Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/123456789/199
Τύπος: | Κεφάλαιο σε πρακτικά συνεδρίου |
Τίτλος: | Towards a fully automatic processing chain for operationally mapping burned areas countrywide exploiting Sentinel-2 imagery |
Συγγραφέας: | [EL] Σταυρακούδης, Δημήτριος[EN] Stavrakoudis, Dimitris G. [EL] Καταγής, Θωμάς[EN] Katagis, Thomas [EL] Μηνάκου, Χαραλαμπία[EN] Minakou, Chara [EL] Γήτας, Ιωάννης[EN] Gitas, Ioannis Z. I.Z. |
Ημερομηνία: | 27/06/2019 |
Περίληψη: | Burned area mapping is essential for quantifying the environmental impact of wildfires, for compiling statistics, and for designing effective short- to mid-term impact mitigation measures. The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of the information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper presents a preliminary methodology for mapping burned areas using Sentinel-2 data, which aims to eliminate user interaction and achieve mapping accuracy that is acceptable for operational use. It follows an object-based image analysis (OBIA) approach, whereby the initial image is segmented into a set of adjacent and non-overlapping small regions (objects). The most unambiguous of them are labeled automatically through a set of empirical rules that combine information extracted from both a pre-fire Sentinel-2 image and a post-fire one. The burned area is finally delineated following a supervised learning approach, whereby a Support Vector Machine (SVM) is trained using the labeled objects and subsequently applied to the whole image considering a set of optimally selected object-level features. Preliminary results on a set of recent large wildfires in Greece indicate that the proposed methodology constitutes a solid basis for fully automating the burned area mapping process. |
Γλώσσα: | Αγγλικά |
Σελίδες: | 9 |
DOI: | 10.1117/12.2535816 |
Θεματική κατηγορία: | [EL] Γεωεπιστήμες και Επιστήμες Περιβάλλοντος[EN] Earth and related Environmental Sciences |
Λέξεις-κλειδιά: | operational burned area mapping; object-based image analysis (OBIA); quick shift segmentation; Sentinel-2; automatic training patterns classification; machine learning |
Κάτοχος πνευματικών δικαιωμάτων: | © (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). |
Όροι και προϋποθέσεις δικαιωμάτων: | One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. |
Ηλεκτρονική διεύθυνση του τεκμηρίου στον εκδότη: | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11174/2535816/Towards-a-fully-automatic-processing-chain-for-operationally-mapping-burned/10.1117/12.2535816.short |
Ηλεκτρονική διεύθυνση περιοδικού: | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11174.toc |
Τίτλος πηγής δημοσίευσης: | Proceedings SPIE 11174, Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019) |
Τόμος: | 11174 |
Σελίδες τεκμηρίου (στην πηγή): | Article no 1117405 |
Σειρά δημοσίευσης: | Proceedings of SPIE |
Όνομα εκδήλωσης: | Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019) |
Τοποθεσία εκδήλωσης: | Paphos, Cyprus |
Ημ/νία έναρξης εκδήλωσης: | 18/03/2019 |
Ημ/νία λήξης εκδήλωσης: | 21/03/2019 |
Σημειώσεις: | This research is funded in the context of the project “Development of advanced algorithm and open-source software for automated burned area mapping using high-resolution data” (MIS 5005537) under the call for proposals “Supporting researchers with emphasis on new researchers” (EDULLL 34). The project is co-financed by Greece and the European Union (European Social Fund – ESF) by the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020”. |
Εμφανίζεται στις συλλογές: | Ερευνητικές ομάδες |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Σελίδες | Μέγεθος | Μορφότυπος | Έκδοση | Άδεια | |
---|---|---|---|---|---|---|---|
RSCy2019_Stavrakoudis_BurnedAreaMapping.pdf | Επιστημονική δημοσίευση | 9 σελίδες σελίδες | 1.04 MB | Adobe PDF | Του συγγραφέα (post-refereeing) | Δείτε/ανοίξτε |