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Probabilistic Knowledge Transfer for
Lightweight Deep Representation Learning

Nikolaos Passalis, Maria Tzelepi and Anastasios Tefas

Abstract—Knowledge Transfer (KT) methods allow for trans-
ferring the knowledge contained in a large deep learning model
into a more lightweight and faster model. However, the vast
majority of existing KT approaches are designed to handle mainly
classification and detection tasks. This limits their performance
on other tasks, such as representation/metric learning. To over-
come this limitation a novel Probabilistic KT (PKT) method
is proposed in this paper. PKT is capable of transferring the
knowledge into a smaller student model by keeping as much
information as possible, as expressed through the teacher model.
The ability of the proposed method to use different kernels for
estimating the probability distribution of the teacher and student
models, along with the different divergence metrics that can be
used for transferring the knowledge, allows for easily adapting
the proposed method to different applications. PKT outperforms
several existing state-of-the-art KT techniques, while it is capable
of providing new insight into KT by enabling several novel
applications, as it is demonstrated through extensive experiments
on several challenging datasets.

Index Terms—Neural Network Distillation, Representation
Learning, Metric Learning, Lightweight Deep Learning, Knowl-
edge Transfer

I. INTRODUCTION

Deep Learning (DL) allowed for tackling many difficult
problems with great success [1], ranging from challenging
computer vision problems [2], to complex reinforcement
learning problems [3]. However, DL suffers from significant
limitations, since neural networks are becoming increasingly
complex, often composed of hundred of layers [4] and requir-
ing powerful and dedicated hardware for effectively deploying
them. This limits their applications on embedded and mobile
devices with limited computational resources, e.g., memory,
processing power, etc. These limitations shifted the research
interest into developing more efficient models, which can ef-
fectively lower the computational and energy requirements of
DL. To this end, several methods have been recently proposed,
including model compression and quantization methods [5],
which can reduce the number of bits needed to store the
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weights of a network and accelerate the required computations,
as well as lightweight and more efficient neural network
architectures [6].

Another promising line of research for further improving the
performance of lightweight DL models are Knowledge Trans-
fer (KT) methods [7], [8], which are also known as Knowledge
Distillation (KD) or Neural Network Distillation methods. KT
works by modeling the knowledge, as encoded by a large deep
learning model, and then transferring it into a smaller and
faster model. The most straightforward way to perform KT
is to train the smaller model, which is called student model,
to mimic the response (output) of a larger and more complex
neural network, typically called teacher model. In this way, KT
allows for training more accurate student models, that are able
to generalize better compared with models trained without KT,
since the teacher implicitly captures more information for each
data sample and the training classes. Note that this information
is usually not available when training with traditional methods,
since only hard binary labels are provided, instead of a smooth
probability distribution over the classes. This allows KT to
better regularize the training process, significantly improving
the performance of the student network [9]. It is worth noting
that KT methods are orthogonal to other approaches used for
developing lightweight models, e.g., they can be used with
both quantization methods and lightweight architectures, such
as [6]. This allows KT to be combined with any other method,
further improving the performance of lightweight DL models.

Several KT methods have been proposed and successfully
used for a wide variety of tasks, mainly related to classi-
fication [7], [8], [10] and object detection [11]. However,
these approaches suffer from a series of limitations that
prohibit them to be efficiently used for other DL-related tasks,
such as representation/metric learning [12]. First, most of the
existing methods are not capable of efficiently transferring the
knowledge when a different number of neurons are used, i.e.,
the layers have different dimensionality. The main reason for
this is that most KT methods are currently tailored towards
classification tasks, where they are usually used to transfer
the knowledge between the final classification layer of two
networks, assuming that the dimensionality of these layer
is the same for both networks. However, this renders most
of the existing KT methods not suitable for representation
learning tasks, such as text, image and multimedia information
retrieval [13], [14], [15]. At the same time, there are many
other applications requiring accurate, yet lightweight feature
extractors, e.g., reducing the communication overhead between
mobile devices and cloud [16], protecting the privacy of users
by processing most of the data on the edge [17], [18], etc.
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Furthermore, most of the existing KT methods usually
completely ignore the actual geometry of the teacher’s feature
space, e.g., manifolds that are possibly formed, the local
structure of the space (as expressed by the similarities between
neighboring samples), etc., since they directly regress the
representation extracted from the teacher model. However, it
has been demonstrating that using this information allows for
improving the quality of the learned model/representation for
many different domains and applications [19], [20].

These observations lead us to a number of interesting
questions: a) Can we use the existing KT methods for rep-
resentation learning tasks and how do they perform on these
tasks? b) Is it possible to design a method that can directly
recreate the geometry of teacher’s feature space using the
student model? This would allow for effectively modeling the
manifolds formed in the feature space of the teacher model
and then recreating them into the student’s lower dimensional
feature space, possibly allowing for further improving the
performance of the student. c) Can handcrafted features, e.g.,
HoG [21], be used to transfer the knowledge encoded in their
representation into a neural network. This process can allow
for effectively exploiting the enormous number of available
unlabeled training data for training DL models. d) Finally, is
it possible to model the gradual transformation of the feature
space, through the various layers of the student model, in order
to further improve the performance of the teacher model?
If so, how we should match the layers between the student
and teacher, e.g., should we directly transfer the knowledge
between all the layers of the student and teacher or should
we use a more adaptive and sophisticated approach to avoid
over-regularizing the network?

In this paper a Probabilistic Knowledge Transfer (PKT)
method is proposed, allowing for overcoming the limitations of
existing methods and providing an efficient approach for devel-
oping lightweight DL models for various representation/metric
learning tasks. To this end, the proposed method matches the
probability distribution of the data in the feature spaces formed
by the teacher and student models, instead of merely regressing
their actual representation, as shown in Figure 1. PKT is
motivated by the observation that matching the probability
distributions in the feature space of the teacher and student
models allows for maintaining the teacher’s Quadratic Mutual
Information (QMI) [22] in the smaller student model. Even
though a set of labels is employed for modeling the MI of
the model, no labels are actually required for the KT process,
rendering the proposed approach fully unsupervised. This is
possible, since, as it is thoroughly described in Section III, the
aforementioned process leads to the unsupervised modeling of
the interactions between the data samples in the feature space
as a probability distribution that expresses the affinity between
the data samples.

As we extensively demonstrate through several experiments,
this process provides significant advantages over existing KT
techniques. First, the proposed PKT method enables us to
directly transfer the knowledge even when the output dimen-
sionality of the networks does not match without using any
additional dimensionality reduction layers. Furthermore, PKT
allows for using the most appropriate kernel to model the
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Fig. 1. Probabilistic Knowledge Transfer: First, the teacher’s and student’s
knowledge is modeled using probability distributions. The knowledge is then
transferred to the student by minimizing the divergence between these two
probability distributions.

feature space of the teacher and student models, providing
a straightforward way to finetune the proposed method for
different applications, e.g., information retrieval using angular
metrics, such as the cosine similarity. Finally, it is demon-
strated that the probability distributions can also be estimated
or enhanced using any other information source, such as
handcrafted feature extractors, intermediate neural layers, su-
pervised information or even qualitative information provided
by users and/or domain experts. Thus, PKT constitutes a
powerful and flexible KT tool that can be used to improve
KT for existing scenarios, as well as support a number of
novel KT scenarios. The proposed method can effectively a)
perform cross-modal KT, b) transfer the knowledge encoded in
handcrafted feature extractors into neural networks, c) transfer
the knowledge into multiple layers using a hierarchical ladder
scheme, d) learn representations robust to distribution shifts,
and e) improve the performance for a wide variety of tasks
(retrieval, classification, clustering). The proposed method is
extensively evaluated and compared to other KT techniques
using four challenging computer vision datasets and several
evaluation setups (KT from deep neural networks, KT from
handcrafted feature extractors, KT from different modalities
(cross modal transfer), hierarchical KT from multiple layers).

This paper is an extended version of our previous work
presented in [23]. We further extended our previous paper
by a) providing a multi-kernel formulation that improves the
performance of the proposed method over different setups,
b) employing a ladder-based KT scheme that allows for
effectively transferring the knowledge between multiple levels
of two networks, despite the difficulties that often arise from
this process, c) providing an extensive stability and ablation
study, d) providing additional comparison with a recently
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proposed metric learning approach [24] and e) evaluating the
proposed method in additional setups (classification, distribu-
tion shift and unsupervised knowledge discovery), as well as
additional datasets (STL-10 [25] and ILSVRC [26]). An open-
source implementation of the proposed method, containing all
the improvements proposed, in this paper will be publicly
available at https://github.com/passalis/deep pkt.

The rest of the paper is structured as follows. First, in
Section II the related works are discussed, while the proposed
method is analytically presented in detail in Section III. Then,
the proposed method is evaluated in Section IV. Finally,
Section V concludes this paper.

II. RELATED WORK

Research on knowledge transfer methods, which allow for
effectively training smaller and faster models, is mainly driven
by the increasing size and complexity of DL models, as
well as the need to deploy them intro various devices with
limited computing capabilities, such as embedded and mobile
devices. A large portion of the KT methods proposed in
the literature employ the teacher model to generate soft-
labels and then using these soft-labels for training the smaller
student network [8], [9], [27], [28], [29]. Indeed, one of the
earliest approaches to KT directly used the label distribution
predicted by the teacher to train the student [27], while the
well-known neural network distillation method [8], extended
this approach by appropriately tuning the temperature of the
softmax activation. Neural network distillation can indeed
effectively regularize the smaller network, leading to better
performance than directly training the network using hard
binary labels [6], [8], [15]. Several extensions to this approach
have been proposed: soft-labels can be used for pre-training a
large network [30], used for domain adaptation tasks [28], for
compressing the posterior density in Bayesian methods [31], or
for transferring the knowledge from recurrent neural networks
into simpler models [29]. The regularization nature of neural
network distillation is also highlighted in [9], where the
knowledge was transferred from a smaller teacher model to a
larger student network, allowing for training the student with
fewer annotated data. These methods are mainly designed to
handle classification tasks and cannot be effectively applied
for representation learning, as it is also demonstrated in
Section IV. It is also worth noting that KT is closely related to
optimization methods [32], [33], [34], [35], since it performs
a relaxation of the original optimization problem, as well as
to various loss functions proposed for metric learning, such
as [36].

A quite different approach was proposed in [7], where the
student network was trained by employing hints from the
intermediate layers of the teacher model. To this end, pro-
jection matrices were employed to match the dimensionality
between the teacher’s and student’s layers, since usually the
student model is smaller. Even though this approach allows
for transferring the knowledge between arbitrary layers, it
can lead to a significant loss of information, due to using
low-dimensional projections. A similar approach was also
employed in [38], where instead of using hints, the flow

of solution procedure (FSP) matrix was used to transfer
the knowledge between the intermediate layers of various
residual networks. It is worth noting that FSP, in contrast with
hints, cannot be applied when the intermediate representations
have different size and, as a result, cannot be used for
representation learning. Finally, in [20] an embedding-based
approach was proposed for transferring the knowledge, while
in [24], a multidimensional-scaling based method was used
to learn a student that maintains the same distances as the
teacher between pairs of samples. However, the first method
is tailored toward classification tasks, while the latter leads
to significantly worse performance compared to the proposed
one (demonstrated in Section IV), since directly matching the
distances in high-dimensional spaces is less effective than the
proposed probabilistic formulation which can alleviate these
limitations (especially when coupled with a carefully selected
kernel function and divergence metric).

To the best of our knowledge, the proposed method is
the first probabilistic KT approach that can be effectively
used for a wide range of different representation learning
tasks. Indeed, the proposed method can be employed in many
different and novel scenarios, e.g., transferring the knowledge
from handcrafted feature extractors, as it is demonstrated in
Section IV. The proposed method does not require extensive
hyper-parameter turning, such as the tedious tuning of the
softmax temperature [8], while it is easy to implement and use.
At the same time, its ability to estimate the probability dis-
tribution using different kernels, as well as to combine them,
allows for learning more robust lightweight student models.
Furthermore, the proposed method can directly handle layers
of different dimensionality, without requiring using additional
dimensionality reduction layers [7] or less efficient distance-
based matching [24]. Finally, also note that a KT approach that
employs an intermediate network was also proposed in [37].
However, compared to this approach, the proposed one is
designed to facilitate multi-layer KT transfer.

III. PROBABILISTIC KNOWLEDGE TRANSFER

First, the used notation and required background are briefly
introduced in this Section. Then, the proposed method is
analytically described. Several design choices are discussed
through this Section, along with extensions that allow for
handling several different KT scenarios.

A. Notation and Background

Let T = {t1, t2, . . . , tN} be a transfer set of N objects.
The transfer set is used to transfer the knowledge encoded
in the teacher model into the student model. The notation
x = f(t) and y = g(t,W) is used to refer to the teacher’s
and student’s output representation (respectively). Note that
W refers to the trainable parameters of the student model.
The student model g(·) is then trained in order to “mimic”
the behavior of f(·). Note that there is no constraint on
what the functions f(·) and g(·) are as long as the output
of f(·) is known for every element of T and g(·) is a
differentiable function. Actually, the first constraint can be
relaxed even more, since, as it will be demonstrated later, it
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is enough to know just the pairwise similarities between the
training samples for the teacher model. The continuous random
variables X and Y are used to model the distribution of the
representation extracted from the teacher and student models.
Also, an additional discrete random variable C is introduced
to describe some higher level semantic features of the samples,
e.g., class labels. Therefore, each vector x drawn from X is
also associated with an attribute label c.

Mutual Information (MI) is a measure of uncertainty regard-
ing the class label c after observing the corresponding vector
x [22]. Let P (c) be the probability of observing the class label
c. The teacher’s MI can be formally defined as:

I(X,C) =
∑
c

∫
x

p(x, c) log
p(x, c)

p(x)P (c)
dx, (1)

where p(x, c) is the joint probability density function of x
and c. Then, Quadratic Mutual Information (QMI) can be
derived by replacing the KL divergence between p(x, c) and
the product of marginal probabilities that appear in (1) by the
quadratic divergence measure [22]:

IT (X,C) =
∑
c

∫
x

(p(x, c)− p(x)P (c))2dX. (2)

By expanding (2), QMI can be more compactly ex-
pressed in terms of three quantities, called informa-
tion potentials, as: IT (X,C) = VIN + VALL −
2VBTW , where the corresponding potentials are defined as:
VIN =

∑
c

∫
x
p(x, c)2dx, VALL =

∑
c

∫
x
(p(x)P (c))2dx, and

VBTW =
∑

c

∫
x
p(x, c)p(x)P (c)dx. The potential VIN ex-

presses the in-class interactions, the potential VALL the inter-
actions between all the samples, while the potential VBTW

the interaction of each class against all the other samples, as
further shown in (5)-(7).

The class prior probability for each cp class can be estimated
as P (cp) =

Jp

N , where Jp refers to the number of samples for
the p-th class and N is the size of transfer set. Then, Kernel
Density Estimation (KDE) can be employed for estimating the
joint density probability as:

p(x, cp) = p(x|cp)P (cp) =
1

N

Jp∑
j=1

K(x,xpj , σ
2), (3)

where K(a,b, σ2) is a symmetric kernel with width σ and
the notation xpj is used to refer to the j-th sample of the p-th
class. The density of X is similarly estimated as:

p(x) =

Jp∑
p=1

p(x, cp) =
1

N

N∑
j=1

K(x,xj , σ
2). (4)

B. Probabilistic Knowledge Transfer

The knowledge can be transferred from the teacher model
to the student model by maintaining the same amount of MI
between the two random variables X and Y and the class
labels, i.e., I(X,C) = I(Y,C). In the case of QMI, this
implies that the information potentials of the student model
should be equal to the corresponding information potentials
of the teacher. Note that there might be other configurations

with equal MI as well, however it is enough to use one of
them to transfer the knowledge.

The information potentials for the teacher model can be eas-
ily calculated using the probabilities estimated in the previous
subsection as:

V
(t)
IN =

1

N2

Nc∑
p=1

Jp∑
k=1

Jp∑
l=1

K(xpk,xpl, 2σ
2
t ), (5)

V
(t)
ALL =

1

N2

(
Nc∑
p=1

(
Jp
N

)2

)
N∑

k=1

N∑
l=1

K(xk,xl, 2σ
2
t ), (6)

and

V
(t)
BTW =

1

N2

Nc∑
p=1

Jp
N

Jp∑
j=1

N∑
k=1

K(xpj ,xk, 2σ
2
t ), (7)

where NC is the total number of classes. The interac-
tion between two samples ti and tj is measured using
the kernel function K(xi,xj , σ

2) that expresses the simi-
larity between them (as measured through the representa-
tion extracted from the teacher model). Similarly, the in-
formation potentials for the student network are defined:
V

(s)
IN = 1

N2

∑Nc

p=1

∑Jp

k=1

∑Jp

l=1K(ypk,ypl, 2σ
2
s), V (s)

ALL =
1

N2 (
∑Nc

p=1(
Jp

N )2)
∑N

k=1

∑N
l=1K(yk,yl, 2σ

2
s), and V

(s)
BTW =

1
N2

∑Nc

p=1
Jp

N

∑Jp

j=1

∑N
k=1K(ypj ,yk, 2σ

2
s). Different (and ap-

propriately tuned) bandwidths σt and σs must be used for the
teacher and student models, since the kernels are used to model
the distribution in two different feature spaces. The bandwidth
of the student model was set to 1, while the bandwidth of
the teacher was determined according to the mean distance
between the samples in the teacher’s feature space. This
strategy was used for all the conducted experiments, follows
the experimental findings of other related approaches [39],
and ensures that a meaningful probability estimation, i.e., that
the kernel values will not collapse to either 0 (too small
bandwidth) or 1 (too large bandwidth), will be obtained for
both models.

It is easy to see that the most straightforward way to ensure
that the information potentials will be equal among the two
models is to require the similarity between each pair of points,
as expressed through the employed kernel, to be equal:

K(xi − xj , 2σ
2
t ) = K(yi − yj , 2σ

2
s) ∀i, j. (8)

Therefore, the problem of transferring the knowledge by main-
taining the same MI between the models and a set of classes
is reduced into matching the kernel values between different
pairs of data. PKT, instead of matching the unnormalized
kernel, proposes to minimize the divergence between the
teacher’s and student’s conditional probability distributions:

p
(t)
i|j =

K(xi,xj , 2σ
2
t )∑N

i=1,i6=j K(xi,xj , 2σ2
t )
∈ [0, 1], (9)

and

p
(s)
i|j =

K(yi,yj , 2σ
2
t )∑N

i=1,i6=j K(yi,yj , 2σ2
s)
∈ [0, 1]. (10)
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TABLE I
DIFFERENT KERNELS THAT CAN BE USED FOR TRANSFERRING THE

KNOWLEDGE BETWEEN THE TEACHER AND STUDENT MODELS

Kernel Notation Parameters Expression

Gaussian Kg σ exp(− ||a−b||22
σ2 )

Cosine Kc - 1
2
( aTb
||a||2||b||2

+ 1)

T-student Ks d 1
1+||a−b||d2

These probabilities express how probable is for each sample
to select each of its neighbors [39], modeling in this way the
geometry of the feature space.

Several different kernel functions can be used to estimate the
corresponding probabilities, while some of possible choices
are listed in Table I, where the kernels are applied on two
vectors a and b and the notation ||·||2 is used to refer to the
l2 norm of a vector. Among the most popular ones is the
Gaussian kernel [40]. However, Gaussian kernels require to
carefully tune their width, which is not a straightforward task.
It is worth noting that several heuristics have been proposed to
address specifically this limitation [41]. In the initial version of
PKT [23], this issue was avoided by deriving an angular kernel
that requires no domain-dependent tuning (cosine kernel). This
kernel also fits various retrieval tasks especially well, since the
cosine similarity is usually used for retrieval. However, as we
experimentally found out, this kernel is not optimal for every
task. Instead, l2-based kernels, such as the Gaussian and T-
student kernels, seem to perform better on such tasks, e.g.,
clustering and classification. This behavior is experimentally
demonstrated in the results reported in Section IV.

Therefore, in this work we propose using a hybrid objective
that requires minimizing the divergence calculated using both
the cosine kernel, which ensures the good performance of the
learned representation for retrieval tasks, and the T-student
kernel, which ensures the good performance of the method
for classification tasks:

L = D(P(t)
c ,P(s)

c ) +D(P(t)
T ,P(s)

T ), (11)

where D(·) is a divergence metric and the notation P(t)
c

and P(t)
T is used to denote the conditional probabilities of

the teacher calculated using the cosine and T-student kernels
respectively. The student probability distribution is denoted
similarly by P(s)

c and P(s)
T . It is worth noting that the proposed

method only requires one additional feed-forward pass for the
teacher model in order to extract the teacher’s representation
and calculate the loss L. The complexity of calculating the loss
is O(N2

BNd) where NB is the batch size and Nd is the size
of the representation extracted from the teacher/student (or the
maximum dimensionality among them, if they are different).

There are also several different choices for defining the
divergence metric. In this work, a symmetric version of
the Kullback-Leibler (KL) divergence, the Jeffreys diver-
gence [42], is used to this end:

(12)
DJ(P(t)||P(s)) =

∫ +∞

−∞
(P(t)(t)− P(s)(t))(

logP(t)(t)− logP(s)(t)
)
dt,

The final divergence function, that can be readily used for
training the model, is defined as:

(13)
DJ(P(t)||P(s)) =

N∑
i=1

N∑
j=1,i6=j

(
p
(t)
j|i − p

(s)
j|i

)
·
(

log p
(t)
j|i − log p

(s)
j|i

)
,

since the two distribution are sampled using a finite number of
points. Note that other metrics, such as the KL divergence, can
be employed to meet the requirements of each application. For
example, KL is an asymmetric metric which can be used when
higher weight should be given to minimize the divergence for
neighboring pairs of points instead of distant ones.

To learn the parameters W of the student model g(t,W)
gradient descent is used: ∆W = −η ∂L

∂W , where W is the
matrix with the parameters of the student model and η is the
employed learning rate. The derivative of the loss function
with respect to the parameters of the model can be easily
derived by observing that:

∂L
∂W

=

N∑
i=1

N∑
j=1,i6=j

∂L
∂p

(s)
j|i

N∑
l=1

∂p
(s)
j|i

∂yl

yl

∂W
, (14)

where yl

∂W is just the derivative of the student’s output
with respect to its parameters. Furthermore, the conditional
probabilities can be estimated using relatively small batches
of the data at each iteration, e.g., batches of 128 samples,
instead of using the whole dataset. In this way, it is possible
to accelerate the convergence of the method, while it was
experimentally established that this batch-based approach does
not negatively impact the learned representation. Note that to
ensure that different sample pairs are used for each iteration,
the transfer samples are shuffled after each epoch. Finally,
note that the teacher model can be any model for which
we can estimate the conditional probability p

(t)
j|i . Therefore,

the source of knowledge for the teacher can range from
representations extracted from neural layers and handcrafted
features (where kernels are used to estimate the probabilities)
to domain knowledge and label attributes. In the latter case, it
is worth noting that only the pairwise similarities between the
samples are required (allowing for transferring the knowledge
even when there is no representation extracted from the teacher
for each data sample).

C. Ladder Probabilistic Knowledge Transfer

The proposed method can be directly used to transfer the
knowledge from multiple layers of two neural networks. This
is expected to better guide the knowledge transfer process,
similarly to the way that hints from multiple layers guide
the neural network distillation process [7]. However, if the
layers from and to which the knowledge will be transferred
are not carefully selected the student network can be over-
regularized leading to worse performance compared to not
using intermediate layers for the KT, as we also experimentally
demonstrated in the ablation study provided in Section IV.
Note that selecting the appropriate layers can be a quite
difficult and tedious process that involves several experiments
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Fig. 2. Ladder PKT: Constructing an intermediate ladder network allows for
more effectively transferring the knowledge to all the layers of the student
model. First, the knowledge is transferred to the intermediate ladder network.
Then, PKT is employed in a two step process: a) the knowledge is transferred
between all the intermediate layers and b) the final representation (extracted
from the last layer of the networks) is further fine-tuned.

to find the best combination of layers, especially when the
architectures of the student and teacher differ a lot.

To overcome this limitation, we propose a simple, yet
effective ladder-based approach for transferring the knowledge
between all the layers of the student and an appropriately
constructed model, as shown in Fig. 2. First, an intermediate
network, called ladder network, with the same number of
layers as the student model is employed. This allows for
having a one-to-one matching between each layer of the
student and ladder models, overcoming the need to carefully
select and match the layers between the teacher and ladder
models. At the same time, the ladder network should contain
more parameters, i.e., the number of neurons/convolutional
filters per layer must be increased, to ensure that enough
knowledge will be always available to the ladder network
(when compared to the student model).

First, the knowledge is transferred from the final layer of
the teacher model to the final layer of the ladder network, by
performing regular PKT. Then, the knowledge can be readily
transferred from the ladder to the student using all the available
layers, since, the ladder and student networks have similar
architecture, and, as a result, all the layers can be used without
the risk of mismatching between the layers. Finally, instead
of directly transferring the knowledge from all the layers
at once, we propose using a cyclical schedule, i.e., select a
random layer pair (of the same depth) at each training epoch
and transfer the knowledge between the layers of this pair.
This process provides greater flexibility and allows for better
exploring the solution space. Then, the KT process continues
by employing regular PKT to transfer the knowledge to the
final representation layer.The complexity of calculating the
loss in the case of multi-layer KT is updated as O(KN2

BND),
where K is the number of layers used for the KT and ND

refers to the maximum dimensionality of any intermediate
layer.

TABLE II
COMPUTATIONAL COMPLEXITY OF THE MODELS USED FOR THE

CONDUCTED EXPERIMENTS

Model # Parameters FLOPS
CIFAR - Teacher 6.95k 0.17M
CIFAR - Ladder 57.99k 0.78M
CIFAR - Teacher 11.17M 278.32M
ILSCVR - Teacher 2.03M 69.02M
ILSCVR - Student 0.23M 5.90M
SUN Attribute - Student 77.73k 6.02M

(k refers to 103, M refers to 106 )

TABLE III
CIFAR-10: RETRIEVAL EVALUATION

Method mAP (e) mAP (c) t-50 (e) t-50 (c)
Teacher 87.18 90.47 92.40 92.45
Student 41.41 47.36 68.86 72.50

Training from scratch (70+30 epochs / η = 10−3/10−4)
Hint (random proj.) [7] 58.06 65.27 73.89 75.43
Hint (optimized proj.) [7] 54.62 61.15 74.57 76.20
Distillation [8] 40.94 46.52 68.87 72.51
MDS-T [24] 51.86 54.63 68.06 70.13
PKT 62.45 66.83 75.10 77.09

Pre-trained student (30+10 epochs / η = 10−3/10−4)
Hint (random proj.) [7] 57.00 64.33 72.93 74.66
Hint (optimized proj.) [7] 53.81 61.09 74.47 76.91
Distillation [8] 40.59 46.54 68.95 72.71
MDS-T [24] 54.49 57.40 71.28 73.37
PKT 62.12 66.78 75.02 76.97

IV. EXPERIMENTAL EVALUATION

The proposed method is extensively evaluated and compared
to other baseline and state-of-the-art knowledge transfer meth-
ods in this Section. First, the proposed method is evaluated
under a representation learning setup using the CIFAR-10
dataset [43], as well as a challenging subset of the large-
scale ILSVRC dataset [26]. Then, the proposed method is
evaluated under a distribution shift setup, using the STL-10
dataset [25], as well as by transferring the knowledge encoded
in handcrafted feature extractors and different modalities using
the SUN Attribute dataset [44]. Finally, a sensitivity analysis
is provided, where the effect of the employed kernel on
the performance on the learned representations is evaluated.
Please note that details regarding the experimental setup, such
as the employed network architectures, optimization hyper-
parameters, etc., are provided in the supplementary material.
The computational complexity (time and space complexity)
of the networks employed for the conducted experiments is
summarized in Table II. Note that a wide variety of different
networks and transfer setups is employed. No information
regarding the teacher model is provided for the SUN Attribute
dataset, since handcrafted features are used for the knowledge
transfer for the experiments conducted using this dataset.
Representation learning using CIFAR-10: The experimental
results using the CIFAR-10 dataset are reported in Table III.
A content-based image retrieval setup was employed for the
evaluation. The database contains the training image, while
the test set images are used for evaluating the performance
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TABLE IV
CIFAR-10: CLUSTERING EVALUATION

Method Rand MI V-score FM CH
Teacher 0.831 0.832 0.832 0.848 3882.9
Student 0.427 0.527 0.532 0.487 659.2
Hint (random) [7] 0.483 0.587 0.599 0.542 2297.5
Hint (optim.) [7] 0.400 0.561 0.577 0.473 1603.2
Distillation [8] 0.407 0.513 0.518 0.469 637.5
MDS-T [24] 0.538 0.589 0.592 0.585 1072.8
PKT 0.580 0.626 0.630 0.623 2323.5

of each model. The (interpolated) mean Average Precision
(mAP) at the standard 11-recall points and the top-k precision
(abbreviated as “t-k”) were used as the evaluation metrics [13].
Both the Euclidean distance (denoted by “e”) and the cosine
similarity (denoted by “c”) were used for the retrieval process.
Also, note that cosine similarity is actually equivalent to
the Euclidean distance, when used to rank the similarity
between a query and the documents in the database, when l2
normalization is performed on the extracted feature vectors.
In this way, these two metrics provide a way to evaluate the
performance of the learned representation with and without
using normalization.

The penultimate layers were used to extract a representa-
tion from each image for both the teacher (512-dimensional
features) and student (128-dimensional features) models. The
proposed method was compared to two variants of the hint-
based knowledge transfer method [7], abbreviated as “Hint”
(in the first one a random projection was used, while in
the second one the projection was optimized along with the
student model). Furthermore, the multidimensional scaling-
based method proposed in [24] was also evaluated (abbreviated
as “MDS-T”), along with the plain distillation approach (where
the knowledge was transferred from the final classification
layer). For the rest of the evaluated methods, the knowledge
was transferred from the penultimate layer of the teacher
network (512 dimensions) to the corresponding layer of the
student network (128 dimensions).

Several conclusions can be drawn from the results reported
in Table III. First, the proposed method leads to significant
improvements compared to both the baseline student network
trained for classification (the mAP increases from 47.36%
to 66.83%), as well as to all the other evaluated methods
regardless the metric used for the retrieval process. Also,
training from scratch seems to lead to slightly better solutions,
compared to continuing the training process using the pre-
trained student network for most methods (including the
proposed one). Quite interestingly, using random projections
for the hint-based method leads to consistently better results,
compared to optimizing the projection. This is perhaps due
to the fact that the projection is becoming a vital part of the
network, and as a result, the learned representation losses part
of its discrimination ability when the projection is removed.

The quality of the learned representations was also evaluated
using a knowledge discovery setup, where the representations
were clustered into 10 clusters using the k-means algorithms.
Various clustering metrics were measured [45]: the adjusted

TABLE V
CIFAR-10: LADDER TRANSFER EVALUATION

Method mAP (e) mAP (c) t-50 (e) t-50 (c)
Teacher 87.18 90.47 92.40 92.45
Ladder Teacher 62.12 66.78 75.02 76.97
Student 29.15 31.79 47.75 49.93

Transfer from Teacher (ResNet-18)
80 + 20 epochs / η = 10−3/10−4

Hint (random) [7] 34.11 37.61 47.01 48.36
Hint (optim.) [7] 32.28 36.71 50.41 52.67
Distillation [8] 28.44 31.26 48.17 50.47
MDS-T [24] 30.36 31.99 45.12 46.76
PKT 37.05 40.09 50.28 52.96

Transfer from Ladder Teacher (PKT from ResNet-18)
50 cyclical transfer epochs / η = 10−3

Hint (optim.) [7] 32.94 35.80 50.39 51.95
MDS-T [24] 34.35 36.59 48.39 50.52
PKT 37.72 40.59 50.69 53.27

Rand score (Rand), the adjusted mutual information (MI),
the V-score measure (V-score), the Fowlkes-Mallows (FM)
score, and the Calinski Harabasz (CH) score. The experiments
were conducted using the representation learned using the pre-
trained student (last block of Table III). The experimental
results are reported in Table IV. It is worth noting that
even though the MDS-T method did not perform well on
the retrieval evaluation, it performed significantly better on
the clustering evaluation. Nonetheless, the proposed method
vastly outperformed all the other evaluated methods for all
the evaluated clustering criteria.

Finally, the proposed ladder-based transfer is evaluated on
Table V. To evaluate the quality of the ladder transfer we
employed a student trained with the PKT method as the ladder
network, while a new student network was created by remov-
ing half of the convolutional filters/neurons for each layer of
the ladder network. Note that the proposed ladder transfer
method can also be applied for the Hint and MDS methods
by transferring the knowledge between all the layers of the
ladder and teacher networks. The proposed ladder approach
indeed improves the performance for all the methods that
can be used to support ladder-based KT (hints with random
projections did not convergence, so the corresponding results
were not included). Note that significant improvements were
obtained when the proposed ladder transfer method was com-
bined with the MDS approach, for which the mAP increases
from 31.99% to 36.59%. This highlights the importance of
using the appropriate teacher models for training the students,
regardless the employed KT method. Again, the proposed
method outperforms all the other evaluated methods, leading
to the higher mAP and top-50 precision.
Representation learning using ILSVRC: Next, the proposed
method was evaluated under a more challenging setup, where
the knowledge was transferred for a specific subset of the
Imagenet containing 5 classes related to recognizing house-
hold appliances (“microwave”, “dish washer”, “refrigerator”,
“washer”, and “vacuum”). The teacher model was trained
from scratch, instead of using a larger network pre-trained
on the whole Imagenet dataset, since we found out that all the
methods performed significantly better when the knowledge
was transferred from a network specialized on the specific
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TABLE VI
IMAGENET SUBSET: RETRIEVAL EVALUATION

Method mAP (e) mAP (c) t-50 (e) t-50 (c)
Teacher 48.75 48.75 62.23 62.23
Student 39.50 39.50 53.63 53.63
Hint (random proj.) [7] 37.50 39.92 51.96 53.06
Hint (optimized proj.) [7] 34.27 36.24 50.25 52.17
Distillation [8] 36.85 40.55 53.70 54.84
MDS-T [24] 38.61 41.08 52.48 53.89
PKT 41.04 44.71 55.94 57.34

TABLE VII
CIFAR-10: RETRIEVAL EVALUATION USING THE STL-10 DATASET

Method mAP (e) mAP (c) t-50 (e) t-50 (c)
Teacher 57.40 61.20 68.87 71.36
Student 33.03 36.95 47.66 51.59

Transfer Set: CIFAR-10 (30+10 epochs / η = 10−3/10−4)
Hint (random proj.) [7] 41.62 46.24 53.41 55.78
Hint (optimized proj.) [7] 39.84 44.88 53.32 56.76
Distillation [8] 32.60 36.54 47.37 51.52
MDS-T [24] 41.41 43.26 52.94 54.93
PKT 44.89 48.48 56.13 58.48

Transfer Set: STL (20+10 epochs / η = 10−3/10−4)
Hint (random proj.) [7] 43.18 48.22 56.77 59.59
Hint (optimized proj.) [7] 41.88 47.21 56.69 60.06
Distillation [8] 36.51 40.89 52.46 56.52
MDS-T [24] 42.38 46.21 54.94 58.23
PKT 45.61 49.63 57.57 60.77

subset of classes. Despite the significantly different setup,
e.g., different receptive fields for the convolutional layers,
different number of classes, etc., the results are similar with
those reported for the CIFAR-10 dataset. The proposed method
outperforms all the other evaluated methods under all the
evaluated metrics.
Distribution shift evaluation using CIFAR-10 and STL-
10: The models trained using the CIFAR-10 dataset (KT
using the pre-trained model) were also evaluated using a more
challenging setup, where the STL-10 dataset, which contains
the same classes as the CIFAR-10 (except for one), was
employed to evaluate the KT methods in a distribution shift
scenario. STL-10 images were resized to 32 × 32 pixels, in
order to be compatible with the networks trained on CIFAR-
10. The results are reported in Table VII. Two different
scenarios were used: in the first one the transfer set was the
CIFAR-10 dataset, while in the second one the transfer set was
the STL-10 dataset. In both cases no labels were used for the
KT process, while the teacher ResNet-18 model was trained
using the CIFAR-10 dataset as before. The proposed method
again outperforms all the other evaluated methods for both
scenarios. As expected, using data from the same distribution
for the KT process, i.e., using the training set of STL-10
dataset as the transfer set, leads to better retrieval precision
for all the evaluated methods. Note again that no labels were
needed for this process, allowing for using the whole unlabeled
training set of the STL-10 dataset (100,000 images).
Cross-modal KT: The proposed method was also evaluated on
a cross-modal KT setup using the SUN Attribute dataset [44]

TABLE VIII
SUN ATTRIBUTE: CROSS-MODAL KNOWLEDGE TRANSFER

Method Features mAP (c) top-50 (c)
HoG - 32.06± 1.20 34.13± 1.64
Attribute - 65.30± 1.99 67.15± 3.01
Hint (random proj.) [7] HoG 22.83± 1.14 24.38± 1.72
Hint (optim. proj.) [7] HoG 26.65± 3.82 27.90± 4.52
MDS-T [24] HoG 29.62± 3.31 32.52± 4.56
PKT HoG 31.21± 2.83 33.38± 3.11
Hint (random proj.) [7] Attribute 39.55± 2.59 41.83± 3.05
Hint (optim. proj.) [7] Attribute 43.38± 2.59 45.64± 3.29
MDS-T [24] Attribute 36.85± 2.29 38.44± 2.63
PKT Attribute 47.22± 5.20 49.05± 6.13

that contains more than 700 categories of scenes and 14,000
images, where each image is described by 102 discrimina-
tive textual attributes. The evaluation results are reported in
Table VIII. First, the knowledge was transferred from 2 × 2
HoG features [44] into the student network. The proposed
PKT method leads to 31.21% mAP outperforming all the
other methods and achieving almost the same performance as
the original HoG features. Furthermore, the proposed method
was also evaluated under a cross-modal KT setup where
the knowledge was transferred from the textual modality
(expressed in the form of a list of textual attributes) into the
student neural network that operates within the visual modality
(“Attribute” features). Transferring the knowledge from the
textual modality indeed improves the precision of the student
network for all the evaluated methods, while the proposed PKT
approach again outperforms the rest of the evaluated methods,
demonstrating the flexibility of the proposed approach and its
ability to support novel KT scenarios.
Sensitivity Analysis: Finally, we evaluated the effect of the
kernel used for estimating the probability distributions to the
effectiveness of the KT process. The results are reported in
Table IX, using the same setup as in Table III (30 training
epochs were used). The “Combined” method refers to the
proposed combined loss that employs both the cosine and
T-student kernels, as described in Section III. The Gaussian
kernel is almost always the worst performing kernel. The T-
student kernel performs well on the classification tasks (1-
nearest neighbor classification accuracy - “1-NN”), as well as
on retrieval tasks using the Euclidean distance as the affinity
metric. On the other hand, the cosine kernel leads to signif-
icantly better results for retrieval using the cosine similarity,
but to significantly worse when used for retrieval using the
Euclidean distance. These results motivated our choice for
combining both the cosine and T-student losses. Indeed, the
proposed combined approach significantly improved the worst
case performance, almost matching the best results for each
individual kernel, while outperforming both of them on the 1-
NN classification accuracy. It is worth noting that even when
training with the Gaussian/T-student kernel, the best retrieval
precision is acquired when the cosine similarity is used instead
of the Euclidean distance. This somewhat unexpected finding
demonstrates that the l2 normalization, which is involved in
the cosine metric, can lead to improved retrieval precision.
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TABLE IX
EFFECT OF THE KERNEL FUNCTION ON PKT

Kernel Pre-trained 1-NN (e) mAP (e) mAP (c)
Gaussian Yes 78.75 50.51 49.14
Cosine Yes 84.76 56.11 66.52
T-student Yes 85.36 61.66 64.76
Combined Yes 85.46 61.18 65.88
Gaussian No 83.89 59.59 61.98
Cosine No 84.02 54.01 64.74
T-student No 84.83 60.14 63.00
Combined No 84.88 59.80 64.04

TABLE X
LADDER ABLATION STUDY

Layers Teacher Cyclical Train. mAP (e) mAP (c)
4 ResNet - 37.05 40.09
3-4 Ladder Yes 37.28 40.21
2-3-4 Ladder Yes 37.47 40.45
1-2-3-4 Ladder Yes 37.72 40.59
1-2-3-4 Ladder No 37.49 40.42
1-2-3-4 ResNet Yes 36.04 38.56

This finding is further confirmed when the same normalization
is applied on the training, i.e., when the cosine or combined
kernel is used, since in this case the obtained results are further
improved.

Furthermore, an ablation study was conducted to evaluate
the effectiveness of the proposed multi-layer ladder-based KT.
The results are reported in Table X. First, the effectiveness
of the multi-layer knowledge transfer is evaluated using one
(plain PKT), two, three or four intermediate ladder layers. The
precision steadily increases as more layers are employed for
the KT process, raising mAP by approximately 0.5% (average
relative mAP increase) for each additional layer employed,
leading to a total relative accumulative increase of about 1.5%.
Furthermore, the effectiveness of the proposed cyclical training
process was also evaluated, by simultaneously transferring the
knowledge from all the four layers, instead of using the pro-
posed cyclical training process. Indeed, the employed cyclical
training process lead to slight, yet consistent, improvements
over the baseline. Finally, to further highlight the effectiveness
of employing a ladder architecture, multi-layer PKT results
are also provided using the ResNet teacher model, instead
of the ladder network, where the output of each residual
block was matched with each of the layers of the student
network. Directly using the larger ResNet teacher, instead of
the proposed ladder architecture, leads to a significant drop
of the effectiveness of KT, since mAP drops by more than
4% (relative decrease), demonstrating the effectiveness of the
proposed ladder-based KT.

V. CONCLUSIONS

In this paper, a novel probabilistic KT method that al-
lows for transferring the knowledge contained in a large and
complex neural network into a smaller and faster one was
presented. PKT was capable of transferring the knowledge into
a smaller student model by keeping as much information as
possible, as expressed through the representations extracted

from the teacher model. The proposed method is able to
employ different kernels to estimate the probability distribu-
tion of the teacher and student models, as well as different
divergence metrics, allowing for easily adapting to a wide
range of different applications. The flexibility of the proposed
method was demonstrated using extensive experiments on four
different datasets using a wide variety of experimental setups.
The robustness and powerful probabilistic formulation of the
proposed method led to improved performance in all the eval-
uated scenarios, overcoming the limitations and significantly
outperforming all the evaluated baseline and state-of-the-art
KT methods. The experimental results also demonstrated the
importance of using the appropriate intermediate layers for KT,
since in the case of using a ResNet-18 teacher the efficiency
of multi-layer PKT is actually lower than the baseline PKT.
To this end, reinforcement learning [46], and/or attention
mechanisms [47] can be employed allowing to better select
and/or pair the layers between the student and teacher models,
further improving the efficiency of KT.
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