Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/123456789/1372
Τύπος: Ανακοίνωση σε συνέδριο
Τίτλος: Theoretical & numerical simulation on the formation of coated microbubbles
Συγγραφέας: [EL] Λύτρα, Αλκμήνη[EN] Lytra, Alkminisemantics logo
[EL] Βλαχομήτρου, Μαρία[EN] Vlachomitrou, Mariasemantics logo
[EL] Πελεκάσης, Νίκος[EN] Pelekasis, Nikolaossemantics logo
Ημερομηνία: 27/08/2020
Περίληψη: Microfluidic devices have emerged as a powerful tool for the formation of encapsulated drops and microbubbles, which are used in medicine for imaging via ultrasound and as drug delivery vectors. Among other techniques, microfluidics are more preferable, because of the high production rates and the monodispersity in size of the microbubbles. Unlike T-juction shape microfluidics, recent developments in flow focusing geometries demonstrate the formation of stable coated microbubbles with size less than 10 μm, which is crucial for biomedical applications. In the former case, capillary and viscous forces destabilize the gas-liquid interface leading to absolute instability with small wave numbers or relative big microbubbles (~100 μm). Capillary forces are less important in flow focusing devices, while the pressure drop in gas phase and the volumetric flow rate of the liquid are expected to affect the stability of the interface and create smaller microbubbles. In fact, the orifice of a flow focusing device accelerates the flow, while the presence of surfactants reduces the surface tension on the gas-liquid interface; hence, Marangoni stresses are developed. Both phenomena are responsible for destabilization of the interface, which leads to bubble formation. In addition, understanding and controlling the surfactant transfer on microbubbles surface is also important, because the amount of the attached material will greatly affect the mechanical properties; hence, the microbubbles behavior in vascular bed. The above phenomena and the mechanisms that lead to the instability of the pinching process are not extensively discussed in the literature. The present work investigates these processes with a coupled mass hydrodynamic model.
Γλώσσα: Αγγλικά
Τόπος δημοσίευσης: Paris-France (Virtual conference)
Σελίδες: 2
Θεματική κατηγορία: [EL] Μηχανική, γενικά[EN] Engineering, generalsemantics logo
Λέξεις-κλειδιά: Surfactantsfinite element methodsMicrofluidicsTwo-Phase Flow
Κάτοχος πνευματικών δικαιωμάτων: © The Author(s) 2020
Όνομα εκδήλωσης: VPH2020 Conference: “Virtual Physiological Human: When Models, Methods and Experiments Meet the Clinic”
Τοποθεσία εκδήλωσης: Paris, France
Ημ/νία έναρξης εκδήλωσης: 24/08/2020
Ημ/νία λήξης εκδήλωσης: 28/08/2020
Σημειώσεις: Virtual conference due to covid restrictions : https://vph2020.sciencesconf.org/
This research is funded by the action “Support of researchers with emphasis to young researcherspart B” by the Greek Ministry of Development and Investment under grant number 5048922.
Εμφανίζεται στις συλλογές:Ερευνητικές ομάδες

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΣελίδεςΜέγεθοςΜορφότυποςΈκδοσηΆδεια
1.3VPH2020_Lytra_Vlachomitrou&Pelekasis.pdfΕκτενής περίληψη-Ανακοίνωση σε συνέδριο2 σελίδες196.84 kBAdobe PDFΔημοσιευμένη/του ΕκδότηccbysaΔείτε/ανοίξτε