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Abstract The monitoring of complex earthquake net-
works that are formed from Greek seismicity based on
the evolution of their measures, such as degree central-
ity, characteristic path length, and clustering coefficient
is performed, aiming to identify whether and when these
networks exhibit distinct evolution between main
shocks. As network nodes, the 17 seismic zones in
which the study area was appropriately divided are
considered and their connections are given by the sig-
nificant correlation computed on the time series of each
node seismic activity. The data are taken from a seismic
catalog comprising crustal earthquakes (focal depth less
than 50 km) of magnitude M ≥ 3.0 that occurred in the
territory of Greece in between 1999 and 2017. During
this period twenty one (21) main shocks of M ≥ 6.0
occurred, but for only six (6) of them, the interevent
time since the last one was adequate for the network
measures calculation. The earthquake networks are
formed on sliding windows of different durations for
monitoring the network measures variation. To assess
whether the values of network measures are statistically
significant, the construction of randomized networks is
required, and the same network measures are calculated
for comparison purposes. The monitoring of network

measures revealed that their values were found statisti-
cally significantly different from the corresponding
values of the randomized networks shortly before the
main shocks.
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1 Introduction

The investigation of the complex seismicity behavior
constitutes a major scientific challenge and an indis-
pensable component in improving our knowledge
concerning seismogenesis and earthquake forecasting.
The earthquake distribution in space and time is consid-
erably complex, forming temporal clusters on faults that
remain active for some time and then becoming quies-
cent for long. Episodic occurrence has been often doc-
umented worldwide and in Greece (Papadimitriou and
Karakostas 2005), clustered in time at certain seismic
zones (Papadimitriou 2002; Scholz 2010) and migrating
(Stein et al. 1997; Papadimitriou et al. 2004). Research
efforts include both deterministic and stochastic model-
ing for approaching and deciphering the earthquake
process, including investigation of a complex system
of interacting faults through their stress field, and statis-
tical tools to examine the whole system that exhibits a
more complex behavior than expected from each indi-
vidual fault.

From the early scientific steps in Seismology about
130 years ago, the statistical properties of seismicity
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formed the basis for studying the complex physical
mechanisms leading to strong earthquake occurrence
(Utsu 2002). The empirical statistical scaling laws such
as the Gutenberg-Richter (Gutenberg and Richter 1944)
and the Omori law (Omori 1894; Utsu 1961; Utsu et al.
1995) allowed us to understand some fields of the
complexity of the seismological issues. The
Gutenberg-Richter (GR) law establishes that the fre-
quency of occurrence of earthquakes follows a power
law in respect to the energy released (logn = a − bM),
whereas the Omori law presents the decaying rate of
aftershocks after in strong earthquakes. The slope b of
the GR law relates to the spatial fractal dimension,D, of
earthquake epicenters or faults, through the simple for-
mula D = 3b/c = 2b (for a typical value of c = 1.5, Aki
1981).

Seismogenesis alike other geophysical processes are
neither random nor deterministic, and therefore com-
plexity analysis is engaged for revealing the structures
and processes that lie between randomness and deter-
minism (Chelidze 2017). Routine statistical analysis is
inadequate to unfold certain nonlinear spatio-temporal
structures but can be seen by application of modern
tools. One such approach for investigating the spatial
and temporal complexity of seismicity is through the
construction of earthquake networks. Graph theory pro-
vides a framework to investigate the structure and dy-
namics of a complex system. The network nodes are
usually assumed to represent distinct subsystems and
the connections represent the interactions among them.
In recent years, network theory was successfully applied
in different disciplines, such as Economics (Billio et al.
2012; Heiberger 2014; Fiedor 2014; Papana et al. 2017),
Biology (Jeong et al. 2001; Girvan and Newman 2002;
Wang and Chen 2003), Climatology (Donges et al.
2009; Bialonski et al. 2010; Palus et al. 2011), Neuro-
science (Rubinov and Sporns 2010; Bullmore et al.
2016; Fornito et al. 2016; Kugiumtzis et al. 2017),
Physiology (Porta and Faes 2016), Transportation
(Wang et al. 2017, Aydin et al. 2017), and virus diffu-
sion (Zhang and Gan 2018). The complex network
analysis was introduced in Seismology by Abe and
Suzuki (2004a) to study seismicity as a spatiotemporal
complex system. In the earthquake network approach, a
seismic region can be correlated with another far away,
which is coherent with observations of Bremotely trig-
gered seismicity^ (Hill et al. 1993). Such interpretation
is also confirmed with the hypothesis that seismicity is
self-organized phenomenon (Bak and Tang 1989). The

complex network theory provided more insight and
perspective in the seismicity patterns Abe and Suzuki
(2007) in California to reveal that the values of the
clustering coefficient remain stationary before main
shocks and suddenly jumped up at the main shocks,
Baiesi and Paczuski (2004, 2005) for Southern
California and recently by Daskalaki et al. (2016) for
Italian area.

The study of complex networks has revealed inter-
esting non-trivial properties that signify their specific
structures, such as the small-world (Watts and Strogatz
1998) and the scale-free (Albert and Barabasi 2002)
property, which were found to indicate their underlying
organization principles. Abe and Suzuki (2004a, 2006)
and Abe et al. (2011) have proved the universality of the
small-world property for earthquake networks con-
structed for four different study areas (California, Japan,
Iran and Chile). This property was also studied by
Jimenez et al. (2008) for California, Baek et al. (2011)
for Korean peninsula, Daskalaki et al. (2014) and
Chorozoglou et al. (2018) for the Greek area, and
León et al. (2018) for the Colombian area where the
small-world structure was confirmed. The scale-free
property was firstly investigated by Abe and Suzuki
(2004b) and by Baiesi and Paczuski (2004) for the
southern California and lastly by Pastén et al. (2016)
for Chile and Janer et al. (2017) for the Philippines and
southern California.

The various statistical approaches and the non-trivial
network properties were adequately investigated as
mentioned above. Hence, examination of some basic
network measures, such as degree centrality, global
efficiency, and clustering coefficient, will unveil prop-
erties of spatio-temporal seismicity structure and give a
new perspective for the seismic hazard assessment. The
scope of this work is the monitoring of evolution of nine
(9) network measures between six (6) main shocks with
M ≥ 6.0 that occurred during 1999–2017 in the Greek
area and for which an adequate time for the network
measures to be statistically robustly estimated has
elapsed since the last main shock. The target is the
identification of potential patterns in the distinct evolu-
tion of the earthquake network structure. For the distinct
evolution, we are not interested in the value of network
measure decreases or increases abruptly for a certain
time interval between main shocks (Abe and Suzuki
2009; Daskalaki et al. 2016; Chorozoglou et al. 2017)
but whether it is statistically significant even if it does
not get too low or too high values. In our analysis, the
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nodes are represented by the seismic zones into which
the study area was divided and the connections between
them are given by the long-term significant correlation
of earthquake activity, based on creation of time series,
of the corresponding nodes. Thus, the introduction of
the connections, are not based on successive earth-
quakes as in Abe and Suzuki (2004a), but in the times
between any possible pair, since it has been shown
(Omori 1894, Corral 2004, Livina et al. 2005,
Lippiello et al. 2008, Lennartz et al. 2008) that the
distribution of these times is not Poissonian. As a result,
the successive earthquakes may not be the result of
uncorrelated independent probability, but dependent on
the long-term history for each seismic area (node). The
investigation whether the values of network measures
are statistically significant, i.e., whether a distinct evo-
lution appears, requires the formation of randomized
networks for comparison with the original (observed)
ones. The standard methods of Maslov and Sneppen
(2002) and Newman (2010) which are based on the
randomization of the original network connections, the
method of Erdős and Rényi (1959) model that the prob-
ability of connections is the same as in the original
networks, and the method that applies the randomization
to the time series (Chorozoglou and Kugiumtzis 2014,
2018) are used for the construction of randomized net-
works. The evolution of network measures revealed that
the values for the original earthquake networks are
differ, i.e., there is statistically significance and distinct
evolution, from the corresponding values for random-
ized networks in the last time interval before the main
shocks.

We first present in BMethodology^ the construc-
tion of the earthquake networks, both the original
and the randomized ones, as well as the network
measures which are used and the significance test
that is required for comparing the network perfor-
mance. In BApplication,^ the results for the evolu-
tion of network measures which are computed on
each sliding window for the six (6) pairs of main
shocks are presented and discussed. The conclud-
ing remarks are given in BDiscussion and conclud-
ing remarks.^

2 Methodology

In the following, we present firstly the construc-
tion of the earthquake networks and then the

network measures followed by the methods of
network randomization and lastly the significance
test to check whether the values of network mea-
sures are statistically significant.

2.1 Building the earthquake networks

For the earthquake networks construction, we first-
ly assigned as nodes in the study area the K
seismic zones that were defined on the basis of
the homogeneity of their seismotectonic properties
(faulting type, seismic moment release), and max-
imum observed magnitude (Papazachos et al.
1998; Vamvakaris et al. 2016).

The earthquake networks connections are given by
the significant correlation of the seismic activity in two
nodes. The observed variables of the time series are
either the cumulative of seismic moment M0 or the
number of earthquakes (Jimenez et al. 2008) within each
seismic zone. The scalar seismic moment M0 of an
earthquake of magnitude M is given by logM0 =
1.5M + 16.01 (Kanamori and Anderson 1975). The con-
nections are given by the linear zero-lag cross-correla-
tion, which is actually the Pearson correlation coeffi-
cient. Suppose we have a set of K random variables
observed at n time points {X1, t,… , XK, t}, for t = 1,
… , n, where each variable is the cumulative seismic
momentM0 or the number of earthquakes at each node.
For two variables X = Xi and Y = Yj, i, j ∊ {1, ..,K}, the
Pearson correlation coefficient is defined as.

rX ;Y ¼ SXYffiffiffiffiffiffiffiffiffiffiffi
S2X S

2
Y

q ; ð1Þ

where SXY ¼ 1
n−1∑

n
t¼1 xt−xð Þ yt−yð Þ is the sample co-

variance of (X, Y), S2X ¼ 1
n−1∑

n
t¼1 xt−xð Þ2 and S2Y ¼ 1

n−1

∑n
t¼1 yt−yð Þ2 are the sample variances of X and Y, and x

and y are the sample means of X and Y, respectively.
The symmetric matrix of weighted connections

W = {wij}, i, j ∈ {1, … ,K}, is simply formed by the
absolute value of ri; j ¼ rX i;X j ¼ rX ;Y . For simple con-

nections, the adjacency matrix A = {aij}, i, j ∈ {1,
… ,K}, acquires components assigned to one (1) when
the zero-cross correlation is found significant, and zero
(0), otherwise. The decision for the statistical signifi-
cance is given by the significance test for the correlation
coefficient (Horvath 2011). The null hypothesis is
H0 : ρX, Y = 0, where ρX, Y is the true correlation Pearson
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coefficient. The sample cross-correlation coefficient rX,
Y is transformed to the test statistic

t ¼ rX ;Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−2

1−r2X ;Y

s
ð2Þ

that follows Student distribution with n − 2 degrees of
freedom. A connection is significant and equals to one if
the p value of the test is less than a given significance
level α (here α = 0.05).

2.2 Νetwork measures

The graph G = (K, E) is defined by the set of K nodes
and the set of E connections among them. The connec-
tions here are undirected and weighted or binary. For
any two nodes, i and j, the distance between them,
denoted as dij for simple connections and dwij for weight-
ed connections, is defined as the length of the shortest
path from i to j if the nodes are connected, otherwise
dij =∞ or dwij ¼ ∞. For the monitoring of earthquake

network structure between the examined main shocks,
nine (9) different network measures are considered and
computed, either on the adjacency matrix A or on the
weighted matrix W, the mathematical expressions of
which are given in Table 1 and are briefly described
below.

1. Degree centrality is the average over all nodes either
of the number or the strength of connections,
respectively.

2. Clustering coefficient is the average over all nodes
by the fraction of connections between the nodes
within their neighborhood, divided by the number
of connections that could possibly exist among
them.

3. Characteristic path length is the average of the
shortest path lengths in the network-computed over
all pairs of nodes.

4. Global efficiency is the average inverse shortest
path length in the network-computed over all pairs
of nodes.

5. Betweenness centrality is the average over all nodes
of the node betweenness centrality, which is the
fraction of all shortest paths in the network that
contain the node, divided by the number of all paths
that could possibly exist among them.

6. Eigenvector centrality is the average over all nodes
of the node eigenvector centrality, which, for a node

indexed i, is the corresponding component i of the
eigenvector of the adjacency A or weight matrix W.

7. Assortativity is the correlation coefficient of the
degrees of all pairs of connected nodes.

8. Eccentricity is the average over all nodes of the
maximal shortest path length between the node
and any other node.

9. Diameter is the maximum over all nodes of the node
eccentricity.

For the calculation of the nine (9) network
measures, the Matlab functions of the Brain Con-
nectivity Toolbox were used (https://sites.google.
com/site/bctnet/measures).

2.3 Methods for network randomization

The investigation of evolution of the 9 network mea-
sures values between the 6 main shocks, requires check
if these values are statistically significant in each time
interval (sliding window) with the comparison of them
with the corresponding values of randomized networks.
A randomized network is created through a randomiza-
tion procedure on the original one. A simple setting for
randomization is the preservation of the total number of
connections or the total strength if the connections are
weighted (Newman 2010). A more elaborative random-
ization setting requires either the preservation of the
degree of each node in the original network (Molloy
and Reed 1995, Maslov and Sneppen 2002, Del Genio
et al. 2010), or respectively the strength for weighted
connections (Opsahl et al. 2008). In a different ap-
proach, the random network is not formed by random-
izing the connections of the original network but it is
built according to the Erdős and Rényi (1959) model
with preset probability of connections as in the original
network, which essentially corresponds to the preserva-
tion of the average degree. The degree distribution of
this randomized network is Poissonian.

For networks derived from time series, the random-
ized networks are given by the correlation measure
(Chorozoglou and Kugiumtzis 2018). Each of the K
time series {Χ1, t, … , ΧK, t} for t = 1,… . , n, is random-
ized separately under the condition of preserving the
marginal distribution and the autocorrelation function
(Kugiumtzis 2002), or equivalently the power spectrum
(Schreiber and Schmitz 1996). The procedure forming B
randomized correlation networks with weighted
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connections is given in the following steps: In the first
step, for each time series {Xk, t}, t = 1, . . , n, a random-
ized (surrogate) time series, {X *

k;t}, is generated by the

algorithm of Iterative Amplitude Adjusted Fourier
Transform (IAAFT) (Schreiber and Schmitz 1996). By

repeating this for each of the K time series, the surrogate
multivariate time series {X *

1;t;…,X *
Κ;t} is obtained. In

the second step, the correlation matrix is computed on

{X*
1;t;…,X *

Κ;t} and a proper weight matrixW* ¼ w*
ij

n o
,

i, j ∈ {1, … ,K}, is formed, where e.g., w*
ij ¼ jr*ijj and

Table 1 The mathematical expressions of nine network measures
with simple and weighted undirected connections, where ρ is the
number of shorter paths between corresponding nodes for the

betweenness centrality and λ is the greatest eigenvalue of the
solution of the equation AX = λX (for simple connections) orWX =
λX (for weighted connections) for the eigenvector centrality

J Seismol



r*ij is the zero-lag cross-correlation computed on the

surrogate time series X*
i;t

n o
and X*

j;t

n o
of Xi and Xj,

respectively. This randomization procedure is repeated
B times to generate B randomized correlation networks.
For simple connections, an adjacency matrix Α∗ is de-
rived from the weight matrix W∗, and two approaches
for forming Α∗ are considered. Firstly, the same thresh-
old criterion (significance test at the significance level
α = 0.05) is applied as for the original network, which,

however, does not preserve the total degree k. Then, for
preserving the total degree k, the threshold that gives the
total number of the original network connections is
used.

2.4 Randomization significance test

Since the asymptotic null distribution of each sta-
tistic is not known, meaning each one of the 9
network measures, a randomization significance test
is applied and the empirical null distributions for
each statistic is formed from the values of the
statistic computed on the B randomized networks
(for any of the 6 approaches for network random-
ization which are used). The null hypothesis H0

that the network measure values of both the origi-
nal and randomized networks are similar (i.e., p −
value > 0.05, see Eq. (3)) is considered. For the null
hypothesis H0 to be accepted, the values of the
original network measures are required to lie within
the range of the corresponding values for B ran-
domized networks. To establish the statistical sig-
nificance of the network measures values, the test
should reject the null hypothesis H0 (i.e., p − value
< 0.05, see Eq. (3)). The p value is calculated, and
the test decision is reached at the significance level
α = 0.05. Denoting q0, the test statistic computed
for the original network, and q1,… , qB for the Β
randomized ones (in the computations we set Β =
100), the p value is

p ¼
2r0

Βþ 1
; if r0≤

Βþ 1

2
2 1−r0ð Þ
Βþ 1

; if r0 >
Βþ 1

2

8><
>: ð3Þ

where r0 is the rank of q0 in the ordered list of q0,
q1,… , qB.

3 Application

The data and the application of the methodology are
firstly described and then the results are given. The final
goal is to identify potential temporal patterns that the
earthquake networks follow a distinct evolution, namely
whether there exist time intervals before the occurrence
of each one of the investigated main shock, when the
values of network measures are statistically significant.

3.1 Data and computational setting

The earthquake catalog used in this study has been
complied in the Geophysics Department of the Aristotle
University of Thessaloniki (http://geophysics.geo.auth.
gr/ss/). Crustal earthquakes (focal depth less than 50
km) of magnitude M ≥ 3.0, which occurred during
1999–2017 in Greece and surrounding neighboring
areas, are only considered and the condition for the
catalog completeness has been checked and fulfilled
(Fig. 1). During this period, twenty one (21) main
shocks with M ≥ 6.0 occurred, however, for only six
(6) of them, the interevent period was sufficiently long
for the network measures to be robustly computed.

The network nodes are represented by the K = 17
seismic zones, and the observed variable of the time
series is either the cumulative seismic moment M0 of
earthquakes or the number of earthquakes as has been
already mentioned above. The connections are given by
the weight matrix, W, which is formed from the cross-
correlation value ∣rX, Y∣ for each pair of observed
variables X and Y, and by the adjacency matrix A from
the significance test given by Eq. (2) for the cross-
correlation. The randomized networks are generated by
the three approaches in which the randomization is
performed on time series (Chorozoglou and
Kugiumtzis 2018), by the two approaches in which the
randomization is performed directly on the original net-
work connections (Maslov and Sneppen 2002; Opsahl
et al. 2008) as well as by the method with a preset
probability (Erdős and Rényi 1959) as are presented in
BMethods for network randomization.^

Three different settings of time series length were
considered, in particular n = 60, n = 90, and n = 120, to
investigate firstly whether the results are affected by the
n and then whether there appear specific temporal pat-
terns that the values of network measures between main
shocks differ from the randomness, i.e., they are statis-
tically significant. We do not choose a shorter or longer
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length n of the time series, because either the assessment
of the correlation among the seismic zones for the
connections introduction could not be robust or the
number of time windows would be particularly low.
The high levels of the seismic activity in the study area
allow to consider the sampling time equal to one (1) day.
Although the sampling time is short, the zeros in the
earthquake time series (no occurrence of earthquake
within the sampling time) are minimized because the

threshold of magnitude completeness is particularly low
(M ≥ 3.0) during 1999–2017. Therefore, the monitoring
of the 9 network measures values is performed per 60,
90, and 120 days on each non-overlapping sliding win-
dow and compared with the values of the corresponding
B = 100 randomized networks, constructed by the 6
randomization approaches, based on the relation (3),
which checks the statistical significance of the values.
We consider the cases where the interevent temporal
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Fig. 1 Epicentral distribution of the earthquakes ofM ≥ 3.0 that occurred in 1999–2015 in the broader area of Greece divided in 17 seismic
zones
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distance is over 360 days, for achieving the formation of
at least three time windows, for the purpose that the
investigation of the specific time patterns will have great
importance. The days between successive main shocks
are not the same for all examined cases (see Table 2),
hence, the total number of the time windows differs,
although the time series length for each n is kept the
same.

4 Results

The percentages of rejection of the null hypothesis, H0,
that the values of the original and randomized network
measures are similar, for different length n and observed
variables of the time series for each one of the 6 exam-
ined cases (bold font in Table 2) are shown in Figs. 2, 3,
4, 5, 6, and 7, without making a distinction about net-
work measures and the randomization methods. Thus, it
is scrutinized with an aggregated manner whether for
each of the six cases the null hypothesis H0 tends to be

rejected, i.e., the values of the nine network measures
are different from the correspondence of the B random-
ized networks, and in which time window this distinct
evolution of values is observed. The percentages of
rejection of H0 are computed from the average of the
corresponding rejections of H0 that are derived from all
the six randomization approaches, for all the nine net-
work measures in each non-overlapping time window
and for each one of the six examined case, which are
discussed in more detail below.

The first main shock occurred on 26/01/2001 with
M = 6.3. The percentage of rejection of H0 is up to 25%
in the case when the time series length is n = 60, the time
window is the third (i.e., between 120 and 180 days
before the upcoming main shock and as observed vari-
able of time series the number of earthquakes is consid-
ered (Fig. 2). The percentages of rejection of H0 when
the seismic moment is considered as observed variable
are lower than in the case when the earthquakes frequen-
cy. Nevertheless, there is not a specific time window in
which high level of rejection percentages of H0

Table 2 The details of the 21main shocks of magnitudeM ≥ 6.0 that occurred in 1999–2015 in the broader area of Greece. Themain shocks
which are used for the study are in bold font

Index of M ≥ 6.0 Date Longitude Latitude Magnitude Days of succession

1 7/9/1999 38.06 23.53 6.0 –

2 26/1/2001 38.99 24.38 6.3 688

3 14/8/2003 38.74 20.53 6.2 749

4 17/3/2004 34.77 23.39 6.3 216

5 23/1/2005 35.89 29.70 6.2 312

6 31/1/2005 37.41 29.10 6.2 8

7 20/10/2005 38.12 26.76 6.1 262

8 14/2/2008 36.57 21.86 6.8 847

9 14/2/2008 36.43 22.02 6.5 0

10 20/2/2008 36.36 21.90 6.2 6

11 8/6/2008 37.95 21.53 6.4 109

12 15/7/2008 35.83 28.03 6.4 37

13 1/7/2009 34.04 25.41 6.4 361

14 10/6/2012 36.44 28.90 6.1 1075

15 15/6/2013 34.46 25.01 6.3 370

16 16/6/2013 34.29 25.12 6.1 1

17 26/1/2014 38.15 20.28 6.1 224

18 3/2/2014 38.26 20.32 6.0 8

19 24/5/2014 40.28 25.37 6.2 110

20 16/4/2015 35.14 26.88 6.1 327

21 17/11/2015 38.67 20.53 6.5 215
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systematically appear. The last time window that could
warn of the upcoming main shock presents very low
percentages of rejection of H0, near to 5% for both
observed variables and any time series length n.

In the second case, the main shock occurred on 14/
08/2003 withM = 6.2. The profile of the rejection of H0

also follows the same pattern as in the previous case in
terms of the percentages which go up to 20% (Fig. 3). In
one case, when the time series length is n = 120, the time
window is the fifth (i.e., between 600 and 720 days
before the upcoming main shock) and when as observa-
tional variable the seismic moment is considered, the
percentage of rejection of H0 reached 35% and is asso-
ciated with the aftershock sequence of the main shock of
26/1/2001. Here, there is a distinct evolution, i.e., the
values of the nine network measures differ from the
randomness, in the last time interval before the upcom-
ing main shock of 14/08/2003 in relation to the previous
case. Thus, when the time series length is n = 60 for both
observed variables, the percentage of rejection of H0

reached 20% which far exceeds the values in the re-
maining windows.

The third case of the study, ending up to a main shock
occurred on 14/02/2008 withM = 6.8, has also the same
pattern as the previous cases (Fig. 4). Hence, the

percentages of rejection of H0 are lower when the seis-
mic moment is considered as the observed variable than
the number of earthquakes. There is also one case when
the time series length is n = 90, the time window is the
seventh (i.e., between 630 and 720 days just before the
main shock) and as the observed variable, the number of
earthquakes is considered, with high percentage of re-
jection of H0 because of the aftershock sequence of the
main shock of 20/10/2005. In addition, there is a distinct
evolution in the last time interval. Therefore, when the
time series length is n = 120 for both of observed vari-
ables which are considered, the percentage of rejection
ofH0 reached the 20%, which far exceeds the remaining
windows especially in the case of seismic moment. The
same situation as regards the temporal patterns, for the
last time interval, is shownwhen the time series length is
n = 90 but only when the seismic moment is considered
as the observed variable of time series.

In the fourth case, the main shock that occurred on
01/07/2009 withM = 6.4 is studied and, here, the lowest
number of the time windows in relation with the other
cases (Fig. 5) is set because of the shorter temporal
distance between this and the latter main shock (the
previous main shock occurred on 15/7/2008). Similarly,
with the previous cases, the percentages of rejection of
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Fig. 2 The percentage of rejection of H0 that the values for the
network measures of original and randomized networks are simi-
lar, for the main shock of 26-01-2001, in the left panel for n = 60,
in the middle panel for n = 90 and in the right panel for n = 120
based on the average of rejections ofH0 for all of the nine network

measures and the six randomization approaches in each time
window which are used. The different number of time windows
(1, in x − axis, means the last time interval before the upcoming
main shock) for each panel is due in the different time series length
n which is considered
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H0 are lower when the seismic moment is considered as
the observed variable, in comparison with the number of
earthquakes and reached up to 25%. Furthermore, the
distinct evolution also appears in the last time window
just before the main shock. Hence, when the time series
length is n = 120 for both observed variables, the per-
centage of rejection of H0 is much higher than the
remaining windows, up to 25% for the seismic moment

and 10% for the number of earthquakes. The same
behavior is observed for n = 90 when the seismic mo-
ment is considered as observed variable but with lower
percentage than in the case of n = 120.

In the fifth case of the study, the main shock that
occurred on 10/06/2012 with M = 6.1 is investigated.
The percentages of rejection of H0 when the seismic
moment is considered as the observed variable are
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Fig. 3 The same as Fig. 2 but for the main shock of 14-08-2003
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smaller than the number of earthquakes especially for
n = 60 (Fig. 6). The encouraging indication for this case
is the distinct evolution of the network measures values
in the last time interval for n = 120 for both observed
variables of time series. Especially, for seismic moment,
the values of the network measures diverge 15% by the
randomness in relation with the other time windows of
which the percentages of rejection of H0 arrived at 5%.

In the last case, the main shock that occurred on 15/
06/2013 withM = 6.3 (Fig. 7) is considered. The impor-
tant point in relation to the previous five cases is that
when the number of earthquakes is considered as the
observed variable the last time interval, just before the
main shock exhibits the highest percentages of rejection
ofH0 in relation with the other time windows regardless
of time series length n.
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The study is not focused on the comparison of ran-
domization methods, as this has been done by
Chorozoglou and Kugiumtzis (2018), but on the net-
workmeasures as to whether their values are statistically
significant in certain time interval just before the main
shocks occurrence. Hence, Fig. 8 shows the percentage
of rejection ofH0 for each of the nine network measures
and for all main shocks, and the different time series
lengths n. The percentage of rejection of H0 for each
time window is computed by averaging the correspond-
ing rejections for the specific time window that defined
for each one of the six main shocks, with different time
series length n. The percentages of rejection of H0 for
the networkmeasures, namely of the degree centrality or
strength, clustering coefficient, characteristic path
length, global efficiency, eccentricity, and diameter in
the last time interval before upcoming main shocks are
very high, reaching over 10%, for both observed vari-
ables of time series, than the previous windows. This
happens if we exclude some of cases that in the first
windows the percentages of rejections of H0 are higher
than the last windows because of aftershock sequence of
main shocks. This finding, that the values of the six
network measures for original earthquake networks are
different from corresponding of B randomized networks
in the last time interval before upcoming main shocks,
might be considered promising for the seismic hazard
assessment. The remaining three network measures,

namely betweenness, eigenvector centrality, and
assortativity do not exhibit any distinct evolution.

5 Discussion and concluding remarks

The area of Greece accommodates a large number of
strong earthquakes that often produced severe damage
and even loss of life. To address this problem, we use the
network theory which is a relatively recent field, using
some basic network measures, to identify potential tem-
poral patterns aiming to assess the seismic hazard in the
study area. An exhaustive analysis was performed
aiming to identify whether the earthquake networks
which are constructed, for the time interval between
six main shocks, exhibit a distinct evolution as far as
the values of the nine basic network measures concerns.
The importance point which is attempted here in relation
to the previous studies is that we do not interested in the
abrupt variation in the value of a certain network mea-
sure but whether this value is statistically significant in a
certain time window, and in particular, just before the
upcoming main shocks.

The application of the network theory is found to be a
powerful tool for the investigation of complex phenom-
ena, such as seismic activity as the changes in the
network structure can reveal certain seismicity behavior
a few days before a main shock occurrence. The
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investigation of values of two basic network measures,
namely the clustering coefficient and the betweenness
centrality, before an upcoming main shock revealed that
they tend to be stable with small variations before the
main shock and then they have an abrupt jump just
before the main shock occurrence (Abe and Suzuki
2009; Daskalaki et al. 2016; Chorozoglou et al. 2017).
Hence, the values of the nine (9) basic network mea-
sures are computed, for each of the observed variable
and length n of the time series on each time window for
the six (6) main shocks and compared with the corre-
sponding values of the randomized networks that con-
structed with the six (6) different randomization ap-
proaches. It was found that the values of the six network
measures, namely the degree centrality or strength, clus-
tering coefficient, characteristic path length, global effi-
ciency, eccentricity and diameter, are different than the
corresponding values of the randomized networks in the
last time window, with higher percentages of rejection
ofH0 than in the other time intervals, before the upcom-
ing main shocks. Therefore, the complex network theo-
ry reveals that these network measures could serve as
potential indices for short-term seismic hazard assess-
ment. These results suggest the effectiveness of seismic-
ity network analysis in an earthquake prone area, such as
Greece and its surroundings. It is anticipated that the
development of these tools to characterize and provide
useful information on the seismic regions could eventu-
ally provide insight about the development of robust
seismic forecasting tools.

An open issue arising from this study is the applica-
tion of the same analysis but this time the investigation
of the values of the network measures will be extended
to the studying of the values of each node instead of
average of all nodes of network, with purpose of the
spatial estimation of the upcoming main shocks. In
addition, earthquake networks with directed connec-
tions need to be considered, i.e., causality networks,
and to use more network measures for a more complete
and thorough analysis. Hence, we acknowledge that the
analysis in this work can be extended in the future to the
investigation of the values of each node using directed
network and possibly increase also the number of net-
work measures to be considered.
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