Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/123456789/1099
Τύπος: | Άρθρο σε επιστημονικό περιοδικό |
Τίτλος: | Energy optimization in dual-RIS UAV-aided MEC-enabled internet of vehicles |
Συγγραφέας: | [EL] Μιχαηλίδης, Εμμανουήλ[EN] Michailidis, Emmanouel [EL] Μυριδάκης, Νικόλαος[EN] Miridakis, Nikolaos [EL] Μιχάλας, Άγγελος[EN] Michalas, Angelos [EL] Σκόνδρας, Εμμανουήλ[EN] Skondras, Emmanouil [EL] Βέργαδος, Δημήτριος[EN] Vergados, Dimitrios |
Ημερομηνία: | 27/06/2021 |
Περίληψη: | Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission. |
Γλώσσα: | Αγγλικά |
Σελίδες: | 24 |
DOI: | 10.3390/s21134392 |
EISSN: | 1424-8220 |
Θεματική κατηγορία: | [EL] Δίκτυα ηλεκτρονικών υπολογιστών και Επικοινωνίες[EN] Computer Networks and Communications |
Λέξεις-κλειδιά: | computation offloading; energy efficiency; Internet of Vehicles (IoV); mobile edge computing (MEC); reconfigurable intelligent surface (RIS); unmanned aerial vehicle (UAV) |
Κάτοχος πνευματικών δικαιωμάτων: | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
Όροι και προϋποθέσεις δικαιωμάτων: | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). |
Ηλεκτρονική διεύθυνση του τεκμηρίου στον εκδότη: | https://www.mdpi.com/1424-8220/21/13/4392 |
Ηλεκτρονική διεύθυνση περιοδικού: | https://www.mdpi.com/journal/sensors |
Τίτλος πηγής δημοσίευσης: | Sensors |
Τεύχος: | 13 |
Τόμος: | 21 |
Σελίδες τεκμηρίου (στην πηγή): | Article no 4392 |
Σημειώσεις: | This research was funded in the context of the project “A Mobile Edge Computing-Enabled 5G Vehicular Networking Architecture to Support Innovative Services” (MIS 5050174) under the call for proposals “Supporting Researchers with an Emphasis on Young Researchers—Cycle B” (EDULLL 103). The project is cofinanced by Greece and the European Union (European Social Fund—ESF) by the Operational Programme Human Resources Development, Education and Lifelong Learning 2014–2020. |
Εμφανίζεται στις συλλογές: | Ερευνητικές ομάδες |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Σελίδες | Μέγεθος | Μορφότυπος | Έκδοση | Άδεια | |
---|---|---|---|---|---|---|---|
sensors-21-04392-v2.pdf | 617.42 kB | Adobe PDF | - | Δείτε/ανοίξτε |