

EΘNIKO ΙΔΡΥΜΑ ΕΡΕΥΝΩΝ National Hellenic Research Foundation

Abstract #70 Comorbidities Risk Assessment: a predictive approach

<u>Angeliki Balasopoulou^{1#}</u>, Jose Carlos Gomez Tamayo^{2#}, Theodora Katsila^{1*}

¹Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece

²Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain,

#These authors contributed equally to this work

INTRODUCTION

- Complex disease traits and clinical phenotypes stem from genetic and environmental influences (e.g. diet, viral biomolecules/stimuli)
- Problematic self-regulation of the inflammasome may serve as a paradigm
- Inflammatory responses shift a defense mechanism into a perpetuating inflammatory response leading to disease comorbidities

AIM OF THE STUDY

• Herein, we developed a predictive approach for comorbidities risk assessment that highlight inflammasomecentered molecular signatures (criterion: disease severity)

METHODS

- An in-depth *in silico* analysis of disease traits and clinical phenotypes as well as tissue-specific datasets were integrated with functional data from publicly available data repositories and databases
- R and Python programming languages were employed
- Two strategies were implemented: agnostic and targeted analysis
- Extensive data and text mining for extra filtering of outcomes was followed
- Protein networks revealed missense variants of interest
- Data and text mining were performed to account for biases
- Knowledge graphs were empowered via data integration

RESULTS

 Our approach detected patterns of comorbidities as the net result of genetic and environmental influences (e.g. diet, viral biomolecules/stimuli)

In silico analyses resulted in 1,156 missense variants of key interest either at the orthosteric or allosteric site of key proteins

RESULTS

Toward an inflammasome-centered molecular signature

#Uploaded variation	Location	Allele	IMPACT	SYMBOL	mino ac	idsgenet gene	variant zigosity mean	MAF	MAF(EUF	MAF(TSI)
rs1146593	1:75769201-75769201	С	MODERAT	ACADM	T/P	ACAD8	1,684210526	0.12 (A)	0.06 (A)	0.05 (A)
rs1144566	1:182600491-182600491	Α	MODERAT	RGS16	H/L	RGS1	1,973684211	0.01 (T)	0.02 (T)	(T) 00.0
rs1443549	11:20601610-20601610	Α	MODERAT	SLC6A5	A/D	SLC6A4	1,842105263	0.01 (C)	0.00 (C)	0.00 (C)
rs4268467	11:46681370-46681370	Α	MODERAT	ARHGAP1	K/N	ARHGAP31	1,894736842	< 0.01 (T)	0.00 (T)	0.00 (T)
rs1017594	11:47309565-47309565	Α	MODERAT	MADD	L/M	MADD	2	0.01 (T)	(T) 00.0	(T) 00.0
rs2253849	12:10451071-10451071	Α	MODERAT	KLRC1	N/I	KLRK1	1,815789474	0.01 (T)	0.00(T)	0.00(T)
rs582954	12:70534944-70534944	т	MODERAT	PTPRB	D/E	PTPRK	2	0.02 (A)	0.06 (A)	0.09 (A)
rs4482094	12:80460849-80460849	Α	MODERAT	PTPRQ	A/D	PTPRK	2	0.17 (C)	0.12 (C)	0.08 (C)
rs1169305	12:120999579-120999579	С	MODERAT	HNF1A	S/R	HIF1A	1,815789474	0.01 (A)	0.00(A)	0.00(A)
rs4238526	15:81308654-81308654	Т	MODERAT	IL16	L/F	IL15	1,894736842	0,01(A)	0.00(A)	0.00(A)
rs2471844	16:4890808-4890808	С	MODERAT	PPL	C/W	PML	2	0.07 (A)	0.00(A)	0.00(A)
rs4344749	16:28830990-28830990	Т	MODERAT	ATXN2L	Q/H	ATXN2	1,973684211	< 0.01 (A)	0.00(A)	0.00(A)
rs584542	2:21009931-21009931	Α	MODERAT	APOB	I/F	APOB	2	0.01 (T)	0.00(T)	0.00(T)
rs1878529	2:102932971-102932971	G	MODERAT	TMEM182	R/G	TMEM187	2	0.03 (A)	0.08 (A)	0.07 (A)
rs2271767	2:191414601-191414601	Α	MODERAT	MYO1B	L/M	MYO9B	2	0.25 (T)	0.04 (T)	0.02 (T)
rs2257495	20:46367543-46367543	Т	MODERAT	ELMO2	D/E	ELMO1	2	0.01 (A)	0.00 (A)	0.00 (A)
rs2427240	20:61910571-61910571	G	MODERAT	CDH4	D/E	CD14	1,842105263	0.30 (C)	0.21 (C)	0.07 (C)
rs1352882	3:62243879-62243879	G	MODERAT	PTPRG	I/M	PTPRK	1,973684211	0.02 (C)	0.00 (C)	0.00 (C)
rs2692696	3:133766289-133766289	С	MODERAT	TF	I/L	TNF	1,973684211	0.01 (A)	0.00 (A)	0.00 (A)
rs958415	4:125408634-125408634	G	MODERAT	FAT4	D/E	FUT4	1,842105263	0.01 (T)	0.00 (T)	0.01 (T)
rs2431663	5:172769708-172769708	С	MODERAT	DUSP1	I/M	DUSP10	2	0.15 (G)	0.06 (G)	0.07 (G)
rs1065076	6:31509904-31509904	G	MODERAT	MICB	T/A	MICA	2	0.20 (A)	0.27 (A)	0.21 (A)
rs1049086	6:32662127-32662127	Т	MODERAT	HLA-DQB	D/E	HLA-DQA1	1,842105263	0.37 (A)	0.40 (A)	0.37 (A)
rs3181009	7:103103446-103103446	G	MODERAT	NAPEPLD	D/H	NAPEPLD	2	0.14 (C)	0.00 (C)	0.00 (C)
rs1757095	9:115086115-115086115	Α	MODERAT	ITNC	Q/L	TNF	2	< 0.01 (T)	0.06 (T)	0.07 (T)
rs2488602	9:123371268-123371268	Α	MODERAT	CRB2	V/E	CRB1	1,973684211	< 0.01 (T)	0.00(T)	0.00(T)
rs1065711	CHR_HSCHR6_MHC_COX	G	MODERAT	HLA-C	V/A	HLA-C	1,921052632	0.11 (G)	0.12 (G)	0.09 (G)

SUMMARY

A predictive evaluation of comorbidity development risk may identify those patients at high risk and thus, empower optimum patient stratification via inflammasome-centered molecular signatures.

mechanistic investigation of the genetic-environmental interplay

REFERENCES

Donovan C et al. (2020) The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol 108(3), 925-935

Harley JB et al. (2018) Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity, Nat Genet 50(5):699-707

Waldmann TA. (2013) The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. J Investig Dermatol Symp Proc 16(1): S28-30

Zmora N et al. (2017) Inflammasomes and intestinal inflammation. Mucosal Immunol 10(4): Q865-883

ACKNOWLEDGMENTS

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project "Reinforcement of Postdoctoral Researchers - 2nd Cycle" (MIS-5033021), implemented by the State Scholarships Foundation (IKY).