
1

StoRM: A Social Agent-based Trust Model for the Internet of Things Adopting

Microservice Architecture

Kalliopi Kravari, Nick Bassiliades

School of Informatics, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece,

{kkravari, nbassili} AT csd.auth.gr

Correspondence concerning this article should be addressed to:

Kalliopi Kravari, School of Informatics, Aristotle University of Thessaloniki, GR-54124

Thessaloniki, Greece.

E-mail: kkravari AT csd.auth.gr

Tel: 00302310998231

Fax: 00302310998418

2

Abstract

Over the last years, the Internet of Things attracted much attention mainly due to its potential to

change our daily life. It attempts to create a world where everyone and everything will be

connected while knowledge will be diffused effortlessly. Yet, this open, distributed and

heterogeneous environment raises important challenges, such as intelligence and trustworthiness.

Intelligent Agents can deal with these challenges since they form an alternative to traditional

interactions among people and objects while, at the same time, they are involved in a rich

research effort regarding trust management. Additionally, intelligent agents seem able to deal

with potential societal impacts and relationships, although they are not primary social networks,

as well as the heterogeneity in the Internet of Things when combined with novel approaches such

as the microservice architecture. To this end, this article proposes a novel, reputation oriented,

trust model, called StoRM, for the Internet of Things that combines social dimensions and

microservice architecture with agent technology. StoRM is based on well-established estimation

parameters while it provides a reputation estimation mechanism based on social principles.

Additionally, it proposes the use of microservices combined with learning and adoption

properties facilitating the implementation of the agent-based system and the trust establishment

among its members. Furthermore, it adopts a distributed locating mechanism based on social

graphs and peer-to-peer networks. StoRM combining a set of features is able to address many of

the challenges of trust management in the Internet of Things while it is one of the first

approaches that involve the microservice architecture in a trust management model. Finally, a

multi-agent simulation is presented that illustrates the viability of the proposed approach.

Keywords: Multi-agent Systems, Internet of Things, Agent-Based Model, Trustworthiness,

Social Criteria, Microservice Architecture.

3

1. Introduction

The Internet of Things (IoT) is more than a scientifically popular trend, it actually transforms the

way people live, work and communicate. There are already plenty of existing industrial

applications that benefit from this large scaled environment. Smart environment, living and

healthcare are just a few cases. Actually, as ambient intelligence is becoming more widespread,

sensors and smart devices are included more and more often in new buildings and vehicles [44].

The IoT attempts to create a world where everyone and everything, called Things, will be

connected, possibly cooperating to solve complex cases while knowledge will be diffused

effortlessly in every direction. However, connecting such a large amount of heterogeneous

entities and devices in an open and distributed network provides not only benefits and

possibilities but also rises important challenges, leaving space for improvement. Intelligence and

trustworthiness are some of the most important of them since entities have to trust each other in

order to collaborate exchanging data or offering services while the heterogeneity makes it

difficult to standardize the interaction and communication in the network.

 The open and distributed environment allows the rapidly increasing Things to enter into

the environment and reproduce themselves or create and delete other Things in the network.

Malicious participants could pose a serious threat to the proper functioning of the network,

harming its credibility through fake services, denial of cooperation or other malicious behaviors.

Given this, involved parties are likely to be faced with a large amount of possible partners with a

different degree of efficiency and/or effectiveness. Hence, Things acting in such an open and

risky environment will have to make the appropriate decisions about the degree of trust that can

be invested in a certain partner, a vital but still challenging task [1][43][45][47][50][61][54].

 In this context, Intelligent Agents (IAs) are considered as an appropriate and promising

technology that can deal with these challenges since they form an alternative to traditional

interactions among people and objects [10][22][6][62][23][3]. Intelligent agents are increasingly

used among others in networking and mobile technologies in order to achieve automatic and

dynamic behavior, high scalability and self- healing networking, promoting flexibility and

trustworthiness [3][23]. Their capability of autonomously representing people, devices or even

services allows them to be applied in many real world applications, including health care and

medical diagnostics, crisis management and green growth. Hence, an IoT-enabled environment

4

where Things, such as sensors and devices, will be able to communicate with each other can be

considered as a multi-agent system, which in its turn is subject to the principles and challenges of

agent technology [57][43][41][19].

 At the same time, multi-agent systems are involved in a rich research effort regarding

trust management. A wide range of trust and reputation models have already been proposed by

the research community, even though many of them refer to the Semantic Web, the predecessor

of the Internet of Things [42][46][60][12][56][63][27][49]. In general, reputation is the opinion

of the public towards a party or agent in particular. Reputation allows parties to build trust, or the

degree to which a party has confidence in another party, helping them to establish relationships

that achieve mutual benefits. Hence, reputation (trust) models help parties to decide who to trust,

encouraging trustworthy behavior and deterring dishonest participation by providing the means

through which reputation and ultimately trust can be quantified [60][27][49].

 Although, neither the IoT nor multi-agent systems (MASs) are considered primary social

networks, examining the potential societal impacts and relationships among Things, objects

and/or people, in the IoT is absolutely essential. In fact, research on the IoT is expected to shift

from intelligent objects to objects with a real social consciousness. The background motivation is

obvious since misbehaving owners with discriminatory behavior based on their social

relationships will possess misbehaving devices and services for personal gain. Trustworthiness in

such an environment, where objects and even people will try to preserve their unique

characteristics, is complex and crucial. Hence, the social dimension of the IoT is currently a new

open research area [62][5][29][63][11][27][58].

 Additionally, intelligent agents seem able to deal not only with social dimensions but also

with another important issue of this heterogeneity in the IoT when combined with novel

approaches such as the microservice architecture. Actually, over the last years, microservices

attracted much attention in software development, mainly due to the fact that it is hard to

maintain vast amounts of code, oriented to centralized approaches. Hence, modular coding

gained ground. Microservices have a lot of similarities with both the IoT and intelligent agents

due to their distributed nature. Moreover, like agents and Things, a microservice can be

considered as an independent individual that provides a particular service, collaborating with

others in order to accomplish a goal and provide the requested final result

5

[13][9][24][18][55][20]. Yet, there is still a lack of approaches that combine agent technology

with microservices in the Internet of Things regarding reputation (trust) issues.

 To this end, this article proposes a novel, reputation oriented, trust model, called StoRM,

for the IoT that combines social dimensions and microservice architecture with agent

technology. The aim of this model is to allow Things, objects and people, to establish and

maintain social relationships based on their experiences, preferences and requirements without

complex underlying network protocols. StoRM is based on well-established estimation

parameters [14][26][28][53] while it provides a reputation mechanism based on social principles.

Additionally, StoRM proposes the use of microservices combined with adoption properties

facilitating the implementation of the agent-based system and the trust establishment among its

members. Hence, Things are able to dynamically adjust to the environment encouraging

trustworthiness behavior. Furthermore, it adopts a distributed locating mechanism based on

social graphs and peer-to-peer networks, in order to deal with the common challenge of locating

ratings for open, large-scale distributed systems, such as multi-agent systems and IoT. As a

result, StoRM combining a set of features is able to address many of the challenges of trust

management in the Internet of Things while it is one of the first approaches that involve the

microservice architecture in a trust management model. Finally, a multi-agent use case

simulation is presented that illustrates the viability of the proposed approach.

 The rest of the article is organized as follows: The next section presents the evaluation

criteria along with a discussion on trust, reputation and risk. Section 3 presents a review of

microservices, their advantages and their similarities with multi-agent systems. Section 4

presents StoRM and its contribution while Section 5 presents its evaluation simulation,

demonstrating the added value of the approach. Section 6 discusses related work, and Section 7

concludes with final remarks and directions for future work.

2. Trust, Risk and Evaluation Criteria

Trust and reputation have been widely studied in the literature since they are considered key

elements in the design and implementation of modern (multi-agent) systems. However, the

research community that focuses on the IoT, does not have yet thoroughly studied trust

management. As a result, although there are plenty of trust definitions, reputation and trust are

sometimes confused and used even as synonyms. Trust is generally defined as the expectation of

6

competence and willingness to perform a given task and it is used as the basis for decision

making in many contexts [16][32]. Trust, however, is much more than that; it is a very

complicated concept that can be influenced by many properties. The uncertainties found in the

modern MASs and the IoT present a number of new challenges. In open, distributed and large-

scaled systems, such as the IoT, agents represent different stakeholders that are likely to be self-

interested and might not always complete requested tasks. Moreover, given that the system is

open, usually no central authority can control all agents, which means that agents can join and

leave at any time. This allows agents to change their identity and re-enter, avoiding punishment

for any past wrong doing. One, more, risky feature of open systems is that when an agent first

enters the system has no information about the other agents in that environment. Given this, the

agent is likely to be faced with a large amount of possible partners with a different degree of

efficiency and/or effectiveness.

 Hence, since agents such as individuals may be dishonest, or just fail even if they are not

being dishonest, reputation ended up as a core element at trust establishment, in the sense that a

better reputation can lead to greater trust. In general, reputation is best viewed as a history-based

estimation of the likelihood of certain behavior which is an approach that can be used to directly

calculate expectations. Reputation allows agents to build trust, or the degree to which one agent

has confidence in another agent, helping them to establish relationships that achieve mutual

benefits. In other words, reputation is an estimated opinion of a party for another party. Hence,

usually reputation is a personal and subjective quantity, referring not to what behavior a party

has but rather what behavior others think that party has [42][46][60][12][56][63][27][49]. Risk,

on the other hand, is often undertaken in the hope of some gain or benefit. Risk is actually a

situation that involves exposure to danger or loss, since although the outcome of a transaction is

important to a party, the probability of loss is non-zero. Risk can also be defined as the

intentional interaction with uncertainty, in the sense of a potential, unpredictable outcome [16].

Hence, the amount of risk that a party may be willing to tolerate is directly proportional to the

amount of trust that the party has in the other party [33]. As a result, the main aim of reputation

models is to support the establishment of trust between unfamiliar parties, equilibrating the risk.

 At this point, for purposes of better understanding we have to define the involved parties.

This study considers all parties as intelligent agents and the environment of the Internet of

Things as a multi-agent system. In other words, each involved Thing, object, service or even

7

human, is considered as an agent (Figure 1). In this context, an agent A that interacts with

another agent X can evaluate X’s performance and thus affect its reputation. The evaluating

agent (A) is called truster (here TR) whereas the evaluated agent (X) is called trustee (here TE).

Furthermore, there are two more potential roles with a slight difference, namely Recommenders

(here RR) and Witnesses (here WS). A witness provides reports based on personal previous

experience with the agent under evaluation whereas a Recommender may have no previous

interaction history with that party. A Recommender usually propagates reports based on others’

experience or observation.

Figure 1. Roles of Involved Parties.

 For some interactions an agent can be both truster and trustee, since it can evaluate its

partner while it is evaluated by that partner. After each interaction in the environment, the truster

has to evaluate the abilities of the trustee according to the evaluation criteria proposed by the

(StoRM) model. These evaluation criteria vary from model to model. Yet, there are some that are

usually referred either explicitly or implicitly in reputation models and metrics

[42][46][60][63][56][49][27]. The most common metrics involve six properties; namely

response time, validity, correctness, cooperation, quality of service (QoS) and availability.

 Response time refers to the time that an agent needs in order to complete the tasks that it

is responsible for. Time is the only parameter that is always taken into account in the literature.

Correctness, no matter how it is called, is, actually, the second most used parameter after time.

An agent is correct if its provided service or task is correct with respect to a specification.

Sometimes, it is called delivery, especially in cases that involve services or devices. Validity,

8

sometimes referred as honesty, describes the degree that an agent is sincere and credible. An

agent is sincere when it believes what it says, whereas it is credible when what it believes is true

in the world. Hence, an agent is valid if it is both. Validity is not always such called, yet in most

cases there are parameters that attempt to indicate how sincere and/or credible an agent is.

Cooperation is not usually handled as separate parameter; however, it is an important feature in

distributed social environments, referring to the willingness of an agent to do what it is asked for.

Sometimes, it is even called flexibility. Quality of service (QoS) refers to the overall performance

of a service, we adopt this criterion mainly referring to the case of services. To quantitatively

measure quality of service, a number of characteristics are taken into account such as packet loss,

bit rate, transmission delay, availability, failure probability and so on. Finally, availability refers

mainly to the involved devices, or services, indicating the degree to which the device is in

operable and committable state.

 However, although these six parameters are, usually, taken into account in one way or

another, they are not necessarily binding. Some of them could be replaced by other more

domain-specific parameters depending on the domain of use. For instance, in a smart

environment case, energy consumption related to each involved device could be possibly one of

the most important evaluation criteria while in e-Commerce transactions price and payment

variety would be more important. Yet, since StoRM is a general purpose trust management

model, our intention is to adopt the aforementioned six criteria, four generic, one service-

oriented and one device-oriented, that reflect the common critical characteristics of each

involved party in an extensible list. More details will be provided below at the model section.

3. Microservices and Intelligent Agents

IAs are a well-studied technology that offers plenty of possibilities, especially autonomy. Lately,

they were considered as a potential evolution or addition to microservices and, as a result, to the

development of the IoT [55][13][18][20]. The motivation behind this is the possibility of adding

autonomy, context awareness, and intelligence as natural behaviors to IoT and microservice

architecture. Due to the distributed architecture and the dynamic environment, MASs, IoT and

Microservices give an impression of similarity. Actually, microservices have almost every

known agent property (Table 1), sharing many similar architectural characteristics (Table 2) [51].

9

Table 1. Agent and microservice properties

 Property Intelligent Agents Microservices

1. Autonomy Χ X

2. Adaptability Χ 

3. Mobility Χ Χ

4. Migration Χ Χ

5. Learning Χ Χ

6. Reactivity Χ 

7.
Social ability

(Collaboration/

Coordination/Interaction)

Χ Χ

8. Persistence (execution) Continuously On demand

9. Proactivity Χ 

Both microservices and intelligent agents are autonomous since they are able to accomplish their

tasks without human intervention and independently of other services or agents. Mobility is

another common feature since it is achievable by microservices as they can move and run

independently in the network. Furthermore, microservices have the ability to migrate, yet the

property of migration, not specific to agents, can be also contrasted to mobility. In general, as far

as it concerns migration, it suspends the execution of an agent or service until it reaches its

destination while mobility usually creates a clone at a remote destination. Reactivity could be

considered as a microservice property in the sense that each service is responsible to run and

return the appropriate data under demand. This behavior can be viewed as reactivity. Both

technologies have also social abilities; interaction, collaboration and coordination are not only

agent properties but also three of the basic properties of microservices. Learning and adaptation

are two common agent properties but they are difficult to be adopted by microservices. Usually,

microservices neither learn nor easily adapt new behavior. However, when combining with

technologies such as agent technology it could be considered achievable. Of course, despite the

similarities, microservices and agents differ in persistence; agent run continuously and decides

for themselves when to perform some activity whereas microservices run on demand, executing

a specific part of code. Hence, agent are able to act proactively opposed to microservices that run

upon demand.

 Actually, the difference between agent technology and microservices is in how they

fulfill the aforementioned characteristics in order to address challenges. Microservices modify

their behavior due to code changes whereas agents modify their behavior due to contextual

10

changes since they collaborate and perceive or even influence their dynamic environment. Table

2 presents architecture similarities and differences. A main difference between microservices and

agents is the contextual behavior that can be demonstrated by an agent as opposed to

microservices. Agents like microservices are goal-driven but they try to fulfil these goals by

using knowledge of their own capabilities, the environment or other agents in order to make

appropriate decisions. On the other hand, microservices allow tenderers to control devices even

if they are physically hard to reach. Hence, combining these two technologies, considering each

microservice as a single agent, could lead to novel, more efficient approaches for the IoT.

Table 2. Agent and microservice architecture similarities and differences

 Characteristic Intelligent Agents Microservices

1. Distributed

distributed code along with
distributed knowledge and
intelligence

distributed (non-monolith) code

2. Modular Agents using services, metadata etc services

3. Flexibility
flexible to code and contextual
changes

flexible to code changes

4. Behavioral
reactive, proactive, cognitive
(contextual)

reactive

5. Decoupled
agent to
agent/service/environment/etc

service to service

6.
Inter-process

communications

event-driven/coordination-
communication abilities/ common
and semantic data structures

event-driven/data
exchange/common data
structures

4. StoRM

The proposed model is called StoRM and it is a distributed, hybrid reputation model. It is one of

the first approaches that uses social principles and microservice architecture in order to combine

in a practical way all available ratings, both those based on the agent’s personal experience and

those provided by known and/or unknown third parties in the IoT. StoRM aims at providing a

distributed mechanism that would be able to model the way entities, services and devices

communicate and interact in the IoT, overcoming their heterogeneity.

4.1. Microservices in StoRM

First of all, as already discussed, we model three main types of (IoT) Things; entities (human or

virtual), services and devices. We assign an extendable list of characteristics C and preferences P

to each entity (
k

xLC &
m

xLC | k,m  [1, N], x ≡ entity), where k and m represent the number of

11

characteristics and preferences, respectively. The C list contains much more than the entity’s

type, such as registration date or time period it is or will be active in the environment, assigned

roles, energy consumption and so on. On the other hand, preferences include information such as

the desirable temperature degree or the desirable charging level.

 For computational and priority purposes, each characteristic and preference is assigned

with a value of importance (weight) at the range [0, 1] (k

cW & m

pW | k,m  [1, N], c ≡

characteristic, p ≡ preference), defining how much attention will be paid to each characteristic

or preference. For instance, an electric emergency vehicle should be always charged. Hence, its

type, role and time that it will be active in the environment characteristics are important and,

thus, they weigh more. For instance, in an environment with limited availability in energy, this

vehicle would have priority among the rest vehicles.

 All types of Things are represented as agents while microservice architecture was used

for the implementation of services and devices, achieving the necessary functionalities and

reducing the common issue of device handling in the IoT, especially for the trust models. More

specifically, since services and especially devices are usually small with limited resources while

microservices should be small and autonomous but at the same time collaborative [48], as far as

it concerns devices we propose the implementation and use of two types of microservices;

namely device_microservice and gateway_microservice, represented in the environment as

agents (Figure 2). In case of service an implemented service_microservice is used.

 ... Agents representing
humans/virtual entities

Agents representing devices
(device_microservice)

Agents representing services
(service_microservice)

 ...

 ...

Figure 2. StoRM overview.

 Each device_microservice is related to a specific IoT device and it is responsible for its

function and/or data exchange. Complicated devices with more functionalities could possess

12

more than one device_microservice that will collaborate in order to represent and handle

properly the device and its data. device_microservice tasks include storage of received data and

propagation of generated data (e.g. sensor data), response on demand, mode handling (e.g.

start/stop). In other words, device_microservice (or a set of such microservices) is an agent that

represents a specific device in the environment.

On the other hand, devices and even services are usually non-smart, isolated entities.

Hence, it is important for the rest of the community to reach and communicate with them. For

this purpose, we propose the use of the so-called gateway_microservice. This microservice

should handle several tasks since it is actually a middleware between devices and other IoT

Things. Actually, the main task of a gateway_microservice is to periodically discover reachable

services and devices in the environment, store the related information and inform, on demand,

other Things. For instance, consider a printer device. A gateway agent (gateway_microservice)

will store all information such as printer global name and its characteristics (e.g. ink level) and as

soon as another Thing asks for printer, the gateway agent will inform about the available printers

in the environment. Additionally, it could start or stop a specific device or even modify its

transmission frequency if requested by the proper user, such as the owner of a printer or sensor.

Figure 3. Part of a gateway_microservice agent source code.

13

Part of the source code of a gateway_microservice agent is presented in Figure 3, where a

new broker service registration is coded. This source code is written in Java and implemented in

EMERALD, an interoperating knowledge-based framework [39], which is based on JADE [8]

(more details about EMERALD can be found at section 5.1). More specifically, the

aforementioned gateway_microservice agent had sent a request message to a broker service in

order to invite it for registration. Figure 3 displays the code following that. In particular, as soon

as the gateway_microservice agent receives a (nonempty) message, in ACL format [8][52], it

checks its performative act. If this is “INFORM” then the agent confirms that it receives a reply

by the service (service_microservice) in order to register it. Hence, next, the service is registered,

assigned to a new DFAgentDescription. To this end, a new service description is created

including the type of the service (“Broker”) and its name, allowing other agents in the

environment to locate it.

4.2. Rating Parameters and Evaluation Procedure

As soon as two agents interact, agent truster (TR) evaluates trustee (TE) and stores this rating to

its private repository, here called ERep. For evaluation purposes, as already discussed StoRM

adopts an extendable list (ECn | n  [1, N], here N = 6) of six criteria, namely response time,

validity, correctness, cooperation, quality of service (QoS) and availability. The first five apply

to all IoT Thing categories but quality of service is used only for services whereas availability

can be used for both services and devices. However, these are not enough. The truster (TR) has

to indicate how confident it is for its rating, allowing later other agents to decide upon how much

attention to pay on this specific rating. For instance, a rating provided by an unsure agent will be

considered with skepticism or even ignored. Additionally, since time is an important aspect,

especially in decision making processes, each rating is associated with a time stamp (t),

indicating the time point of the transaction. In [21] authors discussed the problem of time

management in distributed systems and proposed a promising solution. Based on that a reference

to the universal time is needed. To this end, they propose the use of SNTP protocol to establish

the universal time and offset between that time and the local clock. Our model can adopt this

approach, although at this point we describe its architecture.

 Hence, taking the above into account the truster’s rating value (r) in StoRM is a tuple

with eight, nine or ten elements, depending on the number of the evaluation criteria:

14

r := (TR, TE, t, response time, validity, correctness, cooperation, confidence) (1) or

r := (TR, TE, t, response time, validity, correctness, cooperation, availability, confidence) (1’) in

case of devices, or

r := (TR, TE, t, response time, validity, correctness, cooperation, QoS, availability, confidence)

(1’’) in case of services.

 Although each truster agent stores its own ratings, the r tuple includes the variable TR

(truster global name) since the truster may forward its ratings to other agents; hence, these agents

should be able to identify the rating agent for each rating they receive. In StoRM, confidence as

well as the rest rating values vary from 0.1 (min/terrible) to 10 (max/perfect); r ∈ [0.1, 10].

 Additionally, agents that comply with StoRM do not only rate their parties, storing these

ratings to the aforementioned repository ERep but they use more repositories in order to identify

friends and malicious partners. More specifically, there are two more repositories, one for storing

promising partners (WRep, whitelist), partners that act responsibly and provide high quality

services or products, and one for those partners that should be avoided (BRep, blacklist). Hence,

truster has each time to decide if a partner should be added to one of these lists. To this end, each

agent has a threshold that determines its degree of tolerance and a threshold that determines an

indicator value about what it considers as exceptional behavior. The procedure is

straightforward. First, the TR agent as soon as it stores its rating to ERep, compares the criteria

values with its thresholds. More specifically, it computes the weighted average for the criteria

that it is interested in, forming the Wratingr value:

1

1

n
n

EC

i

i
r n

i

i

w r

Wrating

w











(2)

where wi is a weight defined by the TR for each selected criterion (ECn). Next, the TR agent

compares this value with its tolerance and exceptional values; if rWrating tolerance the

trustee (TE) agent is stored in TR’s blacklist (BRep) whereas if rWrating exceptional the TE

agent is stored in TR’s whitelist (WRep), if it is not already there. Additionally, in order to avoid

characterizing a TE agent as malicious (BRep list) due to temporary misbehavior (e.g. functional

15

error or misunderstanding) StoRM indicates that if RR and/or WS agents recommend a TE agent

that is stored at TR’s BRep more than two times, TR will remove that agent from its BRep list.

4.3. Adopting LOCATOR

A major challenge for open, distributed and large-scale systems, such as MASs and the IoT, is

how to locate ratings among the rest of the community. To this end, StoRM adopts LOCATOR

[36], a locating rating mechanism that uses features from social graphs [32] and peer-to-peer

networks [4] in order to incorporate potential social dimensions and relationships within the IoT.

 LOCATOR in order to convince parties to provide ratings, since entities are unwilling to

sacrifice time and resources, uses a reward mechanism. According to this mechanism, each party

will get a credit whenever it provides a recommendation. The credit could be positive or negative

and since there is no central authority to monitor and store credits, each agent should store by

itself its credit score. Moreover, since time is important, each credit is valid only for a specific

time period, depending on the personal strategy of the TR agent that requests the

recommendations. A high credit score provides an evidence about the activity and

recommendation quality of an RR (or WS) agent. The higher the credit score is the more

weighted is the recommendation (trustworthy partner).

 As far as it concerns propagation mechanism, LOCATOR inspired by social graphs and

P2P networks considers the environment as a social network of agents. Practically, this social

network is represented by a social graph; a graph based on agent interactions. Hence, although

the notion of neighbors does not exist in IoT and MASs, agents can use previously known

partners (agents that have already interacted) in a similar point of view. Using the knowledge

represented by the social graph, LOCATOR determines the relationships of interactions among

agents and the proximity between parties in the environment. LOCATOR, based on trusted

paths, identifies three categories of neighbors according to their social distance from the truster,

called local neighbors, longer ties and longest ties, respectively. A trusted path is a path that

consists of a truster (TR – the source), several recommenders (RR agents) or witnesses (WS), a

trustee (TE – the target), and trust relations among them. In other words, it is a trusted path from

the truster to the trustee. Hence, local neighbors are agents that have previously interacted with

truster, longer ties are agents that can be connected to the truster with a path length less than five

(<=5) nodes and longest ties are agents that can be connected with greater path length (>5).

16

Value 5 was chosen due to a number of simulation experiments conducted in the context of

LOCATOR that revealed that agents tend to interact more with agents connected to them within

such a path. This was probably due to more available recommendation/witness reports from

already known (closely connected) agents.

 Hence given a trusted path, propagation works in this way: if agent A1 trusts agent A2,

and A2 trusts agent A3, then A1 can derive some trust towards A3. The challenge is to set a proper

limitation of path length, since a smaller limitation may lead to fewer paths, while a larger one

may cause inaccurate prediction. Usually, in P2P networks there is a maximum time-to-live

(TTL) parameter assigned to each request message, which means that a message will be

propagated for a specific time period. Adopting the notion of TTL, in LOCATOR, each request

message is accompanied with a TTL value, yet it represents neither the time that the message is

valid nor the maximum path length (hops in the graph) but rather the time period that the truster

will wait for response. In other words, truster does not determine how far the message will be

propagated in the network but specifies how fast it needs feedback. This way, truster is able to

locate reports quite fast and make quick decisions. Of course, if more accuracy is needed, a

longer time parameter should be assigned.

 LOCATOR works as follow (Figure 4). Firstly, an agent TR interested in a trustee agent

TE, based on its preferences (
m

TRLP) decides upon the characteristics (the aforementioned
k

TELC

list) it considers important, e.g. a club membership. Next, it assigns proper weights (the

aforementioned
k

cW) to each of them and searches its database for previously known agents

(local neighbors) in order to find those that fulfil its requirements. Characteristics that weight

more are more important in the sense that TR believes that partners with these characteristics

will be more reliable (social influence). As a result, their recommendation is expected to be more

valuable. In this context, TR depending on its personal strategy sends a rating request firstly to

local neighbors with one or two high-weighted characteristics. For instance, partners that provide

the same service or had a previous successful transaction with TR. If the feedback is not

satisfying, TR may sent a request message to partners with lower-weighted characteristics.

After choosing the local neighbors that will be the direct receivers of the request, TR

assigns two time thresholds to its request message, a TTL value and a requested credit time

period, and sends it to them. They acting as recommenders (RR agents), on their turn, propagate

17

the message to their own local neighbors following the same procedure as long as they have time

(t < TTL). Finally, these RR agents send the feedback (recommendation and credit score) to TR.

Feedback is, actually, trusted paths from TR to TE through RR agents.

 ...

4. Propagating request

RR agents
3. Request reports

5. Receive trusted paths

Agent TE

Interested in that party

Agent TR

1. Check LC list to find appropriate local

neighbors

Figure 4. Brief functionality overview of LOCATOR.

 At the next step, TR assigns a value V, an indication of relevance, to each received

trusted path. This value is calculated as follows:

  , 0.25 5RRV pl hp C pl     or   , 0.5 6RRV pl hp C pl     (3)

where pl stands for the length of the trusted path, hp stands for the number of network nodes

while CRR is the credit score of the local neighbor (RR agent) that returned that path. CRR is

based on RR agent’s credits with a time stamp that fits in TR requested time period. Using this

time period, TR has a clue about RR’s latest behavior. The V value attempts to discard feedback,

taking into account the concept of risk. More specifically, longest ties are more possible to be

completely strangers even for TE’s local neighbors. Hence, they can be considered as less

trusted, which means that TR will take more risk. On the other hand, longer ties are more

possible to be previously known partners of the TE’s local neighbors and probably they are more

valuable recommendation sources.

4.4. Discarding Ratings

At this point, TR received feedback and created a trusted graph by combining all available trust

paths. For multiple trusted paths in a trusted graph such as this, the main challenge is how to

18

combine the available evidence. The V value, an indicator value estimating the risk and social

proximity, provided by LOCATOR will be used for this purpose combined to TR’s preferences.

To this end, StoRM proposes the following discarding algorithm that allows TR to choose the

best among the available ratings according to its personal strategy:

Input data: V

xtrPath , the set of the returned trusted paths along with the V value

Step 1: Sort in descending order all return trusted paths according to the V value.

Step 2: Choose X (according to TR’s strategy) of them; those with higher V value.

Step 3: Extract ratings from these paths.

Step 4: Remove from the above ratings those with low confidence value

(confidence < (TR’s) confidence_threshold).

Step 5: Remove from the remaining ratings those provided by agents stored in TR’s BRep list.

Step 6: Sort remaining ratings in descending order according the time (t value).

Step 7: Choose X of the above ratings; those that fit in TR’s desired time period or the newest.

Output data:  
xECr , the set of the finally chosen X ratings

 Hence, TR, using the above discarding algorithm, will be able to proceed with the most

promising (possible trustworthiness) and more recent ratings. Notice that it is included a step

(step 5) that allows TR to avoid ratings from partners that it is unwilling to interact with or had a

previous bad experience.

4.5. Estimation Mechanism

In order to better analyze rating data, crossing out extremely positive or extremely negative

values, rating values in StoRM are logarithmically transformed. Actually, the most important

feature of the logarithm is that, relatively, it moves big values closer together while it moves

small values farther apart. And this is useful in analyzing data, because many statistical

techniques work better with data that are single-peaked and symmetric. Furthermore, it is easier

to describe the relationship between variables when it is approximately linear. Hence, each rating

is normalized (r ∈ [-1,1] | -1 ≡ terrible, 1 ≡ perfect), by using 10 as base. As a result, the final

reputation value ranges from -1 to +1, where -1, +1, 0 stand for absolutely negative, absolutely

positive and neutral (also used for newcomers), respectively, which means that an agent’s

reputation could be either negative or positive.

19

 Hence, the final reputation value (Rx, x ≡ entity) of an agent, at a specific time t, is based

on the weighted average of the relevant reports (normalized ratings) and is calculated as follows:

   

1 1

 rc

()

n m

N M

start i end start j end

pr rc

start i end start j end

EC EC
pr i j

t t t t t t

pr rc

per rec

per rec i per rec j

t t t t t t

w x log r t w x log r t

w w
w w

T t
w w t w w t

 

     

     

 

   
 

 
 

 
 (4)

 There are some important aspects in equation (4). The first is that the normalized ratings

are divided to two groups, one referring to direct experience (transaction between TR and TE),

with Wpr weigh values, and one referring to those third-party ratings, with Wrc weigh values, that

were obtained as described above. The second is that TR is able to balance between personal

experience (Wper) and witness reports (Wrec), which is actually an opinion provided by strangers.

Finally, since time, as already discussed, is important it is involved in the final value in the sense

that recent ratings weigh more.

5. Evaluation Simulation

In order to use and evaluate StoRM, the proposed model, we conducted a number of simulation

experiments that model potential IoT environments. The aim of these simulations were not only

to evaluate the added-value of the approach but also to consider about possible composition of an

ΙοΤ environment. For instance, a smart living case would include a higher percentage of device

entities whereas an eCommerce case would include more service entities.

5.1. Simulation environment

For implementation purposes, we adopt the use of EMERALD [38], a framework for

interoperating knowledge-based intelligent agents (Figure 5). It is built on top of JADE [8], a

reliable and widely used multi-agent framework, and it is fully FIPA-compliant. EMERALD was

chosen since it provides a safe, generic, and reusable framework for modeling and monitoring

agent communication and agreements. Moreover, EMERALD was involved in cross-community

interoperations such as in [37]. It proposes, among others, a reusable prototype for knowledge-

customizable agents (called KC-Agents) and the use of Reasoners [39].

20

User - 1

EMERALD

Reasoning engine - 1 Reasoner - 1 Personal Agent - 1

User - Ν
Reasoning engine - Ν Reasoner - Ν Personal Agent - Ν

AYPS
SERM Manager

BJL

AYPS

KC-Agents Prototype

KC Model JESS KB

DRM, DISARM

G
U

I

Trustor
T-REX Manager

HARMAgent
HARM Manager

ΜΑ

Reasoning engineReasonerPersonal agent

REQUEST
INFORM

Rule base

Inference results

Figure 5. EMERALD overview.

The agent prototype promotes customizable agents, providing the necessary infrastructure

for equipping them with a rule engine and a knowledge base (KB) that contains agent’s

knowledge and personal strategy. Complying with this prototype, agents have their ratings

expressed as facts in RDF format (Figure 6). Reasoners, on the other hand, are agents that offer

reasoning services to the rest of the agent community. A Reasoner can launch an associated

reasoning engine, in order to perform inference and provide results. EMERALD supports a

number of Reasoners, among others deductive and defeasible cases.

<rdf:RDF>

 <storm:rating rdf:about="&storm_ex">

 <storm:id rdf:datatype="&xsd;integer">1</storm:id>

 <storm:truster>tr1</ storm:truster>

 <storm:trustee>te1</ storm:trustee>

 <storm:t>175</storm:t>

 <storm:response_time>9</storm:response_time>

 <storm:validity >7</storm:validity >

 <storm:correctness>6</storm:correctness>

 <storm:cooperation>9</storm:cooperation>

 <storm:availability>7</storm: availability >

 <storm:confidence>9</storm:confidence>

 </ storm:rating>

</rdf:RDF>

Figure 6. A rating example in RDF format regarding a device agent.

21

Additionally, EMERALD provides an advanced yellow pages service, called AYPS, that

is responsible for recording and representing information related to registered in the environment

agents, namely their name, type, registration time and activity. This information is dynamically

stored in the AYPS agent’s database. Hence, the service is able to retrieve up-to-date information

at any time. Hence, even if StoRM (or any other distributed model) is a distributed reputation

model, agents that use it are able to send requests to AYPS in order to get first a list of potential

partners, which is the case for newcomers. Next, they can use the StoRM model in order to

estimate reputation for one or more of them in order to find the most appropriate partner (higher

reputation value). Of course, it is not necessary to use such services; it is up to each agent’s

personal strategy how it will locate potential partners. The more an agent knows the

environment, the better it can choose partners.

Finally, EMERALD is an agent platform that supports trust and reputation mechanisms in

order to support trustworthiness and efficient decision making in the multi-agent system. It

supports both centralized and distributed reputation models. Actually, it has been used so far in

studying how agents act on behalf of their users in cases such as trading. In this context, agents

in the environment are free to ask others for their opinion (ratings), hence each agent requests a

service/functiom from the most trustworthy and reliable provider according to it.

5.2. Testbed

For simulation purposes, as far as it concerns the testbed, we adopted and updated a combination

of two, quite popular, testbed environments [30][31] previously used in [35] and [34]. The initial

testbed as well as its slight variation that is adopted in this article were developed by a well-

known research team for evaluation purposes regarding reputation models. This testbed without

loss of generality reduces the complexity of the environment. Furthermore, it allows quickly

obtainable and easily reproducible results. The foremost advantage of the testbed is the fact that

it provides a realistic view of a multi-agent system’s performance under commonly appeared

conditions, such as realistic network latency, congestion, user behavior and so forth. In this

context, we preserved the testbed design but slightly changed the evaluation settings, taking into

account the data provided in previous works. The main differences in our proposed variation is

that we include all types of Things (virtual entities, services and devices) but since they are

represented by agents there is no functional differentiation.

22

 More specifically, the testbed environment is a multi-agent system, representing IoT

environments, consisting of agents seeking for something, e.g. a service, and agents that provide

it, namely Seekers and Tenderers. We assume that the performance of a tenderer and effectively

its trustworthiness, in a specific service/function is independent of other services/functions that it

might offer. Hence, in order to reduce the complexity of the testbed’s environment, without loss

of generality, we assume that the performance of a tenderer is independent from the

service/function/etc that is provided. In this context, it is assumed that there is only one type of

service/function/etc per agent type (entities, services, devices) in the testbed and, as a result, all

the tenderers offer the same service/function/etc per agent type. Nevertheless, the performance of

the tenderers, in terms of correctness, response time, etc., differs and determines the utility that a

seeker gains from each interaction (called UG ≡ utility gain). This UG was designed as part of

the testbed in order to have a comparison measure. It is not part of the model itself or the

framework. A number of evaluation simulations were conducted in EMERALD by other

previous works that used also a utility gain value. Yet, that utility was not defined as it is here

nor it was part of EMERALD. Here, we consider as utility gain value the average value of all

rated criteria in the range UG ∈ [0.1, 10], depending on the level of performance of the tenderer

in that interaction. More specifically, UG is calculated as follows based on the tenderer’s type:

Entities: UG= AVG(rresponsetime, rvalidity, rcorrectness, rcooperation) (5)

Services: UG= AVG(rresponsetime, rvalidity, rcorrectness, rcooperation, rQoS, ravailability) (5’)

Devices: UG= AVG(rresponsetime, rvalidity, rcorrectness, rcooperation, ravailability) (5’’)

A tenderer agent can serve many users at a time. After an interaction, the seeker agent

rates the tenderer based on the proposed evaluation criteria. Each agent interaction is a

simulation round. Events that take place in the same round are considered simultaneous and,

thus, the round number is used as the timestamp for events and ratings.

To this end, we run a large amount of simulation rounds where the environment was

populated with agents, seekers and tenderers. Of course, we assume that seekers select always

the tenderer with the highest reputation value. Whenever there are no available ratings for a

tenderer, its reputation value is zero. Table 3 presents the four types of service tenderers included

in the testbed environment. More specifically, the testbed includes good, ordinary, bad and

intermittent tenderers, namely honest and malicious agents. The first three provide

services/functions according to the assigned mean value of quality with a small range of

23

deviation. In other words, good, ordinary and bad tenderers tend to have a mean level of

performance, hence, their activity (actual performance) follows a normal distribution around this

mean, in terms of UG value. Intermittent agents, on the other hand, cover all possible outcomes

randomly.

Table 3. Testbed: types of tenderers and performance distribution

Tenderers Population Density

Tending mean

performance

(UG value)

Performance

distribution

(UG value)

Good tenderers 15% 9 [8, 10]

Ordinary tenderers 30% 7 [6, 8]

Bad tenderers 40% 3 [0, 6]

Intermittent tenderers 15% 5 [0.1, 10]

More particularly, regarding their strategy, good tenderers act always honestly, providing

immediately seekers with accurate and right services/functions. Ordinary tenderers, on the other

hand, are usually honest but they have sometimes a significant delay in response. Hence,

ordinary tenderer agents respond always to a call, providing usually the right service/function but

most of the times with a delay. The above, good and ordinary tenderers, form the two honest

cases. On the other hand, the testbed includes two malicious cases, intermittent and bad

tenderers. Intermittent tenderers respond usually without delay but most of the times they do not

act as expected but in a wrong way. Bad tenderers respond always with a delay, providing wrong

services/functions. Bad tenderers are an obvious bad case, in the sense that they are absolutely

malicious agents that act dishonest. As a result, they can be located quite easily with a well-

formed reputation model. Yet, intermittent tenderers are a more complicated and dreaded case of

malicious agents. They act immediately, providing either good or bad services/functions, without

a specific behavior pattern. Hence, it is difficult for the rest agents to detect and reveal their

malicious behavior.

In this context, as far as, it concerns the allocation of tenderers, we use a quite common

case where just half of the tenderers lead to profit (satisfying UG value), since it is impossible to

explore exhaustively allocation possibilities. Furthermore, in real life, good and intermittent

tenderers are not so common, hence, these categories get a low percentage (15%) in the

population. Additionally to tenderer allocation, we acknowledge the fact that multi-agent

systems, just like IoT, are open systems, allowing agents to join or leave the system at any time.

24

In this context, in order to simulate this dynamic behavior, we remove a percentage of the testbed

agents while we add new ones into it, at each simulation round. Yet, our intention is to maintain

the different groups of categories and their relevant proportions. Hence, at each round just a 10%

to 20% is renewed, by actually replacing agents in the system.

Finally, we take into account another discipline since we study MASs in the context of

the IoT. In this context, agents, whether they are seekers or tenderers, they could represent

different types of Things, namely entities, services and devices. Hence, taking into account the

above testbed settings, we additionally determined three evaluation cases (Table 4). The first

case includes an approximately equal distribution among entities, services and devices. The rest

two cases assume that the environment has more service or device agents (Things), respectively.

Additionally, we provide more storage space to entities and less to services and devices, in order

to reflect their usual capabilities in IoT. Furthermore, device agents are equipped with a delay

parameter allowing us to model better limitations to device speed.

Table 4. Testbed: distribution of agent (Thing) types

Agents

1st case:

approximately equal

2nd case:

more services

3rd case:

more devices

Entities 34% 20% 20%

Services 33% 60% 20%

Devices 33% 20% 60%

5.3. StoRM evaluation

The first set of simulations was conducted just for the proposed model. For this purpose, all

agents complied with the StoRM model, the previously discussed settings were used while each

time point (taking integer values) is associated with the respective simulation round. Figure 7

displays the first experimental findings. We conducted three simulation sets, each of them

complied with one the three aforementioned cases regarding agent type distribution among

entities, services and devices. Figure 7 displays a combination of these results, namely the mean

UG value per round taking into account all three simulation sets. The model has, in general, a

promising upward trend which indicates that it is able to provide good estimations, allowing

agents to reach quite fast possible well behaved partners. However, it needs some time to reach

good utility values. This is not surprising since agents need time to interact and create

relationships (known and whitelisted agents) in the network.

25

Figure 7. Mean Utility Gained by StoRM over time.

Next, we repeated the experiments more times in order to check the behavior of StoRM

regarding the different populated environments as far as it concerns agent type distribution. This

allowed us not only to check the model itself but also to study the potential differences among

agents that represent different types of Things. This is useful since services and especially

devices have limited resources which could lead to less decision or storage possibilities. Our

intention was to simulate a worst case scenario where many of the available parties will have

limitations. Figure 8 displays the results of this set of simulations. The test settings are the same

except the agent type distribution (Table 4).

Figure 8. Mean Utility Gained by StoRM over time per agent type distribution.

These findings (Figure 8) support the previous observation; the model has a quite stable

upward trend, providing good estimations. More interesting but, actually, not surprising is the

difference between the three distribution cases due to the limitation we have modeled. An

approximately equal distribution among agent types, entities are slight more (+1%), leads to

better results (higher UG values). Agents representing entities have more storage space, allowing

them to store more ratings which leads to more available data and better estimation. On the other

hand, agents that represent devices have space and speed limitations which lead to data loss and

slightly worse (but still good) estimations. Agents that represent services fall somewhere in the

middle. Obviously, each case has peculiarities but an IoT application usually has and will have a

26

mixed distribution while technology evolution will allow devices to getting better and smarter.

As a result, models such as StoRM will provide not only a stable behavior but also good

estimations even if there are some limitations. The good estimations in all cases are also

supported by a modeling decision, the use of microservice architecture. service_microservice,

device_microservice and especially gateway_microservice provide autonomy and better

behavior.

5.4. Model comparison

In order to further evaluate the proposed model, we checked its behavior in comparison to other

known distributed reputation models. In this context, the only difference among seeker agents is

the trust models that they use, so the utility gained by each agent through simulations will reflect

the performance of its trust model in selecting reliable tenderers for interactions. As a result, the

testbed records the UG of each interaction with each trust model used. For purposes of a fair

comparison, each model is employed by a large and equal number of agents. Table 5 presents the

four trust models and their related population density in the testbed environment. These models

are the proposed model (StoRM), DISARM [35], CRM [34] and Certified Reputation [30].

Table 5. Testbed: trust models and population density

Trust model compliance Population Density

StoRM 25%

DISARM 25%

CRM 25%

Certified Reputation 25%

DISARM is a social, distributed, hybrid, rule-based reputation model which uses

defeasible logic. It uses rules, combines interaction trust and witness reputation, considering the

agents acting in the environment as a social network. Yet, it does not use graphs but a history of

personal previous interactions and a set of quite complicated rules in order to create a potential

propagation network. Certified Reputation, on the other hand, is a well-known model that asks

agents to give ratings of their performance after every transaction while the agents that receive

these ratings have to keep them. Hence, each agent that needs ratings is able to ask any other

agent for its stored references. However, Certified Reputation is designed to determine the access

rights of agents, rather than to determine their expected performance. CRM (Comprehensive

27

Reputation Model) is a probability-based model that asks agents to keep ratings, both from their

direct transactions and witnesses, calling the procedure online trust estimation. Later, the actual

performance of an evaluated agent will be compared against the above related ratings, in order to

judge the accuracy of the consulting agents in the previous on-line process. This procedure is

called off-line.

Therefore, we compare the above-mentioned models using the discussed testbed settings.

At this point, we have to mention that we adopted the first case for the agent type distribution

(approximately equal) because only StoRM distinguishes the difference between the represented

IoT Things. Figure 9 presents a ranking of all four models regarding the mean utility gained (UG

value).

Figure 9. Mean Utility Gained.

This comparison reveals that the three of four, StoRM, DISARM and Certified

Reputation, gain a quite high UG value. Yet, none of them reaches the higher values that

achieved StoRM (neither itself), as shown in Figures 7 and 8, when it was the only adopted

model in the environment. This can be explained by the fact that the percentage of agents that

comply with each model is lower leading inevitably to less interactions under each specific

model, less social relationships, and loss of rating data. Among the four models, StoRM,

DISARM achieve slightly the higher performance, probably due to the fact that they consider the

environment as a social network that allows messages to propagate. DISARM enables agents to

get familiarized with the environment faster as opposed to the rest but StoRM has a higher

upward performance, keeping it stabilized and higher from a time point. This performance

reveals that using a combination of social graphs and P2P networks in order to locate partners

reveal a dynamic potential. On the other hand, CRM needs time to get familiarized with the

environment and remains with a stable but significant lower performance.

28

Figure 10. Storage space growth.

Furthermore, in order to study better the performance of the proposed model, another

comparison direction was towards execution time and storage space. Distributed models store

their own ratings and those obtained by others which is far less than the total number of available

ratings in the system. Of course, they can erase extra witness ratings after use but still, they have

sometimes significant memory space requirements. Figure 10 depicts the percentage usage of the

available space each agent has. It reveals that models like StoRM and DISARM that take into

account social aspects need less space. Actually, they collect less ratings whenever they need

them, allowing them to use only a part of their space. Finally, StoRM has a stabilized downward

usage which make it a good option of IoT modeling cases where there are many entities with

space limitations.

6. Related Work

Trust and reputation represent an interesting and active research area. There are already plenty of

trust models proposed even for the Internet of Things. Yet, to the best of our knowledge StoRM

is one of the first, if not the first, model that combines social trust management in IoT with

microservice architecture.

 Bao and Chen [7] proposed one of the first trust management protocols considering both

social trust and QoS trust metrics and using both direct observations and indirect

recommendations to update trust. They used only three trust evaluation parameters, namely

honesty, cooperativeness and community-interest opposed to StoRM that proposes a well-studied

set available for all kind of Things. On the other, just like StoRM this approach acknowledges

the need to take into consideration social relationships in trust management for IoT. Yet, it does

not reflect the actual social relations among agents, like StoRM, but rather attempts to focus on

29

authentication and security issues. Chen et al. [15] proposed a trust management model based on

fuzzy reputation for IoT. However, their trust management model considers a specific IoT

environment consisting of only wireless sensors with QoS trust metrics only such as packet

forwarding/delivery ratio and energy consumption, and does not take into account the social

relationship which is important in social IoT systems. Furthermore, StoRM proposed a novel

management system that can handle different types of Thing by adopting the architecture of

microservices.

 CRM (Comprehensive Reputation Model) [34] is a typical and well known distributed

reputation model. In CRM the ratings used to assess the trustworthiness of a particular agent can

either be obtained from an agent’s interaction history or collected from other agents that can

provide their suggestions in the form of ratings; namely interaction trust and witness reputation,

respectively. CRM is a probabilistic-based model, taking into account the number of interactions

between agents, the timely relevance of provided information and the confidence of reporting

agents on the provided data. More specifically, CRM, first, takes into account direct interactions

among agents, calling the procedure online trust estimation. After a variable interval of time, the

actual performance of the evaluated agent is compared against the information provided by other

agents in a procedure called off-line. Off-line procedure considers the communicated information

to judge the accuracy of the consulting agents in the previous on-line trust assessment process. In

other words, in CRM the trust assessment procedure is composed of on-line and off-line

evaluation processes. Both CRM and StoRM acknowledge the need for hybrid reputation models

taking into account time issues, yet they propose a starkly opposite approach. Additionally, both

models use a confidence parameter in order to weight ratings more accurately. However, StoRM

takes into account a variety of additional parameters, allowing users to define weights about

them. As a result, more accurate and personalized estimations are provided. Furthermore, only

StoRM considers the social relations among agents providing an approach that let them establish

and maintain trust relationships, locating quite easily reliable ratings.

Finally, DISARM [35], a previous work of us, is a hybrid distributed model that uses

defeasible logic. It adopts social aspects, being a nonmonotonic model. DISARM yet uses a large

and quite complicated set of rules in order to locate ratings and to combine interaction trust and

witness reputation. Both DISARM and StoRM consider the environment as a social network

although they use different approaches. StoRM uses social graphs and P2P principles in order to

30

allow agents to identify how far a party is, revealing a hint about the degree of trust that they can

invest in it. Furthermore, it proposes a simpler and lightweight approach for the estimation

mechanism while it pays much attention to the locating mechanism. On the other hand, DISARM

is mainly based on interaction made by already known agents without acknowledging exactly

how far is the interaction distance between a known agent and its recommendation for another

unknown. Yet, the both are based on similar, well-established estimation parameters. Hence,

DISARM can be adopted in any multi-agent system in the Semantic Web but StoRM is more

suitable for modeling IoT cases.

7. Conclusions

This article presented StoRM, a social, distributed and hybrid reputation model that adopts the

architecture of microservices for the IoT. It limits the common disadvantages of the existing

distributed trust approaches, such as locating ratings, by considering the agents acting in the

environment as a social network. Hence, each agent is able to propagate its requests to the rest of

the agent community, locating quite fast ratings from previously known and well-rated agents. It

is based on well-established estimation parameters, such as information correctness and validity.

StoRM can be adopted in any multi-agent system that will represent an IoT environment,

including different type of Things (entities, services, devices). Finally, we provided an evaluation

simulation that illustrates the usability of the proposed model.

 As for future directions, our priority is to study the scalability the complexity of the

model as well as the scalability of the multi-agent system. Hence, we will further improve the

proposed model, attempting to reduce among others its complexity. To this end, our intention is

to further study the performance of our model by comparing it to reputation models from the

literature and use it in real-world applications such as smart living. Our aim is to enrich it with a

powerful mechanisms that will extract the relationships between potential partners as well as

their past and future behavior. Hence, another direction is towards further improving StoRM by

adopting more technologies, such as ontologies, machine learning techniques and user identity

recognition and management being some of them. For instance, ORDAIN [37], an ontology for

trust management in the IoT could be used for this purpose. An ontology is a formal naming and

definition of the types, properties, and interrelationships of the entities that really or

fundamentally exist for a particular domain of discourse. Over the years, ontologies have become

31

common in the Web. This is not surprising since ontologies make domain assumptions explicit

and clear, enabling information reuse and common understanding of the structure of information.

Furthermore, ontologies have the ability to integrate existing ontologies describing portions of a

large domain. Hence, formalizing reputation and, as a result trust, into ontologies has several

advantages such as creating a common understanding for reputation and enabling mapping

between reputation concepts.

Acknowledgment

The Postdoctoral Research was implemented through an IKY scholarship funded by the

"Strengthening Post-Academic Researchers / Researchers" Act from the resources of the OP

"Human Resources Development, Education and Lifelong Learning" priority axis 6,8,9 and co-

funded by The European Social Fund - the ESF and the Greek government.

References

[1] Aggarwal, C. C., Ashish, N., & Sheth, A. (2012). The Internet of Things: A Survey from the

Data-Centric Perspective. Managing and Mining Sensor Data, 383-428. doi:10.1007/978-1-

4614-6309-2_12.

[2] Alioto, M. (2017). Enabling the Internet of Things: From Integrated Circuits to Integrated

Systems. Cham: Springer International Publishing.

[3] Amin, E., Abouelela, M., & Soliman, A. (2018). The Role of Heterogeneity and the

Dynamics of Voluntary Contributions to Public Goods: An Experimental and Agent-Based

Simulation Analysis. Journal of Artificial Societies and Social Simulation, 21(1).

doi:10.18564/jasss.3585

[4] Androutsellis-Theotokis, S., & Spinellis, D. (2004). A survey of peer-to-peer content

distribution technologies. ACM Computing Surveys, 36(4), 335–371.

[5] Atzori, L., Iera, A., & Morabito, G. (2014). From "smart objects" to "social objects": The

next evolutionary step of the internet of things. IEEE Communications Magazine, 52(1), 97-

105. doi:10.1109/mcom.2014.6710070

32

[6] Banisch, S., & Olbrich, E. (2017). The Coconut Model with Heterogeneous Strategies and

Learning. Journal of Artificial Societies and Social Simulation, 20(1).

doi:10.18564/jasss.3142

[7] Bao, F., & Chen, I. (2012) Trust management for the Internet of Things and its application

to service composition. In: Proceedings of the IEEE International Symposium on World of

Wireless, Mobile and Multimedia Networks (WoWMoM), 1–6.

[8] Bellifemine, F., Caire, G., Poggi, A. & Rimassa, G. (2003). JADE: A white Paper. EXP in

search of innovation, 3(3), 6-19.

[9] Bhowmik, A. K., Khendek, F., Hormati, M., & Glitho, R. (2015). An architecture for M2M

enabled social networks. 2015 14th Annual Mediterranean Ad Hoc Networking Workshop

(MED-HOC-NET). doi:10.1109/medhocnet.2015.7173161

[10] Bordini, R. H. (2014). Multi-agent programming. Springer.

[11] Brittes, M. P., Jr., B. S., & Wille, E. C. (2017). Trustworthiness Management Through

Social Relationships in Internet of Medical Things. Journal of Communication and

Information Systems, 32(1), 1-7. doi:10.14209/jcis.2017.1

[12] Burete, R., Badica, A., Badica, C., & Moraru, F. (2011). Enhanced Reputation Model with

Forgiveness for E-Business Agents. Theoretical and Practical Frameworks for Agent-Based

Systems, 147-163. doi:10.4018/978-1-4666-1565-6.ch010

[13] Butzin, B., Golatowski, F., & Timmermann, D. (2016). Microservices approach for the

internet of things. 2016 IEEE 21st International Conference on Emerging Technologies and

Factory Automation (ETFA). doi:10.1109/etfa.2016.7733707

[14] Castelfranchi, C., & Falcone, R. (2010). Trust Theory: A Socio-Cognitive and

Computational Model, 1st edition, Wiley Series in Agent Technology. Wiley ISBN:13:978-

0470028759 .

[15] Chen, C., Helal, S. (2011). A Device-Centric Approach to a Safer Internet of Things. 2011

Int. Workshop on Networking and Object Memories for the Internet of Things, pp. 1-6.

[16] Cline, P. B. (2015). The Merging of Risk Analysis and Adventure Education. Wilderness

Risk Management. 5 (1): 43–45.

[17] Dasgupta, P. (2000).Trust as a commodity. Gambetta D. (Ed.). Trust: Making and Breaking

Cooperative Relations, Blackwell, 49-72.

http://www.citeulike.org/user/jucagi/author/Bellifemine:F
http://www.citeulike.org/user/jucagi/author/Caire:G
http://www.citeulike.org/user/jucagi/author/Poggi:A
http://www.citeulike.org/user/jucagi/author/Rimassa:G

33

[18] Fetzer, C. (2016). Building Critical Applications Using Microservices. IEEE Security &

Privacy, 14(6), 86-89. doi:10.1109/msp.2016.129

[19] Gao, D., Deng, X., Zhao, Q., Zhou, H., & Bai, B. (2015). Multi-Agent Based Simulation of

Organizational Routines on Complex Networks. Journal of Artificial Societies and Social

Simulation, 18(3). doi:10.18564/jasss.2817

[20] Garriga, M. (2018). Towards a Taxonomy of Microservices Architectures. Software

Engineering and Formal Methods Lecture Notes in Computer Science, 203-218.

doi:10.1007/978-3-319-74781-1_15.

[21] Gawinecki, M., Ganzha, Μ., Kobzdej, P., Paprzycki, M., Badica, C., Scafes, M., Popa, G.G.

(2006) Managing Information and Time Flow in an Agent-Based E-Commerce System.

2006 Fifth International Symposium on Parallel and Distributed Computing, Timisoara, pp.

352-359. doi: 10.1109/ISPDC.2006.32

[22] Gelfond, M., & Kahl, Y. (2014). Knowledge representation, reasoning, and the design of

intelligent agents: the answer-set programming approach. New York (N.Y.): Cambridge

University Press.

[23] Gore, R., Lemos, C., Shults, F. L., & Wildman, W. J. (2018). Forecasting Changes in

Religiosity and Existential Security with an Agent-Based Model. Journal of Artificial

Societies and Social Simulation, 21(1). doi:10.18564/jasss.3596

[24] Gregoire, J., & Nguyen, S. N. (2017). Tell me again, why should i talk to strangers? 2017

20th Conference on Innovations in Clouds, Internet and Networks (ICIN).

doi:10.1109/icin.2017.7899431

[25] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A

vision, architectural elements, and future directions. Future Generation Computer Systems,

29(7), 1645-1660. doi:10.1016/j.future.2013.01.010

[26] Gutowska, A., & Buckley, K. (2008). Computing reputation metric in multi-agent e-

commerce reputation system. In: Proceedings of the 28th International Conference on

Distributed Computing Systems, pp. 255–260.

[27] Harwood, T., & Garry, T. (2017). Internet of Things: understanding trust in techno-service

systems. Journal of Service Management, 28(3), 442-475. doi:10.1108/josm-11-2016-0299

34

[28] Hendrikx, F., Bubendorfer, K., & Chard, R. (2015). Reputation systems: A survey and

taxonomy. Journal of Parallel and Distributed Computing, 75, 184-197.

doi:10.1016/j.jpdc.2014.08.004.

[29] Hobbs, R. L., & Dron, W. (2015). Using Intelligent Agents for Social Sensing across

Disadvantaged Networks. 2015 IEEE 12th International Conference on Mobile Ad Hoc and

Sensor Systems. doi:10.1109/mass.2015.96

[30] Huynh, D, Jennings, N R., & Shadbolt, N R. (2006a). Certified reputation: How an agent

can trust a stranger. In AAMAS '06: Proceedings of the fifth international joint conference

on Autonomous agents and multiagent systems, Hokkaido, Japan.

[31] Huynh, D., Jennings, N R., & Shadbolt, N. R. (2006b). An integrated trust and reputation

model for open multi-agent systems. Journal of Autonomous Agents and Multi-Agent

Systems (AAMAS), 13(2):119-154.

[32] Jiang, W., Wang, G., Bhuiyan, M.Z.A., & Wu, J. (2016). Understanding graph-based trust

evaluation in online social networks: methodologies and challenges. ACM Computing

Surveys, 49(1), 10.

[33] Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems for

online service provision. Decision Support Systems, 43(2), 618-644.

doi:10.1016/j.dss.2005.05.019.

[34] Khosravifar, B., Bentahar, J., Gomrokchi, M., & Alam, R. (2012). CRM: An efficient trust

and reputation model for agent computing. Kowledge-Based Systems, 30:1-16.

[35] Kravari, K. & Bassiliades N. (2016) DISARM: A Social Distributed Agent Reputation

Model based on Defeasible Logic. Journal of Systems and Software, 117: 130-152.

[36] Kravari, K. & Bassiliades, N. (2017). Social principles in agent-based trust management for

the Internet of Things. Presented at 14th Workshop on Agents for Complex Systems (ACSys

2017) in the framework of 19th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC’17).

[37] Kravari, K. & Bassiliades, N. (2017b). ORDAIN: An ontology for trust management in the

internet of things: (Short paper). Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10574 LNCS,

216-223.

35

[38] Kravari, K., Bassiliades, N. & Boley, H. (2012). Cross-Community Interoperation Between

Knowledge-Based Multi-Agent Systems: A Study on EMERALD and Rule Responder.

Journal of Expert Systems With Applications, 39(10), 9571-9587.

[39] Kravari, K., Kontopoulos, E. & Bassiliades, N. (2010a). EMERALD: A Multi-Agent System

for Knowledge-based Reasoning Interoperability in the Semantic Web. 6th Hellenic

Conference on Artificial Intelligence (SETN 2010), Springer Berlin / Heidelberg, LNCS,

6040/2010, 173-182.

[40] Kravari, K., Kontopoulos, E., & Bassiliades, N. (2010b). Trusted reasoning services for

semantic web agents. Informatica: International journal of computing and informatics,

34(4), 429-440.

[41] Kubera, Y., Mathieu, P. & Picault, S. (2010), Everything can be Agent!. Proceedings of the

ninth International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS'2010), 1547–1548.

[42] Kuo, C., & Chang, S. E. (2016). Web services-based trust framework design and

applications: A case study. 2016 Eighth International Conference on Ubiquitous and Future

Networks (ICUFN). doi:10.1109/icufn.2016.7537157

[43] Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and

challenges for enterprises. Business Horizons, 58(4), 431-440.

doi:10.1016/j.bushor.2015.03.008.

[44] Li, S., Da Xu, L., Zhao, S. (2015). The internet of things: a survey. Information Systems

Frontiers, 17(2), 243-259.

[45] Ma, M., Wang, P., & Chu, C. (2013). Data Management for Internet of Things: Challenges,

Approaches and Opportunities. 2013 IEEE International Conference on Green Computing

and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social

Computing, 1144-1151. doi:10.1109/greencom-ithings-cpscom.2013.199.

[46] Majd, E., & Balakrishnan, V. (2016). A reputation-oriented trust model for multi-agent

environments. Industrial Management & Data Systems, 116(7), 1380-1396.

doi:10.1108/imds-06-2015-0256

[47] Mukhopadhyay, S. C., & Suryadevara, N. K. (2014). Internet of Things: Challenges and

Opportunities. Internet of Things Smart Sensors, Measurement and Instrumentation, 1-17.

doi:10.1007/978-3-319-04223-7_1.

36

[48] Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice

Architecture. O'Reilly Media, Inc., 1st edn.

[49] Nguyen, T. D., & Bai, Q. (2017). Enhance Trust Management in Composite Services with

Indirect Ratings. The Computer Journal, 60(11), 1619-1632. doi:10.1093/comjnl/bxx026

[50] Niu, J., Jin, Y., Lee, A. J., Sandhu, R., Xu, W., & Zhang, X. (2016). Panel Security and

Privacy in the Age of Internet of Things. Proceedings of the 21st ACM on Symposium on

Access Control Models and Technologies - SACMAT 16, 49-50.

doi:10.1145/2914642.2927920

[51] Pandey, A.K., Vasishtha, A.K., & Saxena, A.S. (2016) Properties and interaction of object

oriented software agent with system. In: 2016 3rd International Conference on Computing

for Sustainable Global Development (INDIACom). pp. 1141-1143

[52] Poslad, S. (2007). Specifying Protocols for Multi-agent System Interaction. ACM

Transactions on Autonomous and Adaptive Systems, 4 (4): 15–es.

doi:10.1145/1293731.1293735.

[53] Rajasree, S., & Elizabeth, B. (2016). Trust Based Cloud Service Tenderer Selection.

International Journal of Engineering and Computer Science. doi:10.18535/ijecs/v5i5.63.

[54] Ruan, Y., Durresi, A., & Alfantoukh, L. (2016). Trust Management Framework for Internet

of Things. 2016 IEEE 30th International Conference on Advanced Information Networking

and Applications (AINA). doi:10.1109/aina.2016.136

[55] Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2016). The

evolution of distributed systems towards microservices architecture. 2016 11th International

Conference for Internet Technology and Secured Transactions (ICITST).

doi:10.1109/icitst.2016.7856721.

[56] Son, H., Kang, N., Gwak, B., & Lee, D. (2017). An adaptive IoT trust estimation scheme

combining interaction history and stereotypical reputation. 2017 14th IEEE Annual Seeker

Communications & Networking Conference (CCNC). doi:10.1109/ccnc.2017.7983132

[57] Talia, D. (2014). Towards Internet Intelligent Services Based on Cloud Computing and

Multi-Agents. Advances in Intelligent Systems and Computing Advances onto the Internet of

Things, 271-283. doi:10.1007/978-3-319-03992-3_19

[58] Truong, N. B., Lee, H., Askwith, B., & Lee, G. M. (2017). Toward a Trust Evaluation

Mechanism in the Social Internet of Things. Sensors, 17(12), 1346. doi:10.3390/s17061346

37

[59] Vermesan, O., & Friess, P. (2015). Internet of things - from research and innovation to

market deployment. Aalborg: River .

[60] Wahab, O. A., Bentahar, J., Otrok, H., & Mourad, A. (2015). A survey on trust and

reputation models for Web services: Single, composite, and communities. Decision Support

Systems, 74, 121-134. doi:10.1016/j.dss.2015.04.009

[61] Whitmore, A., Agarwal, A., & Xu, L. D. (2014). The Internet of Things—A survey of topics

and trends. Information Systems Frontiers, 17(2), 261-274. doi:10.1007/s10796-014-9489-2.

[62] Xianyu, B. (2010). Social Preference, Incomplete Information, and the Evolution of

Ultimatum Game in the Small World Networks: An Agent-Based Approach. Journal of

Artificial Societies and Social Simulation, 13(2). doi:10.18564/jasss.1534

[63] Xiao, H., Sidhu, N., & Christianson, B. (2015). Guarantor and reputation based trust model

for Social Internet of Things. 2015 International Wireless Communications and Mobile

Computing Conference (IWCMC). doi:10.1109/iwcmc.2015.7289151

[64] Xu, L. D., He, W., & Li, S. (2014). Internet of Things in Industries: A Survey. IEEE

Transactions on Industrial Informatics, 10(4), 2233-2243. doi:10.1109/tii.2014.2300753.

