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Abstract. Deep learning techniques have been widely and successfully
applied, over the last five years, to recognize the gestures and activities
performed by users wearing electronic devices. However, the collected
datasets are built in an old fashioned way, mostly comprised of subjects
that perform many times few different gestures/activities. This paper
addresses the lack of a wearable gesture recognition dataset for explor-
ing one-shot learning techniques. The current dataset consists of 46 ges-
tures performed by 35 subjects, wearing a smartwatch equipped with 3
motion sensors and is publicly available. Moreover, 3 one-shot learning
classification approaches are benchmarked on the dataset, exploiting two
different deep learning classifiers. The results of the benchmark depict
the difficulty of the one-shot learning task, exposing new challenges for
wearable gesture/activity recognition.

Keywords: Datasets · Deep learning · Wearable gesture recognition ·
One-shot learning

1 Introduction

Gestures are a very natural and intuitive way for humans both to interact with
an electronic device (e.g., TV) and to control it [18]. As a result, gesture-based
interfaces based on arm, hand or finger motions are becoming increasingly popu-
lar [9]. To this end, wrist-worn devices are widely used for recording motion data
signals; they are effective and unobtrusive devices which have been used success-
fully in several domains, such as smart home environments [16], smart factory
[26], physical security [11]. They are also exploited for effective gesture-based
human-machine interaction [5,23,31].

In order to accurately recognize the body movements and translate the results
into commands, after having established a one-to-one correspondence between
gestures and commands to action, these gesture-based interfaces are based on
machine learning algorithms [11]. In particular, Deep Learning (DL) algorithms,
such as Convolutional Neural Networks (CNNs; ConvNets) and Long-Short Term
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Memory (LSTM) have been efficiently applied to human gesture/activity recog-
nition over the last five years [12,20,22,25]. However, these algorithms demand
large datasets to be trained on; moreover, only few works have examined their
knowledge transfer capabilities [1,21,29], especially when it comes to one-shot
learning [8].

A disadvantage of existing approaches is that the algorithms have to be
trained on large source datasets, such as those reported in [4,24], before evalu-
ating their knowledge on the target dataset. On the other hand, although, there
do exist publicly available small datasets [7,17] that contain dozens of different
gestures, the wrist-worn devices used for gesture monitoring suffered from low
sampling rate (i.e., 10Hz) and time windows (i.e., 1 s), making it almost impos-
sible to train a DL model on them. Moreover, the scientific interest in applying
neural networks to small-data tasks has been increased the last two years [3,10],
where new deep learning paradigms, such as Neural Tangent Kernel, have been
proposed. As a results, a standard benchmark for learning from few examples,
such as Omniglot [15], is therefore lacking in the human activity/gesture recog-
nition domain.

In the present paper, we introduce a one-Shot lEaNning geSture rEcognition
Dataset1 (SENSED); it is a dataset consisting of 46 gestures, including existing
English characters, numbers and symbols performed (hand-written on a surface)
only once by 35 subjects, who are wearing a commercial smartwatch. SENSED
has been deliberately designed to be small to avoid arbitrary downsampling of
existing large datasets, and is split into train, validation and test sets to enable a
fair comparison between the machine learning algorithms [2]. Moreover, SENSED
is benchmarked by 3 one-shot learning classification approaches. In particular,
the contribution and innovation of this work is summarized in the following:

1. To the best or our knowledge, SENSED is the first wearable-based gesture
recognition dataset particularly built for one-shot learning.

2. Three deep learning approaches for one-shot learning were applied to
SENSED with promising results.

3. The collected dataset is made publicly available, to be used as a benchmark
for one-shot learning sensor-based gesture recognition.

The rest of this paper is organized as follows. Section 2 elaborates on the data
collection procedure, while Sect. 3 describes in detail all the investigated one-
shot learning network architectures. Section 4 describes the experimental setup
for data processing and Sect. 5 presents and discusses the obtained results of our
experiments. Finally, Sect. 6 concludes the paper and proposes future research
steps.

2 Dataset Collection

The dataset is designed to contain a total of 46 characters. The first 26 are all the
English capital letters, i.e., A to Z. The next ten include all the ten digits ranging
1 https://github.com/ounospanas/sensed.

https://github.com/ounospanas/sensed
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from 0 to 9. The last ten characters include some commonly used characters and
math symbols: @, $, #, e, ?, !, %, *, + and =. We selected these type of
gestures to be included since character and digit recognition could be useful in
several domains, such as producing short texts messages, converting dynamically
handwritten texts to online documents, entering security passwords without the
use of a physical interface and many others. The English capitals letters were
used as the train set, the numbers were used for creating the validation set and
the special characters were used as the test set. In total, 35 subjects participated
in the creation of the dataset and performed the gestures only once. However,
not all subjects performed all characters. 25 subjects wrote the English letters, 5
subjects wrote the digits and 5 subjects wrote the remaining special characters.
The above information is summarized in Table 1.

The device that was chosen for gathering the data, is the Fossil Gen 52. It
runs on a Snapdragon 3100 chipset3, which is currently the latest chipset from
Qualcomm for smartwatches, features 1GB of RAM and 8GB of storage. It
comes equipped with accelerometer, gyroscope, magnetometer and heart rate
sensor. For communication with other devices, it can use either Bluetooth or
Wi-Fi. The hardware is managed by Wear OS4 by Google, a modified version
of Android for smartwatches and wearables. Although Wear OS targets devices
with more limited hardware resources than smartphones, it has the same Appli-
cation Programming Interface (API) as Android making the development process
the same. The sensors that were used for creating the dataset were the 3-axial
accelerometer and gyroscope. Each sensor was set to its maximum sampling rate
allowed by the OS which is limited 50Hz. For each gesture, the device captured
a time window of 3 s of data (150 samples), which was enough for the subjects
to perform gestures that involved a lot of hand movement.

Table 1. Dataset contents and participating subjects

Set Characters Subjects No. of Chars

Train A-Z 25 26
Validation 0–9 5 10
Test @$e#?!%*+= 5 10
Total 35 46

In order to create an homogeneous dataset, subjects were provided with
instructions on how to draw each character. The instructions included the pat-
tern they had to follow for each character along with the starting and ending
point for the symbol, the lines or curves they had to draw and the order they
had to follow, as shown in Fig. 1. The starting point was shown as a blank circle

2 https://www.fossil.com/en-us/smartwatches/learn-more/gen-5/.
3 https://www.qualcomm.com/products/snapdragon-wear-3100-platform.
4 https://wearos.google.com/.

https://www.fossil.com/en-us/smartwatches/learn-more/gen-5/
https://www.qualcomm.com/products/snapdragon-wear-3100-platform
https://wearos.google.com/
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and the ending point as a solid filled circle. Additionally, dashed lines showed
were the subject would have to lift the hand and not draw anything. Despite
the pattern limitation, subjects were free to choose the hand that they could use
(left of right), to choose whether they would be sitting or standing and to select
the writing surface (paper, whiteboard or simply draw the character in the air).

Fig. 1. A sample of the symbols used in the dataset

Two native Android applications were developed to build the dataset; one for
smartphones and one for smartwatches. The smartwatch application was used to
capture and save the raw data from the sensors, while the smartphone application
was used for labeling the data. After wearing the smartwatch, the subject would
select the character to execute from a list in the main screen of the smartphone
application. Then, the device would send the symbol to the smartwatch and it
would start capturing the data for the predefined duration. A vibration in the
watch would signal the beginning and the ending of the capture. Afterwards, the
data would be saved in Comma Separated Values (CSV) files in the smartwatch.
When a subject would finish capturing the data, (s)he would tap a button on the
mobile application to send the CSV files from the smartwatch to the smartphone
and then another button to send the files to the server. Before actually sending
the files, a random UUID (Universally Unique IDentifier) would be appended
to the filename in order to easily distinguish each set. Files were deleted from
both devices by tapping a button in the smartphone, before the devices was
passed on the next subject. The reason for storing the output from each subject
on separate file is application performance. By having small files, each write
operation runs faster. Moreover, the files are sent faster between the devices and
to the server. In order to avoid subjects executing the same gesture multiple
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times, the background of the character in the list would change color when a
gesture was performed. In addition, if the subject would tap on a character that
has already executed, a dialog would appear asking him/her if (s)he wants to
execute again the same gesture.

File structure is uniform across subjects: it has 9 values in each row. The first
field denotes the Epoch time in milliseconds, i.e. the time that the data arrived in
the application, the second field includes the relative timestamp of data arrival,
as reported by the Operating System (OS), the next six fields include the x, y,
and z axis values of the accelerometer and the gyroscope sensors respectively,
while the last field contains the label for the executed gesture. The label takes
on values from 0 to 45, where 0 denotes the character “A”, 25 the character “Z”,
26 the character “0”, 35 the character “9” and 36 to 45 the special characters in
the order described above.

3 Benchmarked Deep Learning Architectures

3.1 One-Shot Learning Problem Definition

One-shot learning datasets are typically comprised of three sets: a) the training
set, b) the validation set, and c) the testing set. Each one of them contains
disjoint label spaces (i.e., different gestures) [14]. The main objective of few-shot
learning setting is to extract transferable embeddings/features from the observed
gestures included in the training set. One-shot learning is a subclass of few-shot
learning setting, where the classification is done under the restriction that only
a single example of each possible class is observed before making a prediction
about a test sample [14]. Moreover, since SENSED contains ten unique classes
in the validation and test sets, the one-shot problem is defined as 10-way.

To benchmark our dataset we investigated the three DL approaches for one-
shot learning (described in the following subsections), which are based on two
deep learning architectures that have been successfully applied to human activ-
ity/gesture recognition. The first one, called PerceptionNet, is a deep CNN model
introduced in [12], which relies on late sensor fusion [22] using a 2D convolutional
layer. The second one, called deep ConvLSTM, deploys a LSTM (Long-Short
Term Memory) layer after the convolutional ones so as to fuse the sensor modal-
ities [28].

3.2 Vanilla Embedding Extraction

The approach adopted here is the most commonly used in bibliography [21]
when it comes to Transfer Learning (TL), and it is comprised of the following
steps. The DL model is firstly trained on a source domain (i.e., English capital
letters), just like in any vanilla classification task. After training, the weights
of the trained model are “frozen” and applied to the target domain. The ten-
sors produced by the last hidden convolutional layers, which represent all the
knowledge from the input signal (called embedding), are stored. In our 10-way
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one-shot learning task in order to define the class of the anchor signal, we select
that embedding ec, which represents the class C that has the minimum norm
distance from the anchor signal’s embedding e1.

The L2 norm distance between the embeddings e1, e2 is given by:

d(e1, e2) =
∥
∥(e1i − e2i )

∥
∥
2

2
(1)

3.3 Pairwise Siamese Networks

A Siamese network similar to the one reported in [6], which is an end-to-end
learning approach for extracting embeddings, has, also, been implemented. In
this approach, the deep neural network is replicated twice (i.e., sharing the same
filters for each input gesture sample). Just like the previous approach, the pro-
duced embeddings are compared using the Euclidean distance (i.e., L2 norm)
to directly predict whether the two input samples (i.e., anchor and candidate)
belong to the same gesture class. However, this approach differs from the previ-
ous one because it does not aim at finding the nearest neighbor, but feeds the
produced absolute difference to a fully connected layer followed by a sigmoid
activation function. As a result, the output is mapped into a single logistic unit,
where different gesture signals should produce a value equal to 0 and the same
gestures equal to 1. To this end, a binary cross entropy function is used as a
terminal step, to define the loss, similar to [14].

The binary cross entropy loss function is given by:

CEb = −(y ∗ log(p) + (1 − y) ∗ log(1 − p)) (2)

where y denotes the target label and p the probability produced by the sigmoid
function.

3.4 Matching Network

Another network selected for evaluation here is the Matching Network (Match-
Net) [27] which has been succesfully applied to previous human activity recogni-
tion tasks [30]. It shares the same logic with Pairwise Siamese classifiers, but here
the anchor signal is compared with C candidate similar motion signals (i.e., ten
in our case). MatchNet was developed on top of the two selected DL models (i.e.,
the CNN and the deep ConvLSTM). Figure 2 displays the network architecture
for the case of CNN MatchNet.

The values of the selected window size are denoted by nw, while the number
of the sensor channels are depicted by nc. Since the sensor signals in the selected
architecture are stacked vertically, the number of the kernels is equal to 1. It
should be noted that all the convolutional layers are followed by a ReLU acti-
vation function and a batch normalization layer, while all the pooling layers are
followed by a dropout. After computing the embeddings, u for the anchor signal
and vi for the comparing signal, where i = 1, ..., C, we estimate the similarity
score defined by:

similarity =
u ∗ vi
‖vi‖ (3)
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Finally, the produced similarities scores are concatenated and normalized
using a softmax function to compute the multi-class cross entropy loss:

CEc = −
C∑

i=1

yi log(pi) (4)

Fig. 2. CNN MatchNet architecture.

4 Experimental Set-Up

For our experiments we used a computer workstation equipped with a NVIDIA
GTX 1080 Ti GPU featuring 11 gigabytes RAM, 3584 CUDA cores and a band-
width of 484GB/s. Python and specifically the Numpy library for matrix mul-
tiplications, data preprocessing and segmentation, was used as the program-
ming language of choice, the scikit-learn5 library was used for implementing the

5 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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t-SNE algorithm, and the Keras6 high-level neural networks library with Ten-
sorFlow7 library as backend was used for developing the model architectures.
The CUDA Toolkit supported by the cuDNN8, which is the NVIDIA GPU-
accelerated library for deep neural networks, was used to accelerate the tensor
multiplications. The software was installed on a 18.04 Ubuntu Linux operating
system.

4.1 Data Sampling and Preprocessing

The data sampling process was done as follows. In the case of training set,
the anchor gesture executed by a subject si was compared with 10 randomly
chosen gestures executed by a subject sj ; we selected to make 2,000 10-way
comparisons for each English character leading to 52,000 training samples. The
same approach was followed in the cases of the validation and test sets; however,
in these cases all possible 10-way combinations were taken into consideration,
yielding 200 samples for each set. These are stored and published to be used for
future algorithmic benchmarking.

Table 2. Examined hyperparameters

Name Symbol Range

Batch size – 64, 128, 256
Learning rate α 1e-03
Beta1 β1 0.9
Beta2 β2 0.999
Epsilon ε 1e-08
Filter height fh 1–3
Filter width fc 7–15
Filter channels fc 16, 24, 32, 48, 64, 80
LSTM units – 8, 16
Dropout probability – 0.1–0.5
Maximum epoch – 1000
Early stopping criterion – 100

As a preprocessing step for all the sets, the collected gesture signals were
normalized using the following equation:

zi =
(xi − μi)

σi
(5)

6 https://keras.io/.
7 https://www.tensorflow.org/.
8 https://developer.nvidia.com/cudnn.

https://keras.io/
https://www.tensorflow.org/
https://developer.nvidia.com/cudnn
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where xi denotes the samples of sensor modality i, while μi, σi depict their corre-
sponding mean and standard deviation values respectively, which were computed
using only the training samples.

4.2 Hyperparameter Tuning

While training the selected models, the fine-tuning of several hyperparameters
was attempted, based on the criterion of the lowest error in the validation set.
The model’s accuracy on the test set, was computed subsequently, using the
same criterion. Table 2 illustrates all the examined hyperparameters. It should
be noted that a set of the selected hyperparameters of a model (e.g., deep Con-
vLSTM) used in a certain one-shot learning architecture (e.g., MatchNet), could
slightly differ from the optimal ones for the same model deployed to a differ-
ent one-shot learning architecture (e.g., Siamese). Regarding the optimization
of each model’s weights, Adam algorithm [13] was selected, with the following
hyperparameters: learning rate α equal to 0.001, β1 equal to 0.9, β2 equal to
0.999 and ε equal to 1e−08. Furthermore, the batch size was set 128 and the
minimum number of epochs to 1,000. The training process was automatically
terminated if the best validation accuracy had not improved after 100 epochs.

Table 3. 10-way accuracy performance of the one-shot learning techniques on SENSED

Network Val acc Test acc

CNN TL 52.5% 51.0%
ConvLSTM TL 56.5% 55.5%
CNN Siamese 63.00% 58.25%
ConvLSTM Siamese 62.25% 56.75%
CNN MatchNet 82.0% 76.5%
ConvLSTM MatchNet 71.5% 55.0%

5 Results and Discussion

Table 3 presents the accuracy reached by each network architecture. The Match-
Net built on top of the PerceptionNet model obtained the best results by far,
reaching 82.0% on the validation set and 76.5% for the test set. The three convo-
lutional layers of this model had filter sizes 1 × 32× 1× 11, 32× 48× 1× 11 and
48× 64× 3× 11 resulting in 119,056 trainable parameters. Moreover, it is worth
mentioning that while the ConvLSTM produced more generalizable embeddings
than the CNN ones in the case of TL, this did not hold true for the Siamese and
the MatchNet architectures.

Figure 3 illustrates the confusion matrices of the CNN MatchNet algorithm
for the validation and the test sets. It should be noted that the algorithm misclas-
sified many instances of class “6” to class “9”. Apart from the fact that number “9”
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Fig. 3. Confusion matrices produced by CNN MatchNet for the validation (left) and
the test (right) sets.

Fig. 4. t-SNE visualization of the test set’s last hidden layer representations in CNN
MatchNet.

is a reversed number “6”, this occurred because the users were free to execute the
gestures using hand, posture and writing surface of their choice. Consequently,
the trained MatchNet seem to be a non-orientation-free algorithm and does not
discriminate between the starting and the ending point of a gesture.

In the test set’s confusion matrix some misclassification patterns can be
observed. In particular, the algorithm confused a few instances of “=” with “+”
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and vice versa, since they are consisted of two straight lines; it also confused
instances of “*” and “#”, since they both consist of six straight lines. In addi-
tion to this, “$” was misclassified three times as “e” and the model struggled to
recognize class “%”. All these observations, are shown in Fig. 4, as well. Figure 4
illustrates the extracted CNN MatchNet embeddings projected in the 2 dimen-
sional space using the t-SNE algorithm [19].

Finally, despite the performance of the algorithms not being spectacu-
lar, especially if compared to those of Omniglot [14,27], the produced results
are promising - even more so because SENSED is more challenging dataset.
Hand-written characters presented as images are time, rotation, surface, hand
and, more importantly, subject independent. Thus, the trained algorithms are
expected to generalize more successfully on unseen characters. On the contrary,
in the case of wearable-based gesture analysis, the DL models have to generalize
against the aforementioned dependencies.

6 Conclusions

In this paper, we presented a publicly available wearable-based gesture recogni-
tion dataset, called SENSED, designed and built specifically to meet the needs
of the one-shot learning setting. It is considered to be a fairly small dataset for
deep learning algorithms to be trained on, since it contains only one instance
of each gesture performed by each subject, while the gestures contained in the
training, validation and test sets are disjoint with each other and are performed
by different users. In our belief, the current dataset will assist researchers to test
the generalizability of their algorithms on unseen gestures; it can also serve as a
benchmark for one-shot learning.

Moreover, we have exploited the dataset to evaluate three one-shot learning
techniques. The Matching Network architecture built on top of a deep CNN
produced the best results, 82.0% and 76.5% accuracy on the validation and test
respectively. Such recognition scores are considered to be promising for dynamic
gesture-based user interactions with smart devices, as they might enable users
to add moves of their own choice to smartwatches.

Exploitation of SENSED opens up a variety of new challenges and oppor-
tunities for one-shot learning. Future steps are currently being taken towards
exploring more generalizable algorithms for domain-adaptation. Along a different
line, data augmentation techniques based on Generative Adversarial Networks
(GANS) could also be investigated.
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