Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/123456789/1746
Τύπος: | Ανακοίνωση σε συνέδριο; Πρακτικά συνεδρίου |
Τίτλος: | Detection and classification of malicious software based on regional matching of Temporal Graphs |
Συγγραφέας: | [EL] Δούναβη, Ελένη - Μαρία[EN] Dounavi, Eleni - Maria [EL] Μπαντή, Άννα[EN] Mpanti, Anna [EL] Νικολόπουλος, Σταύρος[EN] Nikolopoulos, Stavros [EL] Πολενάκης, Ιωσήφ[EN] Polenakis, Iosif |
Ημερομηνία: | 18/06/2021 |
Περίληψη: | In this paper we present an integrated graph-based framework that utilizes relations between groups of System-calls, in order to detect whether an unknown software sample is malicious or benign, and to a further extent to classify it to a known malware family. A novel graph-based approach for the representation of software samples over the depiction of the structural evolution over time, the so-called Temporal Graphs, is discussed, and a method for measuring graph similarity among specific Regions of such graphs is proposed, the so-called Regional Matching. The partitioning of the Temporal Graphs that depicts their structural evolution over time is defined by specific time-slots, while the quantitative characteristics that depict the commonalities appeared over the weights of the vertices are measured by a similarity metric in order to conduct the malware detection and classification procedures. Finally, we evaluate the detection and classification ability of our proposed graph-based framework performing an experimental study over the achieved results utilizing a set of known malicious samples that are indexed into malware families. |
Γλώσσα: | Αγγλικά |
Τόπος δημοσίευσης: | Ruse, Bulgaria |
Σελίδες: | 6 |
DOI: | 10.1145/3472410.3472417 |
ISBN: | 978-1-4503-8982-2 |
Θεματική κατηγορία: | [EL] Επιστήμη ηλεκτρονικών υπολογιστών και Πληροφορική, άλλοι τομείς[EN] Computer and Information sciences, miscellaneous |
Λέξεις-κλειδιά: | Malicious software; Malware Detection; malware classification; security |
Κάτοχος πνευματικών δικαιωμάτων: | © 2021 Association for Computing Machinery. ACM. |
Όροι και προϋποθέσεις δικαιωμάτων: | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org |
Ηλεκτρονική διεύθυνση του τεκμηρίου στον εκδότη: | https://dl.acm.org/doi/10.1145/3472410.3472417 |
Ηλεκτρονική διεύθυνση περιοδικού: | https://dl.acm.org/doi/proceedings/10.1145/3472410 |
Τίτλος πηγής δημοσίευσης: | CompSysTech '21: Proceedings of the 22nd International Conference on Computer Systems and Technologies |
Σελίδες τεκμηρίου (στην πηγή): | 28 - 33 |
Όνομα εκδήλωσης: | CompSysTech '21 |
Τοποθεσία εκδήλωσης: | Ruse, Bulgaria |
Ημ/νία έναρξης εκδήλωσης: | 18/06/2021 |
Ημ/νία λήξης εκδήλωσης: | 19/06/2021 |
Σημειώσεις: | Conference site: https://www.compsystech.org/_cst21/ This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014- 2020” in the context of the project “Malicious Software Detection and Classification utilizing Temporal–Graphs of Discrete and Cumulative Structural Evolution” (MIS 5047642). |
Εμφανίζεται στις συλλογές: | Ερευνητικές ομάδες |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Σελίδες | Μέγεθος | Μορφότυπος | Έκδοση | Άδεια | |
---|---|---|---|---|---|---|---|
Detection and Classification of Malicious Software based on Regional Matching of Temporal Graphs.pdf | 1.97 MB | Adobe PDF | - | Δείτε/ανοίξτε |