
MULTILAYER PROBABILISTIC KNOWLEDGE TRANSFER
FOR LEARNING IMAGE REPRESENTATIONS

Nikolaos Passalis, Maria Tzelepi and Anastasios Tefas

Dept. of Informatics, Aristotle University of Thessaloniki, Greece
Email: {passalis, tzelepi, tefas}@csd.auth.gr

ABSTRACT
Probabilistic Knowledge Transfer (PKT) aims to transfer the
knowledge encoded in the representations extracted from a
layer of a large and complex neural network (teacher) into a
smaller and faster one (student). However, PKT only trans-
fers the knowledge between two layers of the networks, ig-
noring the potentially useful information encoded by the pre-
vious ones, reducing in this way the efficiency of PKT and
the performance of the student model. In this paper, we pro-
pose a novel efficient multilayer PKT method that is capa-
ble of transferring the knowledge between the student and
teacher networks by employing the representations extracted
from multiple layers. The ability of the proposed multilayer
PKT method to improve the knowledge transfer and increase
the performance of the student model over other state-of-the-
art methods is demonstrated using two image datasets.

1. INTRODUCTION

The success of Deep Learning (DL), along with the increasing
need to deploy DL models on embedded and mobile devices,
led to the development of a wide range of methods for train-
ing faster and smaller DL models, which have lower energy
and computational footprint. Several methods have been
proposed to this end, including model compression and quan-
tization approaches [1], pruning methods [2], lightweight DL
models [3], as well as knowledge transfer/distillation [4] and
regularization methods [5, 6]. Quantization methods focus on
lowering the number of bits needed for storing the weights
of a network, pruning methods on discarding less impor-
tant weights/neurons, lightweight model design approaches
on creating more efficient DL model architectures, while
knowledge transfer on improving the efficiency of the train-
ing process for smaller models. Knowledge transfer methods
work by transferring the knowledge from a larger and more
complex neural network, called teacher, to a smaller and
faster one, called student. Knowledge transfer methods at-
tracted significant research attention, since they can improve
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the performance of any DL model and can be easily com-
bined with any other approach for developing more accurate
lightweight DL models.

The vast majority of knowledge transfer methods aim
at training more efficient models for classification tasks by
transferring the knowledge between the last (classification)
layers of the networks [4]. However, the vast majority of
these methods cannot be used efficiently for representation
learning tasks, where other activation functions than the soft-
max are used and the dimensionality of the layers between
the networks is different, leading to the development of meth-
ods specifically designed to handle such tasks [7, 8]. Among
the most powerful approaches for handling representation
learning tasks is the Probablistic Knowledge Transfer (PKT)
method, which can overcome the aforementioned limitations
and transfer the knowledge encoded in the representations ex-
tracted from any layer into a lightweight DL model. PKT can
indeed handle several different knowledge transfer scenarios,
ranging from cross-domain knowledge transfer to transferring
the knowledge from handcrafted feature extractors.

However, PKT only transfers the knowledge between two
specific layers, ignoring the knowledge that is contained in
earlier layers of the teacher model. In this way, PKT currently
ignores the potentially useful information encoded in the ear-
lier layers, reducing the efficiency of the knolwedge transfer
process. The main difficulty for using PKT for multilayer
knowledge transfer arises when networks with vastly different
architectures are used, e.g., when the number of layers is dif-
ferent between the student and teacher. In these cases, it is not
straightforward to select the intermediate layers which should
be used for transferring the knowledge. For example, suppose
that we are transferring the knowledge from a 6-layer teacher
into a 4-layer student. It is not clear if we should use the first
or second layer of the teacher for transferring the knowledge
to the first layer of the student. Selecting the most appropriate
layer is especially important, since selecting the wrong layer
for transferring the knowledge can have a devastating effect
on the accuracy of the network, either by over-regularizing
the network [9], or by reducing the granularity of information
analysis, leading to worse performance compared to not using
multilayer transfer. Therefore, even though PKT can support
knowledge transfer between any two layers of two neural net-
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Fig. 1. Multilevel PKT: Performing the proposed 3-step pro-
cess for transferring the knowledge between multiple layers
of the teacher and student models

works, there is currently no efficient way of selecting the most
appropriate layers to use for this task.

The main contribution of this paper is a multilayer knowl-
edge transfer approach, that allows for effectively using PKT
to exploit the knowledge encoded in the intermediate layers of
the teacher model. The proposed method works by first trans-
ferring the knowledge into an intermediate network, called
ladder model, that acts as a proxy to the teacher model. The
ladder network is smaller than the teacher model, but larger
than the student model, and it is designed to have compatible
architecture with the student model. In this way, the layers be-
tween the ladder and student models can be directly matched,
as shown in Fig. 1. Then, the knowledge is transferred from
the ladder model to the teacher model using a cyclical training
procedure, that allows for better exploring the solution space.
To the best of our knowledge, this is the first time that it is
demonstrated that multilayer probabilistic knowledge trans-
fer can be effectively performed using vastly different neural
networks architectures. Finally, the effectiveness of the pro-
posed method is experimentally demonstrated using two dif-
ferent datasets and knowledge transfer setups.

The rest of the paper is structured as follows. In Section 2
the related work is briefly introduced and discussed, while the
proposed method is presented in Section 3. Then, the exper-
imental evaluation is provided in Section 4 and conclusions
are drawn in Section 5.

2. RELATED WORK

A large number of knowledge transfer methods which build
upon the neural network distillation approach have been pro-
posed [4, 10, 11, 12]. These methods employ the teacher
model to generate soft-labels and then use these soft-labels
for training the smaller student network. Several extensions

to this approach have also been proposed. For example, soft-
labels can be used for pre-training a large network [13] and
performing domain adaption [12], while an embedding-based
approach for transferring the knowledge was proposed in
[14]. Furthermore, knowledge transfer methods have been re-
cently extended to handle representation learning tasks [7, 8].
However, these methods only focus on transferring the knowl-
edge between the classification layers of the networks and
ignore the knowledge encoded in the earlier layers of the
networks. Also, using a proxy network for improving knowl-
edge transfer was proposed in [15]. However in contrast with
the proposed method, the proxy network used in [15] was
employed to merely improve the performance of knowledge
transfer between two layers, instead of designing a proxy
that can facilitate efficient multilevel knowledge transfer, as
proposed in this paper.

In contrast with the aforementioned approaches, the pro-
posed method provides a way to perform multilevel knowl-
edge transfer, exploiting the knowledge encoded by the earlier
layers of a neural network. It is also worth noting, that exist-
ing methods that support multilayer knowledge transfer, such
as using hints [9], or the flow of solution procedure matrix
(FSP) [16], usually only target networks with compatible ar-
chitecture, e.g., residual networks with same number of resid-
ual blocks, for both the teacher and student. However, the
proposed method provides an efficient way for handling any
possible network architecture by employing a ladder proxy.
To the best of our knowledge, in this work we propose the
first probabilistic knowledge transfer approach that can effec-
tively exploit the knowledge encoded in various levels of the
teacher network to further improve the student model.

3. PROPOSED METHOD

Let T = {t1, t2, . . . , tN} denote the transfer set, composed
of N images used to transfer the knowledge encoded in the
teacher model into the student model. Also, let x(l) = f(t, l)
denote the representation extracted from the l-th layer of the
teacher model f(·) and y(l) = g(t, l,W) denote the repre-
sentation extracted from the l-the layer of the student model
g(·). Note that the trainable parameters of the student model
are denoted by W. PKT aims to train the student model g(·)
in order to “mimic” the behavior of f(·). In [7], it is demon-
strated that minimizing the divergence between the teacher’s
and student’s conditional probability distributions, which are
estimated as:
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whereK(·) is a kernel function, provides an effective way for
transferring the knowledge encoded in the teacher into the stu-
dent. Note that we assume, without loss of generality, that for
both networks, the l-th layer is employed for the knolwedge
transfer. These probabilities express how probable is for each
sample to select each of its neighbors [17], modeling in this
way the geometry of the feature space, while matching these
two distributions also ensures that the mutual information be-
tween the models and a set of (possibly unknown) classes is
maintained [7].

Note that the kernel choice can have a significant effect
on the quality of the knowledge transfer. Apart from the
well known Gaussian kernel, which is however often hard to
tune, other kernel choices include cosine-based kernels, e.g.,
Kc(a,b) = 1

2 ( aTb
||a||2||b||2 + 1), and the T-student kernel, i.e.,

KT (a,b) = 1
1+||a−b||d2

, where d is typically set to 1. Select-
ing the most appropriate kernel for the task at hand can lead
to significant performance improvements, e.g., cosine-based
kernels perform better for retrieval tasks, while using kernel
ensembles, i.e., estimating the probability distribution using
multiple kernels, can also improve the robustness of PKT.
Therefore, in this paper a hybrid objective that aims at mini-
mizing the divergence calculated using both the cosine kernel,
which ensures the good performance of the learned represen-
tation for retrieval tasks, and the T-student kernel, which
ensures the good performance of the method for classifica-
tion tasks is used: L = D(P(t,l)

c ||P(s,l)
c ) + D(P(t,l)

T ||P(s,l)
T ),

where D(·) is a divergence metric and the notation P(t,l)
c

and P(t,l)
T is used to denote the conditional probabilities of

the teacher calculated using the cosine and T-student ker-
nels respectively. Again, we assume that the representations
used for knowledge transfer were extracted from the l-th
layer. The student probability distribution is denoted sim-
ilarly by P(s,l)

c and P(s,l)
T . The divergence is calculated

using a symmetric version of the Kullback-Leibler (KL)
divergence, the Jeffreys divergence: D(P(t,l)||P(s,l)) =∑N
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which can be sampled at a finite number of points during the
optimization, e.g., using batches of 64-128 samples. Finally,
stochastic gradient descent is employed to train the student
model: ∆W = −η ∂L

∂W , where W is the matrix with the pa-
rameters of the student model and η is the employed learning
rate.

Using multiple layers to transfer the knowledge is ex-
pected to better guide the knowledge transfer process. This
has been also demonstrated for classification tasks, using
hints from multiple layers in [9]. However, using hints re-
quires carefully selecting the layers that will be used for the
knowledge transfer to avoid over-regularizing the student.
Indeed, if the intermediate layers are not carefully selected,
the performance of the student model is often worse than not
using multilayer transfer at all. Unfortunately, due to the poor

understanding of the way that neural networks transform the
probability distribution of the input data, there is currently
no way to select the most appropriate layers for transferring
the knowledge a priori, without manually evaluating various
combinations of layers. This process can be especially dif-
ficult and tedious, especially when the architectures of the
student and teacher differ a lot. In this work, we proposed to
overcome this limitation by constructing an appropriate proxy
for the teacher model, that will allow for directly matching
between all the layers of the proxy model and the student
model, as shown in Fig. 1. In this way, the proposed method
employs the intermediate proxy, called ladder network, that
has compatible architecture with the student model, to better
facilitate the process of knowledge transfer.

The proposed method works as follows: First, the knowl-
edge is transferred from the teacher model to the ladder model
using only the final representation layers of the networks (step
1 in Fig. 1), as originally proposed in [7]. The ladder model
is designed to be stronger than the student model, yet to have
compatible architecture. Thus, the ladder model is expected
to perform better compared to the student. Then, all the lay-
ers of the student and ladder networks are used to transfer
the knowledge, without the risk of mismatching between the
layers. We propose to design the ladder network using the
same architecture as the student model, but using more neu-
rons/convolutional filters per layer. Thus, the greater learning
capacity of the ladder network ensures that enough knowl-
edge will be always available to the ladder network (when
compared to the student model), leading to better results com-
pared to directly transferring the knowledge from the teacher
model.

Then, the knowledge is transferred between all the lay-
ers of the student and ladder networks using a cyclical train-
ing process (step 2 in Fig. 1). More specifically, instead of
transferring the knowledge from all the layers simultaneously,
which requires fine-tuning the weight for the loss induced by
each layer, we propose randomly selecting a pair of two lay-
ers and performing one full transfer epoch using the specific
layer pair. Then, this process continues by selecting another
layer pair, until completing a predefined number of training
epochs. We found out that this process allows for a) more
easily using the proposed method without having to select any
hyper-parameters, as well as b) better exploring the solution
space. Finally, the teacher model is fine-tuned for a number of
training epochs (step 3 in Fig. 1) using regular PKT between
the final representation layers.

4. EXPERIMENTAL EVALUATION

The proposed method was evaluated using the CIFAR-10 [18]
and STL-10 [19] datasets. For all the conducted experiments,
the teacher network was a ResNet-18 network [20] trained
for classification using the CIFAR-10 dataset. The penulti-
mate layer of the teacher network was used to transfer the



knowledge. The ladder network was composed of a 3 × 3
convolutional layer with 16 filters, followed by a 2 × 2 max
pooling layer, another 3 × 3 convolutional layer with 32 fil-
ters, a 2 × 2 max pooling layer, a 3 × 3 convolutional layer
with 64 filters, another 2 × 2 max pooling layer and a final
fully connected layer with 128 neurons. The ReLU activation
function was used for all the layers, while batch normaliza-
tion was also employed for the convolutional layers. The stu-
dent model has the same architecture (number of layers) as
the ladder, but uses half the number of filters/neurons at each
layer. The teacher was trained for 50 epochs with a learning
rate of 0.001, followed by an additional 30 training epochs
with a lowered learning rate of 0.0001. For all the conducted
experiments, the Adam algorithm [21] was employed for the
optimization, while the batch size was set to 128. Finally, the
optimization for the proposed method ran for 50 epochs (20
for the STL-10 dataset).

The proposed method, abbreviated as “M-PKT”, was
compared to four other knowledge transfer approaches: a)
hint-based transfer (where the projection matrix was opti-
mized during the knowledge transfer process) [9], b) distil-
lation transfer (using an additional classification layer) [4],
c) MDS-based transfer, as proposed in [8], and d) regular
PKT [7]. The retrieval evaluation setup proposed in [7] was
used, while the mean average precision (mAP) and top-50
precision (t-50) using both the euclidean similarity metric
“(e)” and the cosine similarity “(c)” are reported. The re-
trieval metrics are also provided for the teacher, ladder and
student models trained directly for classification tasks, while
the student model was initialized using the pre-trained stu-
dent. The optimization ran for 50 training epochs with a
learning of 0.001 and 20 training epochs with a learning
rate of 0.0001 for all the evaluated methods. Global average
pooling is employed for the feature maps extracted from the
intermediate convolutional layers, when used to estimate the
probability distributions for the proposed M-PKT method.

The evaluation results for the CIFAR-10 dataset are re-
ported in Table 1. Note that the hint-based transfer and the
PKT method lead to consistent and significant improvements
over directly training the student using the ground truth la-
bels provided by the CIFAR-10 dataset. Also, note that de-
spite the vastly different architectures between the ResNet-18
teacher and the employed student model, the proposed multi-
level transfer method was capable of improving the mAP over
the plain PKT method by more than 1.5% (relative increase).

The proposed method was also evaluated in a more chal-
lenging distribution shift setup, where the STL-10 dataset was
used for transferring the knowledge and evaluating the perfor-
mance of the methods. The images from STL-10 dataset were
resized to 32 × 32 pixels, in order to be compatible with the
networks trained on CIFAR-10. The same teacher, ladder and
student models are used as before. The optimization ran for
20 training epochs with a learning of 0.001 and 10 training
epochs with a learning rate of 0.0001. The experimental re-

Table 1. CIFAR-10: Retrieval evaluation
Method mAP (e) mAP (c) t-50 (e) t-50 (c)
Teacher 87.18 90.47 92.40 92.45
Ladder 62.12 66.78 75.02 76.97
Student 29.15 31.79 47.75 49.93
Hint (optim.) [9] 32.28 36.71 50.41 52.67
Distillation [4] 28.44 31.26 48.17 50.47
MDS-T [8] 30.36 31.99 45.12 46.76
PKT [7] 37.05 40.09 50.28 52.96
M-PKT 37.72 40.59 50.69 53.27

Table 2. STL-10: Retrieval evaluation (distribution shift)
Method mAP (e) mAP (c) t-50 (e) t-50 (c)
Teacher 57.40 61.20 68.87 71.37
Ladder Teacher 45.61 49.63 57.57 60.77
Student 26.04 28.03 36.55 38.31
Hint [9] 30.31 33.58 41.26 43.68
Distillation [4] 28.11 30.35 39.77 41.66
MDS-T [8] 28.85 30.91 37.51 39.80
PKT [7] 30.68 32.71 39.61 41.72
M-PKT 31.92 34.15 41.11 43.61

sults are reported in Table 2. Using any of the knowledge
transfer methods leads to significant improvements over di-
rectly training the student, while the proposed method still
outperforms all the other evaluated methods. Note that the
proposed method leads to even larger improvements com-
pared to the previous experiments, e.g., the mAP increases by
more than 4% (relative increase) over the plain PKT method,
confirming the effectiveness of the proposed method.

5. CONCLUSIONS

A novel multilayer knolwedge transfer method was proposed
in this paper. The proposed method was capable of efficiently
transferring the knowledge between the student and teacher
networks by employing the representations extracted from
multiple layers. To avoid the need for carefully matching
between the layers of the student and teacher models, the
proposed method employed an intermediate network, called
ladder model, that acts as a proxy to the teacher model, sig-
nificantly simplifying the knowledge transfer process. The
effectiveness of the proposed multilayer probabilistic knol-
wedge transfer method was demonstrated using experiments
on two image datasets. Several interesting research questions
arise as a result of this study. Is there any other more struc-
tured way of designing and training auxiliary models that will
further increase the performance of the student model? Fur-
thermore, this paper focused on transferring the knowledge
between convolutional neural networks. However, the pro-
posed method can be also readily applied for transferring the
knowledge between vastly heterogeneous architectures, such
as recurrent neural networks or handcrafted feature extractors.
Is it possible to use multiple and heterogeneous ensembles of
auxiliary models to further improve the knowledge transfer?
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