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Abstract 

The scope of the present Doctoral Dissertation is to present a thorough assessment 

of the compound effects of thermal stress and air pollution on human mortality in 

the greater area of Thessaloniki, Greece. To meet this goal, daily concentrations 

of air pollutants (PM10, NO2 and O3) and daily values of thermal index 

(maximum Apparent Temperature, Tappmax) during 2006-2016, were utilized.  

The work presented in the following chapters was realized in discrete steps: 

At a first stage, a Distributed Lag Non-Linear Model (DLNM) was developed for 

the association of Tappmax and mortality. The obtained results revealed that heat-

attributable mortality in Thessaloniki was mainly associated with high 

temperatures and confirmed that heat has prompt impact on health. As expected, 

the Elderly (65+) showed increased vulnerability, compared to general population.  

At a second stage, the same methodology was followed to examine the effects of 

short-term exposure to PM10 and O3 on cause-specific mortality. It was showed 

that citizens of the city, especially older individuals, were at risk from the current 

levels of air pollution. O3 demonstrated more severe impact than PM10, 

particularly with regards to cardiorespiratory mortality. A secondary aim of this 

study was to quantify health benefits from two air pollution abatement scenarios 

that resulted in immediate decreases in mortality risk.  

The final objective was to analyze the interactive effects between daily maximum 

Apparent Temperature and air pollution (NO2, O3, PM10) in cause-specific mortality 

(non-accidental, cardiovascular, respiratory), by developing a Distributed Lag Non-

linear Model using the framework of Generalized Additive Models (GAM). Separate 

analysis was conducted for the Elderly citizens, as well as evaluation of the lag 

structure. This study found that deteriorated air quality rendered the local population 

more susceptible to the effects of temperature variability, and vice versa. More 

specifically, it was revealed that air pollution enhanced temperature effects on daily 

mortality, and associations between elevated temperatures and casualties were 

generally stronger at increased pollution levels. Low temperatures were associated 

with increased mortality as well, but not to the same extent. Impacts of heat were 

immediate, whereas the prevalence of cold effects became more pronounced as longer 

time lags were considered. Based on this analysis, the elderly citizens were 

susceptible to the adverse combination of thermal conditions and poor air quality.  

This dissertation presents for the first time a General Additive Model-based approach 

to assess the synergistic impact of thermal conditions and air quality for the urban 

area of Thessaloniki, by using an advanced statistical approach that captures the 

complex non-linear and lagged dependencies in both the exposure-response and lag-

response associations, and flexible enough to be modified for other synergies. The 
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results presented here hold significant significance for the advancement of public 

health interventions designed to manage and prevent the health outcomes associated 

with exposure to unfavorable thermal and air quality conditions.  
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Περίληψη 

Σκοπός της παρούσας Διδακτορικής Διατριβής είναι η παρουσίαση της διεξοδικής 

αξιολόγησης των συνδυαστικών επιπτώσεων της θερμικής καταπόνησης και της 

ατμοσφαιρικής ρύπανσης στην ανθρώπινη θνησιμότητα, στην ευρύτερη περιοχή 

της Θεσσαλονίκης. Για την επύτευξη αυτού του στόχου, χρησιμοποιήθηκαν 

ημερήσιες συγκεντρώσεις ατμοσφαιρικών ρύπων (PM10, NO2 και O3) και 

ημερήσιες τιμές θερμικού δείκτη, κατά την περίοδο 2006-2016. 

Η έρευνα πραγματοποιήθηκε σε διακριτά βήματα: 

Σε πρώτο στάδιο, αναπτύχθηκε ένα μη-γραμμικό μοντέλο κατανεμημένης 

χρονικής υστέρησης (Distributed Lag Non-Linear Model, DLNM) για τη 

συσχέτιση του θερμικού στρες και της θνησιμότητας. Τα αποτελέσματα που 

προέκυψαν αποκάλυψαν ότι η αποδιδόμενη από τη θερμότητα θνησιμότητα στη 

Θεσσαλονίκη συσχετίστηκε κυρίως με υψηλές θερμοκρασίες και επιβεβαίωσαν 

ότι η ζέστη έχει άμεσο αντίκτυπο στην υγεία. Όπως ήταν αναμενόμενο, τα 

ηλικιωμένα άτομα (65+) παρουσίασαν αυξημένη ευαλωτότητα σε σύγκριση με 

τον γενικό πληθυσμό.  

Σε δεύτερο στάδιο, ακολουθήθηκε η ίδια μεθοδολογία για την εξέταση των 

επιπτώσεων της βραχυπρόθεσμης έκθεσης σε PM10 και Ο3 στην ημερήσια 

θνησιμότητα. Αποδείχθηκε ότι ο πληθυσμός της πόλης, ιδιαίτερα τα άτομα 

μεγαλύτερης ηλικίας, κινδυνεύουν από τα σημερινά επίπεδα ατμοσφαιρικής 

ρύπανσης. Το O3 επέδειξε εντονότερη επίδραση από τα PM10, ιδιαίτερα όσον 

αφορά τη θνησιμότητα από καρδιοαναπνευστικές αιτίες. Ένας δευτερεύων στόχος 

αυτής της μελέτης ήταν η ποσοτικοποιήση του όφελους για την υγεία από δύο 

σενάρια μείωσης της ατμοσφαιρικής ρύπανσης, που είχαν ως αποτέλεσμα την 

άμεση μείωση του κινδύνου θνησιμότητας.  

Τελικός στόχος ήταν να εξεταστούν οι διαδραστικές επιδράσεις μεταξύ του 

ημερήσιου βιομετεωρολογικού δείκτη και της ατμοσφαιρικής ρύπανσης (NO2, 

O3, PM10) στη θνησιμότητα, αναπτύσσοντας ένα DLNM στο πλαίσιο των 

Γενικευμένων Προσθετικών Μοντέλων (Generalized Additive Models, GAM). 

Διαπιστώθηκε ότι η επιδείνωση της ποιότητας του αέρα καθιστά τον τοπικό 

πληθυσμό πιο ευάλωτο στις επιπτώσεις της θερμοκρασίας, και αντίστροφα. Πιο 

συγκεκριμένα, η ατμοσφαιρική ρύπανση ενίσχυσε τις επιπτώσεις της ζέστης στην 

ημερήσια θνησιμότητα και οι συσχετίσεις μεταξύ των αυξημένων θερμοκρασιών 

και των θανάτων ήταν γενικά ισχυρότερες σε αυξημένα επίπεδα ρύπανσης. Οι 

χαμηλές θερμοκρασίες συσχετίστηκαν και εκείνες με αυξημένη θνησιμότητα, 

αλλά όχι στον ίδιο βαθμό. Οι επιπτώσεις της ζέστης ήταν άμεσες, ενώ οι 

συνέπειες λόγω κρύου απαιτούσαν περισσότερες μέρες για να εκδηλωθούν. Με 
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βάση αυτή τη μελέτη, οι ηλικιωμένοι πολίτες ήταν ιδιαίτερα επιρρεπείς στο 

δυσμενή συνδυασμό θερμικής επιβάρυνσης και κακής ποιότητας αέρα.  

Η παρούσα διατριβή παρουσιάζει για πρώτη φορά μια προσέγγιση βασισμένη σε 

Γενικό Προσθετικό Μοντέλο για την αξιολόγηση της συνδυαστικής επίδρασης 

των θερμικών συνθηκών και της ποιότητας του αέρα στην αστική περιοχή της 

Θεσσαλονίκης, χρησιμοποιώντας μια προηγμένη στατιστική προσέγγιση που 

αποτυπώνει τις πολύπλοκες συσχετίσεις, η οποία είναι αρκετά ευέλικτη για να 

επεκταθεί και σε άλλες μελέτες. Τα αποτελέσματα που παρουσιάζονται εδώ 

συμβάλουν στην ανάπτυξη μέτρων για την προστασία της δημόσιας υγείας από 

την έκθεση σε δυσμενείς μετεωρολογικές συνθήκες και συνθήκες ποιότητας του 

αέρα. 
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Chapter 1 

Introduction 

1.1 Problem statement 

Rapid urbanization has caused cities to face increasing pressure from growing 

populations, limited resources and escalating impacts of climate change (World 

Health Organization, 2017). United Nations estimate that 68% of the world’s 

population will reside in urban areas by 2050 (UN Department of Economic and 

Social Affairs, 2018) with limited access to nature and increased exposure to 

environmental hazards, such as air and noise pollution (World Health 

Organization, 2017). The degradation of air quality has become so prominent in 

cities that the term urban pollution island (UPI) was recently introduced, to 

describe the spatial and temporal variations in pollution concentrations between 

urban and rural areas (Ulpiani, 2021). In modern cities, the synergistic interactions 

of urban heat islands (UHIs) and UPIs lead to increased pollutant concentrations 

via various mechanisms, such as accelerated atmospheric chemistry cycles due to 

high temperatures and increased CO2 emissions, and ozone-precursors from air-

conditioning (Ulpiani, 2021). 

Regions with poor air quality are home to approximately 90% of the global 

population (WHO, 2021), making it the most significant environmental risk to 

human health (European Environmental Agency, 2020). According to World 

Health Organization (WHO), the most critical air pollutants are sulfur dioxide 

(SO2), nitrogen oxides (NO, NO2), ground level ozone (O3) and particulate matter 

(PM), and the exposure to them is linked to adverse health outcomes (WHO, 

2021).  
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Figure 1.1: Health impacts of air pollution (Adapted from (European Environment 

Agency, 2019)) 

 

Exposure to PM10 results in asthma attacks, bronchitis, high blood pressure, heart 

attack, strokes, immune system reactions, lung irritation, and increased 

hospitalization due to respiratory and cardiovascular diseases (Larrieu et al., 2007; 

WHO Regional Office for Europe, 2013; Health effects of PM10, 2023). NO2 is 

linked to asthma development, inflammation of the airways, reduced lung function 

and chronic lung disease (Nitrogen Dioxide | American Lung Association, no date; 

D. Jarvis, G. Adamkiewicz, M. Heroux, R. Rapp, 2010; WHO Regional Office for 

Europe, 2013). Lastly, tropospheric O3 is associated to human health impacts such 

as increase in hospital admissions due to cardiovascular and respiratory diseases, 

shortness of breath, throat irritation, reduced lung function and asthma attacks 

(WHO Regional Office for Europe, 2013; Yari et al., 2016). 

Meanwhile, climate change is one of the most imperative global health threats in 

the 21st century. Higher average global temperatures are expected to lead to more 

frequent, persistent, and intense heat waves in the future (Meehl and Tebaldi, 

2004) which will undeniably rise climate-sensitive health risks.   

As a result, the interactions between ambient temperature and human health have 

emerged as major issues in the global research community during recent years. 

Elevated temperatures have profound impact of human health, including increased 

risks of heat-related illnesses, infectious diseases, malnutrition, and mental health 

issues (Koppe, C.; Kovats, S.; Jendritzky, G.; Menne, 2004; McGregor et al., 

2015). In addition, there is direct link between heat exposure and human mortality 

from respiratory, cardiovascular and cerebrovascular causes (Brooke Anderson 

and Bell, 2011; Liu et al., 2011; Gasparrini et al., 2012; Song et al., 2017; World 

Health Organization, 2022). However, not only extreme temperatures (Basu and 
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Samet, 2002b; Anderson and Bell, 2009; McGregor et al., 2015), but also changes 

in moderate temperatures have been shown to present a direct increase in 

mortality (Analitis et al., 2008).  

 
Figure 2.2: Health impacts of heat (Adapted from (Union of Concerned Scientists, 

2019)) 

 

While adverse environmental conditions impact the entire population, specific 

groups such as the elderly, pregnant women and individuals with underlying 

health conditions are more at risk in terms of health. Evidence shows that senior 

citizens are particularly susceptible to air pollution due to vasodilation, chronic 

diseases and reduced heat dissipation (Barnett, 2007; Kenney, Craighead and 

Alexander, 2014). Research also suggests that individuals with reduced ability for 

thermo-regulation are the most vulnerable groups of the population to the effect of 

extreme high temperatures (Basu, Dominici and Samet, 2005; Bunker et al., 2016; 

Chersich et al., 2020). 

The combined effect of air quality and thermal stress, coupled with rapid 

urbanization, pose a growing health concern for urban populations. These 

phenomena not only affect the well-being of individuals but also have adverse 

effects on overall prosperity in metropolitan areas. Therefore, there is a critical 

need to enhance our understanding of the underlying mechanisms of air pollution 

and the interaction with elevated temperatures. By doing so, we can effectively 

address this issue and implement proactive measures to mitigate the impacts of 

environmental stressors on urban communities. 
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1.2 Research objectives 

The principal goal of this dissertation is to analyze in depth the compound effects 

of thermal stress and air pollution on human mortality in the greater area of 

Thessaloniki, Greece. 

This study represents the pioneering application of the proposed General Additive 

Model-based approach to evaluate the health impact of thermal conditions and air 

quality in Thessaloniki's urban area. This advanced statistical method effectively 

captures the intricate relationships with optimal use of the data and thus ensures 

optimal statistical significance, being also adaptable to other synergistic analyses. 

The present work provides valuable insights to the vulnerable Southern European 

region, emphasizing the significance of comprehending and mitigating the health 

burdens associated with ambient air pollution and thermal conditions. 

Limitations should be recognized, as well. Generalizing our findings to health 

impact assessments in other regions with different underlying health conditions 

and air pollution compositions may be constrained due to the localized nature of 

similar studies. Additionally, using air quality data from stationary monitoring 

stations rather than individual exposure data may introduce bias due to potential 

misclassification of exposure, as individual exposure does not always align 

precisely with measured atmospheric parameters. The limited availability of air 

quality and morbidity data also restricted our ability to consider important 

pollutants such as PM2.5 and health aspects such as hospitalization and emergency 

room visits. Finally, further research is required to establish the causal and 

etiological mechanisms that explain the results obtained in our study. 

On the basis of this general research framework, numerous aspects are 

investigated: 

 Analysis on mortality causes (all causes, cardiovascular, respiratory) 

specifically linked with effects on health, caused by heat and air 

pollution. 

 Examination of the contribution of non-optimum temperature ranges 

coupled with increasing concentrations of pollutants, to the overall 

mortality burden.  

 Lag structure analysis across biometeorological index range and 

pollutants’ ranges. 

 Investigation of the behavior of vulnerable groups (Elderly citizens, 

aged 65+). 

 Interpretation of the produced results considering mortality risk and 

mortality burden.   
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1.3 Dissertation outline 

The outline of the current dissertation is as follows: 

In Chapter 1, a concise overview of the environmental issue tackled in this 

dissertation is provided, along with a clear delineation of the research goals to be 

accomplished. 

Chapter 2 describes the impact of environmental stressors on health, mainly on 

thermal and air quality conditions. 

In Chapter 3 the area under study is presented, started from the general 

Mediterranean region and then focusing on Thessaloniki.  

Chapter 4 contains the description of the statistical approach that was adopted in 

this work. 

Chapter 5 presents the first stage: evidence on the air pollution–mortality 

relationship in Thessaloniki urban area from 2006 to 2016, accounting for the 

cause-specific deaths, lag structure and elderly mortality. 

Chapter 6 describes second stage:  the effects of thermal stress on daily mortality 

by examining the associations between thermal indicator and cause-specific 

mortality, and investigation of the effect of time lag and non-optimum 

temperatures. 

The final stage is presented in Chapter 7: the very first application of an 

innovative GAM-based approach to assess the synergistic impact of thermal 

conditions and air quality for the urban area of Thessaloniki, with an advanced 

statistical approach that captures the complex non-linear and lagged dependencies 

in both the exposure-response and lag-response associations. 

Chapter 8 includes the summary and conclusions of this dissertation. 
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Chapter 2 

Health impact of environmental 

stressors  

2.1 Meteorological conditions 

The impact of weather conditions on society has been a major concern for the 

scientific community in recent decades. In particular, extreme temperatures pose a 

significant global concern due to their substantial effect on several aspects of life.  

A prolonged period of intense heat can profoundly influence society, leading to 

additional pressure on critical infrastructure, such as power, water, and 

transportation systems. Sectors like clothing and food retail, tourism, and 

ecosystem services are not immune to the impact of heat waves, creating potential 

socioeconomic disparities (McGregor et al., 2015). Elevated temperatures pose 

several environmental risks, e.g. ecosystem imbalances, habitat loss, water 

scarcity, disruption of phenological patterns and loss of biodiversity (Guo et al., 

2017; Union of Concerned Scientists, 2019; Zinzi and Santamouris, 2019; 

Galanaki et al., 2023). In certain cases, heat waves can even instigate social 

disruptions across various levels: hot weather has been linked with higher levels 

of street violence and attacks, as well as rioting and unrest (Rotton and Cohn, 

2000). 

The economic effects of high temperatures should not be overlooked. 

Anthropogenic extreme heat has caused losses of about $16 trillion to the global 

economy during 1992-2013 (Callahan and Mankin, 2022).  According to the same 

study, wealthy regions like Europe and North America encountered an average 

annual decline of 1.5% in GDP per capita due to extreme heat. In contrast, lower-
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income regions such as India and Indonesia suffered a more significant reduction, 

with a yearly GDP per capita loss of 6.7%. European Environment Agency 

estimates that between 1980 and 2021, weather- and climate-related extremes 

caused economic losses estimated at EUR 560 billion in the EU Member States, 

whereas heat waves were responsible for over 13% of the total losses  (European 

Environment Agency (EEA), 2023). 

At present, extreme temperatures have become a public health hazard, 

contributing to a substantial burden of disease. Heat demonstrates profound 

impact on human health, including increased risks of heat-related illnesses, 

infectious diseases, malnutrition, and mental health issues (Koppe, C.; Kovats, S.; 

Jendritzky, G.; Menne, 2004; McGregor et al., 2015). Increased temperature is 

also associated with preterm birth and abnormal birth weight (Strand, Barnett and 

Tong, 2011; Carolan-Olah and Frankowska, 2014). Studies have found links 

between rising temperatures and a range of mental health issues including mental 

fatigue, aggression and even higher rates of suicide (Schmit et al., 2017; Miles-

Novelo and Anderson, 2019). A 1 °C temperature rise was also associated with a 

significant increase in mood disorders, organic mental disorders, schizophrenia, 

neurotic, anxiety disorders and hospitalizations for Alzheimer's disease (Xu et al., 

2019; Liu et al., 2021). 

Thermal conditions significantly impact morbidity rates and the severity of 

chronic diseases.  Heat-related morbidity appears to be associated with a range of 

pre-existing chronic health conditions, including cardiovascular, cerebrovascular 

and respiratory disorders (Brooke Anderson and Bell, 2011; Liu et al., 2011; 

Gasparrini et al., 2012; Bunker et al., 2016; Song et al., 2017; Campbell et al., 

2018; World Health Organization, 2022). 

Elevated temperatures have a profound influence on mortality rates, 

encompassing various causes of death. Heat waves are considered to be the 

deadliest weather disaster in many parts of the world (Brooke Anderson and Bell, 

2011). In a research focusing on heat waves in 43 U.S. cities (1987–2005), it was 

found that mortality increased  by 3.74% during heat waves compared with non-

heat wave days (Brooke Anderson and Bell, 2011). A systematic review by 

(Bunker et al., 2016) reports that a 1 °C temperature rise increased cardiovascular, 

respiratory, and cerebrovascular mortality by 3.44%, 3.60% and 3.18%, 

respectively. Similarly,  a 1 °C increase in mean temperature above 31°C was 

associated with a 25.18% increase in non-accidental, 34.10% in cardiovascular 

and 24.27% increase in respiratory mortality, in a study over Wuhan (Zhang et al., 

2016). High temperatures were clearly associated with increased risk for those 

dying from cardiovascular, respiratory, cerebrovascular, and some specific 

cardiovascular diseases, such as ischemic heart disease, congestive heart failure, 

and myocardial infarction in the review of epidemiological studies by (Basu, 

2009). 
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Thermal conditions exert a profound influence on human health. Understanding 

the relationship between meteorology and mortality/morbidity is essential for 

developing effective public health strategies and interventions aimed at mitigating 

the adverse effects of extreme temperatures on human well-being. 

2.1.1 Thermal indices 

Thermal comfort is the subjective sensation that can be defined as the condition of 

mind which expresses satisfaction with the thermal environment (Epstein and 

Moran, 2006). Thermal indices serve as tools to quantify the intricate heat 

exchange between the human body and its thermal environment. These indices 

aim to assess comfort levels, as well as the stress imposed on the human body. 

Outdoor environments are influenced by various factors such as air temperature, 

relative humidity, water vapor pressure, wind velocity, solar radiation, and mean 

radiant temperature (Deb and Alur, 2010). Furthermore, personal characteristics 

and behavioral adaptations, including clothing choices, metabolic rate, activity 

levels, pre-existing health conditions, and exposure duration, significantly impact 

the individual's thermal sensation (Brake and Bates, 2002). 

Simple indices have advantages such as ease of calculation, forecasting, and 

communication. However, they suffer from significant drawbacks: neglecting 

essential variables, producing non-comparable results, leading to 

misrepresentations of the thermal environment, and relying on arbitrary safety 

limits (Jendritzky, De Dear and Havenith, 2012). Consequently, only indices that 

incorporate all relevant parameters can be universally utilized across different 

climatic zones, regions, and seasons (Jendritzky, De Dear and Havenith, 2012). 

According to (Epstein and Moran, 2006), there are 4 criteria that a 

biometeorological index must meet: 

a) Feasibility and accuracy in a wide range of environmental and metabolic 

conditions. 

b) Consideration of all important factors (environmental, metabolic, clothing 

etc). 

c) Relevant measurements should reflect the worker’s exposure. 

d) Exposure limits should consider physiologic and/or psychological 

responses reflecting increased risk to safety or health. 

Heat stress indices can be categorized into three groups based on their underlying 

principles (Parsons, 2003): rational indices, empirical indices, and direct indices. 

Rational indices involve calculations that incorporate the heat balance equation. 

Empirical indices are based on objective and subjective measures of strain, while 

direct indices rely on direct measurements of environmental variables. 

Implementing indices from the first two groups can be challenging in work 

environments as they involve numerous variables and, in some cases, invasive 
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measurements. In contrast, the third group of indices is more user-friendly and 

practical, as it is based on the monitoring of environmental variables. 

 

2.1.1.1 Wet Bulb Globe Temperature (WBGT) 

The WBGT index is a widely used direct thermal index, developed in the US 

Navy as part of a study on heat related injuries during military training. It takes 

into account the readings from three different temperature sensors: a wet bulb 

thermometer, a dry bulb thermometer, and a globe thermometer. It is commonly 

used in occupational settings, sports events, and military operations to assess the 

risk of heat-related illnesses and to guide appropriate safety measures. 

WBGT is described by    

                           

where T is air temperature and vp is air vapor pressure (Blazejczyk et al., 2012). 

2.1.1.2 Physiological Equivalent Temperature (PET) 

PET is a universal index for characterising thermal bioclimate, allowing for the 

evaluation of thermal conditions in a physiologically significant manner. The 

index is derived from human energy balance models (Deb and Alur, 2010) and 

takes into account individual metabolic rates and clothing insulation levels.  

PET is defined as “the physiological equivalent temperature at any given place 

(outdoors or indoors) and is equivalent to the air temperature at which, in a typical 

indoor setting, the heat balance of the human body is maintained with core and 

skin temperatures equal to those under the conditions being assessed” (Hoppe, 

1999). 

By using PET, it is possible to evaluate the thermal comfort or discomfort levels 

for individuals in a specific environment. The index finds applications in urban 

planning, outdoor activities, and the assessment of thermal comfort in buildings 

and it is well suited to the human biometeorological evaluation of the thermal 

component of different climates (Matzarakis, Mayer and Iziomon, 1999). 

2.1.1.3 Physiological Equivalent Temperature (DI) 

DI was first introduced by (Thom, 1959) and currently, it is expressed by  

DI = 0.5*Tw + 0.5*Ta 

where Ta is air temperature and Tw the wet-bulb temperature. 
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DI is particularly relevant in hot and humid climates where high temperatures 

combined with high humidity can lead to heat-related discomfort and potential 

health risks. It helps individuals, especially those who are sensitive to heat or 

engaged in outdoor activities, to assess the potential impact on their well-being 

and take appropriate precautions such as staying hydrated, seeking shade, or 

adjusting clothing choices. 

2.1.1.4 Universal Thermal Climate Index (UTCI) 

UTCI was conceived as a thermal index covering the whole climate range from 

heat to cold (Havenith et al., 2012). According to (Jendritzky, De Dear and 

Havenith, 2012), “UTCI is defined as the isothermal air temperature of the 

reference condition that would elicit the same dynamic response of the 

physiological model”. It is perceived as one of the most comprehensive indices 

calculating human thermal stress (Zare et al., 2018). 

The formula calculating UTCI index is: 

                                         

where T is air temperature (°C), Mrt is mean radiant temperature (°C), v is wind 

speed at 10 m above ground (m/s), and RH is relative humidity (%). 

2.1.1.5 Apparent Temperature (AT) 

AT is a thermal index that expresses thermal stress and comfort perceived by 

human, defined as “a measure of relative discomfort due to the combination of 

heat and high humidity” (Baccini et al., 2008). It is computed from temperature 

and dew-point data as follows: 

                               

AT is a discomfort index widely met in the literature (de’ Donato et al., 2015; 

Ullah et al., 2021) and it is used operationally as the main thermal index in the 

Italian National Heat Health Watch Warning Systems (Michelozzi et al., 2010). It 

is also found that AT is an optimal indicator for predicting all-cause mortality risk 

and for activating heat alerts and warnings (Lin et al., 2012; Zhang et al., 2014). 

 

2.2 Air Quality conditions 

The gradual rise of human activities since the late 18
th

 century, primarily fueled 

by the burning of fossil fuels and biomass, has led to the deterioration of air 

quality (Watts, Adger and Agnolucci, 2015; Pozzer et al., 2023). Rapid 

urbanization rate has caused cities to face increasing pressure from growing 
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populations, limited resources and escalating impacts of climate change (World 

Health Organization, 2017). UN estimates that 68% of the world’s population (2.5 

billion people) will reside in urban areas by 2050 (UN Department of Economic 

and Social Affairs, 2018) with limited access to nature and increased exposure to 

environmental hazards, such as air and noise pollution (World Health 

Organization, 2017). The degradation of air quality has become so prominent in 

cities that the term urban pollution island (UPI) was lately introduced, to describe 

the spatial and temporal variations in pollution concentrations between urban and 

rural areas (Ulpiani, 2021). In modern cities, the synergistic interactions of urban 

heat islands (UHIs) and UPIs lead to increased pollutant concentrations via 

various mechanisms (Ulpiani, 2021). 

Regions with poor air quality are home to approximately 90% of the global 

population (WHO, 2021), making it the most significant environmental risk to 

human health and ranked as the second-greatest environmental concern among 

Europeans (European Environmental Agency, 2020). According to (WHO, 2021), 

the most critical air pollutants are sulfur dioxide (SO2), nitrogen oxides (NO, 

NO2), ground level ozone (O3) and particulate matter (PM), and the exposure to 

them is linked to adverse health outcomes.  

Poor air quality, both ambient and indoor, has become a pressing issue, with more 

frequent and intense episodes of high pollution levels being prevalent in cities 

across the globe. (Fuller et al., 2022) estimates that air pollution caused 6.7 

million deaths in 2019, and this figure is rising. They also state that more than 

90% of pollution-related deaths occur in low-income and middle-income 

countries. Most evidence has been related to natural, cardiovascular and 

respiratory causes, nervous system causes, stroke, coronary heart disease and 

chronic obstructive pulmonary disease (Shang et al., 2013; Chen et al., 2019; 

Gariazzo et al., 2023). 

Air pollution not only impacts mortality, but morbidity as well. According to 

European Environment Agency, exposure can lead to a wide range of diseases, 

including stroke, chronic obstructive pulmonary diseases, trachea, bronchus and 

lung cancers, aggravated asthma and lower respiratory infections (European 

Environment Agency, no date). The most compelling evidence regarding the 

health consequences of air pollution relates to cardiovascular and respiratory 

ailments (European Environment Agency, 2019); nevertheless, studies exploring 

other health impacts are also increasing (WHO, 2022; WHO Regional Office for 

Europe, 2022).  

Older adults are more susceptible to the negative health impacts of air pollution 

due to their decreased ability to adapt to stressors on their physiological, 

metabolic, and compensatory processes, as well as their higher likelihood of 

having cardiovascular and respiratory diseases (Geller and Zenick, 2005; 

Shumake et al., 2013). Elderly mortality has been found to be particularly affected 

by PM10 and O3, with higher excess risks than other age groups (Cakmak, Dales 
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and Vidal, 2007; Katsouyanni et al., 2009; Liu et al., 2022; Olstrup, Åström and 

Orru, 2022).  

In literature there is evidence that temperature exacerbates air pollution-related 

health effects. During the summer season, (Shi et al., 2019) observed that a 1°C 

increase in temperature corresponds to a rise of 1.05 μg/m
3
 in PM2.5 levels and a 

1.02% increase in mortality associated with it. In (K. Chen et al., 2018), an 

increase of 10 μg/m
3
 in PM10 was associated with 0.03% and 0.93% increase in 

total natural mortality at low and high temperatures, respectively. (Jhun et al., 

2014) report that high temperatures exacerbate physiological responses to short-

term ozone exposure, increasing mortality by 1.35% at a 10-ppb O3 increase.  

It is worth noticing that on days with high air pollution, both heat- and cold-

related mortality increases (K. Chen et al., 2018). Although (Stafoggia et al., 

2008) found higher PM10 effects on mortality during warmer days (2.54% 

increase on death rate), there was also an increase (0.2%) in winter, as well. 

Similarly, a 10µg/m
3
 increase in NO2 was associated with larger raise in non-

accidental mortality in summer (2.65%) than winter (0.01%). By contrast,  in 

(Qian et al., 2010), the strongest effects of a 10-μg/m
3
 increase in PM10 daily 

concentration on mortality were reported for winter (0.69%) than summer 

(0.45%).  

Pollution prevention, despite its significant impacts on health, societies, and 

economies, has received inadequate attention and funding within the international 

development agenda. International organizations and national governments need 

to continue expanding the focus on pollution as one of the most imperative global 

environmental issues. 

 

2.2.1 PM10 

Particulate matter is reported to pose significant risk in health (Wang et al., 2009). 

In 2020, the European population experienced approximately 238,000 premature 

deaths due to PM10 concentrations exceeding the World Health Organization's 

2021 guideline of 45 μgr/m³ (EEA, 2022a).  

Exposure to PM10 results to asthma attacks, bronchitis, high blood pressure, heart 

attack, strokes, immune system reactions, lung irritation, and increased 

hospitalization due to respiratory and cardiovascular diseases (Larrieu et al., 2007; 

WHO Regional Office for Europe, 2013; Health effects of PM10, 2023). 

High levels of PM cause an increase in all-cause, cardiovascular, respiratory and 

cerebrovascular mortality rates, as well. (Khaniabadi et al., 2017) reports that a 10 

μg/m
3
 change in PM10 generates 6.6% excess of relative risk in cardiovascular 

mortality; similar results are obtained by (Christina Adebayo-Ojo et al., 2006), 

where increase in PM10 concentrations are associated with an increased risk of 
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2.4% in CVD causes. In the systematic review and meta-analysis by (Orellano et 

al., 2020), a significant body of evidence shows that an increase in outdoor 

concentrations of PM10, increases the risk of all-cause and cardiovascular, 

respiratory, and cerebrovascular mortality in humans. PM10 demonstrated 

independent effect on mortality in (Olstrup et al., 2019), as an interquartile range 

increase in pollutant concentration was associated with a 0.8% increase in daily 

mortality. (Revich and Shaposhnikov, 2010) linked 10 μg/m
3
 increases in daily 

average measures of PM10 with a 0.33% increase in all-cause non-accidental 

mortality, a 0.66% increase in mortality from ischemic heart disease, and a 0.48%  

increase in mortality from cerebrovascular diseases. 

2.2.2 NO2 

NO2 is a harmful air pollutant that has detrimental impacts on human health. It is 

linked to asthma development, increased inflammation of the airways, reduced 

lung function and chronic lung disease (Nitrogen Dioxide | American Lung 

Association, no date; D. Jarvis, G. Adamkiewicz, M. Heroux, R. Rapp, 2010; 

WHO Regional Office for Europe, 2013).   

As concentration increases, health effects aggravate, too. In 2018, 1.65 million 

deaths were attributed to ambient NO2 exposure  in China (Zhang et al., 2022). 

Positive associations to all-cause mortality (0.72%) are reported for 10 µg/m
3 

increase in NO2 in (Orellano et al., 2020). (Christina Adebayo-Ojo et al., 2006) 

linked 10.7 µg/m
3
 increase of NO2 to 2.2% rise in CVD and 4.5% in respiratory 

mortality; similar results (1.2% excess of RR in cardiovascular mortality) are 

demonstrated in (Khaniabadi et al., 2017). Short-term exposure to this pollutant is 

associated to a 0.75% increase of non-accidental mortality for all age-groups 

(Corso et al., 2020).  Per 10 mg/m
3
 increase in annual NO2 exposure was 

associated with an hazard ratio of 1.127 for all-cause mortality in (Zhang et al., 

2022).  

According to (Song et al., 2023), more than half a million cases of deaths 

attributed to NO2 exposure in urban areas could be prevented worldwide in 2019, 

if compliance with the latest WHO guideline. 

2.2.3 O3 

Tropospheric O3 is the second most critical pollutant of the atmosphere, playing 

an important role in climate change and deterioration of air quality (Khaniabadi et 

al., 2017). It is associated to human health impacts such as increase in hospital 

admissions due to cardiovascular and respiratory diseases, shortness of breath, 

throat irritation, reduced lung function and asthma attacks (WHO Regional Office 

for Europe, 2013; Yari et al., 2016). 

Exposure to ozone accounted for 365,000 deaths in 2019 (Health Impacts of 

Ozone | State of Global Air, no date). O3 emerges as a risk factor to CVD 



 

14 

mortality related to 2% risk increase, based on (Khaniabadi et al., 2017); the 

respective rise in (Christina Adebayo-Ojo et al., 2006) is equal to 1.4%. (Orellano 

et al., 2020) reports strong associations between O3 and all-cause mortality 

(0.43% increase). O3 was associated with an increase of 2% in daily mortality two 

days after the exposure and 1.9% after 3 days (Olstrup et al., 2019). All-cause 

mortality risk found to be increased by 1.09%; mortality from ischemic heart 

disease increased by 1.61% and 1.28% mortality increase from cerebrovascular 

diseases was associated to 10 μg/m
3
 O3 rise, according to (Revich and 

Shaposhnikov, 2010). 

2.2.4 Air Quality indices 

Clean air is an essential prerequisite for human health and overall well-being. 

While air pollution data can be complex and challenging to comprehend, 

environmental synthetic indices offer a valuable means to condense intricate 

situations into a single numerical value, enabling comparisons across different 

time periods and geographical locations (Plaia and Ruggieri, 2011). According to 

(Shooter and Brimblecombe, 2009), air quality indices (AQIs) serve the purpose 

of expressing the concentration of individual pollutants on a standardized scale, 

where the occurrence of effects, particularly health-related effects, is shared 

among all pollutants. Put simply, air quality indices provide a straightforward and 

easily understandable method to gauge the quality of air in relation to its potential 

impact on human health. 

(Kanchan, Gorai and Goyal, 2015) set specific criteria that an AQI must fulfill: 

1. be readily understandable by the public;  

2. include the major criteria pollutants and their synergisms; 

3. be expandable for other pollutants and averaging times; 

4. be related to National Ambient Air Quality standards used in individual 

provinces; 

5. avoid “eclipsing” (eclipsing occurs when an air pollution index does not 

indicate poor air quality despite the fact that concentrations of one or more 

air pollutants may have reached unacceptably high values); 

6. avoid “ambiguity” (ambiguity occurs when an air pollution index gives 

falls alarm despite the fact that concentrations of all the pollutants are 

within the permissible limit except one); 

7. be usable as an alert system;  

8. be based on valid air quality data obtained from monitoring stations that 

are situated so as to represent the general air quality in the community. 

 AQIs can serve various aims and purposes. They are utilized to effectively 

communicate air quality information to the public, evaluate the effectiveness of 
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pollution reduction strategies, monitor medium and long-term trends, and more. 

While the fundamental concepts behind AQIs remain similar, their practical 

implementation can vary significantly (Plaia and Ruggieri, 2011). In general, 

there is not only one system of air pollution indicators, as several countries have 

created their own sets of indicators tailored to the needs of each country or region, 

setting national limits for air pollution.  

2.2.4.1 AQI system of U.S. Environmental Protection Agency 

U.S. EPA’s AQI is defined with respect to the five main common pollutants: 

carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter 

(PM10 and PM2.5) and sulphur dioxide (SO2). AQI shows daily how clean or 

polluted the ambient air is, highlighting the corresponding effects on public 

health. The index ranges from 0 to 500. The higher its value, the higher the level 

of air pollution and the greater is the concern for the health of the citizens (United 

States Environmental Protection Agency, 2014).  

AQI is a piecewise linear function of the pollutant concentration calculated as 

follows: 

  
          

          
               

where I  is the Index for pollutant, C is the rounded concentration of pollutant,  

Chigh is the break point that is greater than or equal to C, Clow is the breakpoint that 

is less than or equal to C,  Ihigh  is the AQI value corresponding to Chigh  and Ilow is 

the AQI value corresponding to Clow. The highest individual pollutant index, I, 

represents the Air Quality Index of the location. 

 

Figure 2.1: AQI scale and health warnings (Adapted from (United States Environmental 

Protection Agency, 2014)) 
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2.2.4.2 European Air Quality Index (EAQI) 

EAQI gives to users the opportunity to gain a better understanding of air quality in 

their respective living, working, or travel locations. By providing real-time 

information for Europe, users can access valuable insights into the air quality of 

specific countries, regions, and cities. This index is built upon concentration 

values for up to five significant pollutants, namely PM10, PM2.5, O3, NO2 and 

SO2.  

EAQI reflects the potential health impact of air quality, focusing on the pollutant 

with the poorest concentration and its associated health effects. To generate the 

index, current air quality data reported hourly by member countries of the 

European Environment Agency are utilized. Additionally, where necessary, the 

index incorporates modeled air quality data from the European Union's 

Copernicus Atmosphere Monitoring Service (CAMS). 

EAQI is accompanied by health-related messages that provide recommendations 

for both the general population and sensitive populations. The latter category 

includes individuals, both adults, and children, who have respiratory problems, as 

well as adults with heart conditions (European Environment Agency (EEA), 

2022). 

 

Figure 2.2: EAQI health messages (Adapted from (European Environment Agency 

(EEA), 2022)) 
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2.2.4.3 Air Quality Health Index (AQHI) 

In Canada, AQHI was developed as a scale aimed at assessing the effects of air 

quality on human health, jointly coordinated by the Department of the 

Government of Canada responsible for National Health Policy and the 

Department of the Government of Canada responsible for Coordinating 

Environmental Policies and Programs. This index serves as a tool for safeguarding 

health and helps individuals make informed decisions to minimize their short-term 

exposure to air pollution by adjusting their activity levels during periods of 

heightened pollution. Additionally, AQHI offers guidance on enhancing air 

quality through recommended behavioral changes that contribute to reducing the 

environmental impact. 

One significant aspect of the index is its focus on individuals who are more 

susceptible to the impacts of air pollution. It provides specific advice to these 

sensitive populations on how to safeguard their health during periods of varying 

air quality, categorized as low, moderate, high, and very high health risks. By 

tailoring recommendations based on air quality levels, the Air Quality Health 

Index aims to empower individuals to protect their well-being (Stieb et al., 2008). 

AQHI provides a number from 1 to 10+ to indicate the level of health risk 

associated with local air quality. Occasionally, when the amount of air pollution is 

abnormally high, the number may exceed 10. The following are the objectives of 

the AQHI: 

 

 Create a Canadian communications and planning tool for individuals and 

caregivers when considering adverse health effects associated with the air 

pollution mixture. 

 Use "health awareness" as a tool to promote: 

greater understanding of air quality/health links; 

physical activity when health risk/air pollutant levels are low; and 

personal action to reduce air pollution. 

 Create advocates for reducing air pollution. 
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Figure 2.3: AQHI scale and health messages (Adapted from (Health Canada, 2010)) 

2.3 Susceptible population groups  

Despite the widespread nature of air quality and thermal stress issues, their impact 

varies among different groups due to individual physiological sensitivities and 

varying degrees of exposure influenced by behavioral factors (Makri and 

Stilianakis, 2008). Extensive evidence demonstrates that the health consequences 

associated with exposure to air pollution and high temperatures exhibit different 

degrees of severity based on factors such as life stage (with children and older 

adults generally being more susceptible), preexisting cardiovascular or respiratory 

conditions, genetic polymorphisms, and low socioeconomic status (Basu and 

Samet, 2002a; Sacks et al., 2011). Pregnant women are thought to particularly at 

risk of heat related effects (Balbus and Malina, 2009), as there is evidence that 

supports an association between high environmental temperature and preterm 

birth due to difficulty with thermoregulation and dehydration during heat 

exposure (Basu, Malig and Ostro, 2010). 

Climate change and rapid population ageing are significant public health 

challenges. Understanding the health risks associated with exposure to adverse 

conditions on elderly people is vital for preventing related deaths and illnesses in 

this frail population. 

Elderly vulnerability to heat is attributable to physiological and social factors, 

such as living alone, multiple co-morbidities and high medication use, slow 

physiological adaptation and behavioral response to thermal stress, vasodilation, 

limited access to medical care and housing with heating or cooling (Barnett, 2007; 

Kenney, Craighead and Alexander, 2014; Bunker et al., 2016). In addition, people 

in the age group 65+ years of age are assumed to be more susceptible to air 

pollution-induced health effects, due to decreased physiological, metabolic, and 

compensatory processes, and due to a greater incidence of cardiovascular and 

respiratory diseases (Geller and Zenick, 2005; Shumake et al., 2013). 

(Tsoutsoubi, Ioannou and Flouris, 2021) found high fatality risks due to 

circulatory causes when older people are exposed to non-neutral environmental 
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conditions. A 1°C temperature rise increased cardiovascular, respiratory, diabetes 

mellitus, genitourinary, infectious disease and heat-related morbidity among the 

elderly (65+ years) in the study by (Bunker et al., 2016). High and very high 

temperatures increase not only cardiovascular and respiratory mortality of people 

over 65 years of age by 20% to 35% (Paravantis et al., 2017), but hospital 

admissions as well (Oudin Åström, Bertil and Joacim, 2011).  

On the other hand, the elderly are particularly susceptible to dying from air 

pollution (Cakmak, Dales and Vidal, 2007). Exposure to PM10 is linked to the 

development of vascular dementia (Shim, Byun and Lee, 2023) and biomass fuel 

is associated with 40% risk increase in vision impairment (Zhou et al., 2023). A 

10 µgr/m
3
 rise of NO2 concentrations increased the risk of cardiovascular deaths 

by 0.25% in cold and 3.17% in warm period for people aged > 75 years; the 

respective values for all-cause mortality were 0.20% and 3.07% (Corso et al., 

2020). Last, fine particulate matter is associated to myocardial infarction deaths 

(Mo et al., 2023) and a variety of air pollutants, such as NO2, SO2, O3 and PM10 

results in kidney disease mortality (Cai et al., 2023). 

According to (World Health Organization, 2022), public health interventions need 

to identify and target particularly vulnerable population groups and individuals. 

This allows for tailored interventions, reduces health disparities, ensures equitable 

distribution of resources, improves emergency planning, and enhances public 

awareness and education. These efforts collectively contribute to safeguarding 

public health, particularly for those who are most susceptible to the impacts of 

heat and air pollution. 

2.4 Mortality displacement 

Mortality displacement (or harvesting effect) is identified by a decline in mortality 

following occurrences of extreme values of environmental stressor under study. 

The presence of harvesting implies that elevated temperatures and/or pollutant 

concentrations primarily impact a specific subset of individuals who are already 

vulnerable to chronic illnesses. These individuals would have succumbed to their 

conditions within a few days regardless of the weather and air quality conditions. 
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Figure 2.4: Hypothetical lag structure corresponding to the mortality displacement 

effect (Adapted from (Zanobetti et al., 2002)) 

This effect is observed in literature (Schwartz, 2000; Hajat et al., 2005; Baccini et 

al., 2008; McGregor et al., 2015), and it can be potentially attributed to the socio-

economic and baseline health status of the population and to possible interactions 

between heat and air pollution (Kouis et al., 2019). The variability in factors 

influencing individuals' vulnerability to exposure-related mortality may account 

for the contrasting findings in studies, where some observe a harvesting effect  

(Baccini et al., 2008), while others do not (D’Ippoliti et al., 2010). 

Harvesting effect does not appear in a uniform way among similar studies and 

there is evidence that patterns of mortality displacement for heat-related deaths 

depend on the population at risk. More specifically, (Hajat et al., 2005) observed 

differences in displacement patterns between low-income and high-income 

countries, with the first affected mainly by infectious diseases of the young 

individuals, and the latter by chronic diseases of the elderly.  

2.5 Combined effects of heat and air pollution 

Air pollution is a leading cause of death and disability, contributing to 6.7 million 

deaths globally in 2019 (Global Health Impacts of Air Pollution | State of Global 

Air, no date). The exposure to pollutants like PM10, O3 and NO2 results to direct 

increase in all-cause, cardiovascular, respiratory and cerebrovascular mortality 

(Christina Adebayo-Ojo et al., 2006; Khaniabadi et al., 2017; Shi et al., 2019; 

Meng et al., 2021; Gariazzo et al., 2023). In the meantime, it is established that 

non-optimal temperatures disrupt the functioning of the body's thermoregulatory 

system, leading to various physiological responses (Osilla, Marsidi and Sharma, 

2023). These responses can contribute to an increased risk of morbidity and 
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mortality across diverse health conditions, encompassing cardiovascular ailments, 

respiratory diseases, diabetes, as well as genitourinary and neurological disorders 

(Psistaki, Dokas and Paschalidou, 2023). 

The available evidence concerning the potential interactive effects of heat and 

ambient air pollution remains inconclusive, by large. Until recently, the vast 

majority of relative studies were considering the impact of environmental 

stressors on human health separately (e.g. (Bao et al., 2016; Kriit et al., 2022)).  A 

limited number of epidemiological studies have examined the influence of 

temperature while considering daily air pollution levels (Stafoggia et al., 2008; 

Cheng and Kan, 2012; Meng et al., 2012; Jhun et al., 2014) either in the hot 

(Meng et al., 2012) or the cold tail (Cheng and Kan, 2012) of the temperature 

distribution, whereas even less have analyzed the impact of air pollutants while 

adjusting for daily temperature (Turner et al., 2012; Breitner et al., 2014). (Jhun et 

al., 2014) report that temperature exacerbates ozone impact on mortality, as a 10-

ppb increase in daily 24-h ozone was associated with a 0.47% increase in 

mortality. (Meng et al., 2012) connected 10 μg/m
3
 increment in PM10 with 0.54% 

increase of total mortality, 0.56% increase of cardiovascular mortality, and 0.80% 

increase of respiratory mortality, with results being more prominent at high 

temperatures. Statistically significant interactions between PM10/O3 and moderate 

temperatures were reported for all-cause (0.17%/0.66%), cardiovascular 

(0.23%/0.88%) and respiratory mortality (0.26%/0.79%) (Cheng and Kan, 2012). 

According to (Stafoggia et al., 2008), seasons strongly affect the relationship 

between mortality and PM10, and reported 2.54% increase in death risk in summer 

compared to 0.20% in winter, for a 10-lg/m3 variation in PM10. When 

confounding with high levels of O3 and PM10, the associations between high 

temperatures and mortality were amplified, leading to increases in non-accidental 

(11.5%, 10.5%) and cardiovascular mortality (9.6%, 9.4%) (Breitner et al., 2014). 

(Ren and Tong, 2006) revealed that the maximum temperature had a modifying 

effect on the relationships between PM10 and various health outcomes, including 

respiratory hospital admissions, emergency visits, cardiovascular emergency 

visits, and cause-specific mortality at different time lags. 

Either confounding the temperature-mortality relationship with pollutants, or the 

pollution-mortality association with temperature, no uniform conclusions can be 

drawn. For example, some publications have provided evidence on the synergistic 

effects (Baccini et al., 2008), others report no combined impact (Samet et al., 

1998; Hales et al., 2000; Basu, Feng and Ostro, 2008), while in some instances, 

effect modifications are reported for only one of the pollutants under study 

(Breitner et al., 2014).  

The diverse perspectives on this matter continue to be a subject of debate within 

academic literature. Moreover, there has been relatively limited investigation into 

the simultaneous interactive effects of temperature and air pollution as predictors 

of mortality.  
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Studying synergy and not just confounding is a recent development in this 

research field. (Burkart et al., 2013a) assessed the interactive effects between 

UTCI and PM10/O3 on Berlin and Lisbon mortality by developing response 

surface models. They found strong increases in death numbers at high 

temperatures and high levels of O3 for both cities, while Lisbon demonstrated 

mortality rise during high PM10 pollution (3% mortality change per 1 °C UTCI 

increase); nevertheless, changes in cold effects with increasing levels of air 

pollution were not reported. A similar statistical approach was implemented in 

(Scortichini et al., 2018), in order to study PM10 and O3 as potential factors 

influencing the association between temperature and natural mortality during the 

summer season. The tensor smoother introduced in the analysis showed an overall 

increase of the heat effects stratified by levels of PM10 and O3. (Rai et al., 2023) 

also reported significant modification of heat effect by various pollutants.  

Summer temperatures increased respiratory mortality by 7.7%, 11.3% and 14.3% 

at low, medium, and high levels of PM2.5, respectively. Likewise, cardiovascular 

mortality increased by 1.6%, 5.1% and 8.7% at low, medium and high levels of 

O3. 

The combined effect of pollution and heat on human health is complex and 

multifaceted, requiring further investigation to fully comprehend its impacts. It is 

crucial to conduct comprehensive research in order to develop effective measures 

that address both pollution and heat, ensuring the protection of human well-being. 

Taking proactive steps to mitigate these factors is essential for safeguarding 

public health and fostering a sustainable and resilient environment. 
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Chapter 3 

Meteorology and air quality in the 

area 

3.1 The Mediterranean region 

Mediterranean region occupies a unique geographical position in the transition 

zone between North Africa and central Europe. Minor modifications of the 

general circulation can lead to substantial changes in the Mediterranean climate, 

making the area vulnerable to climatic changes (Ulbrich et al., 2006). Moreover, 

local population is experiencing adverse health impacts from the impaired air 

quality due to global air pollution crossroads over the Mediterranean (Lelieveld et 

al., 2002). 

For instance, in a research on 10 Mediterranean metropolitan areas a 10-μg/m
3
 

increase in PM2.5 was associated with increases in all-cause (0.55%) and 

respiratory mortality (1.91%), and effects were more prominent among those ≥ 75 

years of age (Samoli et al., 2013); positive associations between PM10 and 

several different mortality causes (diabetes, cardiac, cerebrovascular, chronic 

obstructive pulmonary disease) are reported in (Samoli et al., 2014). The 

conditions become even more adverse, as increased temperatures in the area are 

linked to high pollutant production (Pyrgou, Hadjinicolaou and Santamouris, 

2018). 

Threshold violations in air pollutant concentrations are particularly pronounced in 

Southern and Eastern Europe (EEA, 2018), especially with respect to particulate 

matter and ozone concentrations in Greece, Spain, and Italy (Pleijel, 2000; 

Karanasiou et al., 2014; Sicard et al., 2021). The collective impacts of climate 



 

24 

change and air pollution in these areas should be taken into consideration 

(Bytnerowicz, Omasa and Paoletti, 2007) under the specific topographical and 

meteorological conditions of each region (Valjarević et al., 2021). More 

specifically, the ground-level ozone concentrations in Southern Mediterranean 

countries are often alarmingly high and are comparable to the highest levels of 

places that are located in the most contaminated parts of Central Europe 

(Moussiopoulos et al., 2009). 

On the other hand, the Mediterranean area is anticipated to experience more 

intense, severe, and frequent heat waves under warmer and drier future conditions, 

making it particularly susceptible to temperature increases (Giannakopoulos et al., 

2009; Giannaros, Melas and Giannaros, 2019; Georgoulias et al., 2022). Future 

climate change projections characterize the Mediterranean as a prominent "hot 

spot" with the potential for scorching summer conditions to become commonplace 

by the end of the 21st century (Lelieveld et al., 2012). 

Warming rate is estimated between 2°C and 5°C, and precipitation decrease will 

reach 40%, especially in southern Europe (Lelieveld et al., 2012; Zanis et al., 

2015). As a result, more dry days are expected while the northern part of the 

region will experience the most rapid increase in daytime maximum temperatures  

(Giorgi and Lionello, 2008; Giannakopoulos et al., 2009; Lelieveld et al., 2012). 

But both maximum and minimum temperatures will rise, exacerbating thermal 

discomfort conditions (Diffenbaugh et al., 2007; S. C. Keppas et al., 2021). 

(Kendrovski et al., 2017)  studied the projected impact of heat on population 

mortality across Europe under RCP8.5 and RCP4.5, and reported that heat 

impacts will dramatically increase over time in Mediterranean and Eastern 

European countries. Similar results were demonstrated in (Martínez-Solanas et al., 

2021), who found that temperature-attributable mortality in Europe will rapidly 

start to increase in RCP6.0 by the end of the century and in RCP8.5 already by the 

middle of the century, especially in the Mediterranean countries.  

3.2 Greece 

Climate change is perceived as “major threat” for Greece (Watts, Adger and 

Agnolucci, 2015). Studies estimate that the average temperature is projected to 

increase between 4.6°C and 2.6 °C by the end of the century (S. C. Keppas et al., 

2021; Georgoulias et al., 2022), and the decreased mean precipitation will lead to 

prolonged dry spell length (Gao, Pal and Giorgi, 2006). According to (Vicedo-

Cabrera et al., 2021), the proportion of heat-related mortality attributed to human-

induced climate change exceeded 20% during the period 1991–2018; in Athens 

alone, more than 400 heat-attributable deaths per year are expected for 2030 under 

RCP8.5 (World Health Organization, 2022).  

It is worth noticing that Greece’s share of population over 65 is 22.3%, above 

EU’s average (20.6%), whereas the leading causes of death in 2018 were 
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ischaemic heart disease and stroke (European Observatory on Health Systems and 

Policies, 2021). 

Detrimental air quality also poses a significant risk in Greece. According to (EEA, 

2019) in 2019, Greece was found to be in violation of the three most commonly 

exceeded EU air quality standards for PM10, O3, and NO2. This violation has had 

severe consequences, with an estimated 75 deaths per 100,000 population 

attributed to air pollution in 2019. The primary causes of these deaths were 

ischemic heart disease, stroke, and respiratory infections (WHO Regional Office 

for Europe, 2022), resulting in approximately 1,101 disability-adjusted life years 

(DALYs) per 100,000 citizens (WHO, no date a) or 104,000 years of life lost 

(YLLs) for the entire Greek population (WHO, no date b). 

 

 

 

Figure 3.1: Premature deaths due to PM2.5, 2019 (Adapted from (OECD/European 

Union, 2022)) 

The acute air quality problems are most pronounced in the country's largest cities 

due to their dense population and the accumulation of air pollutants influenced by 

topography and adverse meteorological conditions, such as the urban heat island 

effect (Poupkou et al., 2011). Athens and Thessaloniki, the two major cities in 

Greece, significantly exceed the EU air quality standards for PM10 concentrations 

(Kalabokas, Adamopoulos and Viras, 2010). Moreover, the YLLs are primarily 

affected by exposure to PM10, with O3 playing a lesser role, as highlighted by 

(Kassomenos, Dimitriou and Paschalidou, 2013). 

It is worth noting that in 2019, air pollution, specifically fine particulate matter 

and ozone exposure, accounted for 5% of all deaths in Greece, which is 1% higher 

than the EU average (European Observatory on Health Systems and Policies, 

2021). Greece ranks among the countries with the highest absolute impacts 
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regarding O3 and NO2. In 2019, premature deaths attributed to PM2.5, NO2, and 

O3 reached 10,400, 2,310, and 650 fatalities, respectively (González Ortiz et al., 

2021). 

Overall, the combined impact of projected elevated temperatures due to climate 

change and air pollution in Greece presents significant health risks that demand 

immediate governmental efforts for national adaptation and mitigation. 

 

3.3 Thessaloniki  

The urban area of Thessaloniki consists of seven municipalities (Figure 3.2). 

Accommodating more than 1,000,000 inhabitants (Population-Housing Census 

2021 - ELSTAT, no date), it is the second largest city in Greece and an important 

economic and industrial center in the Balkans. Thessaloniki's population has a 

notable trend of advanced aging with 22.3% of the population aged above 65 

years (European Observatory on Health Systems and Policies 2021).  

Its Mediterranean climate is significantly affected by the adjacent Thermaikos 

Gulf in the south; the mean annual temperature of Thessaloniki is ~16 °C and the 

mean annual relative humidity is 62.4%. The city demonstrates prominent UHI 

effect with intensity between 1°C and 4°C (Giannaros and Melas, 2012). 

The primary causes of air pollution in Greater Thessaloniki Area are road traffic, 

residential heating (Progiou et al., 2023), biomass burning (Diapouli et al., 2017), 

and industrial emissions (Moussiopoulos et al., 2009). These activities have led to 

a decline in air quality (Melas et al., 2017), particularly during the economic crisis 

(Zyrichidou et al., 2019). In addition, particle pollution in the area is also 

substantially impacted by dust storms that originate from North Africa (Achilleos 

et al., 2020; Psistaki et al., 2022; Rizos et al., 2022). 

 

 

Figure 3.2. The urban area of Thessaloniki. Dashed lines represent municipal borders. 
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The city experiences exceptionally impaired meteorological and air quality 

conditions. Despite this fact, current literature focuses almost entirely on Athens, 

either on heat- (Baccini et al., 2008; Paravantis et al., 2017; Zafeiratou et al., 

2019), or pollution-related mortality (Gryparis et al., 2004; Touloumi et al., 2006; 

Kassomenos, Dimitriou and Paschalidou, 2013). Only recently, a few studies 

concerning Thessaloniki were published, e.g. (Kouis et al., 2019; Parliari et al., 

2022; Psistaki, Dokas and Paschalidou, 2022; Parliari, Giannaros, et al., 2023). 

Thessaloniki is one of the most polluted cities in Europe, especially with respect 

to the PM10 levels (Vlachokostas et al., 2012), but also regarding PM2.5 

(Diapouli et al., 2017), O3, VOCs, and noise pollution levels (Vlachokostas et al., 

2013). O3 limit values are mostly exceeded during the summer months, while 

winter is the most favorable season for PM10 violations (Moussiopoulos et al., 

2009; Kalabokas, Adamopoulos and Viras, 2010). Nevertheless, Thessaloniki’s 

major air quality problem consists of PM10 concentration levels. As a result of 

consecutive violations of daily PM10 limits established by the EU during 2005-

2019, the European Court of Justice recently convicted Greece for the impaired 

air quality of Thessaloniki (Case C-70/21). Indicatively, 67 PM10 daily 

exceedances were reported for 2019, instead of 35 permitted by EU rules 

(Ministry of Environment and Energy, 2020). The increased exposure to PM10 

accounted for 530 M€ in 2002, based on the median value-of-a-life-year metric 

(Vlachokostas et al., 2012). 

Exposure to such levels of pollution impacts human health, as expected. 

(Giannaros et al., 2011) found positive correlation between daily maximum 

Aggregate Risk Index values and daily hospital admissions for cardiac diseases. 

Recently, (Parliari, Giannaros, et al., 2023) showed direct increases in all-cause 

and cardiorespiratory mortality with regard to PM10 (2.3% and 2%) and O3 (3.9% 

and 5.3%), which were more prominent between day 0 and 3. Similarly, a 10 

μg/m3 increase in PM2.5 resulted in 1.1% rise in cardiovascular mortality, 

published by (Psistaki et al., 2022). The interaction between air quality and 

thermal stress is exceptionally important for the local population, as Thessaloniki 

demonstrates strong Urban Heat Island Effect, ranging from 2°C to 4°C and from 

1 °C to 3 °C during summer and winter, accordingly (Giannaros and Melas, 

2012). City center, with acute air quality conditions, is characterized by high 

thermal and strong air quality stress which are extremely detrimental to public 

health (Zoumakis et al., 2011). (Papanastasiou, Melas and Kambezidis, 2015) 

revealed combined impact of air pollution and discomfort conditions in 

Thessaloniki, which was more pronounced during HW days. According to this 

study, most of the citizens suffered discomfort in 76% of the HW days and in the 

same period the concentrations of PM10, NO2 and O3 increased as well.  

Thermal stress conditions, especially elevated temperatures, deteriorate living 

conditions for the local population. According to (Kouis et al., 2019), heat 
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depicted immediate increase on cardiovascular (4.4%) and respiratory mortality 

risk (5.9%) of the city, above 33 °C. Although extreme low temperatures 

demonstrated larger risk (1.61) to public health than extreme high (1.54), the 

highest mortality impact was estimated for moderately cold temperatures in the 

study of (Psistaki, Dokas and Paschalidou, 2022). Based on (Parliari et al., 2022), 

2.34% of deaths were attributed to heat and 1.34% to cold; percent changes in 

mortality per 1°C change above and below 22°C showed larger increases for 

cause-specific mortalities in heat, in contrast to smaller  increases in cold.  

Under the influence of climate change, there is urgent need for further study of the 

area. (S. Keppas et al., 2021) showed that urban heat island intensity during heat 

waves will exceed 6 °C in Thessaloniki until 2100, whereas number of heat wave 

days is expected to increase 12 times compared to present. The city is expected to 

witness an escalation in heat-related cardiorespiratory mortality, with the 

projected surplus of annual heat-related deaths ranging from 2.4 to 433.7 across 

different scenarios (2080 – 2099) (Kouis et al., 2021). Last, (Parliari, Keppas, et 

al., 2023) estimated that mortality burden due to heat will reach 10% during 2096-

2100, compared to 6% in current climate conditions (2006-2010), under scenario 

RCP8.5. 

To address these interconnected issues, effective and enduring public action 

health plans must be identified and put into action (Miranda et al., 2015; Silveira 

et al., 2016). In general, there is a significant lack of studies that examine the 

suitability of mitigation measures in terms of health benefits for the area of 

Thessaloniki. Nevertheless, specific policies to combat particulate air pollution 

were tested in a recent study (Progiou et al., 2023), which resulted in a more than 

20% reduction in the PM10 concentrations in Thessaloniki, Greece. Based on this 

scenario, (Parliari, Giannaros, et al., 2023) showed respective decrease in total 

excess mortality by 0.4%. As it is evident, it is necessary to assess the health 

benefits of the abatement measures by quantifying the impact of air pollution and 

thermal discomfort on human health for the citizens of Thessaloniki.  
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Chapter 4 

The statistical modeling framework 

4.1 Distributed Lag Models 

The primary objective of a statistical regression model is to establish the 

connection between a group of predictors and an outcome variable, and to 

subsequently estimate the associated impact. However, complications arise when 

the relationship exhibits temporally delayed effects. For example, in biomedical 

research it is commonly appreciated that an exposure event produces effects 

lasting well beyond the exposure period, with an increase in risk occurring from 

few hours to many years later, depending on the physiological processes linking 

the exposure and the health outcome.  

In such cases, the influence of a predictor, referred to as an “exposure event”, 

extends beyond the immediate period and affects the outcome over a certain 

duration. This phenomenon has been associated with chronic exposures to 

environmental stressors, drug intake or occupational exposures to carcinogenic 

substances (Gasparrini, 2014b). Addressing this temporal dependency necessitates 

the use of more intricate models that can accurately capture the association and 

describe the temporal structure of the relationship (Gasparrini, 2011a). 

The solution to this issue comes as the incorporation of an extra dimension to the 

exposure-response relationship, describing the temporal dependence between the 

exposure and outcome in terms of temporal lag. This term represents the time 

interval between the exposure event and the outcome when evaluating the delay of 

the effect and introduces the concept of exposure–lag–response associations 

(Gasparrini, 2014b). 
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Several techniques have been proposed to accommodate the temporal variation in 

risk because of protracted exposures (Thomas, 1988; Vacek, 1997; Hauptmann et 

al., 2000; Sylvestre and Abrahamowicz, 2009). However, the main limitation of 

these statistical methods was the assumption of a linear exposure–response 

relationship.  

Distributed lag models (DLMs) are statistical models based on a distributed lag 

function, analogous to the weighting function described in previous studies 

(Hauptmann et al., 2000), and analyzing the relationship between an independent 

variable (predictor) and a dependent variable (the outcome) while accounting for 

the time-lag effects. It is an extremely useful statistical modeling tool, firstly 

introduced in econometrics (Almon, 1965) and then in epidemiological studies 

that capture the links between environmental stresses (such as heat or air 

pollution) and  health outcomes (Lubczyńska, Christophi and Lelieveld, 2015; Gu 

et al., 2020; Kriit et al., 2022). 

This methodology allows the effect of a single exposure event to be distributed 

over a specific period of time, using several parameters to explain the 

contributions at different lags, thus providing a comprehensive picture of the time-

course of the exposure-response relationship. The inclusion of lagged values 

allows for the examination of the dynamic relationship between the variables over 

time. 

Assuming a linear exposure–response relationship between the outcome variable 

   (e.g. mortality counts) and some environmental exposure     (e.g., 

temperature), DLMs can be generically defined as 

                     (1) 

                                   (2) 

where L days is the maximum temporal lag. The use of the Negative Binomial 

distribution (NegBin) is a conventional choice in epidemiological analyses as it 

extends the Poisson distribution to allow for over-dispersion (extra variance). The 

linear “effects”    act multiplicatively on the mean mortality count    (and 

additively on        ). 

Although simple and effective, the approach assumes that the effect of the 

exposure at each lag is linear, which is a substantial constraint, particularly with 

respect to scientific understanding on how temperature relates non-linearly to 

mortality (Honda et al., 2014). Some attempts to relax this assumption and 

explore non-linear lagged  effects of exposure variables have been proposed 

(Braga, Zanobetti and Schwartz, 2001; Roberts and Martin, 2007; Muggeo, 2010). 

The most commonly used development is the one firstly conceived and applied by 

(Armstrong, 2006), who modeled non-linear and lagged exposure-response 

relationships as Distributed Lag Non-Linear Models. 
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4.2 Distributed Lag Non-Linear Models 

DLMs are built on the premise of a linear connection between exposure and 

outcome. Nevertheless, it is crucial to consider the well-established nonlinear 

relationships, as emphasized by (Braga, Zanobetti and Schwartz, 2001; Gasparrini 

and Armstrong, 2010).  

Distributed Lag Non-linear Models (DLNMs) offer a versatile modeling approach 

that can effectively capture both the nonlinear and delayed impacts of 

environmental factors on the outcome. In contrast to conventional models, 

DLNMs introduce the temporal lag explicitly as a dimension, allowing for the 

representation of the association between temperature/air pollution and mortality 

over time. This bi-dimensional space, encompassing both the exposure and the 

lag, defines the exposure-lag-response relationship, providing a comprehensive 

characterization of the dependency (Gasparrini, Armstrong and Kenward, 2010; 

Gasparrini, 2021). 

A statistical development of these models is based on the utilisation of basis 

functions for defining non-linear functions that describe the association of the 

independent variable (exposure) with the dependent variable (mortality) across 

different lags. Specifically, two sets of (marginal) basis functions are chosen 

independently, one for the lag dimension and one for the exposure dimension. 

These are then combined using the idea of a tensor product, to produce a bi-

dimensional cross-basis function (Gasparrini, 2011b, 2014b). The choice of the 

two sets of basis functions determines the shape of the relationship in each 

dimension. In this sense, DLMs are a special case of the more general DLNMs, 

when the exposure-response is assumed linear. 

The framework described in Equation (2) can be extended to DLNMs in order for 

the effect of the exposure at each lag to be non-linear, by extending the 

formulation of    via: 

                                           (3) 

where            is a two dimensional function of lag and the stressor/s. 

Constructing this function using regression splines can be achieved using tensor 

products (also termed a cross-basis function) (Wood, 2017; Economou et al., 

2023). 

DLNMs have become the most commonly used method in literature to quantify 

the health effects of various environmental stressors, concerning thermal stress 

(e.g. (de’ Donato et al., 2015; Martínez-Solanas et al., 2018; Parliari et al., 2022; 

Psistaki, Dokas and Paschalidou, 2023)), or air pollutants (e.g. (Psistaki et al., 

2022; Font-Ribera et al., 2023; Gariazzo et al., 2023; Parliari, Giannaros, et al., 

2023). In order to assess the combined impact of air quality and heat discomfort 

on health, some studies have either confound the temperature-mortality 

relationship with pollutants ((Stafoggia et al., 2008; Cheng and Kan, 2012; Meng 
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et al., 2012; Jhun et al., 2014)), or the pollution-mortality association with 

temperature ((Turner et al., 2012; Breitner et al., 2014)). Nevertheless, no uniform 

conclusions have been drawn. For example, some publications have provided 

evidence on the synergistic effects (Baccini et al., 2008), others report no 

combined impact (Samet et al., 1998; Hales et al., 2000; Basu, Feng and Ostro, 

2008), while in some instances, effect modifications are reported for only one of 

the pollutants under study (Breitner et al., 2014). 

 

4.3 A unifying modelling approach for distributed lag 

models  

DLNMs have certain restrictions with regards to studying synergy of a 

combination of different exposures, and over-fitting (over-explaining) the data. 

Recently, a modelling approach to fitting DLNMs that encompasses all necessary 

extensions into a unified framework has been developed and implemented by 

(Economou et al., 2023). More specifically, they proposed to fit DLNMs using the 

machinery of penalised Generalised Additive Models (GAMs) as implemented in 

the R package mgcv (Wood, 2011, 2017). 

The hierarchical nature of the approach is particularly important when considering 

interactions of an already complex structure (i.e., the 2D exposure-lag function) 

with other factors, since hierarchical structures are a natural way of dealing with 

sparse data and the ‘curse of dimensionality’. GAMs from the mgcv package have 

been utilised before in fitting DLNMs across a range of application areas and one 

of the main contribution of this study was to illustrate further the use of GAMs for 

flexible analyses involving the effect from lagged exposures. 

Assuming that             in Equation (3) is smooth, then the model is a GAM 

which (using mgcv) can be used to optimally estimate            by penalising its 

flexibility. Penalisation in non-linear regression models is important in order to 

avoid over-fitting  the data, and to also reduce sensitivity to the choice of L (as 

long as this is large enough). 

More generally, equation (3) above can be written as:  

                             
 
     (4) 

where    is an environmental exposure (    or whichever stressor desired) and    

is population count, in case we pool data from different regions. Using mgcv, the 

splines are by default constrained to be centered at zero, so that           is the 

additive change in the overall log mean count of deaths.  

Additionally, 

                                    (5) 
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can be interpreted as the relative risk (RR), the mutltiplicative change with respect 

to exp{a} (the mean count across the time period of study). 

In the work described in the present thesis, we aimed to study the synergistic 

effect of air pollution (PM10, O3, NO2) on daily mortality. For this, we define 

interactions of the AT-lag effect with other exposures (e.g. with PM10), via 

                                                

                       (6) 

Function      can be also defined using tensor product interactions of regression 

splines (Wood, 2017), a robust and flexible approach to  defining smooth 

functions across many dimensions. The  models presented in Chapter 7 were 

implemented in the R package mgcv, which makes use of penalised maximum 

likelihood to estimate these smooth functions. 

Since we are using mgcv,                                                  

is still the relative risk compared to the mean mortality count exp{a}. Therefore, 

        implies greater than average mortality risk, whereas         means 

lower-than-average risk.  

 

4.3.1 Interpretation of estimated quantities 

The conventional way of illustrating the estimated effects from DLNMs is a plot 

of RR over a grid of finite values for      and   (Figure 4.1). This is a 3D plot 

showing how estimated risk varies for values of the exposure across different lags. 

It is a counterfactual "statement" of keeping      fixed for all l (e.g. fixing 

temperature at 40°C for 21 days) and seeing what the associated contributions are 

to risk for each of lag.  
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Figure 4.1. Relative risk estimates for the Thessaloniki data based on a Negative 

Binomial GAM (Adapted from (Economou et al., 2023). Red colour indicates RR>1 and 

blue shows RR<1. 

A useful summary of the effect in the exposure dimension is the cumulative risk 

(CR) where the additive effects           are summed across the lags. For 

instance, 

                   

 

   

                                           

is the cumulative risk (CR) for ATt from model (3).  

 

Figure 4.2. Cumulative relative risk estimates for the Thessaloniki data (Adapted from 

(Economou et al., 2023)). 

 

GAMs implemented in mgcv can be interpreted in a Bayesian way (Wood, 2017) 

and Monte Carlo simulation can be used to quantify the associated uncertainty in 

estimating the smooth function     . This in turn enables the assessment of 

“significance” in the estimated RR, which here is determined by checking whether 

the value 1 lies within the 95% credible interval of     .  If it is not, then we can 

say that with probability 0.95 the value of the RR is not 1 and that the weight of 

evidence supporting this is strong. 

In terms of interpretation, RR and CR are counterfactual quantities, since the 

variability of the exposure is not allowed for. As a result, metrics such as the 

Attributable Fraction (AF) have been proposed (Steenland and Armstrong, 2006) 

to interpret the risk estimates in terms of the observed data. If we define    as the 

mortality risk at the optimum temperature value (or OT, the exposure value form 

which cumulative risk it at its minimum) as the risk of the “non-exposed” 

population, and     as the risk due to any other exposure value x, then 
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   (7) 

is one minus the risk ratio which can be interpreted as the fraction of mortality 

cases attributable to    being different to the OT. 

For DLNMs we use CR to define risk so for observed exposure    on day  : 

           
             

    

            
 
    

                            
     (8) 

The exposure in the sum is    rather than      so what is quantified here is how 

the risk of experiencing    “today” is distributed over the next L days. This was 

termed as the forward AF in (Gasparrini and Leone, 2014) who provide a 

thorough exposition of attributable risk from DLNMs.  

The attributable number (AN) then uses the observed number of cases on day  , 

    to quantify the number of cases attributable to   . Specifically, the number of 

deaths attributed to the exposure being    on day  , is: 

                     (9) 
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Chapter 5 

Short-Term Effects of Apparent 

Temperature on Cause-Specific 

Mortality in the Urban Area of 

Thessaloniki, Greece 

The interactions between ambient temperature and human health have emerged as 

major issues in the global research community during recent years. Not only 

extreme temperatures (Basu and Samet, 2002b; Anderson and Bell, 2009; 

McGregor et al., 2015), but also changes in moderate temperatures have been 

shown to present a direct increase in mortality (Analitis et al., 2008). Meanwhile, 

climate change is recognized as one of the most imperative global health threats in 

the 21st century (S. C. Keppas et al., 2021). Several areas around the globe are at 

high risk not only in present (Iyakaremye et al., 2021) but in future climate as 

well (Ullah et al., 2022). 

The Mediterranean area is particularly susceptible to temperature increases and it 

is anticipated to experience more intense, severe and frequent heat waves under 

warmer and drier future conditions (Giannakopoulos et al., 2009; Giannaros, 

Melas and Giannaros, 2019; Georgoulias et al., 2022). Concerning Greece, 

located in southeast Mediterranean, the average temperature under a “business as 

usual” scenario (Representative Concentration Pathway RCP8.5) is projected to 

increase by 4.5 °C in summer and 2.6 °C in winter, until 2100 (S. C. Keppas et 

al., 2021). Taken into consideration poor air quality, comfort conditions become 

even more unfavorable during heat wave episodes (Papanastasiou, Melas and 

Kambezidis, 2015). 
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Global warming is generally predicted to lead to both an increase in heat-related 

mortality and a decrease in cold-related mortality (Watts, Adger and Agnolucci, 

2015). Nevertheless, it is well established that the temperature–mortality 

relationships demonstrate strong dependencies on local climate characteristics and 

vary significantly among study areas (Armstrong et al., 2011). Therefore, it is of 

vital importance to conduct local-based environmental epidemiology studies and 

thorough investigation on the city level, in order to deliver robust heat-health 

action plans for the improvement and strengthening of public decision making and 

health care (Matthies et al., 2008). These action plans should also include 

meteorological variables such as relative humidity and precipitation, when 

possible, in order to better formulate adaptation strategies and measures (Mie et 

al., 2022; Sein et al., 2022). Associating ambient temperatures with health 

outcomes poses significant challenges. To model the temperature–health 

dependencies, the dose–response association, which is non-linear and 

heterogeneous between populations with different demographic characteristics, 

should be taken into consideration (Gasparrini, Guo and Hashizume, 2015). In 

addition, the impact of the exposure event may not be immediate, but rather 

delayed in time by a few days or even weeks (defined lags). Sophisticated 

statistical approaches are necessary to describe such complex patterns. 

Distributed lag non-linear models (DLNMs) is a flexible modeling framework 

capable of simultaneously representing the nonlinear and delayed effects of 

temperature on mortality. In addition to the usual exposure–response relationship 

over the space of the predictor, the lag dimension represents a new space over 

which the association is defined, by describing a lag–response relationship. The 

dependency is characterized in the bi-dimensional space of predictor and lag, and 

it is defined as an exposure-lag-response association (Gasparrini, 2011b). DLNMs 

have been successfully applied in previous temperature-related epidemiological 

studies: Nordio et al. (Nordio et al., 2015) investigated 211 US cities from 1962 to 

2006, accounting for hot and cold temperatures at different lags, to evaluate 

change of associations over space and time. An extensive analysis between 1998 

and 2012 estimated the location-specific temperature–mortality relationships of 

147 regions in 16 European countries (Martínez-Solanas et al., 2021), and 

de’Donato et al. (de’ Donato et al., 2015) evaluated the patterns of changes in the 

temperature–mortality relationship and the number of deaths attributable to heat in 

nine European cities before and after summer 2003 (1996–2002 and 2004–2010), 

also controlling for air pollution. 

Greece lies within the Mediterranean climate change hotspot, and according 

toWHO, more than 400 heat-attributable deaths per year are expected in Athens 

for 2030 under RCP8.5 (World Health Organization, 2022). Previous studies 

concerning Athens showed an increase in cardiovascular and respiratory mortality 

among the elderly (65 years and over) by 20% to 35% respectively (Paravantis et 

al., 2017), and reported a 5.54% increase in natural mortality above the city-

specific threshold (Baccini et al., 2008). Last, a recent study of Zafeiratou et al. 
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investigated the intra-urban differentiation in the temperature–mortality effects of 

42 Municipalities within the Greater Athens Area, showing an increase on all-

cause, cardiovascular and respiratory mortality for increases in temperatures 

(Zafeiratou et al., 2019). 

As it has been made evident, the literature focuses almost entirely on Athens, with 

the rest of Greek urban agglomerations being under-represented. The recent study 

by Kouis et al. (Kouis et al., 2019) is the first significant contribution for the 

greater area of Thessaloniki, on the association between high ambient air 

temperature and cardio-respiratory mortality from 1999 to 2012. The study shows 

significant effects of heat above the temperature threshold of 33 °C. Furthermore, 

cardiovascular and respiratory mortality risk increased by 4.4% and 5.9% above 

the threshold, respectively. 

For such purposes, we investigate the association between daily maximum 

apparent temperature and daily all-cause (natural, non-accidental), cardiovascular, 

cerebrovascular and respiratory mortality and mortality concerning the elderly 

(all-causes, 65+ years) from 2006 to 2016 in the urban area of Thessaloniki, by 

describing the exposure-lag-response association with the use of a DLNM. We 

also examine the effect of time lag and non-optimum temperatures using measures 

such as relative risk and attributable fractions, as very little is known about the 

relative contribution of both heat and cold from moderate and extreme 

temperatures to the whole disease burden. 

The present Chapter is based on recent developments in statistical modeling to 

account for the versatile temperature–mortality dependencies. This single-city 

analysis demonstrates significant advantages, taking into consideration the size of 

the examined area, the city population lasting exposure to high temperatures and 

the increasing proportion of elderly people among urban dwellers. The data and 

methodology used in this work are described in Sections 5.1 and 5.2 and contain 

detailed presentation of results, and Section 5.3 summarizes the major 

conclusions. 

 

5.1 Data and Methods 

5.1.1 Study area 

The study focuses on the urban area of Thessaloniki, consisting of six 

Municipalities and one Municipal Unit. Thessaloniki, the second largest city of 

Greece and one of the largest urban agglomerations in the Balkan Peninsula, is 

located in the northern part of the country accommodating approximately 

1,000,000 inhabitants (Poupkou et al., 2011). As shown in Figure 5.1, it is built 

along the north-east coast of the Thermaikos Gulf and its Mediterranean climate, 

with hot and dry summers and mild and wet winters, and is directly affected by 
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the sea. The annual mean temperature is 15.9 °C, the annual mean relative 

humidity is 62.4%, the annual mean precipitation is 448.7 mm and the annual 

mean wind speed is 5.6 m/s (Giannaros and Melas, 2012). 

 

Figure 5.1. The study area. Topography is shaded with linear altitude (above sea level) 

scales. The locations of Thessaloniki centre and Airport weather station are shown. 

 

5.1.2 Meteorological and Mortality Data 

Hourly values of temperature and dew-point temperature for the period 2006–

2016 were obtained from the Makedonia Airport weather station (Longitude 

22.97, Latitude 40.53, Elevation 2m), which is operated by the Hellenic National 

Meteorological Service. Previous studies, e.g., (Ullah et al., 2021), have shown 

that uniformity and stability tests are performed to achieve better results when 

using in-situ data. Nevertheless, the meteorological dataset used in this study is 

provided by HNMS, responsible for Greece’s national weather forecast and 

certifier of the national weather network. Therefore, the evaluation performed on 

the data by the authors indicated no further assessment. 

The exposure variable considered in the study is represented by Apparent 

Temperature, a thermal index that expresses thermal stress and comfort perceived 

by humans. To identify the most effective thermal predictor of heat-related 

mortality, we investigated daily mean temperature (Tmean, °C) and daily 

maximum Apparent Temperature (Tapp, °C). Tapp was computed from 

temperature and dew-point data as follows: 

Tapp = −2.653 + 0.994*Ta + 0 0153*Td
2
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where Ta = air temperature (°C) and Td= dew point temperature (°C). Then, the 

daily maximum value was extracted (Tappmax), defined as the highest among 

hourly values. 

Tapp is a discomfort index widely used in the literature (D’Ippoliti et al., 2010; 

de’ Donato et al., 2015) and it is used operationally as the main thermal index in 

the Italian National Heat Health Watch Warning Systems (Michelozzi et al., 

2010). It is also found that Tapp is an optimal indicator for predicting all-cause 

mortality risk and for activating heat alerts and warnings (Lin et al., 2012; Zhang 

et al., 2014). 

The Hellenic Statistical Authority (ELSTAT) provided the daily mortality data, 

including age and cause of death for all Municipalities in the urban area of 

Thessaloniki for the study period (2006–2016). The causes of death were 

classified to All causes (natural, non-accidental), Cardiovascular, Cerebrovascular 

and Respiratory, according to ICD-10 (International Classification of Diseases, 

10th version). A focus on elderly total mortality was carried out, considering all 

total deaths among people aged 65 years and older. 

5.1.3 Data analysis 

When assessing the mortality–temperature relationship in a specific area, the most 

appropriate temperature-based index needs to be investigated (Analitis et al., 

2008). Various studies have been conducted on the matter but were unable to 

draw a decisive conclusion (Barnett, Tong and Clements, 2010; Kim et al., 2011), 

whereas in order to adopt an appropriate temperature index, regional 

meteorological characteristics and the disease status of population should be 

considered. 

In the present study, we investigate the effect of temperature-related variables on 

mortality for the urban area of Thessaloniki during the period 2006–2016, using 

Distributed Lag Non-linear Models in order to simultaneously account for the 

non-linear and lagged effect of temperatures on mortality, as previously presented 

in the literature (Gasparrini, 2014a, 2014b; Guo et al., 2021). The main advantage 

of this method is that it provides a detailed representation of the time-course of the 

exposure–response relationship, which then estimates the overall effect in the 

presence of delayed contributions. This family of models is implemented in the 

package DLNM (Gasparrini et al., 2017) within the statistical environment R 

(https://www.r-project.org/foundation/). 

According to the Akaike information criterion (AIC) (Gasparrini, Armstrong and 

Kenward, 2010), we applied a generalized non-linear model with quasi-Poisson 

family, with the following choices regarding the control of confounders for the 

effect of temperature index: (i) natural cubic splines to describe the exposure–

response function; (ii) natural cubic splines to describe the lag–response function; 

(iii) knots were placed at quantiles (10th, 75th, 90th) in the range of temperature 
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variables and at equal intervals in the logarithmic scale of lags; (iv) maximum lag 

was set to 20 days; (v) indicator variables were chosen for day of the week and 6 

degrees of freedom per year were set to describe long-time trends and seasonality. 

To evaluate the best model specification concerning the exposure variable, we 

compared the constructed models with Tmean and Tappmax using: 

The Quasi Akaike Information Criterion (QAIC), a modified version of AIC to 

deal with the over-dispersed Poisson model, which can be used to assess the 

model fit of the quasi-Poisson regression model. It considers both the statistical 

fitness of the model and the number of parameters fitted (Peng, Dominici and 

Louis, 2006). 

The partial autocorrelation function (PACF) criterion calculated as the absolute 

value of the sum of the partial autocorrelations of the residuals from lags 1 to 20 

(Touloumi et al., 2006). PACF investigates the remaining autocorrelation. 

The best model is chosen when/if both QAIC and PACF are minimized at the 

same time. These two criteria are widely used in time series analysis to decide for 

the best fit (Peng and Dominici, 2008; Rodopoulou et al., 2015; Yan et al., 2019). 

Table 5.1 reports QAIC and PACF values for the two models. Based on these, 

Tappmax can be uniformly chosen as the most representative exposure variable for 

Thessaloniki for our dataset. 

 

Table 5.1. Model fit statistical criteria per exposure variable. 

Temperature Index QAIC PACF 

Tmean 23,125 3.918 

Tappmax 23,088 3.879 

 

5.2 Results and Discussion 

During the 11-year study period, we analyzed 73,990 deaths from all natural 

causes— 21,811 from cardiovascular diseases, 10,007 from cerebrovascular 

causes and 7134 from respiratory causes. Moreover, total mortality concerning the 

elderly counted 62,482 deaths. Table 5.2 provides the descriptive statistics on 

exposure variable Tappmax (bottom panel) and daily mortality (top panel) during 

the study period. Elderly mortality is distinctively noticeable, as Greece is among 

the countries with the highest proportion of elderly population in Europe 

(EUROSTAT, 2019). It is also evident that cardiovascular deaths account for an 

important part of cause-specific daily mortalities. This result is supported by 
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(European Observatory on Health Systems and Policies, 2019), which reported 

that stroke and ischemic heart disease is the leading causes of death in Greece.  

 

Table 5.2. Summary statistics of daily mortality (number of deaths, bottom) and 

Tappmax (°C, top). 

 

Tappmax 

Median Range Min 5th perc. 95th perc. Max 

18.7 49.1 −5.6 2.5 35 43.5 

 

Figure 5.2 displays the bi-dimensional exposure-lag-response surface of the fitted 

RR in a three-dimensional diagram for maximum apparent temperature and lag 

values. The association between Tappmax and mortality is non-linear, suggesting 

an immediate increase in mortality for exposures to high levels of Tappmax at lag 

days 1–3, whereas for low levels the effect is delayed (day 10–15). 

Daily Mortality 

 Mean St. dev. 

All-cause 18.4 4.7 

Cardiovascular 5.4 2.4 

Cerebrovascular 2.5 1.6 

Respiratory 1.8 1.4 

Elderly 15.5 4.4 
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Figure 5.2. Exposure−lag-response risk surface demonstrating the nonlinear association 

between temperature and mortality, as calculated for the city of Thessaloniki for the 

period 2006−2016. 

Figure 5.3 top panel shows an overall cumulative exposure–response curve (with 

95% CI marked as grey areas), interpreted as the risk cumulated over the entire 

lag period of 20 days, and Tappmax range as a frequency histogram. Dashed lines 

define extreme temperatures (5
th

 and 95
th

 percentile, 2.5°C and 35°C respectively) 

and dotted line represents minimum mortality temperature (MMT) at 22°C. 
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Figure 5.3. Overall cumulative exposure−response association (top panel) and 

Tappmax distribution (bottom panel), as calculated for the city of Thessaloniki for 

the period 2006−2016. 

 

Identifying MMT has important practical implications for the investigation of the 

relationship between temperature and mortality and the definition of non-optimum 

temperatures, as mortality rates increase at temperatures outside local MMT (Yin 

et al., 2019). Studies have shown that MMT varies from city to city, according to 

local climate and latitude (Tobías, Armstrong and Gasparrini, 2017). The values 

in the present work were anticipated for a Mediterranean city (Kouis et al., 2019; 

Yin et al., 2019), although for respiratory mortality, MMΤ was found to be lower. 

Generally, MMT levels are higher for Mediterranean cities than those in Northern 

Europe, indicating that residents of south-coastal cities are acclimatized to heat 

and risk conditions (Baccini et al., 2008). 

Risk increases rather slowly for cold temperatures below MMT and shows a more 

prominent exponential rise below the 5th percentile of Tappmax, although it is not 

statistically significant for Thessaloniki. Similarly, hot temperatures between 

MMT and 95th percentile depict a slow, insignificant increase in RR, with a 

significant effect only for extreme values above 35 °C, reaching the highest RR 

values at 43 °C. 

Table 5.3 summarizes the effect of heat and cold on cause-specific mortality and 

mortality of the elderly. Results show statistically significant effects of high 

temperatures on total and cause-specific mortality with a greater risk for 

respiratory deaths (RR 1.47, CI 95% 0.9–2.4), as shown in previous studies 

(Breitner et al., 2014). In Thessaloniki, exposure to cold (Tappmax between 5
th

 

percentile and MMT) did not show a significant effect on mortality. 
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Table 5.3. Relative risks of daily cause-specific mortality and elderly mortality 

associated with non-optimum ambient temperatures, for changes below and above 

MMT and the 95th and 5th percentile. 

 

Figure 5.4 illustrates the non-linear effects of Tappmax (lag 0–20) on cause-specific 

and elderly mortality. The exposure–response curves show the typical J-shape 

with an increase in the risk of mortality for high temperatures. U, J or V-shaped 

relationships between temperature (or temperature-based thermal indices) and 

mortality have been identified in many previous studies (Michelozzi et al., 2006; 

Anderson and Bell, 2009; D’Ippoliti et al., 2010; Breitner et al., 2014; Ma, Chen 

and Kan, 2014; Zhang et al., 2016), with optimum temperature corresponding to 

the lowest point in the curve; the shape of the curve may vary by geographic 

locations, climatic characteristics and demographic factors (Liu et al., 2011; 

Breitner et al., 2014; Nordio et al., 2015). It is worth noting that respiratory 

mortality risk reaches very high values (RR > 10), as found in other studies 

(Zhang et al., 2016). 

  

Cause of Death 
MMT 

(°C) 

Relative Risk (95% CI) 

Extreme Low, 2.5 °C 

Relative Risk (95% CI) 

Extreme High, 35 °C 

All-cause 22 1.05 (0.95–1.16) 1.17 (1.04–1.32) 

Cardiovascular 30 1.18 (0.93–1.52) 1.20 (1.08–1.31) 

Cerebrovascular 30 1.41 (0.97–2.04) 1.08 (0.93–1.24) 

Elderly (65+) 19 1.09 (0.98–1.20) 1.25 (1.07–1.45) 

Respiratory 14 1.13 (0.9–1.42) 1.47 (0.9–2.4) 
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Figure 5.4. Cumulative exposure−response curves between daily Tappmax and 

cause−specific mortality and elderly mortality, over lag days 0−20, as calculated 

for the city of Thessaloniki for the period 2006−2016. 95% CI marked as grey 

areas. 

As shown in Figure 5.5, the mortality risks of extreme cold Tappmax, defined as 

the 5
th

 percentile at 2.5 °C, reach maximum values on day 3 and subsequently 

decrease until day 10 (all-cause, cardiovascular, elderly) to 15 (cerebrovascular, 

respiratory). 
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Figure 5.5. Non−linear effects of extreme cold Tappmax on daily cause−specific mortality 

and elderly mortality at lag 0−20, as calculated for the city of Thessaloniki for the period 

2006−2016. Effects were defined as the risks at 5th percentile of Tappmax distribution 

compared with the estimated MMT. 

Figure 5.6 shows the estimated lag–response curves at the 95
th

 percentile of 

Tappmax (35 °C) for various causes of mortality and elderly mortality. The graphs 

indicate strong risk in the first days, followed by a protective association (RR < 1) 

at longer lags for All-cause, Cerebrovascular, Respiratory and Elderly mortality. 

For respiratory and cerebrovascular mortality, there is a suggestive mortality 

displacement, or a harvesting effect, as the initial increase caused by an event of 

extreme temperatures is followed by a negative risk in mortality (Baccini et al., 

2008; Gasparrini et al., 2012; Kouis et al., 2019). The overall shape of the curves 

is consistent with Kouis et al. who focused on Thessaloniki (Kouis et al., 2019). 
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Figure 5.6. Non−linear effects of extreme hot Tappmax on daily cause−specific 

mortality and elderly mortality at lag 0−20, as calculated for the city of 

Thessaloniki for the period 2006−2016. Effects were defined as the risks at 95th 

percentile of Tappmax distribution compared with the estimated MMT. 

Percent change in mortality per 1°C change above and below MMT (Table 5.4) 

shows a larger increase for all-cause mortality in heat (1.95%, 95% CI: 1.07–

2.84), in contrast to smaller (insignificant) increases in cold (0.54%, 95% CI: 0–

1.09). Cerebrovascular mortality is largely affected by cold (1.7%, 95% CI: 0.2–

3.3), whereas the highest increase in mortality concerns respiratory causes in heat 

(5.07%, 95% CI: 2.1–8.1), followed by elderly mortality (2.36%, 95% CI: 1.34–

3.34). Bunker et al. (Bunker et al., 2016) reported that with 1 °C increase above 
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the heat-related threshold, respiratory mortality was the most affected category, 

depicting the largest risk increase, followed by cardiovascular and cerebrovascular 

causes. This pattern is also evident in the present study. It is interesting to notice 

that, although heat risk is often associated with effects on the cardiovascular 

system, relative risks for cardiovascular mortality are no higher than those of most 

other causes of death, and remarkably lower than respiratory causes, a result 

found also in Gasparrini et al. (Gasparrini et al., 2012). Statistically insignificant 

results were obtained for cerebrovascular heat mortality (0.98%, 95% CI: –1.4–

3.41), cardiovascular cold mortality (0.97%, 95% CI: −0.1–1.98), and respiratory 

cold mortality (1.48%, 95% CI: −0.3–3.24). 

 

Table 5.4. Percentage change in mortality per 1°C change in Tappmax above and 

below MMT. 

 

The estimation of the overall attributable fraction categorized per cause of death is 

reported in Table 5.5. Regarding All-cause mortality, 3.51% of deaths are 

attributed to temperature. The total attributable risk is then separated into 

components due to cold and hot temperatures, defined as those below and above 

MMT, respectively (Gasparrini and Leone, 2014; R. Chen et al., 2018). The 

comparison of the two contributions clearly indicates that heat is responsible for 

most of the all-cause mortality attributable to Tappmax, with an value equal of 

2.34% compared to 1.34% for cold. 

Cardiovascular and cerebrovascular mortality is mostly attributed to cold 

temperatures, a result which is expected from the high MMTs of 30°C. Mortality 

concerning the elderly and mortality due to respiratory causes are mostly 

attributed to heat (3.75% and 5.6% respectively). 

 

Table 5.5. Cause-specific mortality and elderly mortality fraction (%) attributable 

to high and low levels of Tappmax. 

Cause of Death Mortality Heat (% Change) Mortality Cold (% Change) 

All-cause 1.95 (1.07–2.84) 0.54 (0–1.09) 

Cardiovascular 2.15 (0.52–3.81) 0.97 (−0.1–1.98) 

Cerebrovascular 0.98 (−1.4–3.41) 1.7 (0.2–3.3) 

Elderly (65+) 2.36 (1.34–3.34) 0.77 (0.18–1.37) 

Respiratory 5.07 (2.1–8.1) 1.48 (−0.3–3.24) 
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The analysis is extended by further separating the attributable components into 

contributions from mild and extreme Tappmax as follows: 

 Extreme cold: minimum to 5th percentile. 

 Mild cold: 5th percentile to MMT. 

 Mild hot: MMT to 95th percentile. 

 Extreme hot: 95th percentile to maximum. 

As indicated in Figure 5.7, which illustrates the attributable fractions of causes of 

mortality and elderly mortality associated with different components of non-

optimum Tappmax, All-cause and Respiratory mortality are mainly attributed to 

extreme high values of Tappmax (1.35% and 3.3%, respectively). Mild cold 

Tappmax accounts for the majority of attributable mortality due to cardiovascular 

and cerebrovascular causes by far (7.21% and 11.6%, respectively). Lastly, Mild 

hot Tappmax is mostly responsible for Elderly mortality (2.22%). 

 

Cause of Death MMT (°C) Overall (%) Hot (%) Cold (%) 

All-cause 22 3.51 2.34 1.34 

Cardiovascular 30 10.1 2.36 8.1 

Cerebrovascular 30 14 1.07 13.12 

Elderly (65+) 19 5.4 3.75 1.88 

Respiratory 14 6.76 5.6 2.04 
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Figure 5.7. Fractions of mortality and elderly mortality attributable to non−optimum 

Tappmax. 

5.3 Conclusions 

In the present study, the effects of Tappmax on daily mortality from 2006 to 2016 

in the urban area of Thessaloniki, Greece, were assessed. DLNMs were used to 

examine the associations between thermal indicator Tappmax and cause-specific 

mortality, and to investigate the effect of time lag and non-optimum temperatures. 

There is a documented association between high temperatures and mortality for 

Thessaloniki. The present results come to agreement with recent work (World 

Health Organization, 2022) and contribute further in increasing the knowledge 

concerning the effects of temperature on daily mortality in the urban area of 

Thessaloniki: (a) a wide range of mortality categories was investigated in the 

present study, covering the majority of deaths related to temperature with the use 

of a state-of-the-art statistical framework, (b) instead of choosing a single 

temperature parameter, we calculated Tappmax as a thermal index expressing 

thermal stress and comfort perceived by humans, and (c) we also examined the 

attributable fraction on non-optimum temperatures. 

In Thessaloniki, extreme high temperatures strongly influence the risk in 

mortality. Strong exponential rise was evident over 35°C, with further and more 

prominent increase with Tappmax values over 40 °C. J-shaped relationships were 

found between temperature and mortalities. Heat was short lived with an 

immediate effect (mortality increase), whereas cold had a prolonged effect. 

Percent change in mortality per 1 °C change above and below MMT showed large 

increase for all-cause, cardiovascular and respiratory mortality in heat. Similarly, 

elderly mortality was also affected by heat. Taking into consideration the 

attributable fraction of mortality assigned to the various causes investigated, it 

was noted that overall 3.51% deaths were attributable to Tappmax. Deaths 

attributed to heat outnumbered deaths attributed to cold, with stronger impacts on 

respiratory mortality and among the elderly. 

In conclusion, heat-attributable mortality in Thessaloniki was found to be mainly 

associated with high temperatures. Given the eminent vulnerability of the 

Mediterranean area to temperature rise due to climate change and the expected 

more frequent occurrence of heat wave episodes (Ullah et al., 2022), these results 

could contribute to the decision-making process regarding extreme weather 

preparedness. The need to conduct heat health action plans for the implementation 

and coordination of extreme heat response activities that will reduce the negative 

impact of extreme heat is undeniable and requires high-resolution information on 

the association between temperature and mortality on the city-level. 

The results of the present study can effectively contribute to this scope, whereas 

future work should be conducted to include not only major Greek cities but 
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additional environmental stressors such as air pollutants as well, in order to draw 

decisive conclusions on the national frame. Investigating mortality behavior under 

the influence of climate change could be a critical next step. 
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Chapter 6 

Short-Term Effects of Air Pollution 

on Mortality in the Urban Area of 

Thessaloniki, Greece 

In recent years, poor air quality, both ambient and indoor, has become a pressing 

issue, with more frequent and intense episodes of high pollution levels being 

prevalent in cities across the globe. Currently, it is considered the biggest 

environmental risk to human health and the second-greatest environmental 

concern among Europeans, second only to climate change (European 

Environmental Agency, 2020). 

According to the WHO (WHO, 2016), 3 million deaths were solely attributable to 

outdoor air pollution globally in 2012, an estimation which Fuller et al. (Fuller et 

al., 2022) has raised to 4.5 million, particularly for ambient particulate matter 

(4.14 million) and ambient ozone (0.37 million). This not only impacts mortality 

but morbidity as well. The most compelling evidence regarding the health 

consequences of air pollution relates to cardiovascular and respiratory ailments; 

nevertheless, studies exploring other health impacts are also increasing (WHO, 

2022; WHO Regional Office for Europe, 2022). Older adults are more susceptible 

to the negative health impacts of air pollution due to their decreased ability to 

adapt to stressors on their physiological, metabolic, and compensatory processes, 

as well as their higher likelihood of having cardiovascular and respiratory diseases 

(Geller and Zenick, 2005; Shumake et al., 2013). Elderly mortality has been found 

to be particularly affected by PM10 and O3, with higher excess risks than other 

age groups (Cakmak, Dales and Vidal, 2007; Katsouyanni et al., 2009; Liu et al., 

2022; Olstrup, Åström and Orru, 2022).  
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PM10 and O3 are considered to represent a major part of the problem (Stanaway 

et al., 2018). Ozone exposure has significantly increased worldwide, leading to a 

46% increase in ozone-attributable mortality from 2000 to 2019 (Malashock et al., 

2022). PM10 and O3 are linked to a rise in all-cause, cardiovascular, and 

respiratory mortalities (Biggeri et al., 2004; Katsouyanni et al., 2009; Garrett and 

Casimiro, 2011; Peng et al., 2013; Olstrup et al., 2019; Vicedo-Cabrera et al., 

2020). The WHO has also emphasized PM2.5 (World Health Organization, 2006) 

as they are found to be associated with the premature mortality of several age 

groups (Garrett and Casimiro, 2011; Pascal et al., 2014; Lelieveld et al., 2015). In 

2020, approximately 238,000 premature deaths in the European population were 

caused by exposure to PM10 concentrations above the WHO’s 2021 guideline 

level of 45 μg/m
3
 (EEA, 2022a). Additionally, the European Environment Agency 

attributed 16,800 premature deaths to acute ozone exposure in 2019 (EEA, 2021). 

Despite EU and national policies, the pollutant levels in many areas exceed the 

recommended guidelines (European Council Directive 2008/50/EC), and although 

significant improvements are evident, the impacts of serious air pollution in 

Europe still persist. Approximately 11% and 12% of the EU urban population is 

exposed to PM10 and O3 concentrations above EU standards, a percentage that 

rises to 71% and 95%, respectively, when taking into account the WHO 

guidelines of 2021 (EEA, 2022b).  

Threshold violations take place at several locations throughout Europe (EEA, 

2012). However, the problem appears to be more pronounced in Southern and 

Eastern Europe (EEA, 2018), especially with respect to the PM and ozone 

concentrations in Greece, Spain, and Italy (Pleijel, 2000; Karanasiou et al., 2014; 

Sicard et al., 2021). These areas are characterized as climate change hotspots; 

thus, the collective impacts of climate change and air pollution variables should 

be taken into consideration (Bytnerowicz, Omasa and Paoletti, 2007) under the 

specific topographical and meteorological conditions of each region (Valjarević et 

al., 2021). With respect to the latter air pollutant, the ground-level ozone 

concentrations in Southern Mediterranean countries are often alarmingly high and 

are comparable to the highest levels of places that are located in the most 

contaminated parts of Central Europe (Moussiopoulos et al., 2009).  

When focusing on Greece, the country has been found to be in violation of the 

three most commonly exceeded EU air quality standards for PM10, O3, and NO2, 

according to (EEA, 2019). Using 2019 data, it was estimated that 75 deaths per 

100,000 population in Greece could be attributed to air pollution, where the deaths 

were primarily caused by ischemic heart disease, stroke, and respiratory infections 

(WHO Regional Office for Europe, 2022); this corresponds to 1,101 attributable 

DALYS (Disability-adjusted life years) per 100,000 citizens (WHO, no date a), or 

104,000 YLLs (Years of life lost) for the entire Greek population (WHO, no date 

b). As expected, the two largest cities of the country suffer the most from the 

acute air quality problems because of the dense population and build-up of air 

pollutants caused by the topography and adverse meteorological conditions, e.g., 
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the urban heat island effect (Poupkou et al., 2011). The EU air quality standards 

are significantly surpassed by the PM10 concentrations observed in Athens and 

Thessaloniki (Kalabokas, Adamopoulos and Viras, 2010), and the YLLs are 

primarily affected by PM10 exposure as well as O3 to a lesser extent 

(Kassomenos, Dimitriou and Paschalidou, 2013). 

Thessaloniki in particular is one of the most polluted cities in Europe, especially 

with respect to the PM level (Vlachokostas et al., 2012) but also with respect to 

the O3, VOCs, and noise pollution levels (Vlachokostas et al., 2013). O3 limit 

values are mostly exceeded during the summer months, while winter is the most 

favorable season for PM10 violations (Moussiopoulos et al., 2009). Nevertheless, 

Thessaloniki’s major air quality problem consists of PM10 concentration levels. 

As a result, in December 2020, the European Commission decided to take legal 

action against Greece by referring the country to the European Court of Justice for 

the substandard PM10 air quality of Thessaloniki (European Commission, 2020).  

To address the issue, effective and enduring air pollution mitigation plans must be 

identified and put into action (Miranda et al., 2015; Silveira et al., 2016). Such 

measures and policies to combat particulate air pollution were tested in a recent 

study (Progiou et al., 2023), which resulted in a more than 20% reduction in the 

PM10 concentrations in Thessaloniki, Greece. Moreover, it is necessary to assess 

the health benefits of the abatement measures by quantifying the impact of air 

pollution on human health.  

However, majority of the literature focuses almost entirely on Athens (e.g., 

(Gryparis et al., 2004; Touloumi et al., 2006; Kassomenos, Dimitriou and 

Paschalidou, 2013)); only recently has a study by (Psistaki et al., 2022) 

discovered that brief exposure to PM2.5 and PM10 in Thessaloniki is connected 

to an amplified risk of all-cause and cardiovascular mortality. In addition to the 

above, there is a significant lack of studies specifically examining the suitability 

of mitigation measures in terms of health benefits for the area of Thessaloniki.  

In this Chapter, we utilize advanced statistical tools to investigate the associations 

between short-term exposure to PM10 and O3 and daily all-cause (natural, non-

accidental), cardiorespiratory, and cerebrovascular mortality from 2006 to 2016 in 

the urban area of Thessaloniki. We also examine the effect of air pollution on the 

elderly (all-causes, 65+ years) as it is crucial to understand the specified response 

of frail subgroups to environmental stressors.  

Most importantly, to assist air quality planning, we estimate for the first time the 

impact of the modification of PM10 levels on Thessaloniki’s population mortality 

under two air pollution abatement scenarios: (1) full compliance to EU levels, 

thus eliminating the exceedances of PM10 daily values; and (2) a 20% horizontal 

reduction in the PM10 concentration in order to assist air quality planning. These 

scenarios are based on the most cost-efficient measures identified by the recent 

study of (Progiou et al., 2023) to combat PM10 pollution in the urban area of 

Thessaloniki. 
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Thus, the main goal of the current Chapter is to present evidence on the air 

pollution–mortality relationship in the Thessaloniki urban area, accounting for the 

cause-specific deaths, lag structure, elderly mortality, and potential mitigation 

measures that can be of utmost importance for environmental stakeholders and 

local policy makers 

6.1 Data and Methods 

6.1.1 Study area 

This research centered on the urban area of Thessaloniki (Figure 6.1), which 

includes seven municipalities. Thessaloniki, the second largest city in Greece and 

an important economic and industrial center in the Balkans, is situated in the 

northern part of the country and has a population of about 1,000,000, representing 

20% of the country’s industrial activity (Moussiopoulos et al., 2009). The city is 

located on the northeastern coast of the Thermaikos Gulf and is close to Hortiatis 

mountain (1200 m) on the eastern side. The western side is characterized by a 

large flat area, which houses the industrial zone of Sindos. The city’s location to 

the south means that it is greatly affected by the nearby sea, which contributes to 

its Mediterranean climate (Giannaros and Melas, 2012). Vehicular traffic, 

residential heating (Progiou et al., 2023), biomass burning (Diapouli et al., 2017), 

and industrial emissions (Moussiopoulos et al., 2009) are the main origins of air 

pollutants in Thessaloniki (Melas et al., 2017), resulting in the deteriorated air 

quality in the area, especially during years of economic crisis (Zyrichidou et al., 

2019). Dust storms originating from North Africa also significantly contribute to 

particle pollution in the area (Achilleos et al., 2020; Psistaki et al., 2022; Rizos et 

al., 2022). 
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Figure 6.1. The study area with the locations of air quality stations (1: Agias Sofias, 

40.63° N 22.94° E; 2: AUTh, 40.63° N 22.95° E; 3: Panorama, 40.58° N 23.03° E; 4: 

Kalamaria, 40.57° N 22.96° E; 5: Kordelio, 40.67° N 22.89° E). Dotted lines represent 

municipalities. 

 

6.1.2 Air Quality and Mortality Data 

The hourly values of PM10 and O3 concentrations (μg/m
3
) for the period of 2006–

2016 were acquired by 5 air quality monitoring stations that cover the urban area 

of Thessaloniki and are operated by the Ministry of the Environment and Energy. 

The highest PM10 value and maximum 8-hour moving average for O3 over each 

station were used in the present study, which represented the daily concentrations 

for the datasets. 

The Hellenic Statistical Authority (ELSTAT) provided the daily mortality data, 

consisting of age and cause of death, for all municipalities in the urban region of 

Thessaloniki (2006–2016); the causes of death were categorized into all-cause 

(natural, non-accidental), cardiorespiratory, and cerebrovascular according to the 

ICD-10. Emphasis was placed on studying the overall mortality rate among the 

elderly, specifically for deaths that occurred among individuals aged 65 years and 

older. 

6.1.3 Data analysis 

We applied a DLNM to our data in order to show the impact of air pollution on 

mortality with delay in time, in accordance to previous studies (Gu et al., 2020; 

Vicedo-Cabrera et al., 2020; Kriit et al., 2022). DLNMs are a powerful modeling 

tool that are capable of simultaneously capturing both non-linear exposure–
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response dependencies and delayed effects. Unlike conventional distributed lag 

models, which struggle with non-linear relationships, the DLNM methodology 

utilizes a ‘cross-basis’, a two-dimensional function space that depicts the 

connection between predictor variables and the lag dimension of their occurrence. 

This approach offers a comprehensive portrayal of the exposure–response 

relationship’s time course, making it possible to estimate the overall effect with 

precision, even in the presence of delayed contributions. In order to describe the 

air pollution–mortality associations in the present study, we applied generalized 

non-linear models with a quasi-Poisson family based on the quasi Akaike 

information criterion. The DLNM package (Gasparrini et al., 2017) in R 

programming language (R version 4.1.1; R Foundation for Statistical Computing) 

was used to implement the family of applied models.  

There are differences in the literature regarding the lag structure used to best 

describe the association between air pollution and mortality; in some cases, short 

lags of 0–1 days (Katsouyanni et al., 2001; Ballester et al., 2002; Analitis et al., 

2006; Lelieveld et al., 2015; Khaniabadi et al., 2017; Liu et al., 2019) or up to 3 

days (Garrett and Casimiro, 2011) are deemed to be the most appropriate, while in 

other studies, a week is chosen (Samoli et al., 2009; Stafoggia et al., 2010; 

Gariazzo et al., 2023). There are also examples in the literature suggesting that the 

adverse response to pollution persists for more than a month (Zanobetti et al., 

2002, 2003; Stojić et al., 2016). To this end, we investigated the correlation 

between short-term exposure to PM10 and O3 and specific causes of death at 

various lags in order to decide the effect estimates for the present analysis. 

In order to investigate the efficiency of mitigation measures in terms of health 

benefits, we not only applied the DLNM analysis for the original PM10 dataset, 

but also for 2 mitigation scenarios:  

 Complete compliance with the EU limits (daily PM10 value < 50 μg/m
3
),  

 20% reduction in the PM10 concentration.  

Table 6.1 shows the percentage of days in which the daily EU limits were 

exceeded during the range of 2006–2016. The EU air quality guidelines were 

surpassed on 1894 (47%) days of the 4018-day study period for PM10 (>50 

µg/m
3
) and on 1124 (28%) days for O3 (>120 µg/m

3
). Under the 20% PM10 

reduction scenario, only 27% of days surpassed EU limits, resulting in 1119 

exceedances.  

Year 

O3 Mean Annual 

Value (%—Days 

Over 120 μg/m
3
) 

PM10 Mean Annual 

Value (%—Days Over 

50 μg/m
3
) 

PM10 20% Reduction 

Scenario (%—Days Over 

50 μg/m
3
) 
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Table 6.1. Mean annual values of pollutants (μg/m
3
) during the study period and 

during PM10 reduction scenario 2. Numbers in parentheses denote the percentage 

of annual violations of the EU daily limits. 

6.2 Results 

6.2.1 Mortality Data analysis 

During the study period, we analyzed 73,990 natural deaths that occurred from all 

causes, 28,945 from cardiorespiratory diseases, and 10,007 from cerebrovascular 

causes. The number of deaths among the elderly population amounted to 62,482. 

The descriptive statistics of the pollution and daily mortality for the reference 

period are provided in Table 6.2.  

 

Table 6.2. Statistics of the daily mortality (number of deaths, top) and pollution 

(μg/m
3
, bottom). 

2006 85.8 (6.5%) 58.9 (53%) 47.1 (34%) 

2007 95.3 (18%) 70.5 (79%) 56.4 (53%) 

2008 118.7 (48%) 66.9 (76%) 53.5 (51%) 

2009 112.7 (45%) 56.1 (57%) 44.9 (28%) 

2010 99.1 (26%) 51.2 (39%) 41 (20%) 

2011 114 (50%) 56.8 (45%) 45.5 (25%) 

2012 115.2 (47%) 52.6 (43%) 42 (24%) 

2013 101 (30%) 48.7 (35%) 39 (21%) 

2014 82.2 (2.5%) 46.6 (30%) 37.3 (14%) 

2015 99.5 (25%) 49.7 (33%) 39.8 (17%) 

2016 92.3 (9%) 47 (31%) 37.6 (15%) 

Daily Mortality 

 Mean St. dev. 

All-cause  18.4 4.7 

Cardiorespiratory 7.2 2.9 

Cerebrovascular 2.5 1.6 

Elderly 15.5 4.4 
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The data on deaths show that cardiorespiratory mortality accounts for over 40% of 

all natural deaths, making it a crucial group to examine in terms of susceptibility; 

the authors of (European Observatory on Health Systems and Policies, 2019) have 

reported that stroke and ischemic heart disease are the primary causes of mortality 

in Greece, which supports the claim. Elderly mortality reflects 84% of all-cause 

mortality for all ages, as Greece has one of the highest percentages of individuals 

aged over 65 years in Europe (EUROSTAT, 2020). The daily mean and median 

pollutant concentrations are generally higher in Thessaloniki than those reported 

in other metropolitan areas (Garrett and Casimiro, 2011; Samoli et al., 2014) and 

resemble the values of large cities with important air quality issues (Samoli et al., 

2009; Stafoggia et al., 2010; Wang et al., 2018). Similar values of mean daily 

mortality and summary statistics of PM10 in Thessaloniki are also verified in 

(Samoli et al., 2013).  

6.2.2 Lag Effect analysis 

Table 6.3 displays the correlation between short-term exposure to PM10 and O3 

and specific causes of death at various lags. The lag structure here yields a 

prolonged effect of PM10 and O3 on all mortalities from the current day to day 6 

in Thessaloniki. As a result, the relative risk per 10 µg/m
3
 increase in PM10 and 

O3 concentrations over lag 0–6 is used hereinafter as the effect estimates. 

 

Table 6.3. Associations between cause-specific mortality and short-term exposure 

to PM10 and O3 at various time intervals (0–1, 1–6, and 0–6 days). Results are 

presented as a percentage increase of risk (RR%) and as 95% confidence intervals 

(95% CI) per 10 μg/m
3
. 

 

PM10 

Mortality RR%, Lag 0–1  RR%, Lag 1–6  RR%, Lag 0–6  

  PM10   

Median Mean Min 25th perc. 75th perc. Max 

49 55 11.6 38 65 256.6 

  O3   

Median Mean Min 25th perc. 75th perc. Max 

99 101 14 76 123 232 
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All-cause  2.2 (0.6–3.3) 0.8 (−1.9–3.2) 2.3 (0.8–3.8)  

Cardiorespiratory 1.9 (0.5–3.6) 0.7 (−2–3.5) 2 (0.1–4.5) 

Cerebrovascular 1.5 (−1.8–5.2) 1.1 (−1.9–4.9) 1.8 (−2–6.1) 

Elderly 2.7 (1–3.5) 1.5 (−0.4–2.9) 3.2 (1.5–5) 

O3 

Mortality RR%, Lag 0–1  RR%, Lag 1–6  RR%, Lag 0–6  

All-cause  1.9 (0.9–3) 2.7 (0.2–5.3) 3.9 (2.5–5.3) 

Cardiorespiratory 2.8 (1.06–4.5) 3.5 (−0.54–4) 5.3 (3.1–7.7) 

Cerebrovascular −0.7 (−3.5–2.23) 2.8 (−4–9.9) 3 (−7–11)  

Elderly 2.2 (1.55–3.4) 3 (0–5.86) 4.4 (2.9–6)  

The estimated associations between the PM10, O3, and mortality in Thessaloniki 

are illustrated in Figure 6.2. The diagrams show the relationship among the air 

pollutants concentrations, excess risk, and lag values as a three-dimensional 

surface. The associations of PM10, all-cause, and cardiorespiratory mortalities are 

non-linear. An immediate increase in deaths is evident for exposures to high 

levels of pollutants at lag days 0–2; however, for cardiorespiratory causes, a 

secondary maximum is present at lag 6. Concerning O3, a lag of up to 3 days 

depicts a large increase in excess risk, which results in higher values of 

cardiorespiratory deaths. At days 5–6, a smaller increase is evident for both causes 

of death, indicating a prolonged impact.  
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Figure 6.2. Overall effect of PM10 on all-cause mortality (a) and cardiorespiratory 

mortality (b); overall effect of O3 on all-cause mortality (c) and cardiorespiratory 

mortality (d) for Thessaloniki in the years 2006–2016. 

The dose–response relationships for the natural and cardiorespiratory mortalities 

for PM10 and O3 (not shown here) were found to be linear, as noted in previous 

studies (Gryparis et al., 2004; Ortiz et al., 2017; Psistaki et al., 2022). 

6.2.3 Total effect analysis 

We present the evidence of the positive association of natural all-cause and 

cardiorespiratory deaths with PM10 and O3 in Table 6.3.  

A 10 unit increase in PM10 is associated with a 2.3% (95% CI: 0.8–3.8) increase 

in natural all-cause mortality and a 2% (95% CI: 0.1–4.5) increase in 

cardiorespiratory mortality; O3 causes a 3.9% (95% CI: 2.5–5.3) increase in all-

cause mortality and a 5.4% (95% CI: 3.1–7.7) increase in cardiorespiratory 

mortality. Neither of the two air pollutants are associated with cerebrovascular 

outcomes, as confirmed in similar studies (Stafoggia et al., 2010; Samoli et al., 

2014).  

Due to the significant differentiation of the lag selection, there is no uniformed 

way to compare our results with other studies. PM10 levels are generally 

associated with increases of 0.8–4.3% in all-cause mortality, 0.12–6.6% in 

cardiovascular mortality, and 0.47–4.2% in respiratory mortality, respectively 

(Kunzli et al., 2000; Katsouyanni et al., 2001; Ballester et al., 2002; Zanobetti et 

al., 2002, 2003; Analitis et al., 2006; Pascal et al., 2014; Khaniabadi et al., 2017); 

the RR estimations in the present study are found to be within the range 

demonstrated above. Thessaloniki is underrepresented in similar publications; ref. 

(Psistaki et al., 2022) linked exposure to PM10 to a 1.75% increase in 

cardiovascular deaths (lag 0–6) but found no link to respiratory mortality. 

Many studies (Gryparis et al., 2004; Samoli et al., 2008, 2009; Stafoggia et al., 

2010; Garrett and Casimiro, 2011; Khaniabadi et al., 2017; Olstrup et al., 2019) 
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have reported positive associations between O3 and increases in all-cause (0.33–

2%), cardiovascular (0.45–2.5%), and respiratory mortalities (0.6–2.8%.), and 

correlations are evident in the present analysis. In particular, ref. (Stafoggia et al., 

2010) indicated higher impacts of O3 on respiratory and cardiac mortality than on 

all-cause mortality, which is also confirmed by our results. However, the excess 

risks estimated here are higher compared with those obtained in other studies. 

It is worth noticing, however, that the estimates from single-city studies tend to be 

higher compared with pooled multi-city results as the model specification utilized 

in the studies focused on individual cities could result in an overestimation of the 

outcome (Katsouyanni et al., 2001; Samoli et al., 2008).  

When comparing the effect of O3 and PM10 on different causes of mortality, we 

document more severe impacts from the former than the latter. This consistent 

behavior is evident in similar studies covering various areas worldwide and 

various time spans, e.g., South Africa (2006–2015) (Christina Adebayo-Ojo et al., 

2006), Russia (2003–2005) (Revich and Shaposhnikov, 2010), and China (Shang 

et al., 2013). 

Susceptible population subgroups are often separately considered in order to 

account for the specified behavior of these groups to environmental stressors. In 

the present work, we developed a dedicated DLNM model for assessing the 

impact of PM10 and O3 on the elderly.  

Elderly mortality is affected by both PM10 and ozone; a 3.2% RR increase (95% 

CI: 1.5–5) per 10 unit increase of PM10 and a 4.4% raise (95% CI: 2.9–6) per 10 

unit increase of O3 are evident. Similar results are verified in (Katsouyanni et al., 

2009; Stafoggia et al., 2010; Garrett and Casimiro, 2011; Shang et al., 2013). The 

air pollution in Thessaloniki has been found to demonstrate a more intense impact 

on elderly mortality than on the all-cause mortality for all ages, as found in 

(Revich and Shaposhnikov, 2010). 

Additionally, 5% of elderly deaths are attributed to PM10 and 2.6% are attributed 

to O3 (a total of 4,750 deaths out of 62,482). This corresponds to 284 and 146 

annual deaths due to PM10 and O3, respectively, for people aged 65 years and 

older. 

Table 6.4 presents the attributable mortality and attributable fraction of mortality 

based on the PM10–mortality and O3–mortality relationships. We estimate that 

3.6% of total mortalities and 3.2% of cardiorespiratory causes were attributed to 

PM10, while the respective percentages for O3 are 2.3% and 3%. These estimates 

correspond to 242 annual premature all-cause mortalities from PM10 and 170 

from O3, respectively. On an annual basis, 82 cardiorespiratory deaths are related 

to elevated PM10 levels, and another 80 cardiorespiratory deaths are related to O3 

levels. Overall, in Thessaloniki, 412 deaths are recorded annually due to PM10 

and O3 pollution, out of which 162 are attributed to cardiorespiratory causes. 

 



 

64 

Table 6.4. Attributable mortality (AM, number of deaths) and attributable 

mortality fraction (AF, %) for different causes of mortality. 

 

Our results are similar to previous studies, where the attributable fraction of 

natural mortality fluctuated between 1.35% and 6% and cardiovascular mortality 

fluctuated between 1.63% and 6.89% due to PM10 pollution (Christina Adebayo-

Ojo et al., 2006; Wang et al., 2018). Ref. (Khaniabadi et al., 2017) reported that 

1.96% of cardiovascular mortality is attributed to O3 and 6.6% to PM10, while 

(Goudarzi et al., 2015) found that 3.2% of cardiovascular and 6.2% of respiratory 

mortality is attributed to O3. According to (Fattore et al., 2011), 2% of 

cardiovascular mortality, 5.6% of respiratory, and 1.5% of total mortality is 

attributed to O3 levels. 

 

6.2.4 Suitability of Studied Scenarios in Terms of Health Benefits 

We present an examination of the suitability of two mitigation measures in terms 

of their health benefits for the urban area of Thessaloniki. The first case study 

(scenario 1) corresponds to a full abidance to EU limits concerning daily PM10 

values (<50 μg/m
3
), whereas the second case study (scenario 2) horizontally 

reduces PM10 concentrations by 20%, a case that is more realistically applicable 

as shown in (Progiou et al., 2023). 

Table 6.5 displays the RR, AF, and AM for scenarios 1 and 2, respectively. 

Reducing PM10 concentrations by 20% would result in 2368 deaths and a 3.2% 

AF value with respect to total mortality. Full compliance with EU environmental 

legislation leads to a 1.8% attributable all-cause mortality, which corresponds to 

710 deaths. When comparing the scenarios, the RR increases from 1.7% (scenario 

1) to 2.1% (scenario 2). It is obvious that radical measures positively affect human 

health to a larger degree than moderate ones. 

 

 PM10  O3 

Mortality  AM AF 
Average 

Annual Deaths 
AM AF 

Average 

Annual Deaths 

All-cause  2664 3.6 242 1865 2.3 170 

Cardiorespiratory  914 3.2 82 876 3 80 

Elderly  3146 5 284 1604 2.6 146 
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Table 6.5. RR (%), AM (number of deaths), and AF (%) of total mortality for 

different PM10 scenarios. 

 

When comparing the results of Table 6.3 and 6.4, the mortality burden decreases 

when mitigation measures are implemented. The AF is reduced by 0.4% and 1.8% 

compared with the original PM10 dataset for the 20% reduction and full 

compliance scenarios, respectively. Thessaloniki would count 27 less deaths on an 

annual basis if the PM10 concentration were reduced by 20% and 177 less annual 

deaths if under full EU compliance. 

Thus, even with the more moderate abatement scenario, the health impact of 

PM10 concentration on the local population could be significantly lower. 

 

6.3 Discussion 

In the international literature, the interaction between human health and air quality 

is well-defined (WHO Regional Office for Europe, 2013) with respect to 

morbidity and mortality (Héroux et al., 2015). The adverse impact of deteriorated 

air quality has also raised international concern with respect to the natural 

environment (Bytnerowicz, Omasa and Paoletti, 2007) and economy (Font-Ribera 

et al., 2023). Cities in the Mediterranean area are frequently experiencing elevated 

levels of air pollution (Pleijel, 2000) under the additional pressure of the climate 

crisis. Thessaloniki, Greece, is particularly impaired with respect to the air 

pollution, especially due to PM10 and O3 levels (Vlachokostas et al., 2012; 

Karanasiou et al., 2014). Although some recent studies have quantified the impact 

of temperature on mortality (Orellano et al., 2020; Parliari et al., 2022), there is 

insufficient evidence concerning air quality, thus pointing a gap in relevant 

knowledge.  

The present study aimed to address this vacancy by presenting an evaluation of 

the short-term changes in daily mortality counts as associated with the 

concentrations of daily air pollutants from 2006 to 2016 in the urban area of 

Thessaloniki. We analyzed the associations between the daily maximum values of 

PM10 and O3 levels and cause-specific mortality, and we investigated this effect 

on the susceptible elderly subgroup with the use of DLNMs. To quantify the 

mortality burden, we used relative risk changes for every 10 μg/m
3
 increase in air 

Scenarios RR  AM  AF  

1—Full EU compliance  1.7  710 1.8  

2—20% reduction 2.1  2368 3.2  
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pollution concentrations as the primary effect estimates (Braga, Zanobetti and 

Schwartz, 2001; Orellano et al., 2020). After conducting a specific analysis using 

a lag structure, which has great heterogeneity among literature, we determined the 

most suitable lag for this work to be defined at days 0–6, similar to other studies 

(Stafoggia et al., 2010; Gariazzo et al., 2023).  

Based on our results, a 10 unit increase (μg/m
3
) in PM10 concentration is 

associated with a 2.3% (95% CI: 0.8–3.8) increase in natural all-cause mortality 

and 2% (95% CI: 0.1–4.5) increase in cardiorespiratory mortality. O3 causes 

increases of 3.9% (95% CI: 2.5–5.3) in all-cause mortality and increases of 5.4% 

(95% CI: 3.1–7.7) in cardiorespiratory mortality. Meanwhile, neither of the two 

air pollutants is associated with cerebrovascular outcomes. Considering the 

assigned attributable fraction of mortality for the various investigated causes, it is 

noted that overall, 3.6% of total mortalities are attributable to PM10 and 2.3% are 

attributable to O3. PM10 levels are responsible for 3.2% of cardiorespiratory 

mortality (3% for O3). These estimations correspond to 242 annual premature all-

cause casualties due to PM10 and 170 due to O3.  

The direct comparison of our findings with similar studies in this field is 

particularly challenging due to the differentiation of the lag selection and 

underrepresentation of the specific area. Nevertheless, both RR estimates and 

attributable mortalities are in agreement with comparable research (Kunzli et al., 

2000; Zanobetti et al., 2003; Stafoggia et al., 2010; Garrett and Casimiro, 2011). 

It is worth noting that (Psistaki et al., 2022) linked exposure to PM10 to a 1.75% 

increase in cardiovascular deaths (lag 0–6) but found no link to respiratory 

mortality in the Thessaloniki area. 

Elderly mortality is also affected by the 10 unit increase in the air pollutants to an 

even larger degree than the mortality accounting for all ages, which was also 

confirmed in (Revich and Shaposhnikov, 2010). We report that excess risks 

increase by 4.4% and 3.2% due to O3 and PM10, respectively, while 284 annual 

deaths are attributed to PM10 and 146 are attributed to O3, corresponding to a 5% 

and 2.6% attributable mortality, respectively. Studies on elderly people, such as 

(Katsouyanni et al., 2009; Garrett and Casimiro, 2011), report similar results. 

The need to abide by EU environmental legislation is crucial for reducing the 

negative impact of air pollutants on public health (Progiou et al., 2023); thus, 

high-resolution, location-specific information on the association of human 

morbidity and mortality to environmental stressors is of utter importance. 

Appropriate mitigation actions should be taken to decrease the population’s 

exposure to pollutants and to further explore how location-specific factors 

contribute to this vulnerability. An innovative aspect of this work is the 

quantification of the health benefits as a result of two PM10 abatement scenarios, 

which was conducted for the first time in the study’s urban area. The first case 

study (scenario 1—full abidance to EU limits, 50 μg/m
3
) yields 177 less annual 
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deaths, and the second case study (scenario 2—horizontal reduction by 20%) 

results in 27 less casualties compared with the baseline. 

The above findings of the present study clearly indicate that local residents are at 

risk from the current levels of PM10 and ozone. O3 is found to have a more severe 

impact than PM10, and the elderly are particularly frail to poor air quality in the 

area. If the two proposed mitigation measures were implemented, the attributed 

mortality fraction would decrease by 0.4% and 1.8%, respectively. 

It should be noted that this study is limited by the fact that no confounding effects 

(e.g., temperature and humidity) were considered during the modeling process. 

Future work should be conducted to include more air pollutants such as PM2.5 

and to further study the synergy between thermal stress and air pollution on health 

so as to draw decisive conclusions. Examining the impact of climate change and 

projected air quality conditions on mortality patterns could be a crucial next step. 

6.4 Conclusions 

While there is considerable literature on the impact of air pollution on human 

health, the case of Thessaloniki, Greece, is considerably under-studied, despite it 

being a city with significantly deteriorated air quality. By exploring the link 

between short-term exposure to air pollutants and cause-specific mortality, the 

current study offers proof of a positive association between daily mortality from 

natural and cardiorespiratory causes and exposure to PM10 and O3. However, no 

connections were identified between these pollutants and cerebrovascular 

mortality. The study indicates that the elderly population is particularly vulnerable 

to the effects of PM10 and O3. To further contribute to policy-making-associated 

knowledge for a sustainable environment for humans, the study quantified the 

health benefits that resulted from two air pollution abatement scenarios and found 

a significant reduction in total excess mortality. The respective results 

demonstrate significant decreases in air quality-related mortality, highlighting the 

importance of appropriate civil protection actions based on scientific expertise 

tailored to local populations for the development of proper health and air quality 

plans. 
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Chapter 7 

Synergistic impact of air quality 

and thermal conditions on human 

mortality 

Rapid urbanization rate has caused cities to face increasing pressure from growing 

populations, limited resources and escalating impacts of climate change (World 

Health Organization, 2017). The degradation of air quality has become so 

prominent in cities that the term urban pollution island (UPI) was recently 

introduced, to describe the spatial and temporal variations in pollution 

concentrations between urban and rural areas (Ulpiani, 2021). The synergistic 

interactions of urban heat islands (UHIs) and UPIs lead to increased pollutant 

concentrations via mechanisms, such as accelerated atmospheric chemistry cycles 

due to high temperatures and increased emissions of precursor species (Ulpiani, 

2021).  

The Mediterranean region faces poor air quality conditions, associated with a 

range of health challenges. In 10 Mediterranean cities, an increase in PM2.5 was 

linked to higher all-cause and respiratory mortality, particularly among those aged 

75 years and above (Samoli et al., 2013). PM10 was associated with increased 

mortality from various causes such as diabetes, cardiac, cerebrovascular, and 

chronic obstructive pulmonary disease (Samoli et al., 2014). Rising temperatures 

in the area contribute to increased pollutant production, mostly ozone (Pyrgou, 

Hadjinicolaou and Santamouris, 2018). Climate change projections suggest that 

the Mediterranean will become a prominent "hot spot," with scorching summers 

becoming more common (Lelieveld et al., 2012). The region will experience a 

temperature increase of 2°C to 5°C and a 40% decrease in precipitation, especially 
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in southern Europe (Lelieveld et al., 2012; Zanis et al., 2015). Greece is 

particularly susceptible to climate change, and is projected to experience a 4.3°C 

increase in temperature as well as reduced precipitation (Gao, Pal and Giorgi, 

2006; Georgoulias et al., 2022).  

Thessaloniki, one of Europe's most polluted cities (Ministry of the Environment 

and Energy, 2023), faces unfavorable meteorological and air quality conditions. 

For instance, heat was associated with increased cardiovascular and respiratory 

mortality risk (Kouis et al., 2019). The city also struggles with air pollution, 

primarily from O3 in summer and PM10 in winter (Moussiopoulos et al., 2009; 

Kalabokas, Adamopoulos and Viras, 2010). PM10 has consistently exceeded EU 

limits, resulting in legal consequences (Case C-70/21). Exposure to such pollution 

levels has negative health impacts, including increased hospital admissions and 

mortality rates for cardiac and respiratory diseases (Giannaros et al., 2011; 

Psistaki et al., 2022; Parliari, Giannaros, et al., 2023). The interaction between air 

quality and thermal stress is crucial in Thessaloniki (Zoumakis et al., 2011), 

which also experiences a strong Urban Heat Island Effect (Giannaros and Melas, 

2012). The combination of air pollution and heat-discomfort conditions during 

heat waves leads to high discomfort levels in the city (Papanastasiou, Melas and 

Kambezidis, 2015). 

The available evidence concerning the potential interactive effects of heat and 

ambient air pollution remains largely inconclusive. Previous studies mostly 

focused on the individual impact of environmental stressors on human health (Bao 

et al., 2016; Kriit et al., 2022), with only a few examining the combined influence 

of temperature and daily air pollution levels (Stafoggia et al., 2008; Cheng and 

Kan, 2012; Meng et al., 2012; Turner et al., 2012; Breitner et al., 2014; Jhun et 

al., 2014). Different publications present varying perspectives, with some 

suggesting synergistic effects (Baccini et al., 2008; Cheng and Kan, 2012; Meng 

et al., 2012), others finding no combined impact (Samet et al., 1998; Hales et al., 

2000; Basu, Feng and Ostro, 2008), and some reporting effect modifications for 

only one of the pollutants under study (Breitner et al., 2014).  

The diverse perspectives on this matter continue to be a subject of debate within 

academic literature. Moreover, there has been relatively limited investigation into 

the simultaneous interactive effects of temperature and air pollution as predictors 

of mortality. Recent research investigating synergy has shown increased death 

numbers at high temperatures and high levels of O3 or PM10, but changes in cold 

effects with increasing air pollution levels were not reported (Burkart et al., 

2013a; Scortichini et al., 2018; Rai et al., 2023). 

The present study investigates the interactive effects between daily maximum 

Apparent Temperature (Tappmax) and air pollution (NO2, O3 and PM10) in cause-

specific mortality (non-accidental, cardiovascular, respiratory), by developing a 

Distributed Lag Non-linear Model using the framework of Generalized Additive 
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Models. A separate analysis is conducted for the Elderly citizens (> 65 years old), 

as well as evaluation of the lag structure. 

The synergy is estimated by introducing a tensor product between Tappmax and 

either PM10 (lag 0–6), NO2 (lag 0–6) or O3 (lag 0–8).  Temperature estimates 

were extrapolated at low, medium, and high levels of pollutants defined as the 5
th

, 

50
th

, and 95
th

 percentile of pollutant-specific distribution; heat and cold effects 

were estimated as the percentage change in mortality between the 75
th

 and 99
th

, 

and the 1
st
 and 25

th
 percentiles of Tappmax, respectively. This is the first 

application of the proposed GAM-based approach and the first analysis to explore 

this complex association for Thessaloniki, Greece. 

 

 

7.1 Data and Methods 

7.1.1 Study area 

The second largest city in Greece and an important economic and industrial center 

in the Balkans, Thessaloniki is home to more than 1,000,000 inhabitants (Hellenic 

Statistical Authority, 2023). The city is notable for its aging population, with 

21.3% of the population older than 64 (Kouis et al., 2019).  

Its Mediterranean climate is significantly affected by the adjacent Thermaikos 

Gulf in the south; the mean annual temperature of Thessaloniki is ~16 °C and the 

mean annual relative humidity is ~62%. The city is affected by a prominent UHI 

effect with an intensity of between 1 °C and 3 °C in winter and 2°C and 4°C in 

summer (Giannaros and Melas, 2012). 

The primary sources of air pollution in the greater Thessaloniki area are road 

traffic, residential heating (Progiou et al., 2023), biomass burning (Diapouli et al., 

2017), and industrial emissions (Moussiopoulos et al., 2009). These activities 

have generally increased, leading to a decline in air quality (AQ) (Melas et al., 

2017), particularly during the economic crisis when unregulated fuel burning for 

domestic energy use was notorious (Zyrichidou et al., 2019). In addition, particle 

pollution in the area is also substantially impacted by dust storms that originate in 

North Africa (Achilleos et al., 2020; Psistaki et al., 2022; Rizos et al., 2022). 
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Figure 7.1. The study area with the locations of monitoring stations (1: Agias Sofias, 2: 

AUTh, 3: Panorama, 4: Kalamaria, 5: Kordelio, 6: Makedonia airport). Dashed lines 

represent municipal borders. 

7.1.2 Data description 

Hourly values of PM10, O3, and NO2 concentrations (μg/m
3
) for the period 2006–

2016 were obtained from five air quality monitoring stations covering the urban 

area of Thessaloniki, operated by the Ministry of the Environment and Energy 

(Table 7.1). The highest PM10 and NO2 values and the maximum 8-hour moving 

average for O3 over each station were used, representing the daily concentrations 

for the datasets. 

Data regarding temperature and dew-point temperature on an hourly basis from 

2006 to 2016 were acquired from the Makedonia Airport weather station, operated 

and certified by the Hellenic National Meteorological Service (Table 7.1). 

The study focused on the Apparent Temperature, a thermal index that gauges the 

perceived thermal stress and comfort levels experienced by humans. Hourly Tapp 

was computed as follows: 

 

Tapp = −2.653 + 0.994*Ta+0.0153*Td
2 

 

where Ta is air temperature (°C) and Td the dew point temperature (°C). 

Subsequently, the daily maximum value (Tappmax) was computed as the highest 

among the hourly values. Tapp is an optimal indicator for predicting all-cause 

mortality risk and for issuing heat alerts and warnings (Michelozzi et al., 2010; 
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Lin et al., 2012; Zhang et al., 2014) and has been previously used to study 

mortality in Thessaloniki (Parliari et al., 2022; Parliari, Giannaros, et al., 2023). 

 

Table 7.1. Description of the monitoring stations 

Station Description  Coordinates  

1. Agias Sofias Urban-traffic 40.63°N 22.94°E 

2. AUTh Urban-background 40.63°N 22.95°E 

3. Panorama Exurban-background 40.58°N 23.03°E 

4. Kalamaria Exurban-background 40.57°N 22.96°E 

5. Kordelio Urban-industrial 40.67°N 22.89°E 

6. Makedonia Airport Meteorological 40.52°N 22.97°E 

 

Daily mortality data were obtained from the Hellenic Statistical Authority 

(ELSTAT), including age and cause of death for all Municipalities in the urban 

area of Thessaloniki for the study period (2006-2016). The data are stratified by 

causes of death: All-cause (natural, non-accidental), Cardiovascular and 

Respiratory, according to ICD-10 (International Classification of Diseases, 10th 

version). Emphasis was placed on studying the overall mortality rate among the 

elderly, specifically aged 65 and higher.  

7.1.3 Statistical analysis 

To quantify the association between the various exposures and attributed mortality 

we use the general framework of distributed lag models (DLMs). The DLM is a 

regression modelling framework that can capture the distributed effect of an 

exposure across temporal lags (Gasparrini, Armstrong and Kenward, 2010). Here, 

we implement DLMs as GAMs with objective penalization to guard against over-

fitting, while also allowing for a straightforward quantification of interactions 

across exposures. 

Let    and     denote the mortality count and Tappmax for day  . A DLM is 

defined as 

 

                   (1) 

                                   (2) 

 

where   days is the maximum temporal lag. The use of the negative binomial 

(NegBin) distribution is a conventional choice in epidemiological analyses. It 

extends the Poisson distribution to allow for over-dispersion (extra variance). The 

linear “effects”    act multiplicatively on the mean mortality count    (and 
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additively on        . The framework can be extended to DLNMs to allow for 

non-linear effects by extending the formulation of    via: 

                                           (3) 

 

where            is an unknown 2D function of Tappmax and lag  . Assuming that  

           is smooth, then this is a GAM which can be implemented in the R 

package mgcv (Wood, 2011, 2017) to optimally estimate            by 

penalising its flexibility. An example of an estimated            is shown in 

Figure 7.2. 

Penalization in non-linear regression models is important to avoid over-fitting 

(over-explaining) the data, and in this case, to also reduce sensitivity to the choice 

of   (as long as this is large enough). More importantly, it is straightforward to 

define interactions of the Tappmax-lag effect with other exposures (e.g., with 

PM10), via 

 

                                                

                          (4) 

 

Function      can be defined using tensor product interactions of regression 

splines (Wood, 2017), a robust and flexible approach to defining smooth functions 

across many dimensions. The models presented in what follows were 

implemented in the R package mgcv, which makes use of penalised maximum 

likelihood to estimate the smooth functions. 

In mgcv, the “effects” (i.e., the smooth functions) are constructed such that they 

are centered at zero, i.e., their sum is zero. As such, the term         is interpreted 

as the overall (across all time and exposure values) mean mortality count. 

Function                   is therefore the multiplicative increase or decrease 

of the mean mortality count.        implies greater than average mortality risk, 

whereas        means lower-than-average risk. Thus      is the relative risk or 

RR (relative to the overall mean death count). Moreover, a quantity to summarise 

the “marginal” risk due to the exposure is based on the sum of      over the lags. 

For instance, 

 

                   

 

   

                                           

 

is the cumulative risk (CR) for Tappmax from model (3).  
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Moreover, GAMs implemented in mgcv can be interpreted in a Bayesian way 

(Wood, 2017) and Monte Carlo simulation can be used to quantify the associated 

uncertainty in estimating the smooth function     . This in turn enables the 

assessment of “significance” in the RR estimated, which here is determined by 

checking whether the value 1 lies within the 95% credible interval of     .  If it is 

not, then we can say that with probability 0.95 the value of the RR is not 1 and 

that the weight of evidence supporting this is strong. 

The surface that graphically explains the concept of the present work is 

demonstrated in Figure 7.2, where the cumulative risk plot results from summing 

across the lag dimension and along the pollutant and Tappmax ranges.  

 

 

 

Figure 7.2. Representation of the tri-dimensional surface depicting the non-linear 

association between Tappmax and pollutant on mortality. Effect estimates of heat (75
th
 

and 99
th
 percentiles of Tappmax distribution) and cold (1

st
 and 25

th
 percentiles) are shown, 

along with sections corresponding to low, medium and high pollution values (5
th
, 50

th
 and 

95
th
 percentiles). 

 

7.1.4 Data analysis 

Figure S1 shows the violations of EU Air Quality Guidelines for PM10, NO2 

(annual, 40 µgr/m
3
) and O3 (daily, 120 µgr/m

3
) during study period 2006-2016. 

EU annual limits were surpassed every year for PM10 and 6 out of 11 years for 

NO2, while 28% of total days (4018) recorded O3 daily values above threshold.  

We calculated the mean monthly values of the environmental stressors for 

Thessaloniki across the 11-year period, to get a picture of their seasonal 

variability. PM10 and NO2 display peaks during winter months and troughs at 
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summertime. O3 exhibits reverse seasonality and follows the pattern of Tappmax 

behavior, with summertime maxima due to enhanced photochemical processes 

(Figure S2). 

During the study period, there were 73,990 natural deaths from all-causes, 21,811 

from cardiovascular (CVD) diseases, and 7,134 from respiratory (RD) causes. 

Mortality among the elderly was 62,482 representing more than 80% of the total 

number of deaths. Table 7.2 provides the descriptive statistics of pollution, 

Tappmax and daily mortality for the reference period.  

The mortality data indicates that 30% of all natural deaths are attributed to 

cardiovascular diseases, highlighting the significance of this health condition for 

investigating susceptibility, noting that stroke and ischaemic heart disease are the 

leading causes of death in Greece (European Observatory on Health Systems and 

Policies, 2019). In addition, Greece is among the countries with the highest 

population rates in the age group of over 65 in Europe (EUROSTAT, 2020); in 

our dataset elderly mortality reflects 84% of all-cause mortality. Pollutant 

concentrations are generally higher in Thessaloniki than those reported in Greece 

(Rai et al., 2023) and other metropolitan areas (Garrett and Casimiro, 2011; 

Samoli et al., 2014), comparable to values of other large cities with substantial air 

quality issues (Samoli et al., 2009; Stafoggia et al., 2010; Wang et al., 2018). 

Similar values of mean daily mortality and summary statistics of PM10 in 

Thessaloniki are verified also in (Samoli et al., 2013).  

 

Table 7.2. Descriptive statistics of mortality (number of deaths, top), Tappmax (°C, 

middle) and pollution (μgr/m
3
, bottom). 

 

Tappmax (°C) 

Mean 1
st
 perc. 25

th
 perc. 75th perc. 99

th
 perc. 

19 0.5 10 28 38 

PM10 (μg/m
3
) 

Mean 5
th

 perc. 50
th

 perc. 95
th

 perc. 

Daily Mortality (number of deaths) 

 Mean St. dev. 

All-cause 18.4 4.7 

Cardiovascular 5.4 2.4 

Respiratory 1.8 1.4 

Elderly 15.5 4.4 
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55 28 49 104 

 

 

7.2 Results  

7.2.1. Application of GAM for thermal stress 

A model defined by equations (1) and (3) is fitted to quantify the effect of Tappmax 

along its lags with L= 21 days. The estimated RR surface is given in Figure 7.3 

left panel, indicating elevated risk for high Tappmax at short lags (0-3). The 

surface is comparable to the one shown in (Parliari et al., 2022), who studied the 

same data set using a DLNM from the dlnm package in R.   Moreover, Figure 7.3 

right panel shows the associated CR (cumulative risk as defined in equation 5) for 

Tappmax, which shows that risk grows exponentially above 33 °C. 

 

 
 

O3 (μg/m
3
) 

Mean 5
th

 perc. 50
th

 perc. 95
th

 perc. 

101 54 99 160 

NO2 (μg/m
3
) 

Mean 5
th

 perc. 50
th

 perc. 95
th

 perc. 

40.3 17 37 74 
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Figure 7.3. Exposure-lag-response risk surface demonstrating the nonlinear association 

between Tappmax and mortality (left panel); Cumulative exposure-response curve between 

daily Tappmax and all-cause mortality over lag days 0-20 (right panel). 

Using the estimated CR, we can quantify the percentage change in risk when 

Tappmax changes. Specifically, we define as “heat effect” the percentage change in 

risk when Tappmax increases from its 75
th

 to its 99
th

 percentile. Similarly, the “cold 

effect” is the change occurring from the 25
th

 to the 1
st
 percentile. A single model 

was fitted for each cause of death.  The estimates of the heat and cold effects as 

defined above show that the impact from heat is considerable across all causes, 

with RD recording the largest increase (54.8%), while the age group of > 65 years 

exhibits the smallest (28.4%) increase. Lower (but still positive) changes are 

evident for the cold effects, with RD being the health condition with the most 

pronounced effect (30.2%), roughly three times larger than the others (Figure S3).   

Generally, Thessaloniki’s population is more severely impacted by high 

temperatures than low ones with respect to all types of mortality.  For comparison, 

Rai et al. (2023) reported a 17% increase in CVD and 19% increase in RD 

mortality between the 75th and the 99th percentile of temperature distribution, 

pooled from five cities in Greece. Concerning lag effects, there is an immediate 

increase in RR upon exposure to high temperatures (lag 0–3), whereas for low 

temperatures the effect is delayed (lag > 3). This finding is in agreement with 

previous studies concluding that heat has an almost immediate effect on human 

health, while impacts from cold take longer to manifest (Guo et al., 2011; Burkart 

et al., 2013a; Bao et al., 2016; Parliari et al., 2022).  

 

7.2.2 Synergy between PM10 and Tappmax 

   
 

Figure 7.4. Combined effect of PM10 and Tappmax on all-cause mortality stratified by 

levels of pollutant (defined as “low”, “medium”, and “high” based on 5th, 50th, and 95th 

percentiles of PM10 distribution). 

A model defined by equations (1) and (4) is implemented to study the joint effects 

of Tappmax and PM10. The estimated RR surfaces              for the 5
th

, 50
th

 

and 95
th

 percentiles of PM10 (29, 49, 104 μg/m
3
) are given in Figure 7.4. Clearly, 
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the most harmful combination of outdoor conditions for human health is high 

Tappmax and high pollution levels (RR up to 1.28), while at low and medium 

levels of pollution, risk is lower (RR up to 1.18 and 1.23, respectively).  

 

 

Figure 7.5. Cumulative exposure−response association across lags 0-6 for different levels 

of PM10 (blue denotes “low”, yellow denotes “medium”, and red denotes “high”). 

Figure 7.5 shows the corresponding CR plots for each PM10 level. For Tappmax < 

7 °C, low PM10 levels result in higher mortality risk than medium and high 

pollutant concentrations. In the region [7 °C, 20 °C], the effects of low and 

medium pollution levels decrease with temperature, while at high levels of 

pollution there is a ceiling of impact at 13 °C, above which, risk decreases. This 

could be related to data availability in the region, rather than physical behavior of 

the system. In warmer conditions below 33 °C, all RR values are lower than 1, 

indicating that these conditions are favorable.  In extremely hot conditions 

(Tappmax > 33 °C), there is a sharp increase in mortality risk, which becomes more 

marked with increasing PM10 levels. The highest RR value of around 2 occurs 

when air quality is at its poorest under conditions of extreme thermal discomfort 

of 43°C.  These conditions, high Tappmax values and high airborne PM levels, are 

quite frequent in Thessaloniki.  

 

7.2.2.1 Weight of evidence 

As discussed in section 7.1.3, uncertainty in the estimated risk can be quantified in 

a Bayesian manner and produce probabilistic statements regarding the weight-of-

evidence (or statistical significance) behind the estimates. We produce the 3D RR 

surface plots as 2D raster images of RR in Figure S4. Grid points for which RR=1 

is outside the 95% credible interval are marked with grey shading (circles). Grey 
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regions indicate statistically significant areas where the RR is either greater (red) 

or smaller (blue) than 1 (the mean mortality count).  

In general, many of the regions (particularly for heat effects at Tappmax > 20 °C) 

are statistically significant, and therefore the conclusions drawn are robust. 

However, the areas below 30 °C for low and medium PM10 levels and the area 5 

°C–30 °C for the high level at lags 0–3 define regions where the RR is not 

different from 1. This could either be because there are very few Tappmax-PM10 

values there, or because the association between mortality and stressors is weak at 

short lags. 

To further assess the robustness of the findings, sensitivity analyses were 

performed to investigate confounding effects with other pollutants. Specifically, 

we fitted a model where data points corresponding to high (> 90th percentile) 

NO2 values were excluded (Figure S4). This resulted in extended grey regions 

suggesting some degree of synergy between high PM10 and high NO2 

concentrations. The same procedure is repeated for O3 values and again, the 

significance increased, implying confounding effects among the three pollutants at 

high concentrations. Nevertheless, the differences were not pronounced enough to 

justify using the cropped dataset for the rest of the analysis. 

For the corresponding CR plots, uncertainty is presented via 95% intervals 

(dashed lines) in Figure 7.6. Risk is “significant”, where the value of 1 is not 

included in the intervals. There is little confidence for Tappmax < 0 °C at low and 

medium PM10 levels and below 8 °C at a high PM10 level. A possible 

explanation might be the relatively lower exposure of the population to outdoor 

conditions during winter. The wider breadth of the intervals at extremely low and 

extremely high Tappmax is due to the very small sample size of temperature 

values in those regions. 

 

 

Figure 7.6. Cumulative exposure−response associations across lags 0-6 for Low, Medium 

and High PM10 levels. Dashed lines represent 95% CI. 
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7.2.3 Synergy between NO2 and Tappmax 

To study the NO2 effect, the same model as in section 7.2.2 was implemented, but 

with NO2 rather than PM10. Similar to PM10, 3D plots in Figure S5 reveal 

consistent synergy between Tappmax and NO2 concentrations in all pollution 

ranges (low, medium and high defined at 17, 37 and 74 μg/m
3
). With increasing 

temperature, mortality risk increases, exhibiting maxima at short lags (0–2). For 

all three levels, a second peak is present below 10 °C for longer lags. An 

increased mortality risk of about 20% is evident at the high NO2 level for Tappmax 

> 40 °C, confirming that intense thermal stress and poor air quality pose major 

threats to human health. 

The pattern of cumulative RR for NO2 over the entire lag period (0–6) for the 

three levels of pollution is similar to PM10, highlighting the similarity between the 

two pollutants (Figure S6). 

The peaks are statistically significant as indicated by the grey shading areas 

(Figure S7), and this remained largely unchanged when investigating the possible 

confounding of NO2 with high (>90
th

 percentile) values of PM10 and O3 (results 

not shown).  The top right region (high Tappmax and long lags) remains 

insignificant, indicating that those values may not be supported by adequate data 

or a strong relationship between exposure and mortality.  Finally, there is high 

statistical significance below 0 °C (at low and medium NO2 levels) and below 8 

°C (at a high NO2 level) (Figure S8). 

 

7.2.4 Synergy between O3 and Tappmax 

The analysis for O3 is analogous to that of PM10 and NO2. The three pollution 

levels in this case are defined as 54 μg/m
3
 (low), 99 μg/m

3
 (medium), and 160 

μg/m
3
 (high pollution). The highest mortality risk occurs for high Tappmax over 

short lags (0–2), with a second peak appearing at 10 °C, for all pollution levels 

over longer lags. O3 concentrations of 160 μg/m
3
 are associated with the most 

adverse human health impacts at Tappmax > 40 °C (Figure S9). 

Cumulative risk is slightly elevated for Tappmax between 0 °C and 10 °C in 

conditions of medium O3 pollution. At low and high levels of ozone, there are 

insignificant relationships for specific segments of temperature (Tappmax < 8 °C 

and Tappmax > 15 °C for low, and Tappmax >17 °C, for high ozone concentrations). 

The weight of evidence for high O3 concentrations and low Tappmax is low (Figure 

S11). Indeed, no such combination exists in our dataset (i.e., the estimates are 

statistical extrapolations) given the opposite seasonal behavior of these 

components. An additional hiatus is found at low O3 levels for Tappmax between 10 

°C and 20 °C. After omitting high PM10 and NO2 values, the 95% CI did not 

increase: therefore, we assume that confounding does not occur. 
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7.2.5 Lag structure analysis  

In order to better understand the temporal dimension of the complex exposure-

lag-response association, an appropriate representation of the temporal pattern of 

risk is needed. In what follows, we cumulate the Tappmax-Pollutant-Lag surface 

across the Tappmax space (i.e., sum the RR at the log scale) to “integrate out” 

Tappmax. We then present “slices” of the resulting Pollutant-Lag surface for 

different lags in Figure 7.7. 

The top left panel of the plot relates to PM10 where it is evident that the highest 

mortality risk is on the day of exposure (lag 0), and this diminishes as the lag 

increases. This behavior shows that there is no threshold in the PM10 dose–

response relationship, and even a small increase in this pollutant has health 

impacts, in agreement with previous studies  (Psistaki et al., 2022; Parliari, 

Giannaros, et al., 2023). 

In contrast, the impact of NO2 on mortality (right panel) is more pronounced 

several days after the exposure and reaches a maximum on the last day (lag 6). 

This indicates that the health impacts of NO2 may be cumulative. 

The temporal pattern of O3 (bottom left) is different from PM10 and NO2. Up to 

a certain threshold (~ 170 μg/m3), the risk increases with lag. On lag 8 the risk is 

greater than on lag 7 and the smallest RR values occur at lag 0. For very high O3 

concentrations (> 170 μg/m3) this pattern is reversed: the effect on mortality is 

immediate (lag 0). Interestingly, this convergence point for O3 concentrations is 

partly evident in other studies focusing on the impact of O3 on human health 

(Parliari, Giannaros, et al., 2023), showing that the lag structure is different 

depending on the pollutant concentration under study. 
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Figure 7.7. Dose-response curves of cumulative RR across Tappmax range, demonstrating 

the lag structure for PM10 (top left, lags 0-6), NO2 (top right, lags 0-6) and O3 (bottom 

left, lags 0-8). 

We then looked at the lag structure of RR as a function of Tappmax, by cumulating 

the risk across the pollutants. Figure 7.8 shows the associated curves relating to 

PM10 (top left), NO2 (top right) and O3 (bottom left). In all cases, the following 

temporal structure of the exposure-response relationship is evident: heat effects 

are immediate while the ones from cold become predominant at longer time lags. 

These results are in line with previous studies (Liu et al., 2011; Lubczyńska, 

Christophi and Lelieveld, 2015; Schnell and Prather, 2017; Rodrigues, Santana 

and Rocha, 2019). 

For PM10, the RR for Tappmax < 15 °C is higher 7 days after the exposure (lag 6) 

than present day (lag 0). Conversely, the RR for Tappmax > 15 °C increases 

exponentially and reaches its peak at lag 0. The same applies for NO2 beyond the 

convergence point of 31°C, and O3 at 27°C. 
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Figure 7.8. Dose-response curves of cumulative RR across pollutants concentration 

ranges, demonstrating the lag structure for PM10 (top left), NO2 (top right) and O3 

(bottom left). 

 

7.2.6 Heat effect by pollutant levels (all- and specific-cause 

mortality) 

Heat effects on all-cause mortality stratified by pollutant levels are shown in 

Figure S13. The exposure of the population to outdoor conditions is higher in 

summer than in winter; therefore, the percentage change in mortality for all 

pollutants is greater for heat compared to cold. Figure 7.9 shows that mortality 

rises with increasing concentrations of PM10, NO2, and O3. Overall, PM10 

accounts for the largest health burden, expanding to 47.7% mortality increases for 

high levels, compared with 37.7% for NO2 and 32% for O3. Similarly, in the cold 

part of the range, the highest pollutant concentrations exert the greatest impact on 

mortality, but the respective increases are significantly lower (Figure S14). 

Figure 7. 9 shows the heat effects on mortality across the various causes for the 

whole population and the elderly (> 65 years) – stratified by levels of PM10, NO2, 

and O3. A consistent rise in the impact of heat on mortality due to all causes and 

CVD diseases is observed. The highest percentages occur at high pollutant levels. 

All-cause mortality is primarily affected by all levels of PM10 (20%, 27.5%, and 

47.7%, respectively), secondly by NO2 and lastly, by O3. A very large effect of 

heat on CVD mortality is found at the high level of PM10 (58.9%), followed by O3 

(45.3%). Interestingly, CVD mortality is not affected by varying levels of NO2 

and its levels remained high (37.2%). It is worth noting the respiratory (RD) 

decrease with increasing PM10 and NO2 levels.  

The elderly population is primarily affected by PM10 at all levels, followed by 

NO2, and O3. For all pollutants, the elderly estimates qualitatively follow the ones 



 

84 

for all-cause mortality for the respective species, but with much higher values 

compared to the general population. 

 

 
 

 

 

Figure 7.9. Estimates of heat effects as % change in cause-specific mortality for Tappmax 

increases between the 75th and 99th percentile by levels of pollutants (defined as “low”, 

“medium”, and “high” based on 5th, 50th, and 95th percentiles of pollutants 

distributions). 

7.2.7 Attributable Mortality Fraction (all- and specific-cause 

mortality) for non-optimum Tappmax ranges 

The approach presented in this paper is extended to encompass the mortality 

burden (Attributable Fraction, AF). In contrast to RR, which is evaluated at 

potentially counterfactual situations and which does not allow for the likelihood 

of stressor values, AF is a more rigorous metric which quantifies the effect on the 

population, taking into consideration the observed number of deaths and also the 

frequency of extreme Tappmax occurrence (Kim, Kim and Liu, 2014; de’ Donato 

et al., 2015).  
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Like RR, the AF is computed using the estimated functions (e.g.,          but 

using the actual Tappmax values in the data to attribute the number of deaths on 

any given day to the distributed effect of Tappmax.  

Figure 7.10 shows the AF for non-optimum Tappmax (extreme cold, mild cold, 

mild heat, and extreme heat) stratified by pollutant level as follows: 

(a) Extreme cold: minimum to 5
th

 percentile  

 (b) Mild cold: 5
th

 percentile to MMT  

(c) Mild heat: MMT to 95
th

 percentile  

(d) Extreme heat: 95
th

 percentile to maximum 

It is apparent that in the vast majority of cases, extreme heat has the biggest 

influence on the AF. Two exceptions are noted, specifically at low levels of PM10 

and NO2, where extreme cold is more prominent. Very frequently, extreme cold is 

the second most harmful temperature range. 

Although in articles studying the impact of temperature on mortality, optimum 

temperatures (mild cold, mild heat) are associated with most of the attributable 

deaths (Parliari et al., 2022; Psistaki, Dokas and Paschalidou, 2023), in our 

synergistic analysis, extreme heat results not only in the highest RR values, but 

highest AF as well, compared to other optimum and non-optimum ranges. This 

confirms our previous inference that extremely high Tappmax values are most 

harmful to health when combined with increased levels of pollutants. 

PM10 has the largest mortality burden among the three pollutants at the medium 

and high levels, while NO2 is mostly prominent when levels of pollution are low. 

It is also worth noting that the AF decreases (overall) from medium to high O3 

levels, probably due to the limited exposure of the population to extremely high 

temperatures in the summer months. 

. 
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Figure 7.10. Fractions of all-cause mortality attributable to non−optimum Tappmax by 

levels of pollutants (defined as “low”, “medium”, and “high” based on 5th, 50th, and 95th 

percentiles of pollutants distributions). 

Stratifying AF by the various diseases confirms that heat impact on cause-specific 

mortality burden is strongly modified by pollutant levels (Figure 7.11). Mortality 

fraction from all- and respiratory causes is primarily affected by PM10 levels and 

then by NO2.  AF related to CVD mortality, although increasing with rising O3 

concentrations, decreases for PM10 and NO2. 

The estimates of the AF for the Elderly follow the all-cause distribution for all 

pollutants but are exhibit much higher numbers compared to the general 

population. Effect modification is higher for PM10, followed by NO2 and O3. .  
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Figure 7.11. Fractions of cause-specific mortality attributable to levels of pollutants 

(defined as “low”, “medium”, and “high” based on 5th, 50th, and 95th percentiles of 

pollutants distributions). 

7.3. Discussion 

To our knowledge, this study is the first to use a GAM-based approach to assess 

the synergistic impacts of thermal conditions and air quality for the urban area of 

Thessaloniki. 

We used an advanced statistical approach that captures the complex non-linear 

and lagged dependencies in both the exposure-response and lag-response 

associations. This approach is flexible and can be adjusted to account for other 

synergies as well. Our results are statistically significant based on high-quality 

data spanning a period of 11 years. 

The research holds significant potential for applications in various fields such as 

atmospheric sciences, biometeorology, and environmental epidemiology as our 

findings can shed light on the impacts of climate and weather on human health. 

This interdisciplinary significance can inform evidence-based policies, adaptation 

strategies, and targeted public health interventions in the vulnerable Southern 

European region facing climate change challenges. 

We provide compelling evidence for the compounded effects of air pollution 

(PM10, NO2, and O3) and the maximum apparent temperature, with particularly 

pronounced adverse impacts on the elderly. We show that deterioration in air 

quality renders the population more susceptible to the effects of temperature 

variability, and vice versa that extreme temperatures influence susceptibility to air 

pollution. We also examine the effects of temporal lag and non-optimum Tappmax, 

as very little is known about the relative contribution of both heat and cold from 

moderate and extreme temperatures to the disease burden. In this study, we 

identified Tappmax as the most appropriate thermal predictor, based on previous 
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investigations of the dataset (Parliari et al., 2022; Parliari, Giannaros, et al., 

2023). 

Relationships between deaths and temperature are frequently expressed in the 

literature with the use of V, U, J, and reverse J-shaped structures (Baccini et al., 

2008; Zhang et al., 2016; Psistaki, Dokas and Paschalidou, 2022). Our analysis 

produced J-shaped Tappmax-mortality curves stratified by air pollution levels, with 

RR values increasing sharply over 33 °C. This specific threshold is demonstrated 

in Kouis et al. (2019) for Thessaloniki, indicating that it is typical. We found that 

low temperatures are associated with increased mortality as well, but not to the 

same extent.  

The exposure–response associations between Tappmax and RR cumulated over all 

lags shows consistent patterns for the three studied pollutants: 

 Winter temperatures (Tappmax < 10 °C), probably affected by limited 

exposure to outdoor conditions and confounded by the transmission of 

diseases such as influenza, increase the mortality risk up to 1.18, 1.17, and 

1.15 for PM10, NO2, and O3, respectively. As temperatures rise (10–20 °C), 

people spend more time outdoors or increasingly ventilate with ambient 

air, increasing exposure and the RR. 

 In view of excess deaths, a prominent “harvesting effect” or mortality 

displacement (RR < 1) is evident between 20 °C and 33 °C. This indicates 

the existence of subgroups of vulnerable individuals, for whom exposure 

to cold and high pollution levels leads to a subsequent decrease in deaths, 

as reported also in Breitner et al. (2014). It is worth mentioning that this 

Tappmax range is in force during months when dust events are more 

frequent in Thessaloniki, with recommendations to avoid outdoor activity, 

which in turn may safeguard the local population (Psistaki et al., 2022).  

Another explanation of the RR < 1 area of the graph (particularly at 

around 25 °C) could be the “September phenomenon” (Falagas et al., 

2009), which proposes reduced numbers of deaths in the late summer to 

early fall months in the Mediterranean countries due to human behavioral 

patterns, socio-economic factors, and environmental parameters.   

 From 33 °C upwards, cumulative mortality risk rises exponentially for all 

pollutants. The most adverse impact is reported for the combination of 

very high Tappmax (> 40 °C) and high pollution levels (RR = 1.95 for 

PM10, 2.0 for NO2, and 1.82 for O3). The same result arises from the three-

fold lag–exposure–response surfaces, where the death risk reaches +26%, 

20% and +15% for PM10, NO2 and O3, respectively, at lag 0. The findings 

of Chen et al. (2018) support the idea that high air pollution enhances 

temperature effects on daily mortality, while associations between high 

temperatures and mortality seem to be generally stronger at high pollution 

levels. Significant heat impact (expressed by UTCI) was evident for the 

medium-high and high O3 categories of Lisbon and Berlin and high PM10 
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pollution in Lisbon (Burkart et al., 2013b). Breitner et al. (2014) also 

showed that correlations between high temperatures and mortality were 

most pronounced at elevated levels of PM10 and O3.  

Generally, heat effects are found to be more harmful than cold in this study. High 

levels of PM10, NO2, and O3 are associated with increases in mortality of 47.7%, 

38.7%, and 32%, respectively, whereas the respective increases for cold are 

13.6%, 19.2%, and 2.1%. Similar results are reported in Burkart et al. (2013a), 

noting that the cold impact was mostly unaffected by air pollution.  

We found that in Thessaloniki, EU air pollution limits are regularly exceeded for 

the studied pollutants. By reducing the concentration of these harmful substances, 

especially during heat waves when vulnerable populations are at a greater risk, it 

will be possible to significantly reduce the numbers of fatalities caused by various 

ailments. Strict compliance with EU limits represents a proactive approach to 

improving public health and mitigating the adverse effects of extreme heat events.  

In view of the mortality burden, we show that extremely high temperatures 

(Tappmax > 35 °C) are responsible for the majority of deaths at all three levels of 

PM10, NO2, and O3. For all pollutants, extreme heat, extreme cold, mild cold, and 

mild heat are responsible for 60.7%, 48%, 45% and 11% of attributable mortality, 

respectively. These findings confirm our previous results regarding mortality risk, 

indicating that non-optimum Tappmax values in Thessaloniki (hot more so than 

cold) are responsible for the majority of the detrimental impacts on health when 

coincident with enhanced concentrations of ambient air pollution.  

The assessment of percentage increases in cause-specific deaths across pollution 

levels shows that all-cause mortality is strongly affected by enhanced PM10 levels 

(20%, 27.5%, 47.7%), whereas both PM10 (31.4%, 37.5%, 58.9%) and O3 (33.5%, 

41.2%, 45.3%) affect cardiovascular disease (CVD). Interestingly, the death rate 

from respiratory disease (RD) marginally decreases as NO2 and PM10 

concentrations increase, possibly due to behavioral patterns of the population. 

Nevertheless, consistently higher increases in RD mortality were found for all 

pollutants compared to all-cause and CVD, also evident in Rai et al. (2023). 

Lastly, in our study, CVD has a higher death toll than all causes, also 

demonstrated by Chen et al. (2018).  

Our analysis shows that elderly citizens (65 years and older) are particularly 

vulnerable to the adverse combination of thermal conditions and poor air quality. 

Many studies report that older people are susceptible to extreme meteorological 

conditions and air pollution (Barnett, 2007; Cakmak, Dales and Vidal, 2007; 

Oudin Åström, Bertil and Joacim, 2011; Gasparrini et al., 2012; Shim, Byun and 

Lee, 2023), due to the prevalence of pre-existing chronic conditions and because 

they may be subject to physiological changes in thermoregulation and 

homeostasis. In addition, the limited care and social support for this age category 

may also render them more susceptible (Breitner et al., 2014). 
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The lag structure analysis across the Tappmax range revealed varying influence of 

the three pollutants: PM10 showed the highest mortality risk at lag 0 with no 

threshold in PM10 dose-response relationship, as in previous studies (Psistaki et 

al., 2022; Parliari, Giannaros, et al., 2023). However, for NO2 the health impacts 

were delayed by several days. O3 had an immediate effect at high concentrations, 

even at day 0, while below 170 μg/m
3
 the situation was reversed. This “threshold” 

in O3 emerges in other studies as well (Parliari, Giannaros, et al., 2023). Further, 

the dose–response relationships of cumulative RR across pollutant concentrations 

showed that the impacts of high temperatures are immediate (days 0–3), whereas 

the cold effects became more pronounced with longer time lags (lag > 3). In 

general, heat effects tend to occur on a short-term, typically a few days, whereas 

cold effects evolve and persist over a longer duration, ranging from several days 

to weeks (Burkart et al., 2013b; Breitner et al., 2014; K. Chen et al., 2018). 

While the biological mechanisms responsible for the combined impact of air 

pollution and thermal conditions on mortality are not well known, several 

hypotheses have been put forward. Hot days induce physiological stress which 

may modify the response to air pollution, potentially increasing the susceptibility 

to adverse effects. Similarly, air pollution can render individuals more susceptible 

to thermal stress, as exposure impacts heart rate variability, the autonomic 

nervous system, and inflammatory parameters, for example (Gordon, 2003).  

The limitations of this study include the following. Given the location-specific 

character of our and similar studies (Samoli et al., 2014; Ma, Zhou and Chen, 

2020), generalizing the findings and directly comparing with assessments of 

health impacts in other regions with possibly distinct basic health and air pollution 

conditions may be problematic. Furthermore, using air quality data from fixed 

stations instead of exposure data may result in bias from exposure 

misclassification, as individual exposure does not necessarily coincide with 

measured atmospheric parameters. 

Our findings emphasize the need to mitigate the health burdens associated with 

ambient air pollution and thermal conditions. Additional research is necessary to 

explore air pollution and air temperature inter-relationships using morbidity data, 

such as hospitalization and emergency room visits, in order to gain a more 

comprehensive understanding of the interaction between thermal stress and air 

pollution. 

 

7.4. Conclusions 

We investigated the interactive effects of meteorological conditions (i.e., thermal 

conditions) and air pollution, using PM10, NO2, and O3 as predictors. We found 

that air pollution strongly modifies thermal effects, especially heat, and vice versa, 

in varying degrees across different lags. Our results underscore that low 
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temperatures have delayed effects on mortality, whereas high temperatures have 

immediate effects. We studied the compounded effects of air pollutants and the 

maximum apparent temperature and found that mortality strongly increases at 

high temperatures and high levels of air pollution. The elderly (65 years and 

older) are particularly vulnerable to heat stress and impaired air quality. These 

findings have important implications for the development of public health 

interventions aimed at controlling and preventing health consequences of 

exposure to extreme temperatures and poor air. 

 

 

7.5. Supplementary material 

 

  

 

 

Figure S1. Exceedances of the EU thresholds denoted by red lines (PM10, NO2: annual mean 40 
µgr/m

3
) (O3: maximum daily 8-hour mean 120 µgr/m

3
) during study period. 
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Figure S2. Seasonal distribution of PM10 (top left), NO2 (top right), O3 (bottom left) and Tappmax 
(bottom right). 

 

 

Figure S3. Estimates of heat and cold effects on cause-specific mortality and elderly mortality. 

 



 

93 

 

Figure S4. Contour plot of the joint association of PM10 and Tappmax. Statistical significance (95% 
CI) is indicated by grey points. 

   

Figure S5. Combined effect of NO2 and Tappmax on all-cause mortality stratified by levels of 
pollutant (defined as “low”, “medium”, and “high” based on 5th, 50th, and 95th percentiles of NO2 

distribution). 

 

Figure S6. Cumulative exposure−response association across lags 0-6, the  temperature range and 
different levels of NO2 (blue denotes “low”, yellow denotes “medium”, and red denotes “high” 

levels). 
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Figure S7. Contour plot of the joint association of NO2 and Tappmax. Statistical significance (95% 
CI) is indicated by grey points. 

 

 

   

Figure S8. Cumulative exposure−response associations across lags 0-6 for Low, Medium and High 
NO2 levels. Dashed lines represent 95% CI. 
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Figure S9. Combined effect of O3 and Tappmax on all-cause mortality stratified by levels of pollutant 
(defined as “low”, “medium”, and “high” based on 5th, 50th, and 95th percentiles of O3 

distribution). 

 

Figure S10. Cumulative exposure−response association across lags 0-8, the  temperature range and 
different levels of O3 (blue denotes “low”, yellow denotes “medium”, and red denotes “high” 

levels). 

 

Figure S11. Contour plot of the joint association of O3 and Tappmax. Statistical significance (95% 
CI) is indicated by grey points. 
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Figure S12. Cumulative exposure−response associations across lags 0-8 for Low, Medium and High 
O3 levels. Dashed lines represent 95% CI. 

 

 

Figure S13. Estimates of heat effects as % change in all-cause mortality for Tappmax increases 
between the 75th and 99th percentile by levels of pollutants (defined as “low”, “medium”, and 

“high” based on 5th, 50th, and 95th percentiles of pollutants distributions). 
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Figure S14. Estimates of cold effects as % change in all-cause mortality for Tappmax increases 
between the 1st and 25th percentile by levels of pollutants (defined as “low”, “medium”, and “high” 

based on 5th, 50th, and 95th percentiles of pollutants distributions). 
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Chapter 8 

Conclusions  

Although the health effects of air pollution and heat stress pose a growing concern 

in today's world, there has been relatively limited investigation into the 

simultaneous interactive effects of temperature and air pollution as predictors of 

mortality. Thessaloniki, the second largest city in Greece, faces unfavorable air 

quality and meteorological conditions, exacerbating the relating health risks for 

the local citizens. The impact of climate change in the area is expected to further 

compound these challenges, increasing the frequency and intensity of heatwaves 

and pollution episodes. Unfortunately, the understanding of Thessaloniki's 

specific vulnerability to these issues remains understudied, hindering effective 

mitigation strategies. The current dissertation has introduced a Distributed Lag 

Non-linear Model using the framework of Generalized Additive Models to 

investigate the interactive effects between daily maximum Apparent Temperature 

and air pollution in cause-specific mortality from 2006 to 2016, in the urban area 

of Thessaloniki. This is the first application of the proposed GAM-based approach 

and the first analysis to explore this complex association for Thessaloniki, Greece. 

The first study (Chapter 5) investigated the association between daily maximum 

Apparent Temperature and daily all-cause (natural, non-accidental), 

cardiovascular, cerebrovascular and respiratory mortality, by describing the 

exposure-lag-response association with the use of a DLNM. The effect of time lag 

and non-optimum temperatures, as well as specific analysis of the Elderly (+65 

years), were also examined.  

This study concluded that heat-attributable mortality in Thessaloniki was mainly 

associated with high temperatures. Significant implications that derived from this 

work include: 
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 Extreme high temperatures strongly influenced the risk in mortality with 

strong exponential rise over 35°C, with further and more prominent 

increase with Tappmax values over 40 °C.  

 J-shaped relationships were found between temperature and cause-specific 

mortalities. Heat was short lived with an immediate effect, whereas cold 

was prolonged. 

 The Elderly were more vulnerable to heat than general population. 

 Deaths attributed to heat outnumbered deaths attributed to cold, with 

stronger impacts on respiratory mortality. 

The second study (Chapter 6) investigated the associations between short-term 

exposure to PM10 and O3 and daily all-cause (natural, non-accidental), 

cardiorespiratory, and cerebrovascular mortality on the general population and the 

Elderly. To assist air quality planning, the impact of the modification of PM10 

levels on Thessaloniki’s population mortality under two air pollution abatement 

scenarios was estimated: (1) full compliance to EU levels, thus eliminating the 

exceedances of PM10 daily values; and (2) a 20% horizontal reduction in the 

PM10 concentration.  

The key conclusions of this study are summarized as follows: 

 Local population was at risk from the current levels of PM10 and ozone. 

O3 was found to have an even more severe impact than PM10, and the 

elderly were particularly vulnerable to poor air quality in the area. 

 Mortality risk and mortality burden of O3 were more acute for 

cardiorespiratory mortality than all-cause; the opposite result was evident 

concerning PM10.  

 Neither of the two air pollutants was associated with cerebrovascular 

outcomes. 

 If the two proposed mitigation measures were implemented, the attributed 

mortality fraction would decrease significantly in both cases. 

The objective of the final study (Chapter 7) was to analyze the interactive effects 

between daily maximum Apparent Temperature and air pollution (NO2, O3, 

PM10) in cause-specific mortality (non-accidental, cardiovascular, respiratory), 

by developing a Distributed Lag Non-linear Model using the framework of 

Generalized Additive Models. Separate analysis was conducted for the Elderly 

citizens, as well as evaluation of the lag structure. The synergy was estimated by 

introducing a tensor product between Tappmax and either PM10 (lag 0–6), NO2 

(lag 0–6) or O3 (lag 0–8). Temperature estimates were extrapolated at low, 

medium, and high levels of pollutants defined as the 5th, 50th, and 95th percentile 

of pollutant-specific distribution; heat and cold effects were estimated as the 

percentage change in mortality between the 75th and 99th, and the 25th and 1st 

percentiles of Tappmax, respectively. This study found that deteriorated air 
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quality rendered the local population more susceptible to the effects of 

temperature variability, and vice versa. 

The following conclusions were drawn: 

 Heat effect on mortality was more harmful than cold, in this study. 

 Tappmax-mortality relationships, stratified by air pollution levels, 

demonstrated J-shaped curves with RR values increasing sharply over 

33°C. Low temperatures were associated with increased mortality as well, 

but not to the same extent.  

 High air pollution enhanced temperature effects on daily mortality, while 

associations between high temperatures and mortality were generally 

stronger at high pollution levels. Moreover, impacts of high temperatures 

were immediate, whereas the prevalence of cold effects became more 

pronounced as longer time lags were considered. 

 Non-optimum Tappmax values (Extreme High Tappmax > 35 °C, in 

particular) had the greatest mortality burden on health when coupled with 

increased concentrations of pollutants. 

 All-cause and respiratory mortalities were heavily affected by PM10 

levels, whereas PM10, NO2 and O3 affected cardiovascular causes of 

death. 

 Based on this analysis, the elderly citizens were particularly vulnerable to 

the adverse combination of thermal conditions and poor air quality. 

 PM10 depicted immediate mortality risk increase, while NO2 needed more 

days to exhibit the negative impact on human health. O3 had prompt effect 

for large concentrations, and prolonged for decreased values. 

To our knowledge, this study was the first application of the proposed GAM-

based approach to assess the synergistic impact of thermal conditions and air 

quality for the urban area of Thessaloniki, by using an advanced statistical 

approach that captured the complex non-linear and lagged dependencies in both 

the exposure-response and lag-response associations, and flexible enough to be 

modified for other synergies. Given the vulnerability of the Southern European 

region, our work contributed significantly to various research fields such as 

atmospheric sciences, biometeorology and environmental epidemiology. 11 years 

of good quality data were available, resulting in satisfactory statistical 

significance of the produced results. 

To sum up, the findings of this research made a substantial impact on the 

scientific efforts of better understanding the synergies with which environmental 

factors effect human health. They also concluded to a robust statistical technique 

that can be implemented to other epidemiological studies. Thus, the principal 

objective of this dissertation has been met with a great deal of success providing 

evidence of the combined impact of air quality and biometeorological factors on 
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human mortality. The present results carry important implications for the 

development of public health interventions aimed at controlling and preventing 

the health consequences of exposure to adverse thermal and air quality conditions. 
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