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a b s t r a c t 

Deep learning concepts have been successfully transferred from the computer vision task to that of wear- 

able human activity recognition (HAR) over the last few years. However, deep learning models require a 

large volume of annotated samples to be efficiently trained, while adding new activities results in training 

the whole network from scratch. In this paper, we study the use of one-shot learning techniques based on 

high-level features extracted by deep neural networks that rely on convolutional layers. Using these fea- 

ture vectors as input we measure the similarity of two activities by computing their Euclidean distance, 

cosine similarity or applying self-attention to perceive the relations between the signals. We evaluate 

four different one-shot learning approaches using two publicly available HAR datasets, by keeping out of 

the training set several activity classes. Our results demonstrate that the model relying on modality-wise 

relational reasoning surpasses the other three, achieving 94.8% and 84.41% one-shot accuracy on UCL and 

PAMAP2 dataset respectively, while we demonstrate the model’s sensitivity on fusing sensor modalities 

and provide explainable attention maps to display the modality-wise similarities. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Wearable human activity recognition (HAR) can be used to en- 

ance wellbeing and health status [23] , facilitate smart environ- 

ents [14] and improve physical security in public spaces [10] . 

n contrast to other HAR methods relying on sensors that suffer 

rom privacy concerns (e.g., camera), wearable activity monitoring 

s unobtrusive. Moreover, similarly to computer vision, natural lan- 

uage processing, and speech recognition, wearable HAR has not 

emained unaffected by the rise of deep learning (DL) [7] . DL algo- 

ithms such as Convolutional Neural Networks (ConvNets or CNNs), 

ave been proven to be capable of automatically extracting fea- 

ures from almost raw motion signals [11] ; these high-level fea- 

ures are fed, afterwards, to fully connected (FC) layers or Recur- 

ent Neural Networks (RNNs) enhanced with the Long Short-Term 

emory (LSTM) mechanism, to fuse the multimodal features and 

lassify incoming sensor channels into an activity [20] . 

Moreover, HAR DL algorithms outperform the performance of 

he standard machine learning classifiers [10] , such as Support 

ector Machines (SVM), which are fed with hand-crafted features 

f time and frequency domain [2] . Nevertheless, DL algorithms 
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ave a huge drawback; they require huge volumes of labeled data 

n order to be efficiently trained, while motion signal annotation 

s a labor-intensive and time-consuming procedure. What is more, 

f an activity is not included in the training dataset, the engineers 

ust retrain the DL model from scratch to include it. Thus, there 

s the need of finding ways to alleviate these issues. 

Few-shot learning aims at recognizing similar activity classes in 

 set of data, where we have few instances of the same classes; 

he case of having only one instance of the same class with the 

nchor signal in the comparison set is called one-shot learning 

26,31] . One-shot learning is achieved by extracting features from 

he training samples that can generalize, called embeddings. An 

mbedding is a mapping of a discrete variable (e.g., a word) to a 

ow-dimensional vector of continuous numbers, which is useful in 

eural nets since we can measure its norm distance to other em- 

eddings that we are aware of their class [26] . 

In this paper, we investigate whether DL architectures can be 

sed to apply relational reasoning [25] on the extracted embed- 

ings to measure the class-wise relevance between activity sam- 

les that have only one labeled sample. The contributions and in- 

ovations of the current work can be summarized in the following: 

1. We examine deep learning model architectures applied to one- 

shot sensor-based HAR. 

https://doi.org/10.1016/j.patrec.2021.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.03.003&domain=pdf
mailto:pkasnesis@uniwa.gr
https://doi.org/10.1016/j.patrec.2021.03.003
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2. We introduce a modality-wise relational network to discover 

activity similarities. 

3. We extensively investigate multi-head self-attention perfor- 

mance on one-shot HAR. 

4. We construct explainable attention maps to display the 

modality-wise similarities. 

The rest of this paper is organized as follows. Section 2 de- 

cribes related works on DL-based HAR focusing on few-shot learn- 

ng. Section 3 elaborates on all the examined one-shot learning 

etwork architectures, while Section 4 describes the processed 

atasets and the experimental setup. The results of our experi- 

ents and the comparative analysis with existing works are pre- 

ented in Section 5 . Finally, Section 6 concludes the paper and 

resents future steps. 

. State of the art 

The first CCN approach to wearable HAR was introduced in 

37] . The authors used as input a 1D array representation of the 

otion signals (i.e., tri-axial accelerometer), stacking them into 

hannels (channel-based stacking), just like RGB images use three 

hannels (i.e., Red, Blue, Green channels). Moreover, the authors 

f [24,38] proposed a similar network architecture; all these HAR 

onvNets fuse the motion data in the first hidden layer and, follow 

n early fusion strategy. Later works show that stacking the input 

ignals vertically is more efficient, enabling the network to fuse the 

xtracted features later using a dense layer [22] , a 2D convolutional 

ayer [11] , or a LSTM layer [20] . 

Despite their high performance, DL algorithms that have been 

pplied to wearable HAR have a drawback; they demand large vol- 

mes of annotated data for their training. To this end, transfer 

earning techniques have been studied. Transfer learning refers to 

he technique of passing the learned parameters from a classifi- 

ation model to a model applied to a different but related clas- 

ification task. [21] tried to transfer the extracted knowledge by 

onvolutional layers across users, HAR domains, sensor modal- 

ties and locations. Due to the fact that the results were not 

ery encouraging, [32] followed another approach based on a 

ross-domain learning framework capable of exploiting the intra- 

ffinity of classes to perform intra-class knowledge transfer, called 

tratified Transfer Learning (STL). In [1] a DL generative cross- 

omain adaptation technique is proposed, capable of training new 

AR models for heterogeneous wearable sensors by using a small 

mount of new unlabeled data and exploiting the knowledge from 

n old model. This domain adaptation method aligns the distribu- 

ion of the features between two heterogeneous sensors through 

he combination of a generative autoencoder with a typical HAR 

NN. 

A branch of transfer learning is that of few-shot, which aims 

t learning a classifier to recognize unseen classes (target do- 

ain) with only a small amount of labeled training samples 

y reusing knowledge from existing models on relevant classes 

source domain) [6] . Even though, few-shot learning techniques 

ave been widely used in computer vision tasks (e.g., face recog- 

ition [26,29] ), where the classifier tries to measure the similar- 

ty between two objects [31] , it has limited use in wearable HAR. 

eng and Duarte [6] utilized a deep LSTM network for this pur- 

ose, examining three possible strategies based on cosine simi- 

arity, sparse reconstruction and semantic distance between the 

ord embeddings of the activities. Moreover, they alleviated neg- 

tive transfer, by measuring the cross-domain class-wise relevance 

o that knowledge of higher relevance is assigned larger weights 

uring knowledge transfer. Similar techniques to those of few-shot 

earning have been efficiently applied to measure the similarity be- 

ween pairs of motion data without knowing the explicit labels 
91 
16,27] . Specifically, in [16] the authors examined the use of Match- 

ng Networks and Triplet Networks based on a ConvNet, while in 

27] Siamese Networks exploiting a convolutional LSTM architec- 

ure were chosen. 

Finally, zero-shot learning has, also, been examined for HAR 

o transfer information from seen to unseen classes via seman- 

ic space. The first DL-based zero-shot application was intro- 

uced in [33] using a nonlinear compatibility-based method, while 

35] used a multi-nonlinear layers model to project features to se- 

antic space and combined mean square and cross entropy loss 

o achieve better results. In addition to this, [34] evaluated the use 

f Matching Networks for this task and [15] exploited Word2Vec 

ord embeddings [18] to represent the semantic space of un- 

een activities. Word2Vec embeddings were also exploited in [19] , 

hich are combined with a one-hot encoding matrix and a matrix 

ontaining semantic attributes provided by human experts (e.g., 

peed, capacity, power), a concept introduced for zero-shot learn- 

ng HAR in [3] . The produced attribute matrix is fused with the 

eatures extracted by a DL model to recognize unseen locomo- 

ion modes. Finally, the fusion of semantic vectors is, also, studied 

n [17] , where the authors introduce an expanded word embed- 

ing vector (i.e., takes into consideration word embeddings that 

re synonyms with the activity label), to produce a more gener- 

lizable approach and achieve higher zero-shot accuracy. 

Our literature survey has shown that Siamese and Match- 

ng Networks have been successfully used in one-shot learning 

omputer vision tasks, but have not been broadly examined in 

AR, even though they outperform the vanilla transfer learning 

pproach [9] . Moreover, new algorithmic concepts such as self- 

ttention mechanism [30] , which have been proven to be effi- 

ient to several machine learning tasks, such as natural language 

rocessing [5] , image similarity [28] and reinforcement learning 

36] in the form of relational reasoning, have not yet been ap- 

lied to sensor-based HAR. Thus, in this paper we evaluate the 

se of Siamese and Matching Networks and propose the use of 

ulti-head self-attention to discover generalizable patterns in mo- 

ion signals. 

. One-shot learning methods 

.1. Problem definition 

We consider the task of one-shot learning for classification and 

se three datasets: a training set, a validation set, and a testing set. 

he training set and validation set share the same label space (i.e., 

ame activities), but the testing set has its own label space that 

s disjoint with training/validation set (i.e., contains more activi- 

ies). If the testing set contains N labelled examples for each of C

nique classes, the target few-shot problem is called C-way N-shot. 

ince there are unobserved activities in the testing set, the model’s 

erformance on classifying them differs a lot (i.e., is lower) when 

ompared to its performance on the training and validation sets. 

hus, our objective is to extract transferable knowledge from the 

bserved activities. 

In the current section we introduce the four investigated DL ar- 

hitectures for one-shot learning, shown in Fig. 1 . All of the ar- 

hitectures are given as input an anchor signal and a (set) candi- 

ate similar signal(s), having as an objective to identify if these 

ignals belong to the same activity class. The input signals are ten- 

ors with dimensions n c x n w 

x n k . The number of values per window

re denoted by n w 

(e.g., a 2 second window of a sensor with sam- 

ling rate 100 contains 200 values), while n c depicts the total size 

f the sensor channels (e.g., X, Y and Z axes of an accelerome- 

er) that are stacked vertically and n k the number of kernels (the 

nput n k is equal to 1). These tensors are given as input to a DL

odel in order to be processed and produce feature maps. In par- 
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Fig. 1. The four deep learning network architectures used for one-shot learning HAR. An anchor signal and a (set) candidate similar signal(s) with dimensions n c , n w , n k 
denoting the number of sensor channels, number of values per window and number of kernels, respectively, are given as input to a DCNN. Afterwards, the extracted features 

go through a similarity function and a loss function to measure the networks’ performance. 

t

b

t

c

[

m

(

e

R

A

s

i

3

t

i

w

e

n

t

s

f

s

1

b

d

m

c

L

w  

t

t

1

w

t

3

C

i

s

e

S

i

m

s

A

a

c

3

t

c

i  

p

t

q

t

t

 

(  

c

o

l

a

b

n

v

A

w

f

m

d  

(

t

Q  

h

icular, all the deep CNN (DCNN) architectures we developed are 

ased on our previous work, which has been successfully applied 

o HAR, PerceptionNet [11] , which has been proven to outperform 

onvolutional LSTM approaches in the one-shot learning setting 

9] . It should be noted that all the architectures rely on late multi- 

odal sensor fusion, with the exception of the relational module 

see Section 5 ), since this approach has been proven to be more 

fficient [11,22] , and all the convolutional layers are followed by a 

eLU activation function, while all the pooling layers by a dropout. 

fter the input signals are processed the feature maps go through a 

imilarity function (e.g., Euclidean distance) that outputs how sim- 

lar these signals are. 

.2. Siamese networks 

We have implemented a Siamese network [4] , which is an end- 

o-end learning approach; meaning that the HAR ConvNet network 

s replicated twice (i.e., one for each input activity sample). This 

ay the two network branches share the same filters and their 

mbeddings are compared using the Euclidean distance (i.e., L 2 
orm) to directly predict whether the two input samples belong 

o the same activity. This is accomplished by estimating the ab- 

olute difference between the embeddings, that feeds a FC layer 

ollowed by sigmoid activation function to map the output into a 

ingle logistic unit (i.e., not same equals to 0 and same equals to 

). 

The L 2 norm distance between the embeddings M, N is given 

y: 

(M, N) = ‖ 

(M i − N i ) ‖ 

2 
2 (1) 

We used two different loss functions to validate its perfor- 

ance: the contrastive loss function’s error [8] and the standard 

ross entropy loss. The contrastive loss function is given by: 

 = (1 − y ) 
1 

2 

D 

2 + y 
1 

2 

D 

2 ( max (0 , m − D 

2 )) (2) 

here D 

2 represents the distance d(M, N) and m > 0 is a margin

hat defines a radius (i.e., threshold) where dissimilar pairs con- 

ribute to the loss function. During our experiments m was set to 

.2. As it is mentioned above, we developed another Siamese net- 

ork using a sigmoid activation function and a binary cross en- 

ropy at the end, just like the one proposed in [13] . 

.3. Matching network 

In our Matching Network implementation we used the same 

onvNet architecture with that of Siamese but instead of having as 
92 
nput two motion signals, we have an anchor signal as input and a 

et of motion signals to be compared with, where the set’s size is 

qual to C. We denote as M the embeddings of the anchor signal 

 

a and N i are the embeddings of the comparing signal S c , where 

 = 1 , ..., C. The similarity score produced by the Matching Network 

odule for each M, N i pair is defined as: 

imilarity = 

M · N i 

‖ 

N i ‖ 

(3) 

fterwards, the produced similarities are concatenated and fed to 

 softmax function to be normalized and compute the multi-class 

ross entropy loss. 

.4. Relational network 

The Relational Networks is consisted of a DCNN and a Rela- 

ional Module (RM), while its loss is computed using multi-class 

ross entropy loss, thus, similarly to Matching Network it has as 

nput a query signal S q and a set of S c motion signals to be com-

ared with. Firstly, the DCNN processes each S c 
i 

signal to extract 

he corresponding feature tensors (maps) N i which are afterwards 

ueried, in a self-attention manner [30] , by the corresponding fea- 

ure tensor M of the S q signal to discover whether any similar mo- 

ion pattern exists. 

In particular, as displayed in Fig. 2 , for each pair of feature maps

 M, N i ) we produce three vectors, Q, K, and V (1). The first one is

omputed by flattening the query signal and applying a FC layer 

f size d, while the other two are the outcome of applying a FC 

ayer to N i . Afterwards, we apply matrix multiplication between Q

nd K (separately for each sensor modality), to discover patterns 

etween the query vector and the key vector. Their dot product is 

ormalized using a scaled softmax and is multiplied with V (value 

ector) to produce A, given by the following equation: 

 (Q, K, V ) = sof tmax 

(
Q · K 

T 

√ 

d 

)
· V (4) 

here d is the dimensionality of the key vectors used as a scaling 

actor. Similarly to [30] , we use a multi-head dot product attention, 

eaning that this process is executed in parallel h times, where h 

enotes the number of heads. Thus, the whole RM ( Fig. 2 ) for each

 M, N i ) feature maps pair is described from the following equa- 

ions: 

 = M · W 

Q 
h 

, K i = N i · W 

K 
h , V i = N i · W 

V 
h (5)

ead = A (Q, K , V ) (6) 
ih ih i i 
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Fig. 2. The architecture of the modality-wise RM module. The extracted high-level modality-dependent features (i.e., actions) N i of the comparing signal (displayed with 

dark colors) are queried by those ( M) of the query signal (displayed with light colors) to discover similarity patterns between them, using the multi-head attention function 

( g θ ). The results of each sensor modality are averaged and go through a dense layer ( f φ ) to produce a similarity value S i . 
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 i (Q, K, V ) = concat(head i 1 , . . . , head ih ) W 

A (7) 

here W 

Q 
h 

∈ R d model xd q , W 

K 
h 

∈ R d model xd k , W V h ∈ R d model xd v ,

 

A 
h 

∈ R d model xd a and d q = d k = d v = d a = d model /h . After com-

uting A i h, we concatenate the h dot products and transform 

hem into E i using again a dense layer. Finally, we reduce the 

imensionality of E by applying an average pooling function over 

he sensor modalities and a matrix multiplication with a weight of 

hape ( d, 1), to produce only one similarity value S i per each M, N i 

air; these S i similarities are concatenated and given to a softmax 

ctivation function for computing the multi-class cross entropy 

oss ( Fig. 1 ). 

 i = mean modality (E i ) · W 

E (8) 

The central contribution of this work is that RMs operate on 

ctions (high-level features, such as a hip movement) captured by 

 sensor modality, and hence do not explicitly operate on raw data 

isplaying a change on the angular velocity or on the acceleration. 

his can be represented in an abstract manner by the following 

quation: 

M(A ) = f φ( 
∑ 

m 

∑ 

i, j 

(g θ (a m 

i , a 
m 

j ))) (9) 

here the input is a set of actions A = { a 1 1 , a 
1 
2 . . . , a 

2 
1 , a 

2 
2 . . . , a 

m 

n } ,
 

m 

i 
is the i -th action conditioned by the m -th sensor modality, and

f and g are differentiable functions (FC layers) with parameters θ
nd φ. In particular, the g θ function is responsible for discovering 

he relationships between the actions and produces the term E in 

7), while f φ produces the similarity term S i . 

As a result, we could consider that in Fig. 2 the displayed fea- 

ures maps M and N i capture 5 actions in 6 different sensor modal- 

ties. For example, if signals S q and S c 
i 

belong to a walking activity 

e could consider that the light green action in M captured by 

he Y axis of the accelerometer is an arm movement from back to 

orth that took place during the first milliseconds of the current 

xample, while the corresponding arm movement in the N i feature 

ap (displayed in dark green) took place during the half duration 

f this example. Consequently, after multiplying the K i and Q ten- 

ors the RM decides to attend more in this action included, also, in 

ensor V i , since this is a similar action pattern included in the M, 

 feature maps. 
i 

93 
. Experimental set-up 

For our experiments we used a computer workstation equipped 

ith a NVIDIA GTX 1080 Ti GPU featuring 11 gigabytes RAM, 3584 

UDA cores and a bandwidth of 484 GB/s. Python was used as 

rogramming language, and specifically the Numpy library for ma- 

rix multiplications, data preprocessing and segmentation, and the 

eras high-level neural networks library using as backend the Ten- 

orFlow library. The CUDA Toolkit in support with the cuDNN, 

hich is the NVIDIA GPU-accelerated library for deep neural net- 

orks, were used to accelerate the tensor multiplications. 

.1. Datasets 

We evaluated the four networks architectures on two publicly 

vailable HAR datasets, UCL [2] and PAMAP2 [23] . Moreover, we 

ompare the results obtained on the PAMAP2 to those presented 

n [6] . 

• UCL dataset consists of tri-axial accelerometer and of tri-axial 

gyroscope sensor data. A group of 30 volunteers, executed six 

daily activities (standing, sitting, laying down, walking, walk- 

ing downstairs and upstairs), wearing a waist-mounted smart- 

phone. The sensors’ sampling rate is equal to 50 Hz, while the 

samples are provided preprocessed (i.e., no missing values) and 

segmented into time windows of 128 values (2.56 sec), having 

a 50% overlap. What is more, the dataset is separated into train 

and test data. In particular, the UCL dataset contains 10,299 

samples, which are partitioned into two sets, where 70% of the 

volunteers (21 volunteers) participate in the training set (7,352 

samples) and 30% (9 volunteers) in the test set (2,947 sam- 

ples). Moreover, for hyper-parameter tuning, during the valida- 

tion phase we followed a Leave-3-Subject-Out approach, where 

the volunteers (27, 29 and 30) were used as validation set. To 

evaluate the developed one-shot learning techniques, we se- 

lected two activities (walking upstairs and lying) to be left out 

of sight during the training phase. The 1-shot learning task for 

UCL was 6-way. 
• PAMAP2 dataset contains 12 lifestyle activities (such as walk- 

ing, cycling, ironing, etc.) executed by 9 participants; they wore 

a heart rate monitor and 3 inertial measurement units (IMUs) 

with a sampling frequency of 100Hz, placed on the dominant 
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arm, on the chest and on the dominant side’s ankle, producing 

tri-axial accelerometer, gyroscope and magnetometer data. We 

downsampled the PAMAP2 dataset to 50Hz and selected only 

the accelerometer and gyroscope data, to obtain the same sam- 

pling rate with the UCL dataset and the same sensor signals. 

Moreover, like UCL, we used a time window equal to 2.56 sec- 

onds and 50% overlap. It should be noted that we discarded 

segments containing ovelapping activity labels and more than 

one consecutive missing values, otherwise the missing values 

were filled using linear interpolation. We split PAMAP2 using 

a Leave-1-Subject-Out approach, for the test and the validation 

set. Specifically, the samples (1,926) of subject 1 were used for 

the test set and the samples (2,102) of subject 5 for the valida- 

tion set, leaving the rest samples (10,940) for the training set. 

The activities and their indices that were excluded during train- 

ing were: sitting, cycling, nordic walking, descending stairs and 

ironing, which are the same with [6] . The 1-shot learning task 

for PAMAP2 was 12-way. 

.2. Metrics 

Once we had optimized the network to master the verification 

ask for the validation dataset, we were ready to demonstrate the 

iscriminative potential of our learned features at one-shot learn- 

ng. In order to validate the performance of the developed models, 

e used a C-way one-shot accuracy metric, where C equals 6 for 

he case of UCL and 12 for the case of PAMAP2. Specifically, the 

ame activity example was compared to C different activity sam- 

les out of which only one of them matched the original activity 

xample. It should be noted that activity sampling for the case of 

he same activity samples was done randomly from a pool of ac- 

ivities executed by the same subject and, for the case of different 

amples was done randomly (see Section 5 ). Moreover, it is worth 

entioning that all the produced sets for both datasets are bal- 

nced (i.e., contain equal number of instances per class class), since 

e set the number of examples per class equal to that of the activ- 

ty class that had the less examples. For example, for the PAMAP2, 

roning had less examples (equal 97), consulting in having a test 

et of 485 samples (i.e., we sampled 97 examples for 5 activities). 

Given an embedding (feature map) M produced by an anchor 

query signal and the embeddings N c representing the embeddings 

roduced by the signal comparing examples of each C categories, 

e can now query the network using M, N c as our input for a

ange of c = 1 , ..., C. Then, we proceed with predicting the class y ∗

orresponding to the maximum similarity for each C-way one-shot 

earning sample. 

 

∗ = argmax c p 

(c) (10) 

here p 

(c) denotes the probability of M be of the same class with 

mbedding N c . It is noteworthy that for the case of the contrastive 

oss we use argmin instead of argmax, since we wish to compute 

he minimum Euclidean distance. Thus, the each network’s one- 

hot C-way accuracy is given by: 

cc one −shot = 

∑ N 
i =1 (y ∗

i 
== y i ) 

N 

(11) 

here y i is the true label of the i − th C-way one-shot learning 

ample and N is the total number of samples. 

. Results and discussion 

For all the datasets, we selected the same preprocessing strat- 

gy; subtracting the mean and dividing by the standard deviation 

he motion signals: 

 i = 

(x i − μi ) 

σ
(12) 
i 

94 
here x i denotes the samples of sensor modality i, while μi , σi 

epict their corresponding mean and standard deviation values re- 

pectively. The Adam algorithm [12] was selected as network opti- 

izer, having the following hyper-parameters: learning rate equal 

o 0.001, beta1 equal to 0.9, beta2 equal to 0.999 and epsilon equal 

o 1e-08. Moreover, we set the batch size equal to 128 and the 

inimum number of epochs to 1,0 0 0, but the training process was 

utomatically terminated if the best validation one-shot C-way ac- 

uracy had not improved after 100 epochs. The validation model 

hat had the lowest error rate was saved, and its weights were 

sed to obtain the model’s one-shot C-way accuracy on the test set 

hat includes the target (new) activities. It should be noted that we 

ollowed a simple grid search approach for tuning the hyperparam- 

ters of the DCNN keeping those of the RM stable ( d:64, h :1). Af-

erwards, we tuned the RM’s hyperparameters, following the same 

pproach. Appendix B presents the examined set of the hyperpa- 

ameter values. 

Table 1 illustrates the selected size of parameters per layer for 

he examined network architectures; for layer i we used the same 

lters’ sizes (e.g., number of sensor channels f i c and number of 

alues per time window f i w 

) and number of kernels for the two 

atasets f i 
k 

: {24, 48, 64}, with the exception of Relational Network 

RL) that uses only 1D convolutions. It should be noted that all 

he convolutional layers are followed by a ReLU activation function. 

s may be seen, the RL contains fewer parameters from all the 

ther networks, for both datasets. For PAMAP2 we achieved bet- 

er results using 2 heads and for UCL using 3 heads ( Fig. 4 ). More-

ver, it is noticeable that the developed one-shot learning model 

rchitectures are lightweight, since they consist of approximately 

19,0 0 0 parameters, while existing HAR networks [20,21] contain 

ver 1,0 0 0,0 0 0. 

Table 2 presents the performance results that we obtained (av- 

rage values of 10 runs). Like [6] , we measured the algorithms’ 

ne-shot C-way accuracy in the case were the subject was in- 

luded in the training set or was absent from it, in order to 

heck how dependent are the algorithms’ predictions to a sub- 

ect’s moving patterns. Of course, in both cases, the target activities 

ere not included during the training process. The Relational Net- 

ork achieved the best results for both datasets (UCL: 94.80% and 

AMAP2: 84.41%), with Matching Network coming second (around 

.5% lower for both datasets). Unexpectedly, for some cases, there 

s a decrease in the algorithms’ classification performance when 

he moves of the validation subject are included in the training set. 

his reveals that there is no overfitting when it comes to validating 

he algorithm’s performance on new activities (i.e., the algorithm’s 

erformance on one-shot learning can be considered subject inde- 

endent). 

A more intuitive performance representation is shown in Fig. 3 , 

here the one-shot accuracy per activity class of the all the evalu- 

ted networks is displayed. It is worth noticing, that while the net- 

orks’ performances per class is analogous to their overall perfor- 

ance, when it comes to the nordic walking class in the PAMAP2 

ataset the Relational Network has the worst one-shot accuracy 

erformance. However, having a look at the false negatives (Ap- 

endix C) the algorithm missclassified many examples of nordic 

alking as walking, which is expected since both of these activities 

re consisted of very similar actions and the RM attends to sen- 

or modalities that reveal back to forth hand and ankle movement 

nd forward chest movement. This results into acquiring similar 

ttention maps for these activities, where the actions that display 

heir dissimilarities are weighted by very small numbers (close to 

ero), a feature that does not exist in the other algorithms that 

ake equally into consideration similarities and dissimilarities. In 

eneral terms, in both datasets all the networks, including Rela- 

ional Network (Appendix C), missclassified a lot of walking-alike 

ctivities (walking, walking downstairs, walking upstairs) mostly to 
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Table 1 

Used hyperparameters for each network. 

Parameters Siamese CL Siamese Matching Net Relational Net 

f 1 
k 

x f 1 c x f 
1 
w 32x1x11 32x1x11 32x1x11 32x1x11 

1 st Convolutional block max pool 1x3 1x3 1x3 1x3 

dropout 0.5 0.5 0.5 0.5 

f 2 
k 

x f 2 c x f 
2 
w 48x1x11 48x1x11 48x1x11 48x1x11 

2 nd Convolutional block max pool 1x3 1x3 1x3 1x3 

dropout 0.5 0.5 0.5 0.5 

f 3 
k 

x f 3 c x f 
3 
w 64x3x11 64x3x11 64x3x11 64x1x11 

3 rd Convolutional block max pool 1x2 1x2 1x2 1x2 

dropout 0.5 0.5 0.5 n/a 

h, d n/a n/a n/a 2–3, 64 

Relational module W Q , W K , W V , W A n/a n/a n/a h x64x64 

dropout n/a n/a n/a 0.5 

W E n/a n/a n/a 64x1 

Classifier F C n/a 2x1 n/a n/a 

Total parameters 118,768 118,770 118,768 84,016- 100,400 

Fig. 3. The one-shot C-way accuracy of all the examined networks per each class for the UCL test set (left) and the PAMAP2 test set (right). 

Table 2 

One-shot accuracy performance of the one-shot learning techniques on 

the UCL and PAMAP2 datasets. 

Dataset Network Test 1-shot acc Train 1-shot acc 

CL Siamese 85.04% 87.24% 

Siamese 88.06% 87.06% 

Matching 93.04% 92.56% 

UCL Relational 94.80% 92.65% 

FSHAR-NGD [6] 63.00% 58.98% 

FSHAR-Cos [6] 62.82% 56.83% 

FSHAR-SR [6] 63.70% 56.62% 

CL Siamese 79.09% 80.13% 

Siamese 81.49% 86.25% 

Matching 83.26% 85.81% 

PAMAP2 Relational 84.41% 88.93% 
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ctivities that the algorithm has been trained on, revealing an over- 

tting towards them. This is noticeable by the fact that none of the 

ordic walking examples was missclassified as ascending stairs and 

ice versa. 

Furthermore, it is noticeable that the performance on PAMAP2 

f the algorithms introduced in [6] is much lower than ours. This 

s due to the fact that the authors used LSTM as feature extrac- 

ion layers and not ConvNets, which have been widely used even 

n works that exploit LSTM architectures [20,27] . Another possible 

eason may rely on different sampling techniques. In our work, we 
95 
ampled same activity signals produced by the same subject, while 

e sampled on different activity signals from all the subjects, due 

o the fact that the algorithm converged much faster. This sampling 

trategy can be considered as selecting ”easy” samples for the case 

f same since activity patterns are subject-dependent. 

What is more, Fig. 4 presents the sensitivity of the proposed 

pproach regarding hyperparameter h for the UCL case. Both the 

raining and testing sets produced better results when using 3 

eads. It should be noted that for the PAMAP2 we used 2 heads. As 

 result, this indicates that the performance of the RM depends a 

ot on the hyperparameter h . Moreover, it has a lot of hyperparam- 

ters to be tuned ( Table 1 ), while the other networks (e.g., Match- 

ng Network) use no parameters and can be tuned more easily. 

his is of course a disadvantage of the proposed approach, since 

t has to configure a similarity metric of its own and not use exist- 

ng ones (i.e., cosine similarity and Euclidean distance). However, 

s shown in the current paper, when tuned correctly it appears to 

e more generalizable to recognize new activities. 

Furthermore, we evaluated three different modality fusion 

trategies for the relational network. In particular, apart from the 

odality-wise relational network architecture (1) we trained a 

odel whose modalities were fused by the DCNN before given to 

he RM module (prefused model) by using a 64x3x11 filter in the 

 

rd convolutional block and a non modality-wise model where the 

alues of each modality (e.g., X-axis gyroscope) could attend to ac- 

ivity patterns (actions) captured by different sensor modality (e.g., 

-axis accelerometer). Fig. 5 displays the impact of modality fusion 
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Fig. 4. The impact of the number of heads h in the performance (one-shot six-way 

accuracy) of the modality-wise RM on UCL test set. 

Fig. 5. The impact of the different relational reasoning fusion approaches on the 

performance of the RM in the UCL and PAMAP2 test sets. 

Fig. 6. Visualization of the 2-head attention maps of the ironing activity in PAMAP2 

test set. The RM attends more on the last (1 st head) and first (2 nd head) the Z axis 

accelerometer action values of the IMU placed on the hand. 
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n the relational reasoning-based model. As shown, the modality- 

ise approach without using any prefusion in the ConvNet (i.e., 

sing 2D convolutions at the 3rd layer) exceeds for both datasets 

he performance of the prefusion approach and the non-modality 

ise relational reasoning by more than 5% and 15% respectively. 

t should be noted that for the case of non-modality reasoning in 

he PAMAP2, the model struggled to discover any generalizable 

atterns amongst new activities. Finally, as aforementioned, the 

roposed similarity model exploits the multi-head self-attention 

echanism, thus, its attention maps can be visualized for in- 

erpretability. Fig. 6 displays that for the ironing activity most 

ttention was paid to the sensor signals produced by the hand- 

laced IMU and particularly its z-axis. Moreover, the per unseen 

ctivity average values of all the multi-head attention maps of the 

odel’s predictions are provided in Appendix A. 

. Conclusion 

In this paper, we proved that one-shot learning techniques can 

e applied to wearable HAR. The acquired knowledge from pro- 

essed motion sensors has proven to be transferable across the 

ame wearable sensors in order to detect new activities, which we 

ave only one labeled sample of them in the testing set. More- 

ver, the evaluated techniques did not have strong dependency on 

he subject that performs the activity. The more efficient and ro- 

ust module for recognizing new activities was the one based on 

odality-wise reasoning without applying multi-modal sensor fu- 

ion in the previous steps. 

We advocate that one-shot learning techniques will be widely 

pplied in wearable HAR, since this way users will be given the 

bility to add their own moves to smartwatches and smartphones, 

 feature that could be exploited in various domains, such as smart 

nvironments to control IoT (Internet of Things) devices. Future 

teps will be done towards exploiting modality-wise reasoning on 

ctivity embeddings for domain-adaptation (over different sensor 

odalities and on-body placements) and exploring the use of ex- 

sting active learning techniques for effective activity sampling. Fi- 

ally, we will build a dataset to be used as benchmark for few-shot 

earning wearable HAR. 
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ppendix B 

Table B1 

Examined hyperparameters.

Name 

batch size 

learning rate 

beta1 

beta2 

epsilon 

filter height 

filter width 

filter channels 

dropout probability 

number of heads 

K, Q, V vectors size 

maximum epoch 

early stopping criterion 

ppendix C 

Fig. C1. Confusion matrices of the Relational Netw
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