Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/123456789/231
Τύπος: | Άρθρο σε επιστημονικό περιοδικό |
Τίτλος: | Leveraging diversity in computer-aided musical orchestration with an artificial immune system for multi-modal optimization |
Συγγραφέας: | [EN] Caetano, Marcelo [EL] Ζαχαράκης, Αστέριος[EN] Zacharakis, Asterios [EN] Barbancho, Isabel [ES] Tardón, Lorenzo J. |
Ημερομηνία: | 06/01/2019 |
Περίληψη: | The aim of computer-aided musical orchestration (CAMO) is to find a combination of musical instrument sounds that perceptually approximates a reference sound when played together. The complexity of timbre perception and the combinatorial explosion of all possible musical instrument sound combinations make it very challenging to find even one orchestration for a reference sound. However, finding only one orchestration is seldom enough given the creative nature of the compositional process. Compositional applications of computer-aided musical orchestration can greatly benefit from multiple orchestrations with diversity. In this work, we use an artificial immune system (AIS) called opt-aiNet to search for combinations of musical instrument sounds that minimize the distance to a reference sound encoded in a fitness function. Opt-aiNet was developed to maximize diversity in the solution set of multi-modal optimization problems, which results in multiple alternative orchestrations for the same reference sound that are different among themselves. We compared the diversity and the similarity of the orchestrations proposed by opt-aiNet (CAMO-AIS) against a standard genetic algorithm (CAMO-GA) and Orchids, which is considered the state of the art for CAMO, for 13 reference sounds. In general, CAMO-AIS outperformed CAMO-GA and Orchids for several measures of objective diversity. We performed a listening test to evaluate and compare the perceptual similarity of the orchestrations by CAMO-AIS and Orchids. CAMO-AIS generated orchestrations that were perceived to be as similar to the reference sounds as those returned by Orchids. Therefore, CAMO-AIS has higher diversity of orchestrations than Orchids without loss of perceptual similarity. |
Γλώσσα: | Αγγλικά |
Σελίδες: | 17 |
DOI: | 10.1016/j.swevo.2018.12.010 |
ISSN: | 2210-6502 |
Θεματική κατηγορία: | [EL] Τεχνολογία μέσων[EN] Media Technology |
Λέξεις-κλειδιά: | Musical orchestration; Multi-modal optimization; Artificial immune systems |
Κάτοχος πνευματικών δικαιωμάτων: | © 2019 Elsevier B.V. All rights reserved. |
Ηλεκτρονική διεύθυνση του τεκμηρίου στον εκδότη: | https://www.sciencedirect.com/science/article/abs/pii/S2210650218302013 |
Ηλεκτρονική διεύθυνση περιοδικού: | https://www.sciencedirect.com/journal/swarm-and-evolutionary-computation |
Τίτλος πηγής δημοσίευσης: | Swarm and Evolutionary Computation |
Τεύχος: | November 2019 |
Τόμος: | 50 |
Σελίδες τεκμηρίου (στην πηγή): | Article no 100484 |
Σημειώσεις: | This work has been partially funded by the Portuguese foundation for science and technology FCT under grant “SFRH/BPD/115685/2016”, by the Greek State Scholarships Foundation (co-funded by the European Social Fund) under grant “Subsidy for post-doctoral researchers”, contract number: “2016-050-050-3-8116”, and by Ministerio de Economía y Competitividad of the Spanish Government under Project No. “TIN2016-75866-C3-2-R”. Part of this work has been done at Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech. |
Εμφανίζεται στις συλλογές: | Μεταδιδακτορικοί ερευνητές |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Σελίδες | Μέγεθος | Μορφότυπος | Έκδοση | Άδεια | |
---|---|---|---|---|---|---|---|
2019-SWEVO.pdf | 2.69 MB | Adobe PDF | - | Δείτε/ανοίξτε |