represents the solutions generated by the proposed local search scheme
which is equipped with a powerful diversification component (Zachariadis et al. 2015). Despite the
diversification by this scheme, plateaus are observed especially for late iterations when the search
is trapped around locally optimal solutions. Apparently, by allowing infeasible solutions, a stronger
diversification effect is observed which helps the search identify promising solution regions.

Each time the infeasible phase is initialized, a steep objective reduction is observed. After the
descent, the search is stable around locally optimal infeasible solutions. A significant objective increase
is then observed when the FR method is applied to restore feasibility (these steps are represented
by the black vertical lines in the figure). This is due to the drastic structural modifications caused
by the approximated insertion and removal costs. Starting from a structurally diversified feasible
solution, the local search method is capable of quickly improving the incumbent solution. Therefore,
the search is driven towards unexplored and promising solution regions and thus the identification of
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new best solutions is promoted. From a different perspective, the green plateaus form an objective
decreasing trajectory in the early stage of the search (up to approx. 7000 iterations), to be followed by
a trajectory with high variability in the later stages. Interestingly, a few iterations before the best
solution is identified, a very high objective increase is recorded which probably represents a jump to
new feasible region. After this, the infeasible space objective drops significantly lower and then when
the feasibility is restored, the best solution is reached.

To demonstrate the effectiveness of the diversification role of the FR method, Figure 2 is provided.
In specific, Figure 2 illustrates the distribution of the number of iterations required to obtain a new
best solution after the call to the FR method. Note that attempts starting from a repaired solution
that failed to identify a new best one before reapplying the FR method are not taken into account. We
use the B′ data set and results are aggregated over instances with the same customer number. Hence,
each plot contains the total frequencies observed for two instances over 50 restarts.

Figure 2: Cumulative frequency distribution of iterations until new best after feasibility restoration
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For |Vc| = 50, over 90% of the times that FR is used, less than 80 iterations are required to find a
new best solution. Similarly, for Vc = 100, over 90% of the new best solution are reached within 140
iterations after the feasibility restoration, whereas the cumulative distribution is even more steep for
Vc = 200. Especially, for these very large instances, above 90% of the new best solutions require less
than 150 iterations (i.e., 3

4 the size of the problem). Note that uncommonly observed high values of
iterations required to identify new best solutions are mainly observed at late algorithm stages: this is
because at these late stages high-quality local optima have been already identified which are difficult
to be improved. Concluding, the contribution of the FR MIP is essential for providing solutions with
diverse and desirable features that can be quickly transformed to new best solutions.

Appendix C provides additional informative results for the feasible and infeasible space transitions
of the algorithm for both data sets A and B (e.g., feasible-infeasible iterations ratio, time repairing
solutions, etc.).

4.7. Comparison of HISM and non-infeasible space algorithm configurations

To provide additional insight on the contribution of allowing infeasible solutions, we perform the
following experiment on the most challenging instances of data set B’ : the infeasibility tunneling is
removed from three different algorithmic configurations. This is to assess the possible interplay between
the infeasibility procedure and the various algorithm components.

• HISM-PLS : plain local search where no capacity infeasibility is allowed. All mathematical
programming components, namely FR method, QOPT method and TSP are disabled. This

24



configuration contains the basic local search framework with the six operators and the promise
mechanism, as well as the quantity calculation algorithms.

• HISM-NCIR: no capacity infeasibility and no repairs are allowed. The capacity of all vehicles
remains Q throughout the execution. Additionally, the FR MIP is disabled.

• HISM-NCI : no capacity infeasibility is allowed. Note that the FR MIP is still used to insert and
delete customers to minimize the solution objective, even if the solution is feasible.

Table 5 presents the obtained results of the three tested configurations against the fully featured
HISM algorithm. Columns PLS (%), NCIR (%) and NCI (%) correspond to the per cent gap of
each configuration solution score w.r.t the objective obtained by the HISM algorithm. Positive
values indicate a higher solution objective compared to the reference HISM objective. To provide a
more comprehensive comparison, the production costs which are identical for all configurations are
ignored. The termination condition for the HISM-PLS and HISM-NCIR is the completion of 10,000
non-improving iterations, whereas, for HISM-NCI the termination condition remains the same with
HISM. After preliminary runs, the limit of 10,000 iterations was specified which roughly corresponds
to the total number of non-improving iterations allowed by HISM.

Table 5: Comparison of HISM algorithmic variants

Set Inst. PLS (%) NCIR (%) NCI (%)
B1 9 5.70 1.36 0.10
B1 30 6.35 1.32 0.40
B2 20 5.76 0.88 0.07
B2 27 5.96 2.36 0.19
B3 9 8.93 5.54 1.25
B3 30 9.78 3.44 0.89
Avg. 7.08 2.48 0.48

The HISM-PLS configuration is strictly dominated by all others: high gaps of up to 9.78% for the
200-customer problem 30. The incorporation of the QOPT and TSP components (HISM-NCIR) yields
considerably better results, indicating that they significantly contribute to the final solution quality.
The best results among the three tested configurations are obtained via HISM-NCI. However, they
are consistently worse than the scores obtained by the complete HISM algorithm. In particular, the
average gaps is equal to 0.48%.

4.8. Comparison with state-of-the-art algorithms

This section compares the HISM results against those of state-of-the-art PRP algorithms. Note
that, for the B1 subset, Schenekemberg et al. (2021) reported results under the assumption of unlimited
customer capacity. To enable comparisons, after coming in contact with the authors we were provided
with new corrected results that take into account the maximum customer capacity. Additionally, the
results of Russell (2017) for all instances of the B3 subset improve all previously published results by
very large gaps. This is unjustifiably inconsistent with the behaviour of the Russell (2017) algorithm for
every other data set which is comparable to most algorithms. After personal communication with the
author of the aforementioned article, we were unable to confirm the reported objectives: the provided
solution objectives did not match the reported ones. Considering the above, it is likely that different
assumptions, or objective calculations have been used for instance subset B3. Therefore, the Russell
(2017) results for subset B3 are not used for comparisons.

Firstly, we present the number of best solutions reported by each one of the compared algorithms
for data set A (Table 6), as well as data set B (Table 7). The # Inst. column represents the number
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of instances involved in each row. The columns names correspond to the algorithm initials that are
reported in section 4.2.

Table 6: Number of best known solutions for data set A

Set Class # Inst. ACJ AADF SS RR QWXFP CCJ LCCZ AY Our

A1

I 120 1 - 74 - 31 11 46 107 102
II 120 0 - 72 - 35 10 46 99 104
III 120 0 - 67 - 21 4 38 89 97
IV 120 1 - 76 - 27 20 49 104 112

A2

I 120 0 0 6 1 1 12 5 15 91
II 120 0 0 0 0 0 1 2 1 116
III 120 0 0 6 1 1 11 2 6 96
IV 120 0 2 4 3 9 3 2 6 92

A3

I 120 0 11 13 5 1 20 26 26 18
II 120 0 27 0 1 0 5 3 1 84
III 120 0 5 23 7 2 7 15 30 31
IV 120 0 18 8 7 7 8 12 4 56

Total 1440 2 63 349 25 135 112 246 488 999

Table 7: Number of new best known solutions for data set B

Set # Inst. ACJ AADF SS RR QWXFP CCJ LCCZ SSPGC Our
B1 30 0 0 0 6 0 0 0 0 24
B2 30 0 0 3 8 0 0 1 0 18
B3 30 0 2 1 - 0 0 14 - 13
Total 90 0 2 4 14 0 0 15 0 55

For both data sets, the proposed algorithm generates the highest number of best known solutions
(BKS): for data set A 999 BKS are obtained compared to 488 BKS reported by the second most
effective algorithm, whereas for data set B 55 BKS are obtained compared to 15 BKS reported by
the second most effective algorithm. For data set A, our approach achieves comparable results with
the best performing algorithms for the smaller A1 instances. For the larger instances of A2 and A3,
our algorithm significantly improves the results obtained by all compared methods. Specifically, for
the high inventory cost Class II, the superiority of HISM is more evident. Note that as mentioned
earlier, RR provides results for only the first instance of each instance type. Similar conclusions can be
drawn for the B data set. Our approach again obtains the highest number of best known solutions:
HISM obtains 24 out of the 30, and 18 out of the 30 best known solutions for B1 and B2 instances,
respectively. RR achieves the second highest number of best solution for these sets. For the largest
B3 set LCCZ reports 14, followed by our approach with 13. It seems that the performance of ACJ,
QWXFP, CCJ and SSPGC does not scale efficiently for this data set.

Except for the number of best solutions, objective comparisons are reported for data set A (Table
8) and for data set B (Table 9). Each column provides the per cent optimality gap of the respective

algorithm compared to the best known solution. The gap is calculated as
Z(S∗alg)−Z(S

∗)

Z(S∗) , where Z(S∗alg)

is solution objective by an algorithm alg and Z(S∗) is the best known solution.
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Table 8: Average gap for best known solutions for data set A

Set Class %ACJ %AADF %SS %RR %QWXFP %CCJ %LCCZ %AY %Our

A1

I 1.70 - 0.03 - 0.28 0.47 0.15 0.01 0.05
II 0.37 - 0.01 - 0.05 0.08 0.03 0.01 0.01
III 8.42 - 0.18 - 1.52 2.20 0.75 0.04 0.38
IV 0.93 - 0.03 - 0.56 0.23 0.08 0.01 0.00

A2

I 1.34 0.34 0.26 0.31 0.26 0.30 0.20 0.18 0.01
II 0.22 0.08 0.06 0.05 0.08 0.08 0.05 0.06 0.00
III 4.42 1.59 0.95 0.76 0.90 1.19 0.85 0.81 0.09
IV 0.35 0.21 0.21 0.14 0.13 0.15 0.18 0.17 0.06

A3

I 1.07 0.24 0.15 0.13 0.25 0.34 0.10 0.10 0.22
II 0.33 0.04 0.21 0.04 0.25 0.22 0.20 0.21 0.17
III 4.03 1.36 0.51 0.29 0.67 1.96 0.52 0.60 0.42
IV 0.44 0.18 0.16 0.08 0.19 0.17 0.15 0.20 0.23

Average 1.97 0.50 0.23 0.23 0.43 0.62 0.27 0.20 0.14

Table 9: Average gap for best known solutions for data set B

Set %ACJ %AADF %SS %RR %QWXFP %CCJ %LCCZ %SSPGC %Our
B1 2.11 2.24 1.09 0.33 1.78 1.91 1.35 3.26 0.03
B2 1.69 1.43 0.80 0.58 1.35 1.83 0.64 10.51 0.15
B3 2.70 1.30 3.34 - 1.27 1.07 0.41 - 0.20
Average 2.17 1.66 1.74 0.45 1.46 1.60 0.80 6.89 0.13

For data set A, almost all algorithms report high quality solutions with gaps that are up to 0.7%
above the BKS scores. The A set mainly involves instances for which the production costs make up
the the largest portion of the total costs. Consequently, the solutions may be structurally different in
terms of the inventory and routing decisions, however the total objective is comparable as it mainly
depends on the production cost. ACJ demonstrates larger gaps due to the Class III results where the
routing costs contribute more strongly to the overall objective. Our methodology obtains the lowest
average gaps, and outperforms compared methods for all classes of the A2 subset. The SS method
which mainly relies on exact components appears to be more powerful for the smaller instances of A1
subset compared to metaheuristic-based algorithms, such as CCJ and LCCZ. The results reported
for the B set, demonstrate the superiority of the proposed algorithm. The average optimality gap
obtained by HISM is limited to 0.13%. On average the AADF, QWXFP, CCJ and SS methods have
comparable performance. The exact-based SSPGC and SS algorithms appear to scale poorly with the
problem size (the average gap for SS is equal to 3.34% for the larger instances of B3, whereas SSPGC
could only be applied to instances of up to 100 customers for which a large average gap of 10.51% is
reported). On the contrary, LCCZ provides consistently high quality results for all three subsets.

Except for the average objective gaps, we also provide box-and-whisker plots which graphically
depict the individual gaps obtained for every instance of each of the subsets considered: Figure 3
and Figure 4 consist the box-and-whisker plots for the data sets A and B, respectively. Both involve
three plots, one plot for each instance subset. The whiskers extend to a maximum of 3.5 times the
interquartile range.

For data set A, the ACJ gaps of Class III as mentioned earlier are large and hence the boxes
for all other algorithms are seem narrow. Especially for A1 our algorithm, SS and AY demonstrate
significant consistency, whereas all algorithms except for ACJ are comparable. Similarly, for subset
A2, our approach produces new BKS for the majority of instances, thus the interquartile range is
close to zero, whereas the rest of the algorithms except ACJ demonstrate similar performance. For
the larger instances subset A3, the relevant plot illustrates greater variability of the gap dispersion of
the algorithms. Methods RR, SS, LCCZ and AY appear to be the most consistent. Again, the more
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Figure 3: Optimality gap box-and-whisker plot for data set A
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Figure 4: Optimality gap box-and-whisker plot for data set B
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balanced and challenging data set B provides a stronger insight on the performance of the compared
algorithms. For subset B1, our algorithm produces several new BKS, and therefore the gaps are
consistently close to zero. Algorithms SS and RR exhibit an effective and stable performance, whereas
other algorithms appear consistent but with higher medians. For subset B2, SSPGC demonstrates
significantly worse results than all other approaches. Our proposed methodology seems the most
effective and consistent, whereas RR and LCCZ also perform well but with larger variance of their gaps.
Our approach and LCCZ produced comparable results for subset B3, with our algorithm demonstrating
a more stable behaviour. Notably, heuristics QWXFP and CCJ yield large gaps with low variance.
Finally, SS which heavily relies on exact components produces gaps with the largest variance.

4.9. Summary results

Our algorithm matches or improves the BKS scores for the majority of the PRP instances examined.
Tables 10 and 11 summarize the results of HISM for the two benchmark data sets. Column #B reports
the number of matched or new BKS, whereas #NB is the number of new BKS identified. BKSG
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represents the gap between our scores and previously published BKS scores. Thus, negative values
indicate improvement of the BKS. Finally, the Time column presents total running time. respectively.

Table 10: HISM results for data set A

Set Class # Inst #B #NB BKSG% Time

A1

I 120 102 4 0.05 0.86
II 120 104 4 0.01 0.86
III 120 97 9 0.38 1.05
IV 120 112 1 0.00 0.98

A2

I 120 91 86 -0.10 15.13
II 120 116 116 -0.03 15.63
III 120 96 95 -0.34 18.32
IV 120 92 91 -0.02 14.09

A3

I 120 18 18 0.21 101.74
II 120 84 83 0.15 110.73
III 120 31 31 0.29 110.13
IV 120 56 56 0.21 117.60

Total 1440 999 594 - -

Table 11: HISM results for data set B

Set # Inst #B #NB BKSG% Time
B1 30 24 24 -0.29 317.58
B2 30 18 18 -0.17 821.94
B3 30 13 13 -0.07 2021.11
Total 90 55 55 - -

For data set A, we manage to report 594 new best solution out of the 999 best known solution
found. The optimality gaps are on average low, and specifically they are negative for all classes of A2.
On average about half the iteration are in the infeasible space and the times remaining manageable as
the largest A3 instances required under two minutes on average. For data set B all 55 reported best
solution are new best solutions and consequently all average optimality gaps are negative.

Individual solution scores and computational times for each of the 1530 PRP instances are provided
in the supplementary material of the paper.

5. Conclusions

This paper proposes a novel matheuristic algorithm named HISM for the challenging Production
Routing Problem. Initially, the problem is formulated as a two-commodity flow model, which is further
strengthened by valid inequalities. The proposed solution methodology consists of two phases, a
production-distribution relaxation and a local search matheuristic oscillating between feasible and
infeasible search space. Initial production-distribution plans are obtained by a master problem
relaxation. The associated partial solution is completed in terms of routing information by a GRASP
method. The constructed complete is then iteratively improved by the proposed FILS matheuristic
algorithm which uses a blend of six inventory and routing operators. Vehicle capacity infeasibility is
allowed through the search process. To handle the continuous delivery quantity decision variables, a
computationally effective procedure is proposed. The obtained delivery plans and production decisions
are then jointly optimized via an LP model. The proposed matheuristic incorporates the FR MIP
capable of inserting, removing and relocating a bounded number of customers for each route to restore
solution feasibility.
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The main feature of HISM is the transition between feasible and infeasible solutions during the
search process. Allowing infeasible solutions effectively diversifies the search towards new regions of
the solution space. In addition, the employed feasibility restoration procedure FR results in significant
solution structure modifications. This strong diversification effect is controlled by the proposed local
search method which can quickly intensify around locally optimal solutions. Conducted experiments
showed that the tunneling through infeasible space plays an important role for a fast, diversified and
effective exploration of the solution space. The proposed matheuristic was compared against the most
recent and state-of-the-art methods of the PRP literature on 1530 well known benchmark instances.
Our obtained results outperform the known results by matching or generating new solutions for the
majority of the instances examined. More specifically, for 1440 small-medium and 90 large problem
instances, our algorithm matched or improved the best known solutions for 999 and 55 test cases,
respectively. More precisely, 594 and 55 of these are new best solutions.

Regarding future research directions, it would be interesting to examine how can the setup production
schedule be modified within a local search framework. Another interesting algorithmic extension is
the introduction of novel neighborhood structures specifically aimed at maximizing the benefits of
infeasible space search. Finally, apart from vehicle capacity infeasibility, other types of infeasibility
could be considered.
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Solyalı, O., Süral, H., 2017. A multi-phase heuristic for the production routing problem. Computers and
Operations Research 87, 114–124. doi:10.1016/j.cor.2017.06.007.

Zachariadis, E.E., Tarantilis, C.D., Kiranoudis, C.T., 2015. The load-dependent vehicle routing problem
and its pick-up and delivery extension. Transportation Research Part B: Methodological 71, 158–181.
doi:10.1016/j.trb.2014.11.004.

32

http://dx.doi.org/10.1287/mnsc.40.10.1276
http://dx.doi.org/10.1016/j.ejor.2018.07.018
http://dx.doi.org/10.1016/j.ejor.2020.08.047
https://www.statista.com/statistics/943492/global-logistics-industry-costs-by-region/
https://www.statista.com/statistics/943492/global-logistics-industry-costs-by-region/
http://dx.doi.org/10.1016/j.cor.2018.05.004
http://dx.doi.org/10.1016/j.cor.2018.05.004
http://dx.doi.org/10.1016/j.omega.2018.01.006
http://dx.doi.org/10.1016/j.asoc.2018.02.032
http://dx.doi.org/10.1016/j.asoc.2018.02.032
http://dx.doi.org/10.1016/j.eswa.2018.01.006
http://dx.doi.org/10.1016/j.ijpe.2017.06.033
http://dx.doi.org/10.1016/j.ejor.2020.05.054
http://dx.doi.org/10.1016/j.ejor.2020.05.054
http://dx.doi.org/10.1016/j.cor.2018.04.010
http://dx.doi.org/10.1016/j.cor.2017.06.007
http://dx.doi.org/10.1016/j.trb.2014.11.004

	Introduction
	Two-commodity flow formulation
	Methodology
	Production-distribution relaxation
	Routing construction heuristic
	Feasible-infeasible local search
	Neighborhood exploration
	Customer inventory calculation

	Mixed integer linear programming components
	Quantity optimization method QOPT
	Feasibility repair method FR

	Motivation of the proposed algorithm structure

	Computational results
	Benchmark data sets
	State-of-the-art approaches
	Setting of general parameters
	Entering and exiting the infeasible space
	Effect of allowed per modifications on infeasible tunneling
	Contribution of the infeasible space search
	Comparison of HISM and non-infeasible space algorithm configurations
	Comparison with state-of-the-art algorithms
	Summary results

	Conclusions

