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Abstract—Seismic hazard assessment is one of the main targets

of seismological research, aiming to contribute to reducing the

catastrophic consequences of strong earthquakes (e.g., M � 6:0).

From the early stage of seismological research, both purely seis-

mological and statistical methods were adopted for seismic hazard

assessment. An approach towards this target was attempted by

means of network theory, aiming to provide insight into the com-

plex physical mechanisms that cause earthquakes and whether the

occurrence of strong earthquakes can be predicted to some extent.

Application of network theory in different areas of the world with

intense seismic activity, such as Japan, California, Italy, Greece,

Iran, and Chile, has yielded promising results that have negligible

probability of being obtained by purely random guessing.
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1. Introduction

Investigation of seismicity properties using sta-

tistical tools has attracted great interest from Earth

scientists due to its potential to reveal significant

components of complex seismogenic processes. The

first empirical statistical approaches were the Omori

(1894) and Gutenberg–Richter (1944) laws, which

allowed analysis and understanding of the earthquake

time and magnitude distribution. The Omori law

expresses the decay rate of aftershocks after a main

shock, whereas the Gutenberg–Richter law states that

the earthquake occurrence frequency follows a power

law with respect to the energy released. Since then,

various statistical models that have made a particular

contribution to seismic hazard assessment have been

proposed, such as the Poisson (Cornell 1968; Lomnitz

1974), Markov (Nava et al. 2005; Herrera et al. 2006;

Votsi et al. 2013), semi-Markov (Altınok 1991;

Altınok and Kolçak 1999; Votsi et al. 2012, 2014),

and regional earthquake likelihood models (RELM)

(Kagan and Jackson 1994; Helmstetter et al. 2007;

Holliday et al. 2007; Rhoades 2007), among others.

Investigation of the complex seismicity behavior

constitutes a major scientific challenge and an indis-

pensable component for improving knowledge

concerning seismogenesis and earthquake forecast-

ing. For statistical analysis to be efficient in revealing

certain nonlinear spatiotemporal structures, continu-

ously more advanced tools must be applied. One

approach for investigating the spatial and temporal

complexity of seismicity is via the construction of

earthquake networks, which have been proved to

represent a powerful tool to provide information on

the topology and dynamics of complex systems. Each

graph or network is defined by its nodes and the

connections among them. The nodes of the network

are usually assumed to represent distinct subsystems,

and the connections the interactions among them. The

pioneer of graph theory was Leonhard Euler, who

published in 1735 the solution to the Königsberg

bridge problem, where an itinerant merchant must

traverse each of the bridges of the Prussian city of

Königsberg just once. In recent years, network theory

was been successfully applied in various disciplines,

such as economics (Emmert-Streib and Dehmer

2010; Billio et al. 2012; Heiberger 2014; Fiedor

2014; Papana et al. 2017), biology (Jeong et al. 2001;

Girvan and Newman 2002; Wang and Chen 2003),

climatology (Donges et al. 2009; Bialonski et al.

2010; Palus et al. 2011), meteorology (Hlinka et al.

2012), neuroscience (Rubinov and Sporns 2010;

Kugiumtzis and Kimiskidis 2015; Bullmore et al.

2016; Kugiumtzis et al. 2017), the spread of forest

fires (Belkacem et al. 2015), physiology (Porta and
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Faes 2016), transportation (Wang et al. 2017; Aydin

et al. 2017), and the spread of viruses (Zhang and

Gan 2018).

Complex network analysis was introduced in

seismology by Abe and Suzuki (2004a) to study

seismicity as a spatiotemporal complex system, pro-

viding greater insight into and perspective on

seismicity patterns. The global physical properties of

seismicity can be explored by examining the geo-

metrical (topological) and dynamic characteristics of

earthquake networks. Interesting nontrivial properties

that indicate their specific structures have been

revealed, such as the small-world (Watts and Strogatz

1998) and scale-free (Barabasi and Albert 1999)

properties, which indicate the underlying organiza-

tion principles of earthquake networks. Changes in

the structure of the network, as determined by the

evolution of network measures, can reveal precursory

seismicity patterns a few days before the occurrence

of a main shock. Therefore, we focus on applications

based on network measures and nontrivial properties

of networks for seismicity investigation as a complex

system.

Section 2 presents the construction of networks

along with the network measures, whereas Sect. 3

describes some network theory applications for seis-

mic hazard assessment. Concluding remarks are

presented in Sect. 4.

2. Methodology of Earthquake Networks

The construction of an earthquake network and its

measures along with approaches for random network

construction are presented in this section. The fol-

lowing tools are used to investigate nontrivial

properties and the evolution of network measures:

2.1. Building the Earthquake Network

An earthquake network is defined by a graph

G ¼ K;Eð Þ, where K denotes the set of nodes and E

the set of connections among them. The nodes in

seismicity studies are created in two different ways,

with the study area being superposed by a normal

grid (Fig. 1) of two-dimensional (2-D) seismic cells

(Abe and Suzuki 2004a; Baiesi and Paczuski 2004) or

being divided into K subareas that constitute seismic

zones defined on the basis of the homogeneity of their

seismotectonic properties (among which the faulting

type and seismic moment rate are the most important)

(Chorozoglou et al. 2017). The connections in the

earthquake network are defined either by successive

earthquakes (Abe and Suzuki 2004a; Baiesi and

Paczuski 2004) or by the significant correlation

between the seismic activity in two seismic zones

or cells, when time series are constructed and used

(Jimenez et al. 2008; Tenenbaum et al. 2012; Choro-

zoglou et al. 2017).

The construction of earthquake networks, when

the connections among the nodes are given by

successive earthquakes, can be based on the

approaches of Abe and Suzuki (2004a) or Baiesi

and Paczuski (2004). In both cases, the study area is

divided into cells that are considered as the nodes of

the earthquake networks, inside which the earth-

quakes occur, while the connections are given either

by the succession of earthquakes (Abe and Suzuki

2004a) or by the unifying scaling relation (Bak et al.

2002) between the occurrence time of successive

earthquakes, the spatial distance of their epicenters,

and their magnitudes, as described by Baiesi and

Paczuski (2004). The construction of an earthquake

network according to the approach of Abe and Suzuki

(2004a) is based on a division of the study area into

numerous small cubic cells. A cell is regarded as a

node if earthquakes with any values of magnitude

Figure 1
Typical approach for construction of earthquake network by Abe

and Suzuki (2004a)
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occurred therein. Two successive events define a

connection between two nodes. If two successive

events occur in the same cell, they form a loop. This

procedure enables mapping of the seismic data to a

growing random graph. The construction of an

earthquake network based on the approach of Baiesi

and Paczuski (2004) proposes a unified scaling law

for the waiting times between earthquakes, express-

ing a hierarchical organization in time, space, and

magnitude. The waiting time interval for the cross-

over between two regimes for earthquakes larger than

a given magnitude depends on the area and magni-

tude under consideration. There is a linear regime,

indicating a power-law distribution, extending up to a

cutoff, indicating an upper limit on the waiting time.

For fixed cell size and increasing cutoff, the range of

the power-law regime increases. For fixed cutoff and

increasing cell size, the range of the power-law

regime decreases. It has been proven that the

approach of Abe and Suzuki (2004a) exhibits

universal behavior (Abe and Suzuki 2012), whereas

the approach of Baiesi and Paczuski (2004) depends

on the datasets used for the network construction

(Carbone et al. 2005).

The connections and loops represent the correla-

tions between two successive earthquakes. For simple

connections, the adjacency matrix A ¼ faijg; i; j 2
1; . . .;Kf g acquires components assigned the value of

1 when earthquakes occur successively, and 0

otherwise. In this way, a seismic region or cell can

be correlated with another one far away, which is

consistent with observations of ‘‘remotely triggered

seismicity’’ (Hill et al. 1993). Such an interpretation

is also confirmed by the hypothesis that seismicity is

a self-organized phenomenon (Bak and Tang 1989;

Wanliss et al. 2017). It has been shown that an

earthquake may be triggered by an immediately

preceding strong one located at a distance of more

than 1000 km (Steeples and Steeples 1996). The

weight matrix W ¼ fwijg; i; j 2 1; . . .;Kf g is con-

structed as follows: A square nonsymmetric matrix

S ¼ fsijg is created, where sij takes either an integer

value, indicating how many times the succession of

earthquakes appears for each pair i; jð Þ of nodes, or a
positive real value, indicating the cumulative seismic

moment, RM0, released in all successions of earth-

quakes between nodes i and j, where the seismic

moment, M0, of an earthquake of magnitude M is

given by logM0 ¼ 1:5M þ 16:01 (Kanamori and

Anderson 1975). For both cases, the components sij

are normalized by their maximum to give the weights

wij ¼ sij=max sij

� �
in the matrix W (Chorozoglou

et al. 2017).

When time series are constructed and used, the

observed variables are either the cumulative seismic

moment, RM0 (Tenenbaum et al. 2012), or the

number of earthquakes (Jimenez et al. 2008) within

each seismic cell or zone. The connections are given

by the linear zero-lag cross-correlation, which is

actually Pearson’s correlation coefficient. Thus, the

connections are not introduced based on successive

earthquakes, as various studies have shown that the

distribution of interevent times is not Poissonian

(Omori 1894; Corral 2004; Livina et al. 2005;

Lippiello et al. 2008; Lennartz et al. 2008). Hence,

successive earthquakes may not be the result of

uncorrelated independent probability, but dependent

on the long-term history for each seismic area (node).

Then, a set is considered of K random variables

observed at n time points {X1;t; . . .;XK;t}, for

t ¼ 1; . . .; n, where each variable is the cumulative

seismic moment, RM0, or the number of earthquakes

inside each node area. For two variables X ¼ Xi and

Y ¼ Yj, i; j 2 1; ::;Kf g, the Pearson’s correlation

coefficient is defined as

rX;Y ¼ SXYffiffiffiffiffiffiffiffiffiffi
S2

XS2
Y

p ; ð1Þ

where SXY ¼ 1
n�1

Pn
t¼1 xt � �xð Þ yt � �yð Þ is the sample

covariance of X; Yð Þ, S2
X ¼ 1

n�1

Pn
t¼1 xt � �xð Þ2 and

S2
Y ¼ 1

n�1

Pn
t¼1 yt � �yð Þ2 are the sample variances of X

and Y , and �x and �y are the sample means of X and Y ,

respectively.

The symmetric matrix of weighted connections

W ¼ fwijg; i; j 2 1; . . .;Kf g is simply formed by the

absolute value of ri;j ¼ rXi;Xj
¼ rX;Y . For simple

connections, the adjacency matrix A ¼ faijg; i; j 2
1; . . .;Kf g acquires components assigned the value of

1 when zero cross-correlation is found significant,

and zero 0 otherwise. The decision regarding statis-

tical significance is made using the significance test

for the correlation coefficient (Horvath 2011). The

null hypothesis is H0 : qX;Y ¼ 0, where qX;Y is the

true Pearson’s correlation coefficient. The sample

Vol. 176, (2019) Earthquake Networks as a Tool for Seismicity Investigation 4651



cross-correlation coefficient rX;Y is transformed to the

test statistic

t ¼ rX;Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � 2

1� r2X;Y

s

; ð2Þ

which follows Student’s distribution with n � 2

degrees of freedom. A connection is significant and

equals 1 if the p value of the test is less than a given

significance level a (here a ¼ 0:05).

Investigation of nontrivial properties, especially

the small-world property, and the evolution of

network measures, requires the construction of ran-

domized networks. This is a graph that can be created

through a random process from an original one. The

standard approach is to randomize the connections of

the original network while preserving certain char-

acteristics. A simple setting for randomization is the

preservation of the total number of connections, or

the total strength if the connections are weighted

(Newman 2010). A more elaborate randomization

setting requires the preservation of the degree of each

node in the original network (Molloy and Reed 1995;

Maslov and Sneppen 2002; Del Genio et al. 2010),

or, respectively, the strength for weighted connec-

tions (Opsahl et al. 2008). In a different approach, the

network is not formed by randomizing the connec-

tions of the original network but is rather built using

the Erd}os and Rényi (1959) model with the proba-

bility of connections as in the original network and a

Poissonian degree distribution.

To construct randomized networks when the

original network is formed from time series mea-

surements, it is found more appropriate to randomize

the original time series rather than the connections of

the original network (Chorozoglou and Kugiumtzis

2018). In this scheme, each of the K time series

X1;t; . . .;XK;t

� �
for t ¼ 1; . . .; n is randomized sepa-

rately under the condition of preserving the marginal

distribution and the autocorrelation function

(Kugiumtzis 2002), or equivalently the power spec-

trum (Schreiber and Schmitz 1996).

2.2. Network Measures

Generally, the connections of networks are undi-

rected or directed and weighted or simple (binary).

For any two nodes i and j, the distance between them,

denoted as dij for simple connections and dw
ij for

weighted ones, is defined as the length of the shortest

path from i to j if the nodes are connected, and dij ¼
1 or dw

ij ¼ 1 otherwise. To monitor the earthquake

network structure, different network measures are

considered and computed, based on either the adja-

cency matrix A or the weighted matrix W , the

mathematical expressions for seven of which that

have been used in many studies (Abe and Suzuki

2009; Daskalaki et al. 2016; Chorozoglou et al.

2017) are given in Table 1 and briefly described

below:

1. The degree centrality is the average over all nodes

of either the number or the strength of

connections.

2. The clustering coefficient is the average over all

nodes of the fraction of connections between the

nodes within their neighborhood, divided by the

number of all possible connections.

3. The characteristic path length is the average of the

shortest path lengths in the network, computed

over all pairs of nodes.

4. The global efficiency is the average inverse

shortest path length in the network, computed

over all pairs of nodes.

5. The betweenness centrality is the average over all

nodes of the node betweenness centrality, which is

the fraction of all shortest paths in the network that

contain the node, divided by the number of all

possible paths.

6. The modularity shows the strength of a network

that is divided into components.

7. The eccentricity is the average over all nodes of

the maximal shortest path length between a node

and any other node.

3. Applications Based on Network Theory

Complex network theory has been used for seis-

micity investigation, firstly by Abe and Suzuki

(2004a) as well as Baiesi and Paczuski (2004, 2005)

for Southern California and more recently by Das-

kalaki et al. (2016) for Italy and Chorozoglou et al.

(2017) for Greece. Some of the applications based on

4652 D. Chorozoglou et al. Pure Appl. Geophys.



nontrivial properties of networks (Sect. 3.1) and the

evolution of network measures (Sect. 3.2) are

described below.

3.1. Earthquake Network Properties

The study of complex networks has revealed

interesting nontrivial properties that indicate their

specific structures, such as the small-world (Watts

and Strogatz 1998) and scale-free (Albert and

Barabasi 2002) properties, which have been found

to indicate underlying organization principles of

networks in various scientific fields. The small-world

structure is obtained by adding long-range connec-

tions to random networks, which increases the

effectiveness of information transfer within the

network. The small-world network exhibits the

characteristic that most nodes can be reached from

every other node by a small number of steps, thus the

typical distance between two randomly chosen nodes

grows proportionally to the number of nodes, K.

Therefore, when an earthquake network is character-

ized as a small-world network, the seismicity

between two seismic regions can be correlated

through other nodes (seismic regions). The most

popular small-world manifestation is the six degrees

of separation concept, uncovered by the social

psychologist Milgram (1967), which implies long-

range connections. The identification of the small-

world property in many natural complex networks

has stimulated great interest in studying the under-

lying organizing principles of various complex

networks. The small-world property has been iden-

tified and studied in diverse scientific fields such as

neuroscience (Van den Heuvel et al. 2008; Bialonski

et al. 2010; Papo et al. 2016) and meteorology

(Hlinka et al. 2012). Abe and Suzuki (2004a, 2006)

and Abe et al. (2011) proved the universality of the

small-world property for earthquake networks con-

structed for four different study areas (California,

Japan, Iran, and Chile). This property was also

studied and verified by Jimenez et al. (2008) for

California, Baek et al. (2011) for the Korean Penin-

sula, Chorozoglou et al. (2018) for Greece, and León

et al. (2018) for Colombia. When a scale-free

network is recognized, this means that there are a

few nodes, i.e., seismic regions, with higher level of

seismicity (i.e., hubs) than the others that can

Table 1

Mathematical expressions for seven network measures with simple and weighted undirected connections

Simple connections Weighted connections

Degree centrality or strength

�k ¼
PK

i¼1 ki; ki ¼
PK

j¼1 aij
�kw ¼

PK
i¼1 kw

i ; k
w
i ¼

PK
j¼1 wij

Clustering coefficient

C ¼ 1
K

PK
i¼1 ci ¼ 1

K

PK
i¼1

P
j;h2K

aijaihajh

ki ki�1ð Þ CW ¼ 1
K

PK
i¼1 cw

i ¼ 1
K

PK
i¼1

P
j;h2K

wijwihwjh

kw
i

kw
i
�1ð Þ

Characteristic path length

L ¼ 1
K

PK
i¼1 Li ¼ 1

K

PK
i¼1

P
j2K;j6¼i

dij

K�1
LW ¼ 1

K

PK
i¼1 Lw

i ¼ 1
K

PK
i¼1

P
j2K;j 6¼i

dw
ij

K�1

Global efficiency

E ¼ 1
K

P
i2K Ei ¼ 1

K

P
i2K

P
j2K;j 6¼i

d�1
ij

K�1
EW ¼ 1

K

P
i2K EW

i ¼ 1
K

P
i2K

P
j2K;j 6¼i

ðdw
ij Þ

�1

K�1

Betweenness centrality

bi ¼ 1
K�1ð Þ K�2ð Þ

P
h; j 2

h 6¼ j; h 6¼ i; j 6¼ i

qhj ið Þ
qhj

bw
i ¼ 1

K�1ð Þ K�2ð Þ
P

h; j 2
h 6¼ j; h 6¼ i; j 6¼ i

qw
hj

ið Þ
qw

hj

Modularity

Q ¼
P

u2M ½euu � ð
P

v2M euvÞ� QW ¼ 1
EW

P
i;j2N wij �

kw
i kw

j

Ew

h i
dmi;mj

Eccentricity

ei ¼ maxx2K d i; xð Þf g eW
i ¼ maxx2K dW i; xð Þf g
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influence the other nodes with lower seismicity level.

The scale-free property was firstly investigated by

Abe and Suzuki (2004b) and Baiesi and Paczuski

(2004) for Southern California and more recently by

Pastén et al. (2016) for Chile and Janer et al. (2017)

for the Philippines and Southern California.

Watts and Strogatz (1998) introduced the term

‘‘small world’’ for networks having a characteristic path

length L at the level of the characteristic path length

Lrand of the randomized network, k ¼ L
Lrand

� 1, but

high clustering coefficient C, when compared with

the clustering coefficient of a random network Crand,

c ¼ C
Crand

� 1. The small-world property is quantified

by the so-called small-worldness index S, defined as

S ¼ c
k
¼

C=Crand

L=Lrand

ð3Þ

A value of S much larger than 1 implies the

existence of the small-world property. Computation-

ally, the network measures Crand and Lrand are derived

as the average of the clustering coefficients and

characteristic path lengths, respectively, from an

ensemble of random networks.

A scale-free network (Albert and Barabasi 2002),

whose name originates from the power-law distribu-

tion of the node degree ki, includes some nodes that

play a central role, since they sustain several

connections; i.e., they are hubs. Regardless of the

size K of the network, there is nonzero probability of

having a node that is connected to almost all others,

suggesting that the right tail of the degree distribution

does not vanish exponentially but follows a power

law. Thus, in scale-free networks, there are many

nodes with few connections and few nodes with many

connections (Barabasi and Albert 1999). The power-

law degree distribution is given by P kð Þ� k�c, where

c is the degree exponent, commonly lying in the

range 2� c� 3. Applications in seismology on the

nontrivial properties are described below.

3.1.1 Small-World Property

The first study on the small-world property of

earthquake networks was performed by Abe and

Suzuki (2004a) for California, using data from the

Southern California Earthquake Data Center (http://

www.scecdc.scec.org/catalogs.html) in the period

from 00:40:07 on 1 January to 23:55:34 on 31

December, 1992. The nodes were seismic cells, the

connections were defined by succession of earth-

quakes, and the randomized networks were

constructed by using an Erd}os and Rényi model. The

degrees of separation between two seismic cells, as

the nodes that were chosen at random, take a small

value between 2 and 3. The clustering coefficient was

also calculated and found to be about 10 times larger

than in the case of a completely random network,

indicating that the small-world structure was domi-

nant in the earthquake network [i.e., S � 1, see

Eq. (3)]. Similarly, Abe and Suzuki (2006) demon-

strated the small-world property for California and

Japan (Table 2), using data from (i) the Southern

California Earthquake Data Center (http://www.data.

scec.org/) and (ii) Japan University Network Earth-

quake Catalog (http://kea.eri.u-tokyo.ac.jp/

CATALOG/junec/monthly.html) in the period from

(i) 00:25:8.58 on 1 January 1984 to 22:21:52.09 on 31

December 2003 and (ii) 01:14:57.63 on 1 January

1993 to 20:54:38.95 on 31 December 1998,

respectively.

The small-world property was then confirmed by

Jimenez et al. (2008) for Southern California

(Table 3) by the use of time series. The nodes were

Table 2

Summary results for small-world property for California and Japan

(Abe and Suzuki 2006)

Cell size 10 km 9 10 km 9 10 km 5 km 9 5 km 9 5 km

California N = 3.869

C = 0.630 (Crand ¼ 0:014)

L = 2.526

N = 12.913

C = 0.317 (Crand ¼ 0:003)

L = 2905

Japan N = 27.599

C = 0.045

(Crand ¼ 0:000298)

L = 3.825

N = 57.768

C = 0.015

(Crand ¼ 0:0000711)

L = 3.923

Table 3

Summary results for small-world property (Jimenez et al. 2008)

Networks Nodes Connections k L C

California (10.31 km) 6.945 84.874 12.22 1.26 0.58

California (13.75 km) 4.271 64.185 15.03 1.19 0.64

California (17.18 km) 2.741 50.675 18.89 1.14 0.70
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seismic cells, the connections were given by the

linear zero-lag cross-correlation [see Eq. (1)], and the

randomized networks were constructed by using an

Erd}os and Rényi (1959) model. Data were taken from

the Southern California Earthquake Center (SCEC)

covering the period from 1 January 1984 to 3 July

2001. The small-world property means that there are

long-range connections in the seismic network,

hence, it might be related to the San Andreas Fault

or other major faults in the region.

A few years later, Abe et al. (2011) proved the

universality of the small-world property for four

different study areas (California, Japan, Iran, and

Chile). The construction of earthquake networks was

similar to the previous study (Abe and Suzuki 2004a);

i.e., the nodes were seismic cells, the connections

were given by the succession of earthquakes, and the

randomized networks were constructed by using an

Erd}os and Rényi model. Baek et al. (2011) revealed

the small-world property for the region of the Korean

Peninsula, using data from August 1978 to January

2010 and an earthquake network construction

approach according to Abe and Suzuki (2004a).

Chorozoglou et al. (2018) revealed the small-

world property, using time series, for the region of

Greece before nine main shocks during the period

from 1999 to 2015 (Fig. 2). The nodes were seismic

regions, the connections were given by the test

significance of the linear zero-lag cross-correlation

[see Eq. (2)], and the randomized networks were

constructed using the approach of Chorozoglou and

Kugiumtzis (2018). The seismic catalog compiled

from the Geophysics Department of the Aristotle

University of Thessaloniki (http://geophysics.geo.

auth.gr/ss/) was the data source. Complex network

theory revealed that the topological measure, viz. the

small-world index, could serve as a potential index

for short-term seismic hazard assessment, as the

index S increased rapidly from the level of one

(S � 1) before the occurrence of main shocks

(Fig. 2). León et al. (2018) revealed the small-world

property for the region of Colombia (Table 4) using

Figure 2
Evolution of the small-worldness index S for earthquake networks using two approaches for random network generation (solid and dashed line

for RTSbinthr and RTSweight, respectively). The number of windows on the x-axis varies across the different records of intershock seismic

activity (cases 1–9) because the intershock intervals are different (Chorozoglou et al. 2018)

Table 4

Summary results for small-world property for Colombia (León

et al. 2018)

km C Crand L Lrand S

10 0.0105 0.0012 4.347 6.852 13.7923

20 0.0164 0.0027 3.273 4.940 9.1670

30 0.027 0.0055 2.815 4.003 6.9808

40 0.0529 0.0105 2.649 3.367 6.4036

50 0.0825 0.018 2.48 2.97 5.4089

60 0.1021 0.026 2.342 2.727 4.5725

70 0.1334 0.0385 2.21 2.521 3.9525

80 0.1711 0.054 2.123 2.35 3.5073

90 0.2349 0.076 2.075 2.147 3.1960

100 0.3027 0.105 2.034 1.98 2.8063
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data taken from the National Earthquake Information

Center, retrieving the list of earthquakes for the

Colombian region. The earthquake network con-

struction was based on Abe and Suzuki (2004a).

3.1.2 Scale-Free Property

Abe and Suzuki (2004b) first revealed the scale-free

property for Southern California, using data from the

Southern California Earthquake Data Center (http://

www.scecdc.scec.org/catalogs.html) for the time

interval between 00:40:07.47 on 1 January 1992 and

23:55:34.66 on 31 December 1992. The data well

obey the power-law distribution, which may be

interpreted as follows: The Gutenberg–Richter law,

on the one hand, tells us that the frequency of

earthquakes with large values of moment decays as a

power law (i.e., heavy-tail behavior), showing the

existence of nonnegligible numbers of strong earth-

quakes. On the other hand, aftershocks associated

Figure 3
Evolution of clustering coefficient for four strong earthquakes (Abe and Suzuki 2009)

Figure 4
Evolution of maximum value of modularity measure, Qmax, around (1) the Joshua Tree Earthquake, (2) the Landers Earthquake, and (3) the

Hector Mine Earthquake. The moments of the main shocks are located at the origin. In each case, the values of the cell size are:

a 5 km 9 5 km 9 5 km and b 10 km 9 10 km 9 10 km (Abe and Suzuki 2006)
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with a main shock tend to be connected to the node of

the main shock. Thus, the scale-free nature of the

connectivity distribution is consistent with the

Gutenberg–Richter law.

In addition, Baiesi and Paczuski (2004) revealed

the scale-free property for Southern California, using

data from the Southern California Earthquake Data

Center (http://www.data.scec.org/ftp/catalogs/SCSN)

from 1 January 1984 to 31 December 2003, and

network construction based on Bak et al. (2002). The

scale-free property was also studied by Baek et al.

(2011) for the Korean Peninsula and by Pastén et al.

(2016) for Chile. The seismic data for the Korean

Peninsula were collected from August 1978 to Jan-

uary 2010, and for Chile from 04:21:57.0 on 2

October 2000 to 18:31:57.3 on 29 March 2007.

3.2. Evolution of Network Measures

The evolution of some earthquake network mea-

sures exhibits variations that may serve as potential

indices for short-term seismic hazard assessment.

Figure 3 presents the evolution of the clustering

coefficient before and after four main shocks (Abe

Figure 5
Evolution of values of network measures for the main shock a near Kefalonia and b near Methoni, where the red vertical line denotes the time

of main shock. The seismic measure for introducing the weighted connections is the number of earthquakes (Chorozoglou et al. 2017)
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and Suzuki 2009). For the four cases, the values of

the clustering coefficient reveal an abrupt jump

shortly before the occurrence of the main shock. To

ascertain the universality of this finding, several

strong shocks that occurred in different geographical

regions are considered, namely the Joshua Tree

Earthquake (M ¼ 6:1, 23 April 1992), the Landers

Earthquake (M ¼ 7:3, 28 June 1992), the Hector

Mine Earthquake (M ¼ 7:1, 16 October 1999) in

California (database: http://www.data.scec.org), and

the Kushiro-Oki Earthquake (M ¼ 7:1, 29 November

2004) in Japan. The same analysis as in the previous

work but with the modularity as a network measure

(Fig. 4) was applied by Abe and Suzuki (2006) and

for the betweenness centrality by Daskalaki et al.

(2016).

Chorozoglou et al. (2017) focused on the cases of

the M ¼ 6:1 main shock that occurred in the Paliki

Peninsula of Kefalonia Island on 26 January 2014,

and the M ¼ 6:8 main shock that occurred offshore

southwestern Peloponnese, on 14 February 2008. The

seismic catalog compiled by the Geophysics Depart-

ment of the Aristotle University of Thessaloniki

(http://geophysics.geo.auth.gr/ss/) was the data

source, and the evolution of the values of some net-

work measures before and after the two main shocks

was investigated (Fig. 5). The network measures

tended to be stable with small variations before both

main shocks, then exhibited an abrupt jump shortly

before their occurrence, and finally slowly decreased

and became stable again.

4. Conclusions

The network approach has been found to be a

powerful tool that can contribute significantly to the

investigation of properties of complex phenomena

such as seismic activity. The results of applications,

presented here, suggest the effectiveness of network

analysis for seismicity studies in earthquake-prone

areas. The study of complex earthquake networks has

revealed nontrivial properties that indicate their

specific structures, i.e., the small-world and scale-free

properties, which have been found to indicate the

underlying organization principles of earthquake

networks. Hence, the universality of the small-world

property for four different study areas (California,

Japan, Iran, and Chile) was proved by Abe et al.

(2011), for the Korean Peninsula by Baek et al.

(2011), and for Colombia by León et al. (2018).

Statistically significant changes in the network

structure are shown by certain global measures, being

observed simultaneously a few days before main

shocks. Network measures can track the changes in

the structure evolution of earthquake networks and

can be regarded as proxies of the seismicity behavior.

The key topological measures, such as the clustering

coefficient (Abe and Suzuki 2009), modularity (Abe

and Suzuki 2006), betweenness centrality (Daskalaki

et al. 2016), and small-world property (Chorozoglou

et al. 2018), may serve as potential indices for short-

term seismic hazard assessment.
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