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Abstract
The complexity of seismogenesis tantalizes the scientific community for understanding the earthquake process and its 
underlying mechanisms and consequently, precise earthquake forecasting, although a realistic target, is yet far from being a 
practice. Therefore, seismic hazard assessment studies are focused on estimating the probabilities of earthquake occurrence. 
For a more precise representation of seismicity-regarding time, space and magnitude stochastic modeling is engaged. The 
candidate models deal with either a single fault or fault segment, or a broader area, leading to fault-based or seismicity-
based models, respectively. One important factor in stochastic model development is the time scale, depending upon the 
target earthquakes. In the case of strong earthquakes, the interevent times between successive events are relatively large, 
whereas, if we are interested in triggering and the probability of an event to occur in a small time increment then a family 
of short-term models is available. The basic time-dependent models that can be applied toward earthquake forecasting are 
briefly described in this review paper.

Keywords Time-dependent seismicity models · Stochastic · Long- and short-term · Earthquakes forecasting

Introduction

Estimating the occurrence time of future earthquakes, in a 
given area, is an indispensable component in seismic hazard 
assessment studies. It can be made possible through the anal-
ysis of the temporal seismicity properties, and consequently 
the development of models that can imitate the earthquakes 
temporal behavior. The application of stochastic rather than 
deterministic models is affected by the limited number 
of the available data (instrumental records and historical 
seismic catalogs) as well as the fact that seismogenesis is 

a self-organized system, related with many complex phe-
nomena (e.g., fault heterogeneity). While a deterministic 
model aims at fully describing the phenomenon and mak-
ing exact predictions, a stochastic model introduces a certain 
level of randomness into the physical process under study, 
resulting in a forecast of future events. Regarding this dis-
tinction, earthquake forecasts based on stochastic models 
are given in terms of occurrence probabilities. Stochastic 
models may be based on the memoryless Poisson process 
or on other processes containing memory, such as short- 
and long-term cluster behavior (Kagan and Jackson 1991) or 
quasi-periodic occurrence (Papazachos et al. 1997a). Given 
that earthquakes are clustered in time, some kind of memory 
is implied and thus, the most appropriate models are the 
time-dependent ones.

Two different main approaches prevail when developing 
and applying time-dependent stochastic models. In the “fault 
based” approximation the studies deal with the interevent 
times between successive strong earthquakes occurring on 
an individual fault or fault segment above a certain magni-
tude threshold. The target of these models is the estimation 
of the long-term recurrence of strong events in a given area 
where faults are well known. As already mentioned, earth-
quake occurrence is a complex physical process including 
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fault heterogeneity and interaction between nearby faults 
leading to a collective behavior, which can potentially cause 
triggering of adjacent fault segments in short-term time 
scales. These physical processes can be modeled through 
the second family of stochastic approaches, the so-called 
seismicity based ones, which assume that the future earth-
quakes are characterized by the temporal properties of the 
past events within a specific region due to all possible seis-
mic sources, not only the large and well known but also the 
smaller ones (Frankel 1995).

Fault-based models

The construction of a fault-based model

The available data (geological and geodetic) along with 
the longest possible record of past ruptures (historical and 
instrumental) of the fault segments under study are required 
for the development of a fault-based model. Using this infor-
mation, the model can then be built with the combination of 
the assumptions of the time-predictable model (Shimazaki 
and Nakata 1980) and the characteristic earthquake hypoth-
esis (Schwartz and Coppersmith 1984). The time-predicta-
ble model assumes that the occurrence of an earthquake is 
observed when stress surpasses a given constant threshold. 
Thus, the estimation of the next event is achieved consider-
ing the coseismic slip of the previous earthquake (Fig. 1). 
According to the characteristic earthquake hypothesis, 
strong earthquakes on a fault occur regularly and they are 
characterized by similar physical mechanisms. Thus, a future 
strong earthquake occurs as the result of the long-term tec-
tonic loading on a given segment.

Consequently, the final output of such a model will be 
single or multi-segment long-term Earthquake Rupture Fore-
casts (ERF) in a specific time window. The distribution of 

the recurrence time of strong earthquakes constrained with 
the occurrence time of the last strong earthquake on a certain 
fault segment is given by the formula:

where t  stands for the time relative to the previous earth-
quake under the condition that T  years passed since the last 
event, ΔT  stands for the duration of the forecast and f (t) 
stands for the probability density function of the recurrence 
time (Field 2015).

The problem of the distribution fitting

The major task for these renewal models is the selection of 
the appropriate distribution that the recurrence time follows. 
Among the most common distributions used for this pur-
pose, the Weibull, the Lognormal and the Brownian passage 
time (BPT) distributions dominate (Convertito and Faenza 
2014). The Weibull distribution probability density function 
(pdf) is given by

where α and b stand for the scale and the shape parame-
ter, respectively. An interesting feature of this distribution, 
which is connected with the seismicity, is the value of the 
shape parameter, b. If the parameter b is equal to 1 (b = 1) 
then the distribution is reduced into the exponential one. If b 
is less than 1 (b < 1), then the model can be considered as a 
short-term clustering one, while if b is greater than 1 (b > 1), 
then the model can be characterized as quasi-periodic, which 
is the case in the fault-based models.

P(T ≤ t ≤ T + ΔT|t > T) =
∫ T+ΔT

T
f (t)dt

∫ ∞

T
f (t)dt

f (t|a, b) = b
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Fig. 1  Representation of the 
evolution of stress (upper panel) 
and corresponding slip (lower 
panel) with time on a certain 
fault, considering characteristic 
(a), time-predictable (b) and 
slip-predictable (c) earthquake 
occurrence models. (modified 
from Shimazaki and Nakata 
1980)
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The lognormal distribution pdf is formulated by the 
equation

where μ is the mean and ! is the standard deviation of the 
natural logarithm of the data sample, such as the recurrence 
intervals between strong earthquakes. Lognormal distribu-
tion is one of the so-called heavy tail distributions, which 
return high values of probability for variables that have 
larger return periods than the average one.

Kagan and Knopoff (1987) tried to describe the earth-
quake occurrence by modeling the evolution of stress as 
a random walk, or in other words as a Brownian motion, 
incorporating the inverse Gaussian distribution. The pdf 
of the inverse Gaussian distribution is given by

where μ and λ are the mean value of the data sample and 
the shape parameter. Ellsworth et al. (1999) and later Mat-
thews et al. (2002) extended the aforementioned idea and 
proposed a renewal model based on an experimental one 
introducing the Brownian Relaxation Oscillator (BRO). This 
model assumes that the earthquake occurrence is driven by 
the equation

where X(t) is the stress level, ! is the constant loading rate 
and !W(t) is a random factor following the properties of the 
Brownian motion in which σ is a nonnegative scale param-
eter and W(t) is the standard Brownian motion. The result-
ing recurrence properties of the model (the recurrences of 
strong earthquakes) are described by the Brownian passage 
time (BPT) distribution, which is an alternative form of the 
inverse Gaussian one given from the relation

where μ is the mean value of the data sample and α is the 
model’s aperiodicity, which must take values greater than 0 
(0 < ! < ∞) . Aperiodicity can be considered as the analo-
gous of the coefficient of variation of the Gaussian distribu-
tion, and it represents the model level of randomness. As ! 
tends to 0, the model becomes increasingly periodic. As ! 
tends to ∞ the model becomes increasingly aperiodic. All 
the intermediate cases represent quasi-periodic models with 
a certain level of randomness. In most strong earthquakes 
recurrence studies, the value of a ranges between 0.3 and 0.7 
(0.3 ≤ a ≤ 0.7) (e.g., Field et al. 2015).
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Zoller et al. (2008) introduced an alternative expres-
sion of the BPT distribution, where the contribution of 
small and intermediate earthquakes on the state changes 
before strong earthquake occurrence is taken into account. 
Following this approach, we assume that the on-fault seis-
micity provokes delay of the next large events by unload-
ing the fault, while the off-fault seismicity loads the fault. 
If these effects are considered approximately equivalent, 
then the aperiodicity is related to the b-value of the instru-
mental catalog of the corresponding fault according to the 
following relation

where b must be ranging between 0 < b<3. Then, the BPT 
pdf can be written as

BPT model has become the most popular one over the years 
in studies dealing with the recurrence times of strong earth-
quakes. This is due to the fact that the temporal behavior of 
strong earthquakes is fairly explained through its hazard func-
tion (Fig. 2). The values of the hazard function, i.e., the hazard 
rate, which is equivalent to the conditional probability, are very 
low immediately after the occurrence of an event and then they 
exhibit an increasing trend with time. The maximum value is 
obtained at some finite time near the mean recurrence time. 
Then, the hazard rate decreases asymptotically to 1∕

(
2!"2

)
 . 

In contrast, the Weibull hazard function increases monotoni-
cally with time after a strong event (e.g., the blue line of Fig. 2 
right panel) and the lognormal hazard function increases to a 
maximum and then decreases asymptotically to zero.

An alternative distribution has been proposed by Polidoro 
et al. (2013), the Erlang distribution, which is a Gamma dis-
tribution with pdf

where k is the shape parameter, ! is the scale parameter and 
!  is the gamma function. Regarding the probabilistic seis-
mic hazard analysis, the aforementioned distribution sug-
gests that in a small time interval the occurrence of more 
than one earthquake is unlikely. The inverse Gamma distri-
bution is also proposed by Polidoro et al. (2013), assuming 
that the load on the fault increases linearly over time, with 
a rate that varies randomly from event to event. The pdf is 
given by the following relation
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√
b
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where γ and β the shape and scale parameters, respectively.
Over the years, recurrence models were refined more and 
more, aiming at improving their predictive power and 
increasing the accuracy of their estimations for seismic haz-
ard, incorporating processes like the permanent and tem-
poral stress perturbations in combination with a particular 
pdf of recurrence time (Stein et al. 1997; Hardebeck 2004; 
Gomberg et al. 2005).

Applications

One of the first relevant applications was performed by Hagi-
wara (1974), who used the Weibull distribution assuming 
that the crust is strained under a constant speed. Earthquakes 
with M ≥ 6.0 along South Kanto District in Japan were con-
sidered and it was found that the maximum value of the con-
ditional probability of a future event is expected in 84 years 
after the last earthquake. Rikitake (1974, 1976) used the 
same distribution to estimate the probabilities of strong 
future events (M ≥ 8.0) along the subduction zones of Japan, 
Kurile, Aleutian Islands, Kamchatka, and Americas (North, 
Central and South) considering that the ultimate crustal stain 
increases linearly with time and that immediately after a 
strong event is nearly zero. He evidenced the long-term time 
dependence (e.g., for the Kanto area in Japan, where the last 
strong event occurred in 1925 with M = 7.9 the probability 
values were found equal to 0.2, 0.5 and 0.8 for the next 55, 
105 and 155 years, respectively). More recently, Abaimov 
et al. (2008) also applied the Weibull distribution on charac-
teristic events of Parkfield and Wrightwood fault segments 

of San Andreas fault zone. Their best fitting models resulted 
in quite similar mean and standard deviation values to the 
observed ones, suggesting Weibull as the most suitable dis-
tribution for such studies.

Nishenko and Bulland (1987), attempting a time-depend-
ent probabilistic approach to describe earthquake occurrence 
and its corresponding seismic hazard, proposed a generic 
recurrence time model adopting the Lognormal distribution. 
They concluded that the Lognormal distribution exhibits a 
significant better fit than the Weibull using recurrence times 
of earthquakes with Mo between  1017 and  1023 Nm, occurred 
in the major fault segments of Mexico, Chile, California, 
Japan and Alaska through a normalized function. Follow-
ing their suggestion, Jackson et al. (1995) summarized the 
results of the Working Group on California Earthquake 
Probabilities (WGCEP), adopting the Lognormal as the opti-
mal statistical model. Their model estimates a probability 
equal to 80%–90% for an M ≥ 7.0 expected earthquake in 
California before 2024. The Lognormal distribution was also 
used by Paradisopoulou et al. (2010) in fault segments across 
Western Turkey, incorporating the static stress changes into 
the probability estimates.

Ogata (2002) used the BPT distribution constructing a 
slip-size dependent renewal model, incorporating the knowl-
edge of the slip associated with strong earthquake ruptures. 
The application of the model was performed on the large 
historical earthquakes along Nankai Trough (M ≈ 8.0) and 
Off Toyooka fault (6.0 ≤ M ≤ 7.0) in Japan. He found that the 
single BPT model for the Nankai Trough returned a likely 
occurrence time around 2070, but with large uncertainty 
(> 100 years). When the slip-size dependent model was used 

Fig. 2  Example of probability density functions (left) and their corresponding hazard functions (right) of the main renewal models (Weibull, 
Lognormal and BPT) against the memoryless one
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considering the last three events of this catalog, then the 
estimated hazard function assumes that the next earthquake’s 
occurrence is expected around 2040. The model was also 
used for the second data set exhibiting that the next occur-
rence time in this case is decreasing. Parsons (2004) applied 
the BPT model for the estimation of M ≥ 7.0 earthquakes 
occurrence probabilities on single fault segments beneath 
the Sea of Marmara, after taking into account the coseis-
mic and postseismic stress transfer in the calculations. The 
same author (Parsons 2008) modeled the recurrence times 
of characteristic earthquakes on Hayward fault segment in 
California with the use of the BPT model and concluded 
in the superiority of this renewal model in respect to the 
memoryless one. Console et al. (2008) studied the effect of 
such stress interactions between nearby faults of Central and 
South Apennines region in Italy also using the BPT model, 
concluding that this effect was relatively small. Parsons et al. 
(2012) and Murru et al. (2016) took into account the effect 
of static stress transfer from previous earthquakes to the next 
ones in Nankai Trough in Japan and Sea of Marmara in Tur-
key fault systems, respectively, using the BPT distribution 
on their recurrence modeling.

Focusing on similar applications in Greece, Console 
et al. (2013) applied two renewal models, the BPT and the 
Weibull, against the memoryless Poisson one, in each one 
of the eight fault segments consisting the Corinth Gulf fault 
system, after taking into account the effect of stress trans-
fer in their calculations of conditional occurrence prob-
ability values (Fig. 3). The North Aegean Trough (NAT) 

fault system was also studied under the BPT renewal model, 
considering a new segmentation model and two different 
assumptions of strong earthquakes magnitude completeness 
(Kourouklas et al. 2018).

Polidoro et al. (2013) applied many different distribu-
tions, among them the BPT, the inverse Gaussian and the 
Erlang distribution, in the Paganica fault (Central Italy). 
They found that when the time elapsed since the last earth-
quake is about half of the return period of the event, then all 
models exhibit similar results. This means that the longer is 
the time since the last event, the more critical is selecting 
the appropriate model. For example, a decreasing occurrence 
probability implied by some distributions is not representa-
tive of seismogenesis.

Special mention must be paid to the Uniform California 
Earthquake Rupture Forecast (UCERF) versions 2 (Field 
et al. 2009) and 3 (Field et al. 2015), which are the best 
developed models for long-term time-dependent probabil-
ity estimations. These approaches combine a large variety 
of seismological, geological and geodetic information con-
structing different fault, deformation and earthquake rate 
models for each fault segment of California, which form 
a logic tree with a large number of branches (e.g., version 
3 has a total number of 5760) with their corresponding 
weights. Then the probability calculations were based on 
the aforementioned assumptions having as final product dif-
ferent estimations of the next earthquakes in California, with 
their corresponding weights and uncertainties. The renewal 
model used in these estimations is the BPT once again.

Seismicity-based models

Assumptions and forecast windows

“Seismicity based” models belong to the second category 
of stochastic models assuming that the future earthquakes 
follow the temporal properties of the past seismicity within 
a given region due to all possible seismic sources. These 
models combine both physical processes related to strong 
earthquakes occurrence, such as the accumulation, release 
and transfer of stress, and the well-known empirical laws of 
Seismology, namely the Gutenberg–Richter (GR) (Guten-
berg and Richter 1949) and the Omori’s (Omori 1894). 
Model applications can provide either long-term or short-
term estimations of next earthquakes in a given region.

Long-term regional models

Starting with the long-term ones, Papazachos (1989) sug-
gested a time-predictable model for earthquake occurrence 
in seven distinctive regions of Greece, using all available 

Fig. 3  Thirty  years conditional occurrence probabilities along 
Corinth Gulf fault system according to Poisson, BPT and Weibull 
models. (From Console et al. 2013)
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M ≥ 5.5 earthquakes located in the area. He claimed that the 
magnitude of the preceding shock, Mp, influences the repeat 
time, T , of the next mainshocks. The model he developed is 
based on the linear fit between the logarithm of T  and Mp:

Papadimitriou (1993) applied the aforementioned model 
in 8 zones of the western coast of South and Central Amer-
ica. Papazachos (1992) and Papazachos and Papaioannou 
(1993) extended the time-predictable model to the time 
and magnitude one. They are given by two relations: one 
between the logarithm of T  and the minimum magnitude 
considered in the dataset,Mmin , the magnitude of the pre-
vious shock, Mp, and the logarithm of the annual moment 
rate, mo, and a second relation linking the magnitude of the 
following mainshock, Mf, and the above mentioned param-
eters as,

and

This extended model was used in several studies all over 
the world. For example, Karakaisis (1993, 1994a, b) applied 
the models in New Guinea–Bismarck Sea, North and East 
Anatolian Fault Zones and Iran regions. Panagiotopou-
los (Panagiotopoulos 1994, 1995) applied the time- and 

logT = cMp + a.

logT = bMmin + cMp + dlogm0 + q

Mf = BMmin + CMp + Dlogm0 + m.

magnitude-predictable models in Solomon Islands, Central 
America and Caribbean Sea, Papadimitriou (Papadimitriou 
1994a, 1994b) in North Pacific and Tonga–New Zealand 
seismic zones, Papazachos et al. (1994, 1997a, b) in Japan, 
circum–Pacific and Alpine–Himalayan belts and a few 
years later Shanker and Papadimitriou (2004) in the Hindu 
Kush–Pamir–Himalayan region. Similar to these studies Mus-
son et al. (2002) proposed a similar time-dependent model 
connecting the natural logarithm of interarrival times, lnIAT, 
with their magnitudes, M, above a given threshold:

and applied it in Japan and Greece. Later, Chingtham et al. 
(2015) applied this model in Northwest Himalaya and its 
adjoining regions.

A connection between seismicity and physics is accom-
plished through the Stress Release Model (Vere-Jones 1978; 
Vere-Jones and Deng 1988) which is built under the assump-
tions of stress loading due to elastic rebound and energy 
released when an event occurs (Fig. 4). The main variable is 
the stress level which can be written as

where X(0) is the initial stress level, ! is the loading rate 
(which is considered constant) and S(t) is the accumulated 
stress release during (0, t) . The conditional intensity function 

lnIAT = a + bM

X(t) = X(0) + !t − S(t),

Fig. 4  Plots of the conditional 
intensity functions when the 
LSRM is applied in the Corinth 
Gulf (Greece) a Western part, b 
Eastern part. The mean occur-
rence level of the Poisson model 
is represented by a green line 
(From Mangira et al. 2018)
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! ∗ (t), (Daley and Vere-Jones 2003) determines the stochas-
tic behavior of the point process. The most common form 
adopted is the exponential

where a, b and c are parameters to be estimated.
In the case of the Linked Stress Release Model (Liu et al. 

1998), the conditional intensity function becomes

In this model, stress transfer and interactions between 
subareas are introduced. Many applications of the model 
have been performed worldwide. The first applications 
include Chinese (Liu et al. 1999), and Japanese data (Lu 
et al. 1999). Lu and Vere-Jones (2000) compared the results 
applying the model in two different tectonic regimes (North 
China and New Zealand), whereas Bebbington and Harte 
(2001) examined the model from a statistical point of view. 
SRM was also applied in Italy, where Varini and Rotondi 
(2015) and Varini et al. (2016) used a Bayesian approach. 
Romania (Imoto and Hurukawa 2006) and Greece (Rotondi 
and Varini 2006; Votsi et al. 2011; Mangira et al. 2017, 
2018) have also been study areas for the SRM. Bebbington 
and Harte (2003) conducted an extensive study regarding 
the determination of the regions, the sensitivity to catalog 
errors optimization techniques, and the selection of the most 
appropriate model. Numerical simulations by Kuehn et al. 
(2008) aimed at investigating how the occurrence probability 
distributions are affected by the coupling between different 
areas.

The observed foreshock activity before strong earth-
quakes in many regions around the world (Jones and Mol-
nar 1979; Sykes and Jaume 1990; Bakun et al. 2005) was 
also used as a tool aiming at the development of physics-
based models for forecasting. A relevant approach, so-called 
Accelerating Moment Release (AMR) model or critical 
earthquake concept, was developed under the assump-
tion that before a large earthquake, and the rate of seismic 
moment released from precursory intermediate magnitude 
(e.g., M ≥ 5.0) seismic activity is increased with an accel-
erating component (Bufe and Varnes 1993; Bowman et al. 
1998; Jaume and Sykes 1999; Mignan 2008).

Bufe and Varnes (1993) proposed that the cumulative 
Benioff strain,!(t) , over time, which is equal to the sum-
mation of the square of the seismic moment of the ith fore-
shock, Ei, defined as

can be expressed by the equation

! ∗ (t) = " (X(t)) = exp{a + b[t − cS(t)]}

!∗
i
(t) = exp

{

ai + bi

[

t −
∑

j

cijS(t, j)

]}

.

!(t) =

N(t)∑

i=1

√
Ei

where tf is the time of a mainshock or in other words the 
critical occurrence time of the upcoming strong earthquake, 
A and B are constants and m is a positive exponent rang-
ing from 0.1 to 0.5 (0.1 ≤ m ≤ 0.5) with mean value equal to 
0.3. The AMR model has been applied in many studies and 
in various regions worldwide such as California (Bowman 
et al. 1998), Italy (Di Giovambattista and Tyupkin 2000), 
China (Jiang and Wu 2006), Western, South and Central 
America (Papazachos et al. 2008) and Greece (Papazachos 
et al. 2006, 2007).

Another class of stochastic models includes the hidden 
Markov (HMMs) and semi-Markov (HSMM) models. The 
main concept of the HMMs applied in seismology is to 
reveal features of the earthquake generation process which 
cannot be directly observed. Toward that direction, Votsi 
et al. (2013) applied a HMM, where the states of the model 
correspond to levels of the stress field. Their application 
is performed in a set of strong (M ≥ 6.5) earthquakes that 
occurred in Greece and its surrounding areas, since 1845. 
In order to overcome the drawback that derives from the 
geometrically distributed sojourn times of the HMM states 
and allow arbitrary distributions, the same authors (Votsi 
et al. 2014) suggested a discrete-time semi-Markov model. 
Pertsinidou et al. (2016) extended their work proposing Pois-
son, Logarithmic and Negative Binomial distributions for 
the sojourn times. Their application is performed in moder-
ate ( M ≥ 5.5 ) earthquakes in the areas of North and South 
Aegean Sea (Greece) where the hidden states represent dif-
ferent stress levels classified into five types according to the 
earthquake magnitude and location.

Different occurrence rates are also considered as hidden 
states in the case of Markovian Arrival Processes suggested 
by Bountzis et al. (2018). MAP consists a generalization 
of the Poisson process and renewal models preserving the 
Markovian structure. The model captures temporal fluctua-
tions that characterize Corinth Gulf seismicity for earth-
quakes with M ≥ 4.5 since 1964.

Short-term modeling of regional earthquake 
activity

In addition to the long-term earthquake forecasting, exten-
sive research was performed on short time scales. One of 
the most crucial elements regarding an earthquake time 
series is their tendency to clustering. It is generally accepted 
that seismic activity is increased after the occurrence of a 
strong event for several years (Utsu et al. 1995) and for 
long distances (Kagan and Jackson 1998; Dreger and Sav-
age 1999). When the magnitude of an event is smaller than 
that of the previous one, the triggered event is called an 
aftershock. Defining an aftershock is quite arbitrary though 

!(t) = A − B
(
tf − t

)m
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and separating triggering earthquakes from the others is 
not a trivial task. Since the classification of an earthquake 
foreshock, mainshock, or aftershock—is often hard, it is 
useful to investigate models that do not presuppose such 
distinction. In addition, aftershocks constitute the greatest 
proportion in a catalog and thus, a thorough analysis of their 
occurrence can give an insight for understanding the whole 
seismic cycle. Ogata (1988) introduced a model where there 
is no need to distinguish between mainshocks and after-
shocks, between independent and triggering events, since 
each one, irrespective of whether it is small or large, can 
trigger its own offspring. The ETAS (Epidemic-Type After-
shock Sequence) model, named after the analogy with the 
spread of epidemics, belongs to the family of self-exciting 
Hawkes processes (Hawkes and Oakes 1974). It is assumed 
that each event is followed by its own aftershock activity; 
this assumption stands even for the aftershocks of the pre-
vious events. The modified Omori formula (Utsu 1961) is 
employed for the representation of the aftershock activity. 
The appropriate form of the response function for the causal 
relation with subsequent events is the key for the application 
of the model. The conditional intensity is given by

where ! represents the background seismicity,A is related to 
the criticality of the process, a is related to the productivity, 
i.e., the influence of magnitude in the production of the off-
spring and ! = bln10 is linked to the G–R law. 
f (t) = (p − 1)

(
1 + t

c

)−p

∕c refers to the Omori–Utsu formula 
and it is the pdf of the time difference between the parent 
event and its offspring. Based on the temporal model of 
Ogata (1988) many applications have been performed. For 
example, Ogata (2005) tried to detect anomalous seismicity 
patterns using it as a stress change sensor. Hainzl and Ogata 
(2005) and Lombardi et al. (2010) used the ETAS model for 
detecting fluid signals. They interpreted the increase in the 
background seismicity as f luid-driven earthquake 
triggering.

In a similar manner with the temporal ETAS model, 
Ogata (1998) deals with the response function for time and 
space causal relationship introducing the spatiotemporal 
ETAS model. The concept of this model is to investigate 
the magnitude scale of the clusters and also to understand 
whether the clusters are constrained to well-defined areas or 
if seismic activity is extended in areas beyond the aftershock 
regions. When space is involved the conditional intensity 
takes the form

!(t,m) = "e"(m−m0){# + A
∑

i∶ti<t

ea(m−m0)f
(
t − ti

)
},

!(t, x,m) = "e"(m−m0){#h(x) + A
∑

i∶ti<t

ea(m−m0)f
(
t − ti

)
g
(
x − xi

)
}.

The new terms added in the model are the spatial density, 
h, of the background events and the density, g, of the location 
of a triggered event. The model proposed by Ogata (1998) 
underwent several modifications, particularly concerning the 
spatial component (Zhuang et al. 2002, 2004, 2005; Ogata 
and Zhuang 2006), and it is broadly accepted and applied.

Based on the assumption that every event is potentially 
triggered by all the previous ones and every event can trig-
ger subsequent ones according to their relative time–space 
distance, Console and Murru (2001) proposed a spati-
otemporal model for short-term clustering that returns 
the occurrence rate of events expected at each point of 
the location–time–magnitude space. They concluded that 
instead of using as a null hypothesis the Poisson model 
against other more sophisticated earthquake hypotheses, 
the clustering hypothesis (the space–time ETAS model) 
should be adopted since it exhibits a much higher likeli-
hood. Console et al. (2003) refined the formulation of the 
clustering model. The expected earthquake rate density 
takes then the form

where the fr, called failure rate, expresses the proportion of 
events that are considered independent, a factor revealing 
the so-called spontaneous background seismicity. The 
!0(x, y,m) is the spatial magnitude distribution, H(t) the step 
function, i.e., H(t) =

{
0, if t ≤ 0

1, if t > 0
 and !(x, y, t,m) is the 

kernel of the previous events. In this equation, the two terms 
of the right-hand side show that seismicity is a mixture of 
the background, the independent events, and the induced 
ones. The model could provide daily expected seismicity 
rates, information extremely critical during a seismic excita-
tion. Examples of expected daily seismicity rate forecast 
provided by the ETAS modelare shown in Fig. 5 (From 
Murru et al. 2014).

The ETAS model examines earthquake clustering from a 
purely statistical point of view. Fault interaction consists of 
a way to connect seismicity and physics. Since it is broadly 
recognized that sudden Coulomb stress changes due to the 
coseismic slip of preceding earthquakes can modify the 
proximity to failure of subsequent events, Console et al. 
(2006a, b) proposed a modification of the clustering model 
by including the rate-and-state theory developed by Diet-
erich (1994) in the concept of the ETAS model. According 
to this theory, the seismicity rate R(t) of earthquakes when 
a stress change is observed at time t = 0 is written:

!(x, y, t,m) = fr!0(x, y,m) +

N∑

i=1

H
(
t − ti

)
!i(x, y, t,m),

R(t) =
Ro

1 −
[
1 − exp

(
−Δ!

A"

)]
exp

(
−t

ta

)
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where Ro is the background rate density, Δ! is the shear 
stress change, and A , ! and ta are parameters of the constitu-
tive law. By fixing some of the parameters based on pub-
lished results, the authors reduced the number of the model- 
free parameters, explaining in parallel more thoroughly their 
physical meaning. The new stochastic model applied to the 
Japanese seismicity performs as well as the purely stochastic 
ETAS model. The two models were also tested in Console 
et al. (2007) with data from California. Despite the poor 
performance of the model under the constraint of the rate-
and-state constitutive law, it is considered that its physical 
meaning may provide insights into seismogenic processes 
and should not be rejected.

Another approach focusing on probabilistic aspects 
is conducted by Iervolino et al. (2014). They analytically 
combined results of probabilistic seismic hazard analy-
sis (PSHA) and aftershock probabilistic seismic hazard 
analysis (APSHA) in order to get a seismic hazard integral 
accounting for mainshock–aftershocks seismic sequences. 
Their results are particularly interesting from an earthquake 

engineering perspective since seismic hazard is expressed 
in terms of occurrence rate causing the exceedance of an 
acceleration threshold.

Despite the wide variety of purely temporal models and 
time-independent spatial models, in practice the spatiotem-
poral models have not been fully exploited, mainly due to 
the fact that the implementation of such models demands 
heavy and complicated numerical computations. The con-
cept of epidemic models though has been particularly popu-
lar, like the spatiotemporal ETAS model (Ogata 1998) that 
has been extensively applied in the context of earthquake 
short-term clustering (Helmstetter and Sornette 2002; Mar-
zocchi et al. 2012; Murru et al. 2014). Another model that 
has common elements with the ETAS model is the EEPAS-
Every Earthquake is a Precursor According to Scale-model. 
The EEPAS model by Evison and Rhoades (2004) and 
Rhoades and Evison (2004) is based on predictive scaling 
relations derived from many examples of the precursory 
scale increase phenomenon —an increase in the magnitude 
and occurrence rate of minor earthquakes that precede most 

Fig. 5  Examples of expected daily seismicity rate forecast by ETAS 
at 00:00 UTC on the days: a March 17, 2009, b April 6, 2009 (1 h 
and 32 min before the L’Aquila mainshock Mw6.3 ), c April 7, 2009 
(the second-largest shock in the Abruzzi region occurred on April 7, 

2009, at 17:47 UTC, with Mw5.6 ) and d April 20, 2009. The color 
scale represents the number of events in units of magnitude larger 
than 2.0 in cells of 1˚ .1˚per day (From Murru et al. 2014)
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major earthquakes on a time scale ranging from months to 
decades, depending on magnitude. Even though extensive 
studies were conducted and many relationships between 
precursory earthquakes and subsequent strong mainshocks 
have been suggested, regarding the magnitude, time, and 
location, in practice there are no tools for recognizing pre-
cursory earthquakes in advance. In this stochastic forecast-
ing model, the identification of precursory earthquakes is set 
aside and every event is considered a long-range precursor 
period taking into account a scale based on its magnitude. 
The conditional intensity of the EEPAS process has a similar 
form with the ETAS, as

where !o is a reference rate density, which can be considered 
as the null hypothesis, e.g., the Poisson model, ! is a param-
eter that can be considered as the rate of events that are 
observed without a sequence of precursory earthquakes that 
can be predicted and ! is a function of magnitude. Although 
the ETAS and the EEPAS models have similar forms of 
the conditional intensity, they differ in their details. For 
example, the functions f  and g are not based in the Omori 
formula, which is an indispensable element of the ETAS 
model. Nevertheless, the weights wi that are usually set to 1 
could be obtained from an initial stochastic declustering that 
depends on the ETAS model. The EEPAS model has been 
used in several earthquake catalogs worldwide, e.g., New 
Zealand and California (Rhoades and Evison 2004; Rhoades 
2007), Japan (Rhoades and Evison 2005, 2006) and Greece 
(Console et al. 2006a, b), and in synthetic catalogs as well 
(Rhoades et al. 2011).

The aforementioned rate density !o is related to the 
Proximity to Past Earthquakes (PPE). The PPE model, 
as its name reveals, relies on the proximity to previous 
shocks, taking into consideration their magnitudes. Most 
of its characteristics are associated with the forecasting 
model of Jackson and Kagan (1999). The PPE model gets 
the form

where

and

where

!∗(t,m, x) = "!0(t,m, x)

+
∑

ti<t

wi#
(
mi

)
r(M|Mi)f (t − ti|Mi)g(x − xi|Mi),

!PPE(t,m, x, y) = go(m)h(t, x, y),

go(m) = !exp
[
−!

(
m − mc

)](
m > mc

)

h(t, x, y) =
1

t − to

∑

ti<t

heq(i)

and Δi is the distance from (x, y) to (xi, yi). The parameters 
!, ", d , and s are to be fitted from data. Here ! = bln(10), 
where b is the G–R b–value, ! is a normalization parameter, 
d is a smoothing distance in kilometers, and s is a spatially 
uniform background rate (occurrence per day per kilometer 
squared) that accounts events occurring far from the previ-
ous ones. As a result, the earthquake occurrence–rate den-
sity is high near the locations of past earthquakes and low 
far away from all past earthquakes. Regarding the magni-
tude, the larger the nearby past earthquakes are, the greater 
is the rate density. The PPE and EEPAS model have been 
candidate models in the CSEP Earthquake Forecast Test-
ing Centers in New Zealand and California (Gerstenberger 
and Rhoades 2010; Rhoades and Stirling 2012; Schneider 
et al. 2014; Rhoades et al. 2018). An example of the rate of 
earthquake occurrence given by the EEPAS model is shown 
in Fig. 6 (From Console et al. 2006b). 

Another candidate spatiotemporal model of earthquake 
occurrence is the double branching model by Marzocchi 

heq(i) =
a
(
mi − mc

)

!
(
d2 + Δ2

i

) + s

Fig. 6  Average rate of earthquake occurrence for M > 6.35 over the 
year 1995 under the EEPAS model, using data up to the end of 1994 
in the area of Kozani (Greece). The rate is expressed relative to a ref-
erence scale (RTR) in which there is an expectation of 1 earthquake 
per year exceeding any magnitude m in an area of 1 10mkm2 . The 
epicenter of the M6.6 earthquake of 13 May 1995, 0847:17.0 UT is 
depicted by a star (From Console et al. 2006a, b)
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and Lombardi (2008), which is applied in two steps. The 
first step includes the application of the ETAS model so that 
triggered events are removed from the catalog. The next step 
consists of the reapplication of the model—the same or one 
with high resemblance—to the rest of the seismicity so that 
the long-term clustering is described.

Summary

The approaches for modeling and forecasting seismogenesis 
revealed that understanding earthquake phenomena which 
are complex and trying to predict them could be achieved 
by developing and applying progressively sophisticated and 
refined stochastic models. Their development and applica-
tion could bridge the gap between the underlying physics 
and the small amount of the available data.

Selecting the most suitable model among all the compet-
ing ones is not a trivial issue. For that reason, rigorous tests 
and experiments should be implemented. In that direction, 
a collective international attempt has been made feasible in 
the Collaboratory for the Study of Earthquake Predictability 
(CSEP) experiment, for several regions all over the world. 
Their goal, since its inception in California in 2007, is to 
test alternative scientific hypotheses, their predictive abili-
ties and consequently improve seismic hazard assessment.

The innovative concept of CSEP is that scientists are 
requested to submit their models for testing in pre-agreed 
datasets and standardized statistical tests. In that way, full 
independence is guaranteed and the comparisons between 
the models are objective (Schorlemmer et al. 2018). The next 
steps of CSEP include tests of fault-based forecasts where 
finite-fault information is provided instead of just testing 
the locations of hypocenters, forecasts based in simulations, 
tests where earthquake clustering is better approximated, and 
tests of ground-motion measures that achieve direct proba-
bilistic seismic hazards assessments (Michael and Werner 
2018).
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