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Abstract We discuss a powerful, geometric representation of stock markets
which identifies the space of portfolios with the points lying in a simplex convex
polytope. Based on this viewpoint, we survey certain state-of-the-art tools from
geometric and statistical computing in order to handle important and difficult
problems in digital finance. Although our tools are quite general, in this paper
we focus on two specific problems.

The first question concerns crisis detection, which is of prime interest for the
public in general and for policy makers in particular because of the significant
impact that crises have on the economy, including employment and income.
Certain features in stock markets lead to this type of anomaly detection: Given
the assets’ returns, we describe the relationship between portfolios’ return and
volatility by means of a copula (a bivariate probability distribution), without
making any assumption on investors’ strategies. We examine a recent method
relying on copulae to construct an appropriate indicator that allows us to
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2 Chalkis et al.

automate crisis detection. On real data from DJ600 Europe, from 1990 to 2008,
the indicator identifies correctly 4 crises and issues one false positive for which
we offer an explanation.

Our second contribution is to introduce an original computational framework
to model portfolio allocation strategies, which is of independent interest for
Digital finance and its applications. Furthermore, we expect this framework to
be useful in automatically identifying extreme phenomena in a stock market.
Last but not least, we evaluate portfolio performance, by providing a new
portfolio score, based on the aforementioned framework and concepts.

1 Introduction

Modern finance has been pioneered by Markowitz who set a framework to
study choice in portfolio allocation under uncertainty, see [Markowitz, 1952]1.
Within this framework, Markowitz characterized portfolios by their return and
their risk; the latter is formally defined as the variance of the portfolios’ returns.
An investor would build a portfolio that will maximize its expected return
for a chosen level of risk; it has since become common for asset managers to
optimize their portfolio within this framework. This approach has led a large
part of the empirical finance research to focus on the so-called efficient frontier
which is defined as the set of portfolios presenting the lowest risk for a given
expected return. Figure 1 (left panel) presents such an efficient frontier. The
region to the right of the efficient frontier represents the portfolios domain.

The efficient frontier is associated with a well-known family of convex func-
tions, studied by Markowitz in [Markowitz, 1956]. In particular, in Markwitz’s
framework the assets’ returns are assumed to be normally distributed following
N (µ,Σ). Then, the parameterized function

φq(x) = xTΣx− qµTx, x ∈ K, q ∈ [0,+∞], (1)

where K is the set of portfolios, is used to compute the efficient frontier and
optimal portfolios. The xTΣx is called risk term and the µTx is called return
term. Typically, a manager selects a value q0 —which determines the level of
risk of his allocation— and then we call the portfolio x̄ = min

x∈K
φq0(x) as the

optimal mean-variance portfolio for the risk implied by q0. Thus, the efficient
frontier can be seen as a parametric curve on q.

Interestingly, despite the fact that this framework considers the whole set of
portfolios, no attention has been given to the distribution of portfolios. Figure 1
(middle panel) presents such a distribution. When comparing the contour of
the empirical portfolios distribution and the portfolio domain bounded by
the efficient frontier in Figure 1 (right panel), we observe that the density of
portfolios along the efficient frontier is dim and that most of the portfolios are
located in a small region of the portfolios domain.

1 for which he earned the Nobel Prize in economics, 1990.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Geometric and statistical tools for financial modeling 3

Fig. 1 (left) Efficient frontier, (middle) Empirical portfolio distribution by portfolios’ return
and variance, (right) Efficient frontier in blue and contour of the empirical portfolio distribu-
tion in red. The market considered is made of the 19 sectoral indices of the DJSTOXX 600
Europe. The data is from October 16, 2017 to January 10, 2018.

We also know from the financial literature that financial markets exhibit 3
types of behavior. In normal times, stocks are characterized by slightly positive
returns and a moderate volatility, in up-market times (typically bubbles)
by high returns and low volatility, and during financial crises by strongly
negative returns and high volatility, see [Billio et al., 2012] for details. So,
following Markowitz’ framework, in normal and up-market times, the stocks
and portfolios with the lowest volatility should present the lowest returns,
whereas during crises those with the lowest volatility should present the highest
returns. These features motivate us to describe the time-varying dependency
between portfolios’ returns and volatility to detect financial crises in stock
markets.

Except from conventional stock markets, these tools can be also used
in cryptocurrency markets. For instance, in [Christoforou et al., 2020], they
focused on digital assets to offer a neural network expressing a predictor of the
asset’s “health” based on a variety of parameters ranging from standard financial
/ economical, to technological (e.g. blockchain), up to software development
(e.g. Github) aspects. The tools in this paper can be combined with models
that predict asset’s return using Machine Learning to improve their results.

Score of a portfolio. Now, let use briefly present existing work on the problem of
portfolio scoring. The fast growth of asset management industry during the past
few decades has highlighted the analysis of portfolio allocation performance as
an important aspect of modern finance. Research in this area is axed on Sharpe-
like ratios proposed in the 1960’s [Jensen, 1967,Sharpe, 1966,Treynor, 2015].
In practice, the performance of a portfolio manager, over a given period, is
usually measured as the ratio of his ”excess” return with respect to a benchmark
portfolio over a risk measure [Grinblatt and Titman, 1994]. Managers are then
ranked according to these ratios, and the one achieving the highest and steadiest
returns receives the best score. The major drawback of these techniques is the
identification of benchmark portfolios, while the formation of such portfolios
remains controversial. Thus, we assume that the best score corresponds to a
“good” portfolio allocation, but without having a universal measure of goodness
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4 Chalkis et al.

for this allocation. Moreover, they suffer from significant estimation errors
[Lo, 2002], which prevent any performance comparison to be significant.

In [Pouchkarev, 2005] -and independently in [Guegan et al., 2011,Banerjee and Hung, 2011]-
they use the geometric representation of a stock market, presented also in this
paper, to define a cross-sectional score of a portfolio given a vector of assets’
returns. In particular the score of a portfolio is defined as the proportion of
allocations that the portfolio outperforms. The aim is to measure the relative
performance -in terms of return- of an asset allocation with respect to all
possible alternative allocations offered to the manager. The term cross section
is used to underline that the score takes into account portfolios that are diver-
sified over all sections of assets, without studying -separately- the performance
on specific sections of stocks. Interestingly, in [Banerjee and Hung, 2011], they
follow the same approach by defining what they call naive investor’s strategy.
A naive investor’s strategy selects uniformly a portfolio from the set of all
portfolios, as it is agnostic about the assets’ returns generating process, and
hence does not use any such information. In particular, they introduce a score
as the comparison of the return of an allocation versus the return distribution
of naive investors.

In previous works [Pouchkarev, 2005,Banerjee and Hung, 2011,Calès et al., 2018]
that discuss efficient computation of that score, the set of all portfolios is usually
taken to be the set of long-only strategies which is the most common type of
investment, namely portfolios whose weights are non-negative and sum up to
one. Thus, the set can be represented with the canonical simplex Δn−1 where
n is the number of assets (Section 2).

In [Pouchkarev, 2005, Thm 4.2.2] they compute the score by decomposing
the intersection of the simplex with a halfspace into smaller simplices. However,
this computation is not valid when some asset returns are equal and it presents
floating point errors limiting its use to around 20 assets. As a consequence,
in [Pouchkarev, 2005] and in related studies [Banerjee and Hung, 2011], the
score is estimated by a quasi-Monte Carlo sampling of the portfolios; one may
refer to [Rubinstein and Melamed, 1998] for uniform sampling methods over
a simplex of general dimension. Finally, in [Calès et al., 2018] they show that
an algorithm in [Varsi, 1973] computes this score very efficiently and robustly
(a few milliseconds, in stock markets with thousands of assets). Moreover, in
[Calès et al., 2019] they characterize statistically the distribution of portfolios’
returns, where the aforementioned portfolio score corresponds to its Cumulative
Density Function (CDF), and they rely on powerful techniques in computational
geometry to compute exactly the CDF and Probability Density Function (PDF),
as well as the moment of portfolios’ returns distribution of any order. Overall,
the computation of CDF and PDF has found certain applications in asset
management, portfolio performance measurement and the study of financial
stability, while moments may be useful in return dispersion and noise trading
[Stivers and Licheng, 2010,De Long et al., 1989].

Notice that the score in [Pouchkarev, 2005,Guegan et al., 2011,Banerjee and Hung, 2011]
does not require any further assumptions on the portfolio allocation strategies
that take place in a certain stock market. This observation motivate us to
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Geometric and statistical tools for financial modeling 5

introduce a new cross-sectional score of a portfolio based on a new framework
to model portfolio allocation strategies. This new score would take into account
how the truly invested portfolios are distributed in a stock market in a given
time period. Then, one could be interested in the number of truly invested
portfolios that a certain portfolio has outperformed (Section 4).

Contributions. At first we employ a geometric representation of the set of
portfolios in a stock market (Section 2). In particular, we focus on the long-
only strategies and thus, we represent the set of portfolios with the canonical
simplex, which is a convex polytope. In the sequel, our aim is (a) to contribute
to the problem of crises detection in stock markets. Then, (b) we contribute to
the problem of modeling portfolio allocation strategies, which we expect to be
useful for (a) and for a few other problems in fintech. Last but not least, (c) we
employ the latter framework to evaluate portfolio’s performance by introducing
a new score.

– For (a) we rely on copula representation to capture the dependency between
portfolios’ return and volatility. In Section 3.1 we briefly survey the results
from [Calès et al., 2018] and we further strengthens them by employing
clustering methods on copulae. We call copula a discrete approximation of a
joint distribution of two continuous random variables, for which the marginal
probability distribution of each variable is uniform. Then, for a vector of
assets’ returns, of a given time interval, we compute the corresponding
copula to obtain how the portfolios behave during that period of time.
We also build an indicator, which is evaluated on a copula. Following this
computational framework on real data from DJ600 we detect all the past
crises from 1990 to 2008.

– To address (b), we introduce a new mathematical framework to model
portfolio allocation strategies in a stock market. This framework is of inde-
pendent interest and may be used to address a few other problems in fintech
except those presented in this paper (Section 5). We consider the concept
where portfolio managers compute and propose asset allocations, which
we call formal allocation proposals. Then, an investor first decides which
allocation proposal to select and second how much to modify this proposal
to create his final investment / portfolio. Thus, we expect that the portfolios
of the investors, that choose the proposal of a certain portfolio manager,
will be ”concentrated around” that proposal. To model this procedure we
employ multivariate distributions. The support of the Probability Density
Function (i.e. the subset of Rn which are not mapped to zero) of each
distribution is the set of all portfolios. In particular, we say that a portfolio
allocation strategy Fπ is induced from a distribution π as follows: to create
a portfolio with strategy Fπ sample a point/portfolio from π. According
to the previous observations, the most intuitive choice for π is a unimodal
distribution. Then, we call the mode of π formal allocation proposal of the
allocation strategy Fπ. Moreover, we use the variance of π to parameterize
how dispersed are the portfolios created according to the strategy Fπ around
the formal allocation proposal (or mode of π).
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6 Chalkis et al.

To be more precise, we focus on Markowitz’s framework to leverage log-
concave distributions induced by the family of convex functions of Equa-
tion (1). In particular, we consider the family of log-concave distributions,
with probability density function

πα,q ∝ e−αφq , φq(x) = xTΣx− qµTx,

where σ2 = 1/α is the variance. Then, we induce the corresponding alloca-
tion strategies Fπα,q . We discuss how we use q, which determines the mode
of π, to parameterize the strategies by the level of risk that a certain group
of investors select. Similarly, for a given q, we use the variance 1/α of πα,q

to parameterize how stick around the formal allocation proposal of Fπα,q

a subgroup of investors may decide to be. In other words, when we say
“the investors that create their portfolio according to strategy Fπα,q

” we
denote the proportion of the investors, in a certain stock market and time
period, that select risk according to q and they stick around the formal
allocation proposal of Fπα,q

according to α. Finally, as in a stock market
appear plenty of strategies followed by group of investors, we define the
mixed strategy induced by a convex combination of distributions, i.e. a
mixture distribution.

– For (c) we evaluate the performance of a portfolio for a given time period
we compare the portfolio against a mixed strategy Fπ. In particular, we
define the score of a portfolio as the expected number of truly invested
portfolios that the first outperforms, when the portfolios have been invested
according to the mixed strategy Fπ. We provide an efficient algorithm,
based on Markov Chain Monte Carlo integration, to estimate the new cross-
sectional score within arbitrarily small error � (Section 4). Furthermore, in
extreme cases our new score becomes equal to that of [Pouchkarev, 2005,
Guegan et al., 2011,Banerjee and Hung, 2011]. Thus, it can also be seen
as a generalization of the latter cross-sectional score.
Last, one may have limited knowledge about a certain stock market and
how the investors behave in it, or her/his knowledge may vary from a time
period to another. Thus, we extend our framework to handle these issues
(Section 4.3). We also provide different versions of our score. Each version
provides a different information about the portfolio allocation we would
like to evaluate.

We expect that the aforementioned mathematical framework of modeling
allocation strategies could be useful to obtain more sophisticated copulae for
the problem of detecting financial crises. Thus, it will allow us to try to handle
cryptocurrency markets. Additionally, we believe that the new score can be
used to define new performance measures and optimal portfolios according to
these measures. We leave both interesting directions as a future work. In any
case, the frameworks and the computational tools we present in the sequel can
be generalized and used to handle further problems in fintech. For example,
they could be combined with various asset-pricing models and methods to
predict assets’ returns by Machine Learning and AI methods. Finally, despite
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Geometric and statistical tools for financial modeling 7

the fact that in this paper we focus on the long-only strategies, the tools we
present can be easily extend to any set of portfolios.

Software. The copulae and indicator computation for crises detection (Sec-
tion 3) as well as the portfolio cross-sectional score computation -by Varsi’s
algorithm- of [Calès et al., 2019] are provided by the open source package
volesti [Chalkis and Fisikopoulos, 2020]2. volesti is a C++ open source li-
brary for high dimensional sampling and volume computation with an R

interface provided through CRAN3. The implementations scale up to hundreds
or thousands dimensions depending on the application, thus radically increas-
ing the number of assets that had been previously studied (e.g. around 20 in
[Pouchkarev, 2005,Guegan et al., 2011]), and eventually allow us to capture
any stock market today.

Paper structure. The next section presents the geometric representation of
portfolios we use. Section 3 surveys our work on copulae and the ensuing
crisis indicator; our approach is corroborated with an application on real data.
Most results in this section are presented in [Calès et al., 2018], but here we
survey a broader class of techniques and frameworks. Section 4 introduces our
new framework for modeling allocation strategies, and evaluating portfolio
performance by defining a new score of a portfolio. Finally, in Section 5 we
briefly discuss conclusions and future work.

2 Geometric representation of the set of portfolios

In this section we formalize the geometric representation of sets of portfolios
with an arbitrary large number of assets n. We handle the case of long-only
strategies. Thus, the set of all portfolios becomes a specific convex set.

In particular, let a portfolio x investing in n assets, whose weights are
x = (x1, . . . , xn) ∈ Rn. The portfolios in which a long-only asset manager

can invest are subject to
n�

i=1

xi = 1 and xi ≥ 0, ∀i. Thus, the set of portfolios

available to this asset manager is the unit (n − 1)−dimensional canonical
simplex, denoted by Δn−1 and defined as

Δn−1 :=

�
(x1, . . . , xn) ∈ Rn

�����
n�

i=1

xi = 1, and xi ≥ 0, ∀i ∈ {1, . . . , n}
�

⊂ Rn.

(2)
The simplex Δn−1 is the smallest convex polytope with nonzero volume in

a given dimension. For instance, in the plane any triangle is a simplex, while a
triangular pyramid, or tetrahedron, is the simplex in 3d space.

Here the space dimension n represents the number of assets. Each point
in the interior of the simplex represents a portfolio since its coordinate vector

2 https://github.com/GeomScale/volume_approximation
3 https://CRAN.R-project.org/package=volesti
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8 Chalkis et al.

Fig. 2 Copula representation of the portfolios distribution, by return and variance. The
market considered is made of the 19 sectoral indices of DJSTOXX 600 Europe. The data is
from Oct. 16, 2017 to Jan. 10, 2018. Each line and column sum to 1% of the portfolios.

is a convex combination of the vertex coordinates: if we use all vertices, this
combination is unique and is known as barycentric coordinates of the point.
The vertices represent portfolios composed entirely of a single asset. This is
the most common investment set —of long-only strategies— in practice today,
as portfolio managers are typically forbidden from short-selling or leveraging.

3 Crises detection

In this section we present our computational methods to address the problem
of crises detection in stock markets. The dependency between return and
volatility is difficult to capture from the usual mean-variance representation,
as in Figure 1 (middle panel), so we will rely on the copula representation of
the portfolios distribution. As we follow Markowitz’ framework, the variables
considered are the portfolios’ return and variance. Figure 2 illustrates such
a copula and shows a positive dependency between portfolios returns and
variances. In the sequel we give definitions for the functions of return fret and
volatility fvol for a given portfolio x ∈ Δn−1.

Definition 1 Given a vector of assets’ returns R ∈ Rn and the variance-
covariance matrix Σ ∈ Rn×n of the distribution that the assets’ returns follow,
we say that any portfolio x ∈ Δn−1 has return fret(x,R) = RTx and volatility
fvol(x,Σ) = xTΣx.

To capture the relationship between return and volatility we present it in
the form of a copula. In particular, we discretize the joint distribution between
return and volatility to obtain an estimation. Thus, given a vector of assets’
returns R ∈ Rn and the variance-covariance Σ ∈ Rn×n, we fix two sequences
s0 < · · · < sm and u0 < · · · < um such that

vol(Si)

vol(Δn−1)
≈ p and

vol(Ui)

vol(Δn−1)
≈ p, i = 0, . . . ,m− 1, (3)
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Geometric and statistical tools for financial modeling 9

where Si := {x ∈ Rn | si ≤ fret(x,R) ≤ si+1} and Ui := {x ∈ Rn | ui ≤
fvol(x,Σ) ≤ ui+1} and p < 1 a small constant (e.g. p = 0.01). Equation (3)
implies that a constant percentage p of the portfolios have return less than si+1

and larger than si. The same occurs for bodies Ui, which contain portfolios
with bounded volatility.

Furthermore, Si, Ui define a grid of convex bodies, obtained by a family
of parallel hyperplanes and a family of concentric ellipsoids intersecting Δn−1.
Precisely, for given integers i, j ≤ m− 1 the body

Qij := {x ∈ Δn−1 | si ≤ fret(x,R) ≤ si+1 and uj ≤ fvol(x,Σ) ≤ uj+1}, (4)

contains the portfolios with return less than si+1 and larger than si and
volatility less than uj+1 and larger than uj . Now, to obtain the aforementioned

copula one has to estimate the ratios
vol(Qij)

vol(Δn−1)
for i, j = 0, . . . ,m− 1.

We leverage direct, efficient uniform sampling fromΔn−1 following [Rubinstein and Melamed, 1998]
to sample N points and then count the number of points in each body in the
grid. This is a quasi Monte Carlo method to estimate the volume of an enclosed
body in Δn−1. In Subsection 3.2 this leads to an indicator in order to decide
to which state of a market a copula corresponds. Then we use this indicator to
detect all past financial crises.

Alternative data-driven formulations of the indicator, in particular by
unsupervized learning in the space of copulas, may corroborate these results
and offer further insight. In [Calès et al., 2018], these methods (discussed in
Section 3) are used to study other dependencies, such as the momentum
effect [Jegadeesh and Titman, 1993], which is implied by the dependencies of
asset returns with their past returns. The momentum effect is a quite usual
market phenomenon by which asset prices follow a trend for a rather long time;
it is considered as a market anomaly, which finance theory struggles to explain.

3.1 Computing copulae

In financial applications, one considers compound returns over periods of k
observations, where typically k = 20 or k = 60; the latter corresponds to roughly
3 months when observations are daily. Compound returns are obtained using k
observations starting at the i-th one where the j-th coordinate corresponds to
asset j. These are data in real space of dimension n, where n is the number of
assets with returns ri = (ri,1, . . . , ri,n) ∈ Rn, i ≥ 1. Therefore, component j of
the new vector equals:

Rj = (1 + ri,j)(1 + ri+1,j) · · · (1 + ri+k−1,j)− 1, j = 1, . . . , n.

This defines vector R ∈ Rn normal to a family of parallel hyperplanes, whose
equations are fully defined by selecting appropriate constants.
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10 Chalkis et al.

Fig. 3 Returns/variance relationship on 1st Sep. 1999 (left), during the dot-com bubble,
and on 1st Sep. 2000 (right), at the beginning of the bubble burst. Blue and yellow indicate
low and high density of portfolios, resp. The diagonal bands are considered to specify the
indicator (middle).

The covariance matrix Σ of the stock returns is computed using the shrink-
age estimator of [Ledoit and Wolf, 2004],4 as it provides a robust estimate even
when the sample size is short with respect to the number of assets.

To compute the copulae, we determine constants defining hyperplanes and
ellipsoids so that the volume between two consecutive such objects is p = 1% of
the simplex volume. Let us refer to the method outlined at Equation (3) using
notation introduced just before this equation. The sequence of s0 < · · · < sm
are determined by bisection using Varsi’s algorithm. For ellipsoids, we look
for u0 < · · · < um by sampling the simplex and we set m = 100, to compute
copulae as an approximation of the joint distribution between return and
volatility.

We thus get 100×100 copulae representing the distribution of the portfolios
with respect to the portfolio returns and volatilities. Figure 3 illustrates such
copulae, and shows the different relationship between returns and volatility in
good (left, dot-com bubble) and bad (right, bubble burst) times. In particu-
lar, we take into account the 100 components of DJ 600 with longest history,
over 60 days ending at the given date. The main computational issue is to
compute all the volumes that arise from the intersection of the hyperplane
family and of the ellipsoid family, each with simplex Δn−1. We have imple-
mented sampling uniformly distributed points from Δn−1 using the algorithm
in [Rubinstein and Melamed, 1998], which seems to be the method of choice
for the problem at hand. Moreover, in [Calès et al., 2018] they have juxtaposed
two more algorithms for exact and approximate volume computation for each
body in the grid.

We analyze real data consisting of regular interval (e.g. daily) returns of
stocks such as the constituents of the Dow Jones Stoxx 600 EuropeTM(DJ600).
These are points in real space of dimension n = 600, respectively: ri =
(ri,1, . . . , ri,n) ∈ Rn, i ≥ 1. We apply the methodology to a subset of assets
drawn from the DJ 600 constituents using daily data covering the period from
01/01/1990 to 31/11/20175. Since not all stocks are tracked for the full period

4 Matlab code at http://www.econ.uzh.ch/en/people/faculty/wolf/publications.html.
5 Our data is from BloombergTM.
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Geometric and statistical tools for financial modeling 11

Fig. 4 Representation of the periods over which the indicator is greater than one for 61-100
days (yellow) and over 100 days (red).

of time, we select the 100 assets with the longest history in the index, and
juxtapose stock returns and stock returns covariance matrix over the same
period to detect crises. Of course, using assets with the longest history implies a
survivor bias, but this is used to assess the effectiveness of the methodology. It
should soon be computationally feasible to keep all 600 constituents, replacing
the exiting stocks with the entering ones along the sample, since our current
methods are expected to be efficient for problems of such complexity.

3.2 Indicator and crisis detection

When we work with real data in order to build the indicator, we wish to
compare the densities of portfolios along the two diagonals. In normal and
up-market times, the portfolios with the lowest volatility present the lowest
returns and the mass of portfolios should be on the up-diagonal. During crises,
the portfolios with the lowest volatility present the highest returns and the mass
of portfolios should be on the down-diagonal, see Figure 3 as illustration. Thus,
setting up- and down-diagonal bands, we define the indicator as the ratio of
the down-diagonal band over the up-diagonal band, discarding the intersection
of the two. The construction of the indicator is illustrated in Figure 3 (middle)
where the indicator is the ratio of the mass of portfolios in the blue area over
the mass of portfolios in the red one.

In the following, the indicator is computed using copulae estimated using
the method in [Rubinstein and Melamed, 1998], drawing 500, 000 points. Com-
puting the indicator over a rolling window of k = 60 days and with a band of
±10% with respect to the diagonal, we report with yellow color in Figure 4 all
the periods over which the indicator is greater than 1 for more than 60 days.
The periods should be more than 60 days to avoid the detection of isolated

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Chalkis et al.

Fig. 5 Spectral clustering of Copulas, with k = 6 clusters, on the earth mover’s distances
(EMD) of the copulas. Results are shown on the values of the indicator for every copula. There
are 6 different plots, one for every cluster. Red points indicate the copulas assigned to the
specific cluster, while the blue points are the copulas assigned to other clusters. Yellow and
red time intervals are the identified by the indicator warning and crises periods respectively.

events whose persistence is only due to the auto-correlation implied by the
rolling window. All these periods offer warnings, but only the longest ones
correspond to crises. Thus, in Figure 4 we report in red the periods when the
indicator was greater than 1 for more than 100 days. For a full discussion and
further results we refer the reader to [Calès et al., 2018].

We compare these results with the database for financial crises in European
countries proposed in [Duca et al., 2017]. The first crisis (May 1990 to Dec.
1990) corresponds to the early 90’s recession, the second one (May 2000 to May
2001) to the dot-com bubble burst, the third one (Oct. 2001 to Apr. 2002) to
the stock market downturn of 2002, the fourth one (Nov. 2005 to Apr. 2006) is
not listed in the European database and is either a false positive of our method
or may be due to a bias in the companies selected in the sample, and the fifth
one (Dec. 2007 to Aug. 2008) can be associated with the sub-prime crisis.

3.2.1 Clustering of copulas agrees with indicator

In order to further evaluate our results we applied clustering on the resulting
copulas. Aiming to identify whether the copulas are able to distinguish different
economic periods (normal, crisis and intermediate), as well as to validate the
indicator, we experimented with clustering techniques based on probability
distributions distances.

To cluster the probability distributions distances of the copulas, we com-
puted a distance matrix between all the copulas using the earth mover’s distance
(EMD) [Rubner et al., 2000], a method to evaluate the dissimilarity between
two multi-dimensional distributions. The EMD between two distributions is
the minimum amount of work required to turn one distribution into the other.
Then, we apply spectral clustering [Ng et al., 2001] by converting the distance
matrix to affinity. The results of the clustering are shown on the indicators’
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values in Figure 5. The clusters appear to contain copulas with similar indicator
values. Thus, crisis and normal periods are assigned in clusters with high and
low indicator values respectively. Therefore, the clustering of the copulas is
proportional to discretising the values of the indicator.

4 Modeling allocation strategies

This Section discusses an original method for modeling allocation choices and
for evaluating portfolio performance by a new portfolio score. Notice that
the previous analysis is agnostic on allocation strategies by working directly
with the set of portfolios Δn−1. Our current work includes the use of this
framework so as to try to obtain more sophisticated copulae by sampling from
mixture densities π(x) truncated in Δn−1 instead of uniform sampling, in
order to identify extreme events in stock markets earlier and with more detail.
Moreover, we define a new score of a portfolio, to measure its performance,
as the expected value of the proportion of truly invested portfolios that it
outperforms, when the portfolios have been built according to, what we call, a
mixed strategy.

Here, we assume that in a stock market the portfolio managers make
allocation proposals and then the investors choose which proposal to follow
and how much to modify it before they create their final portfolio. We model
allocation strategies in Markowitz’ framework using multivariate log-concave
distributions with Δn−1 being the support of each Probability Density Function
(PDF). A proper choice of log-concave distributions allows us to parameterize
a strategy by the level of risk and the level of dispersion around the formal
allocation proposal of the strategy. However, the framework presented here
allow us to use any unimodal distribution centered at any benchmark portfolio.

Definition 2 Let π be a unimodal distribution truncated in Δn−1 with PDF
π(x). Then, a portfolio allocation strategy F : π → Δn−1 is said to be induced
by the distribution π, and we write Fπ. More precisely, Fπ is induced by the
following state:

“To build a portfolio with strategy Fπ sample a point/portfolio from π”.

The mode of π can be seen as the allocation proposal that a portfolio
manager has been made. Then, we expect that the invested portfolios of the
investors who have chosen that proposal will be concentrated around that
proposal/mode as the mass of π implies.

Definition 3 Let strategy Fπ induced by the unimodal distribution π. We call
the mode of π formal allocation proposal or formal proposal of the portfolio
allocation strategy Fπ.

In the sequel, we assume that in a stock market the set of truly invested
portfolios are created by a combination of different strategies used by the
investors (mixed strategy). First, we consider a sequence of log-concave dis-
tributions π1, . . . ,πM truncated in Δn−1. Then, each distribution induces a
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14 Chalkis et al.

portfolio allocation strategy, i.e. Fπ1 , . . . , FπM
. Then, the mixed strategy is

induced by a convex combination of πi, i.e. by a mixture distribution, as the
following definition states.

Definition 4 Let π1, . . . ,πM be a sequence of unimodal distributions, and let
the mixture density be π(x) =

�M
i=1 wiπi(x), where wi ≥ 0,

�M
i=1 wi = 1. We

call Fπ the mixed strategy induced by the mixture density π.

In Definition 4 each weight wi corresponds to the proportion of investors that
build their portfolios according to the allocation strategy Fπi

. Thus the vector
of weights w ∈ RM implies how the investors in a certain stock market and
time period tends to behave. Now we are ready to define the cross-sectional
score of an allocation versus a mixed strategy.

Definition 5 Let a stock market with n assets and Fπ a mixed strategy induced
by the mixture density π. For given asset returns R ∈ Rn over a single period
of time, the score of a portfolio, providing a value of return R∗, is

s =

�

Δn−1

g(x)π(x)dx, g(x) =

�
1. if RTx ≤ R∗,
0, otherwise.

(5)

Notice that the Definition 5 can be generalized for any set of portfolios. The
value of the integral in Equation (5) corresponds to the expected proportion
of portfolios that an allocation outperforms when the portfolios are invested
according to the mixed strategy Fπ.

4.1 Log-concave distributions in Markowitz’ framework

In this Section, we consider the Markowitz’ framework and we discuss the
selection of a proper log-concave distribution so that we could fix a sequence
π1, . . . ,πM . In this framework the assets’ returns are random variables dis-
tributed normally, with mean µ and covariance matrix Σ.

In general, using Markowitz’ framework one can define, under certain
assumptions, the optimal portfolio x̄ as the maximum of a concave function
h(x), x ∈ Δn−1. Then the log-concave distribution with PDF π(x) ∝ eαh(x)

has its mode equal to x̄ and its variance σ2 = 1/α. We again call the mode of
π formal allocation proposal of the induced strategy Fπ as we do in Section 4.

Notice that as the variance grows, π converges to the uniform distribution
and as the variance diminishes, the mass of π concentrates around the mode
of π(x). Thus, we use the variance to parameterize the sequence πi ∝ eαih(x).
Small variances correspond to allocation strategies that are used by investors
who stick around the formal proposal. Thus, the created portfolios with such a
strategy Fπ would be highly concentrated around the formal allocation proposal
of Fπ (or mode of π) as the mass of π implies. Large variances correspond to
allocation strategies that are used by investors who may modify the formal
proposal a lot. The portfolios created with such a strategy Fπ, would be highly
dispersed around the mode of π. In the extreme case of very large variance, π is
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Geometric and statistical tools for financial modeling 15

Fig. 6 Left: illustration of PDFs πq ∝ e−αφq(x), where α = 1 and from left to right
q1 = 0.3, q2 = 1, q3 = 1.5. Right: 3 illustrations of the mixture density of Equation (7),
where M1 = 3, M2 = 2. In both plots the black point corresponds to the optimal choice of
each strategy. From yellow to blue: high to low density regions.

close to the uniform distribution and the induced allocation strategy becomes
the naive strategy as defined in [Banerjee and Hung, 2011]. We employ the
distance between πi and the uniform distribution to characterize how dispersed
the portfolios created with Fπ are, around the formal proposal.

Definition 6 Let π ∝ eαh(x) be any log-concave distribution and let Fπ be the
induced portfolio allocation strategy. We say that Fπ is 100(1−D)%-dispersed,
where D is the distance between π and the uniform distribution, in terms of
total variation distance.

Our main approach is to leverage the convex function which is widely
used by investors to compute the efficient frontier (EF). To make an efficient
portfolio allocation, in modern finance, a portfolio manager typically compute
the EF. In particular, according to [Markowitz, 1956], they solve the following
optimization problem:

min xTΣx− qµTx, subject to x ∈ Δn−1,

where q ∈ [0,+∞). The xTΣx is called risk term and the µTx is called return
term. Parameter q controls the trade-off between risk and return. Thus, the
EF is a parametric curve on q (see Figure 1).

Let the log-concave distribution,

πα,q ∝ e−αφq(x), where φq(x) = xTΣx− qµTx (6)

The left plot in Figure 6 illustrates some examples of the density function πq

where µ and Σ are randomly sampled once. Notice that for different q, the
mode (or the formal allocation proposal of the strategy Fπα,q

) is shifted.
We can use parameter q to denote the level of risk of an investor’s strategy

Fπα,q . Small values of q correspond to low risk strategies whereas large values of
q to high risk strategies. Thus a sequence of such densities can be parameterized
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16 Chalkis et al.

by both q (risk) and α (dispersion). In particular, a mixed strategy Fπ can be
induced by the following mixture density:

π(x) =

M1�

i=1

M2�

j=1

wije
−aijφi(x), where φi = xTΣx− qiµ

Tx, (7)

where each qi denotes the level of risk and for each qi the parameters αij imply
the level of dispersion of Fπij

. Notice that for each level of risk qi there are M2

different levels of dispersion that different groups of investors’ portfolios may
appear around the same formal allocation proposal. The right plot of Figure 6
illustrates some examples of this mixture density.

A definitely important question is how one could set the risk and dispersion
parameters qi, αij and the weight wij of each allocation strategy Fπqi,αij

in a
certain stock market. The issue is that our knowledge about the stock market
and the behavior of the investors in it might be weak or vary from a time
period to another. In Section 4.3 we extend our framework to address these
issues. We also provide different versions of the score given in Section 4. Each
version provides a different information about the portfolio allocation we would
like to evaluate for given assets returns.

4.2 Computation of the score

This section discusses Markov Chain Monte Carlo (MCMC) integration to
guarantee fast and robust approximation within arbitrarily small error for the
computation of the score in Section 4. Let the density π(x) =

�M
i=1 wiπi(x)

in Equation (5) to be the probability density function of a mixture of log-
concave distributions. Furthermore, let the vector of assets’ returns R ∈ Rn,
the halfspace H(R∗) := {x ∈ Rd | RTx ≤ R∗} and the indicator function

g(x) =

�
1. if x ∈ H(R∗),
0, otherwise.

. Then the score of Equation (5) can be written,

s =

�

Δn−1

g(x)
M�

i=1

wiπi(x)dx =
M�

i=1

wi

�

Δn−1

g(x)πi(x)dx

=
M�

i=1

wi

�

Δn−1∩H(R∗)
πi(x)dx =

M�

i=1

wi

�

S

πi(x)dx,

(8)

where S := Δn−1 ∩H(R∗) is the intersection of the canonical simplex with a
halfspace.

It is clear that the computation of s is reduced to integrate M log-
concave functions over a convex set S, i.e. to compute each

�
S
πi(x)dx, i =

1, . . . ,M . For each one of these M integrals we use the algorithm presented in
[Lovasz and Vempala, 2006] to approximate it within an arbitrarily small error
e after a polynomial in dimension (number of assets) n number of operations.
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First we use an alternative representation of the volume of S, employing a
log-concave density π(x),

vol(S) =

�

S

π(x)dx

�
K
πβ1(x)dx�

S
π(x)dx

�
S
πβ2(x)dx�

S
π(x)β1dx

· · ·
�
S
1dx�

S
π(x)βkdx

⇒
�

S

π(x)dx = vol(S)

�
S
π(x)βkdx�
S
1dx

· · ·
�
S
π(x)dx�

S
π(x)β1dx

,

(9)

where the sequence βj , j = 1, . . . , k are factors applied on the variance of π(x).
Since S is the intersection of a halfspace with the canonical simplex Δn−1 we

use Varsi’s algorithm to compute the exact value of vol(S) after n2 operations
at most. Thus, the computation of

�
S
π(x)dx is reduced to compute k ratios

of integrals. This problem seems intractable at first glance. However, for each
ratio we have,

rj =

�
S
π(x)βj−1dx�
S
π(x)βjdx

=
1�

S
π(x)βjdx

�

S

π(x)βj−1

π(x)βj (x)
π(x)βj (x)dx

=

�

S

π(x)βj−1

π(x)βj

π(x)βj

�
S
π(x)βjdx

dx.

Thus, to estimate rj we just have to sample N points from the distribution
proportional to π(x)βj and truncated to S. Then,

rj ≈
1

N

N�

i=1

π(xi)
βj−1

π(xi)βj
(10)

as N grows. The key for an efficient approximation of rj using Monte Carlo
integration is to set βj , βj+1 such that the variance of rj is as small as
possible (ideally a constant) for N as small as possible. To estimate the score
in Equation (8) suffices to estimate each

�
S
πi(x)dx, i = 1, . . . ,M as the

Equation (9) implies. Then the score s =
�M

i=1 wi

�
S
πi(x)dx can be easily

derived. The following Lemma provides the total number of operations required
to approximate the score s in Equation (5) within error �, employing MCMC
integration and the algorithm in [Lovasz and Vempala, 2006].

Lemma 7 Let the density π(x) in the Definition 5 be a mixture of M log-
concave densities. Then the portfolio score in Equation (5) can be estimated
within error e after O∗(Mn5) operations, where O∗(·) suppresses polylogarithmic
factors and dependence on e.

Proof In [Lovasz and Vempala, 2006], they prove that the sequence of β1, . . . ,βk

can be fixed such that the variance of all rj , j = 1, . . . , k is bounded by a
constant. Moreover, N = O∗(

√
n) points per integral ratio rj and k = O∗(

√
n)

ratios in total suffices to approximate each
�
S
πi(x)dx, i = 1, . . . ,M within

error e, where O∗(·) suppresses polylogarithmic factors and dependence on e.
Thus, O∗(n) points suffices to estimate each

�
S
πi(x)dx.
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18 Chalkis et al.

To sample from each target distribution proportional to π(x)βj and trun-
cated to S in [Vempala, 2005] they use Hit-and-Run random walk [Vempala, 2005].
This implies a total number of O∗(n4) arithmetic operations per generated point.
Thus the total number of arithmetic operations to estimate s is O∗(Mn5).

Considering practical computations, a plenty of random walks for sam-
pling from log-concave densities in high dimensions are implemented in the
software package volesti [Chalkis and Fisikopoulos, 2020]. For an extended
introduction to geometric random walks we suggest [Vempala, 2005].

4.3 Determine a mixed strategy

In this subsection, we discuss how we set the parameters of a sequence of
log-concave distributions

πij = e−aijφi(x), where φi = xTΣx− qiµ
Tx, i = 1, . . . ,M1 and j = 1, . . . ,M2

which induce a mixed strategy as in Equation (7). Let qi ∈ [0, QU ], QU <
∞ , i = 1, . . . ,M1. When qi = QU the term of risk xTΣx is negligible in
φi(x) with respect to the term of return µTx. Thus, q = QU corresponds
to the allocation strategy with highest expected return. We recall that q =
0 corresponds to the allocation strategy of zero risk. Let for each qi, the
parameters αLi < αij < αUi , j = 1, . . . ,M2. The variance 1/αLi corresponds to
a 100(1−e)%-dispersed allocation strategy and the variance 1/αUi corresponds
to the log-concave density παUi

,qi(x), whose mass is almost entirely concentrated
around the formal allocation proposal of the induced strategy. The bounds on
the parameters αij and qi can be easily extracted from the observations in
[Lovasz and Vempala, 2006].

Now we select equidistant values in both intervals above to set the sequences
of qi and αij . The aim is to represent allocation strategies with various levels
of risk and dispersion in a certain stock market. It is clear that as both M1,M2

grow, the representativeness of strategies improves.

Set the sequence of qi and αij

1. Select M1 equidistant values q1 < · · · < qM1 from [0, QU ].
2. For each qi, select M2 equidistant values αi1 < · · · < αiM2 from

[αLi
,αUi

].

The construction of both sequences of qi and αij allow to specify the
sequence of log-concave distributions πij = e−αijφqi

(x). However, to determine
a mixed strategy one has to determine the weights wij in the corresponding
mixture distribution. We recall that each wij implies the proportion of investors
that create their portfolios according the allocation strategy induced by πij .
Setting wij forms the mixed strategy Fπ while the score of Section 4 becomes,

s =

M1�

i=1

M2�

j−1

wij

�

S

πij(x)dx, S := Δn−1 ∩H(R∗), (11)
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as also denoted by Equation (8) in Section 4.2. However, one may have weak
knowledge on how the investors behave in a certain stock market, to determine
explicitly the weights wij . First we allow to set further bounds on wij . For
example, one would provide a bound on the proportion of the investors who
chose a specific allocation strategy. We allow these degrees of freedom as follows
and we additionally provide three different versions of our score.

In particular, let us assume that we estimate the M = M1M2 integrals of
Equation (11) as described in Section 4.2, where M is the number of allocation
strategies in a certain stock market. Then, let the M values to form a vector
c ∈ RM and also let the corresponding weights wij in Equation (11) to be
given as a vector w ∈ RM . Then the score,

s = �c, w�,

where �·, ·� denotes the inner product between two vectors. Given a matrix
A ∈ RN×M and a vector b ∈ RN which express N further constraints on the
weights (e.g. specify lower, upper bounds or any linear constraint on wij), let
Q ⊂ RM the following feasible region of weights,

Aw ≤ b

wi ≥ 0

M�

i

wi = 1

(12)

Notice that if no further constraints are given on the weights, then the
feasible region Q is the canonical simplex ΔM−1. Now let us define three new
versions of score s. Each new score provides a different information about the
allocation we evaluate.

Let the weights w ∈ Q, where Q ⊂ RM the feasible region in Equation (12).

1. min score, s1 := min�c, w�, subject to Q.
2. max score, s2 := max�c, w�, subject to Q.
3. mean score, s3 := 1

vol(Q)

�
Q
�c, w� dw.

For the scores s1 and s2 one has to solve a linear program for each one
of them. The score s3 requires the computation of an integral which can
be computed with MCMC integration employing uniform sampling from Q;
otherwise it can be reduced to the computation of the volume of a convex
polytope P ⊆ RM since �c, w� is a linear function of w with the domain
being the set Q. For the latter computation there are many polynomial in M ,
randomized approximations algorithms and efficient C++ software provided by
package volesti [Chalkis and Fisikopoulos, 2020].

Let w1 ∈ Q such that the min score s1 = �c, w1�. The weights denoted by
the vector w1 implies the proportions of the investors that follow each allocation
strategy such that the portfolio score s takes its minimum value. Similarly, the
vector of weights w2 ∈ Q such that the max score s2 = �c, w2�, implies the
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Fig. 7 Examples of behavioral functions.

proportions of the investors that follow each allocation strategy such that the
portfolio score s takes its maximum value. Moreover, it is easy to prove that
the mean score s3 = �c, w̄�, where the vector of weights w̄ is the center of mass
of Q. For example, if Q = ΔM−1 (i.e. the case where no further constraints
are given on the weights) the vector w̄ is the equally weighted vector.

However, one may have additional knowledge on how the investors tend to
behave in a certain stock market, i.e. which allocation strategies they tend to
prefer. We also allow for these degrees of freedom by providing the notion of
behavioural functions.

4.3.1 Behavioural functions

In this Section we assume that we are given a set of functions which represents
the knowledge, that one may have, related to which allocation strategies the
investors tend to prefer in a certain stock market and time period. We assume
that we are given M1 + 1 functions fq, fαi

with the domain being [0, QU ] and
[αLi

,αUi
], i = [M1] respectively. We call these functions behavioural functions

and we use them to create a vector of weights w ∈ RM , that emphasizes specific
strategies, where M = M1M2 the number of allocation strategies that take
place in the stock market.

The plots in Figure 7 demonstrate 4 possible choices of such functions. For
example, if plot C is fq then the investors tend to prefer low risk investments;
the values of fq are high for small values of q (low risk) and low for high values
of q (high risk). If in addition the plot D is fαi

then the investor tends to be
highly sticked around the formal allocation proposal that corresponds to qi;
the values of fαi are large for large values of α (low dispersion) and small for
small values of α (high dispersion). The following pseudo-code describes how
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we compute such a weight vector w when M1 + 1 behavioural functions are
given.

Construct vector weight w
Input: risk and dispersion parameters qi and αij , i = [M1], j = [M2]

computed as in Section 4.3 and M1+1 behavioural functions fq, fαi
.

1. For each pair of (i, j) set r(i−1)M1+j ← fq(qi)fαi
(αij)

2. Normalize the vector rj ← rj/
�M

i=1 ri, j = [M ] and M = M1M2

3. Set the weight vector w ← r.

Note that for each qi we request a behavioural function fαi
to emphasize

strategies with level of risk qi and level of dispersion denoted by fαi . Given
the behavioral functions, one could use the vector of weights —determined as
in the above pseudo-code— to compute the portfolio score s = �c, w�, while c
is again the vector that contains the values of the integrals of Equation (11) in
Section 4.3.

4.3.2 Parametric score

In this Section we allow a weaker knowledge that we might have about how
the investors tends to behave than in Section 4.3.1. Thus, we do not explicitly
determine the vector of weights w ∈ RM —M is the number of allocation
strategies in a certain stock market— as in Section 4.3.1. In particular, let the
vector of Section 4.3.1 r ∈ RM with coordinates

r(i−1)M1+j ← fq(qi)fαi(αij), i = [M1], j = [M2]

where fq, fαi the M1 + 1 behavioral functions. Then, we use the vector
r to denote a bias on the behavior of the investors. First, we again allow
further bounds and linear constraints on the weights. Thus, we assume —as in
Section 4.3— that the feasible region of the weights is the set Q of Equation (12).
To denote the bias on the behavior of the investors we employ the exponential
distribution

pT (w) ∝ erw/T ,

with the support of pT (w) being the set Q. The distribution pT (w) ∝ erw/T is
usually called Boltzmann distribution and the vector r bias vector. In general,
Boltzmann distribution gives the probability that a system will be in a certain
state as a function of that state’s energy and the temperature of the system.
The bias vector r determines how the mass tends to distribute in Q and the
(temperature) parameter T how strong the bias denoted by r is. The plots in
Figure 8 illustrate some examples of the density function of pT in the simple
case of Q = Δ2 and two different choices of the bias vector r. Notice that
the mass tends to concentrate around the vertices which correspond to the
coordinates of r with larger values than the other coordinates. Moreover, as
the temperature T diminishes this tendency becomes stronger until almost all
the mass concentrates around the vertex which corresponds to the coordinate
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Fig. 8 In both plots: Probability density functions pTi
(w) ∝ erw/Ti where (from left to

right) T1 = 2, T2 = 1, T3 = 2/3. The bias vector r ∈ R3 is given in each title.

of the largest value of r. As T grows pT converges to the uniform distribution
and the bias denoted by r disappears.

It is clear that our intention is to use the temperature T to parameterize how
strong the tendency on the investors’ behavior, that the behavioral functions
denote, is. Then the parametric score is given as,

s(T ) :=

�

S

�c, w� pT (w)dw, where pT (w) ∝ erw/T

and each coordinate r(i−1)M1+j = fq(qi)fαi
(αij), i = [M1], j = [M2]

(13)

Let the center of mass w̄T in Q when the mass is distributed according to
pT (w). Notice that w̄T can be seen as a parametric curve on T . Furthermore, it
is easy to prove that, for fixed T , the parametric score s(T ) = �c, w̄T �. Thus, the
score s(T ) is evaluated on that parametric curve. Following these observations
we are ready to state the following Lemma.

Lemma 8 Let a stock market with M allocation strategies. Assume that we
are given the parameters qi, αij of Section 4.3 and any behavioral functions
fq, fαi , i = [M1], j = [M2] and M = M1M2 the number of allocation strategies
that take place in the stock market. Let the feasible set Q ⊂ RM of the weights
as in Equation (12), the min score s1, the max score s2 and the mean score s3
of Section 4.3 and the parametric score in Equation (13). Then, the followings
hold,

s1 = lim
T→−∞

s(T )

s1 = lim
T→+∞

s(T )

s3 = lim
T→0

s(T )

(14)

Notice that the Equation (14) holds for any set of behavioral functions.
Thus, the scores s1, s2, s3 can be seen as “extreme” cases of the parametric
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score. Therefore, the intuition behind Lemma 8 is that the score s takes the
value of s1, s2, s3 when the behavior of the investors is “extreme”. These
extreme cases are determined by the feasible region of the weights Q. For
example, in the simple case where Q = ΔM−1, the extreme cases hold when
the investors are equally splitted to all the strategies (when s = s3) or when
all of the investors create their portfolios according to a single strategy (when
s = s1 or s = s2).

5 Future work

We briefly survey existing work on crises detection and we strengthen its
results employing clustering algorithms for bivariate distributions. This problem
motivate us to develop a new computational framework to model portfolio
allocation strategies in a stock market. A future direction would be to compute
copulae as in Section 3.1 but instead of uniform sampling to employ sampling
from a mixture distribution as in Equation (7). The latter will allow us to
estimate the joint distribution between return and volatility of the truly invested
portfolios. Moreover, we could introduce parametric copulae following the notion
of parametric score in Section 4.3.2. Detecting crises in Cryptocurrency markets
would be a challenging problem.

Furthermore, we believe that it would be of special interest to use the
new score to define new performance measures and thus, compute the optimal
portfolios with respect to those measures. In particular, for a given portfolio
one could estimate its score distribution. Then, the problem reduces to compute
a portfolio with a “good” score distribution.

From an implementation point of view, the latter two applications require
to sample from various log-concave distributions truncated to convex sets and
perform MCMC integration multiple times. Thus, we believe that new efficient
practical methods based on sampling via state of the art random walks (e.g.
Hamiltonian Monte Carlo) will be required. Thus, we leave as future work to
develop such practical methods and the corresponding software to handle those
applications. Considering software, the package volesti is a great starting
point.
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